

000 MERGOPT: A MERGE-AWARE OPTIMIZER FOR RO- 001 002 BUST MODEL MERGING 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 008 ABSTRACT 009

010 Model merging aims to integrate multiple independently fine-tuned expert models
011 into a single model while preserving the knowledge of all experts. However, exist-
012 ing approaches mainly address parameter conflicts at the merging stage and over-
013 look the role of the fine-tuning process, which often leads to significant post-merge
014 performance degradation. To address this limitation, we propose a novel **merging-
015 aware optimizer** (abbreviated as `MergOPT`) that injects principled **merge-induced
016 parameter shifts** into the weight update steps so that the fine-tuned model exhibits
017 a more stable loss landscape under subsequent merging operations. Specifically,
018 we first formulate model merging as a distributionally robust optimization problem
019 in the weight space: the parameters of other experts to be merged are viewed as **ad-
020 versarial merge-offsets**, and fine-tuning adapts to the worst-case merging scenario.
021 Building on this formulation, we analyze the distribution of parameter updates and
022 the effects of merging hyperparameters, from which we derive a **merging-guided
023 feasible region for weight shifts**. Finally, extensive experiments across **four** large
024 language models (LLMs) and one vision model show that our approach consistently
025 outperforms standard fine-tuning, yielding an average relative gain of 3.5% and a
026 maximum gain of 9.5% across four merging strategies when merging seven experts.
027

028 1 INTRODUCTION 029

030 Multi-task learning is the conventional approach for adapting a foundation model to multiple down-
031 stream tasks, where diverse datasets are jointly used to update the model (Zhang & Yang, 2021; Chen
032 et al., 2024). However, this strategy requires centralized access to data, leading to high management
033 costs and privacy concerns. To overcome these limitations, model merging has recently been pro-
034 posed as an alternative paradigm (Yang et al., 2024a). In this setting, multiple expert models are first
035 fine-tuned independently on different tasks and then merged into a single model at the parameter
036 level, with the goal of inheriting the knowledge of all experts without centralized data sharing. This
037 paradigm has shown promising results in various domains, including computer vision (Ilharco et al.,
038 2023; Ortiz-Jimenez et al., 2023; Jin et al., 2024; Gargiulo et al., 2025) and natural language process-
039 ing (Yadav et al., 2023; Wan et al., 2024a; Yu et al., 2024; Akiba et al., 2025). A central challenge in
040 model merging lies in effectively mitigating parameter conflicts that arise when integrating multiple
041 expert models, as such conflicts often lead to severe performance degradation.

042 The most straightforward merging strategy is linear interpolation, where model parameters are simply
043 averaged across experts (Wortsman et al., 2022). However, due to the highly nonlinear nature of deep
044 neural networks and the complex interdependencies between tasks, this approach typically yields
045 suboptimal results. To overcome these limitations, recent research has explored more sophisticated
046 merging strategies. For instance, task arithmetic (Ilharco et al., 2023) first represents the difference
047 between a fine-tuned model and its pre-trained counterpart as a task vector, and constructs a unified
048 multi-task model by linearly combining these vectors, thereby partially preserving task-specific
049 knowledge. In addition, adaptive weighting methods dynamically adjust the contribution of each
050 task according to task characteristics, employing either heuristic approaches such as evolutionary
051 search (Akiba et al., 2025; Mencattini et al., 2025) or data-driven weight optimization (Matena &
052 Raffel, 2022; Jin et al., 2023; Yang et al., 2024b; Tang et al., 2024a). Another line of work, subspace
053 merging methods, alleviates task interference by projecting parameters into a sparse (Yadav et al.,
2023; Yu et al., 2024; Wang et al., 2024; Zhu et al., 2024) or low-rank subspace (Gargiulo et al.,
2025; Marczak et al., 2025), thereby mitigating performance loss caused by conflicts. Lastly, weight

054 alignment methods exploit the property of linear mode connectivity in deep neural networks, which
 055 suggests that multiple equivalent loss landscapes can exist (Garipov et al., 2018; Draxler et al., 2018).
 056 By parameter permutations or aligning the parameters of expert models such that they lie within the
 057 same loss landscape, these approaches aim to reduce potential conflicts during model merging (Jordan
 058 et al., 2023; Ainsworth et al., 2023; Rinaldi et al., 2025). By leveraging fine-grained parameter
 059 manipulation, these methods typically achieve better performance than simple averaging.

060 Even with these advances, **most of the** existing methods predominantly focus on *the merging stage*,
 061 i.e., designing strategies to reduce conflicts when merging expert models, while largely overlooking
 062 the role of *the fine-tuning stage*. In this work, we contend that the effectiveness of the final merged
 063 model crucially depends on both stages: fine-tuning must prepare models in a way that facilitates
 064 compatibility, while merging must integrate them effectively. **To the best of our knowledge, only**
 065 **a few** model merging works explicitly focus on the fine-tuning stage. For example, tangent-space
 066 fine-tuning methods linearize the model and perform optimization in its tangent space to enhance
 067 weight disentanglement (Ortiz-Jimenez et al., 2023; Jin et al., 2024; Tang et al., 2024b), thereby
 068 alleviating conflicts during merging. However, inference with such linearized models typically incurs
 069 a $2-3\times$ higher computational cost compared to standard models (Ortiz-Jimenez et al., 2023). In
 070 another line of work, SAFT-Merge (Lee et al., 2025) is inspired by sharpness-aware minimization
 071 (SAM) (Foret et al., 2021; Kwon et al., 2021) and aims to improve mergeability by encouraging
 072 flatter loss landscapes during fine-tuning. Yet SAM-based fine-tuning usually doubles the training
 073 time relative to standard fine-tuning. Given that most existing approaches focus primarily on the
 074 merging stage and that the few methods targeting fine-tuning often come with substantial training or
 075 inference overhead, we argue that there is a strong need for a fine-tuning scheme that is both efficient
 076 and effective, while further improving the overall performance of model merging.

077 To address this limitation, this paper proposes a novel optimization approach for the fine-tuning
 078 stage, called **Merging-Aware Optimizer** (referred to as **MergOPT**), specifically designed to produce
 079 expert models that are more amenable to merging. More specifically, the core idea of **MergOPT**
 080 is to formalize the parameter merging process as a **merge-induced parameter offset** operation and
 081 explicitly construct it during training as a distributionally robust optimization (DRO) (Lin et al.,
 082 2022) problem in weight space. In other words, the parameters (or task vectors) from other expert
 083 models to be merged can be regarded as **merge-induced parameter offsets** applied to a target model's
 084 parameters. The training objective is then to optimize against the worst-case **merge-induced offset**
 085 within the feasible region of this space, thereby improving the stability and effectiveness of the
 086 model during merging. To this end, **we further specify the feasible region over these merge-offset**
 087 **configurations**. Specifically, we decompose it into three dimensions: the distribution of task vectors,
 088 the range of merging coefficients, and the number of models to be merged. **However, when training**
 089 **a single expert model, these three components are usually unknown. To solve this problem,** we
 090 conduct an empirical analysis of task vectors. Results across three mainstream LLM architectures and
 091 seven real-world tasks demonstrate that each task vector can be well approximated by a Laplacian
 092 distribution (Kotz et al., 2012). For merging coefficients and model numbers, we define discrete
 093 feasible regions grounded in empirical observations and prior experience, ensuring both the practicality
 094 and interpretability of the **resulting merge-offset space**. Finally, we evaluate **MergOPT** on
 095 **four LLM architectures of different scales (Llama 1B & 3B & 8B, Qwen 1.5B)** combined with four
 096 representative model merging methods, applied to multiple downstream expert models. Experimental
 097 results demonstrate that **MergOPT** delivers substantial performance gains, with average relative
 098 improvements of about 3.5% and up to 9.5% when merging seven experts across four strategies,
 099 thereby validating its effectiveness in enhancing the robustness and practicality of model merging.

100 The **main contributions** of this work are summarized as follows: ① We highlight a critical yet
 101 underexplored aspect of model merging: the fine-tuning stage. We argue that the effectiveness
 102 of the merged model depends on both fine-tuning and merging, and emphasize the need for a
 103 dedicated fine-tuning scheme to improve model compatibility. ② We propose **MergOPT**, a merging-
 104 aware optimizer that formalizes merging as a **merge-induced parameter offset in weight space**
 105 and applies distributionally robust optimization to enhance stability and effectiveness. We further
 106 define the feasible region of **these merge-offset configurations** through analysis of task vectors,
 107 merging coefficients, and model numbers. ③ We perform extensive experiments on **four large-
 108 scale LLM architectures** and one vision model with four representative merging methods across
 109 seven downstream tasks. Results show that **MergOPT** consistently outperforms standard fine-tuning,
 110 demonstrating its effectiveness in improving the robustness and utility of model merging.

108 **2 RELATED WORK**

110 **Methods in the Merging Phase.** The most straightforward strategies are weight averaging (Wortsman
 111 et al., 2022) or task arithmetic (Ilharco et al., 2023), but their performance is often limited due to
 112 potential conflicts among models. To address this issue, more advanced merging techniques have
 113 been developed, which can be broadly categorized into three families: weighted merging, subspace-
 114 based merging, and weight alignment merging. (i) importance-based weighting methods aim to
 115 balance the contributions of different models using strategies such as grid search (Ilharco et al.,
 116 2023; Yadav et al., 2023), evolutionary algorithms (Akiba et al., 2025), or data-driven adaptive
 117 weighting (Matena & Raffel, 2022; Jin et al., 2023; Yang et al., 2024b; Tang et al., 2024a). For
 118 example, Fisher merging (Matena & Raffel, 2022) leverages Fisher information to assign parameter
 119 importance, while AdaMerging (Yang et al., 2024b) optimizes merging coefficients with unlabeled
 120 test data. (ii) subspace-based methods mitigate conflicts and reduce computational overhead by
 121 discarding redundant information and constraining merging to low-rank or sparse subspaces. Such
 122 as TIES-Merging (Yadav et al., 2023) and DARE (Yu et al., 2024), remove a large portion of
 123 unimportant parameter updates and adjust the remaining ones through sign aligning or rescaling. (iii)
 124 Weight alignment methods apply parameter permutations to obtain functionally equivalent solutions
 125 that lie in different loss basins (Jordan et al., 2023; Ainsworth et al., 2023; Rinaldi et al., 2025).
 126 By adjusting expert models to lie within the same basin, merging can typically be performed more
 127 smoothly and effectively.

128 **Methods in the Fine-Tuning Phase.** However, while these methods introduce clever designs at the
 129 merging stage, they still rely on standard optimizers and largely overlook the importance of preparing
 130 models to facilitate subsequent merging. To the best of our knowledge, **only a few works focus on**
 131 **how to train models that are more amenable to merging.** Ortiz-Jimenez et al. (2023) first pointed
 132 out that weight disentanglement is a key factor for the effectiveness of task-arithmetic-based model
 133 merging. Their method amplifies weight disentanglement by linearizing the model and performing
 134 fine-tuning in its tangent space (Jin et al., 2024; Tang et al., 2024b; Liu et al., 2024). Nevertheless,
 135 inference with the linearized model typically takes about two to three times longer than with its
 136 original nonlinear counterpart (Ortiz-Jimenez et al., 2023). In addition, our experimental results
 137 show that such approaches are still inferior in performance to the method proposed in this paper.
 138 SAFT-Merge (Lee et al., 2025) enhances mergeability during fine-tuning by applying sharpness-
 139 aware minimization. However, its training cost is nearly twice that of standard fine-tuning, making it
 140 inefficient for large models or datasets. In contrast, our **MergOPT** matches the efficiency of a standard
 141 optimizer while explicitly simulating merging via cross-expert merge-offsets, thereby improving
 142 stability and overall merging performance. It is worth mentioning that while most existing methods
 143 have been evaluated on vision models and image classification tasks, our work is conducted in the
 144 context of LLMs and text generation tasks.

145 **3 METHOD**

146 In this section, we first introduce the preliminaries and notations used in this paper (Sec. 3.1). Then,
 147 we present our proposed method, merge-aware fine-tuning via weight-space robust optimization,
 148 which aims to enhance the robustness of model merging (Sec. 3.2).

149 **3.1 PRELIMINARIES**

150 **Fine-Tuning from a Pre-Trained Model.** Let $\theta_0 \in \mathbb{R}^d$ denote the parameters of a pre-trained base
 151 model. We denote the training dataset as $\mathcal{D}_k^{\text{train}} = \{(x_i, y_i)\}_{i=1}^N$, where x_i is the input and y_i is the
 152 corresponding label for the i -th sample in task k ($k \in \{1, 2, \dots, K\}$). The fine-tuned parameters
 153 are denoted as $\theta_k \in \mathbb{R}^d$. The loss function is represented as $\ell_k(\theta_k; (x, y))$, which measures the
 154 discrepancy between the model's prediction and the true label for a given input. The expected
 155 empirical risk on the training dataset is defined as:

$$\mathcal{L}_{\text{task}}(\theta_k; \mathcal{D}_k^{\text{train}}) = \mathbb{E}_{(x, y) \sim \mathcal{D}_k^{\text{train}}} [\ell_k(\theta_k; (x, y))]. \quad (1)$$

156 **Model Merging.** Model merging aims to combine multiple fine-tuned models into a single merged
 157 model θ_{merged} . Given a set of K fine-tuned models with parameters $\{\theta_k\}_{k=1}^K$, a common approach is

162 to use task arithmetic (Ilharco et al., 2023):
 163

$$164 \quad \theta_{\text{merged}} = \theta_0 + \alpha \sum_{k=1}^K \Delta\theta_k, \quad (2)$$

$$165$$

$$166$$

167 where θ_0 is the base model, $\Delta\theta_k = \theta_k - \theta_0$ denotes the task vector for task k , and $\alpha > 0$ is a scaling
 168 factor. The objective of the merged model is to achieve consistently low test loss across all tasks.
 169 Formally, the expected test risk of the merged model is defined as:

$$170 \quad \mathcal{L}_{\text{merge}}(\theta_{\text{merged}}; \{\mathcal{D}_k^{\text{test}}\}_{k=1}^K) = \frac{1}{K} \sum_{k=1}^K \mathbb{E}_{(x,y) \sim \mathcal{D}_k^{\text{test}}} [\ell_k(\theta_{\text{merged}}; (x, y))], \quad (3)$$

$$171$$

$$172$$

173 where $\mathcal{D}_k^{\text{test}}$ is the test dataset for task k .
 174

175 **Distributionally Robust Optimization (DRO).** DRO seeks to optimize model parameters under
 176 distributional uncertainty by minimizing the worst-case expected loss over a family of probability
 177 distributions \mathcal{P} that are close to the empirical data distribution (Lin et al., 2022). Formally, the DRO
 178 objective can be expressed as:

$$179 \quad \min_{\theta_k} \sup_{P \in \mathcal{P}} \mathbb{E}_{(x,y) \sim P} [\ell_k(\theta_k; (x, y))]. \quad (4)$$

$$180$$

181 Here, \mathcal{P} denotes an ambiguity set of candidate distributions around the empirical distribution. \mathcal{P} is
 182 typically defined by imposing constraints based on a divergence metric (e.g., Wasserstein distance,
 183 KL divergence), which controls the proximity between P and the empirical distribution. In this work,
 184 unlike conventional DRO that operates in the *data space*, we extend the DRO framework to the *weight
 185 space* and interpret model merging as a form of distributional uncertainty over model parameters.

186 3.2 MergOPT : A MERGE-AWARE OPTIMIZER VIA WEIGHT ROBUST OPTIMIZATION

187 In this section, we introduce our proposed method, MergOPT, which aims to enhance the robustness
 188 of model merging through weight-space robust optimization. More specifically, we treat the merging
 189 process as a form of merge offsets in the weight space and apply distributionally robust optimization
 190 techniques in the fine-tuning stage to train models that are resilient to various merging scenarios.
 191

192 3.2.1 REFORMULATING MODEL MERGING AS WEIGHT-SPACE MERGE OFFSETS

193 Consider fine-tuning on task k , where the resulting model parameters can be expressed as $\theta_k =$
 194 $\theta_0 + \Delta\theta_k$, where $\Delta\theta_k$ is the task vector corresponding to task k . When merging K tasks, the merged
 195 model parameters $\theta_{\text{merged}} = \phi(\theta_k, \zeta(\alpha, K, \Delta\theta))$ can be reformulated as:

$$196 \quad \phi(\theta_k, \zeta(\alpha, K, \Delta\theta)) := \theta_0 + \alpha \sum_{j=1}^K \Delta\theta_j = (\theta_0 + \Delta\theta_k) - \Delta\theta_k + \alpha \sum_{j=1}^K \Delta\theta_j = \theta_k + \underbrace{((\alpha-1)\Delta\theta_k + \alpha \sum_{j \neq k} \Delta\theta_j)}_{\zeta(\alpha, K, \Delta\theta)}, \quad (5)$$

$$197$$

$$198$$

$$199$$

$$200$$

$$201$$

$$202$$

203 where $\phi(\theta_k, \zeta(\alpha, K, \Delta\theta))$ formalizes the process of merging the current task-specific model (i.e., θ_k)
 204 with the remaining fine-tuned models. The additional term $\zeta(\alpha, K, \Delta\theta)$ represents the **parameter
 205 offset** introduced by the merging operation, which depends on the merging coefficient α , the number of
 206 tasks K , and the task vectors $\Delta\theta_j$ ($j \in \{1, 2, \dots, K\}$) from the other models. **It is worth emphasizing
 207 that this formulation is consistent with SAFT-Merge (Lee et al., 2025), but our interpretation and
 208 solution strategy are fundamentally different. We provide a detailed comparison between the two
 209 methods in both the related work section and our experiments.**
 210

211 3.2.2 WEIGHT ROBUST OPTIMIZATION OBJECTIVE

212 Building on the above interpretation of model merging as **merge-induced parameter shifts in weight
 213 space**, we argue that a merge-aware optimizer during fine-tuning should satisfy two key objectives: **①**
 214 **Preservation Objective:** Preserve the standard task loss $\mathcal{L}_{\text{task}}(\theta_k; \mathcal{D}_k)$ to ensure strong performance
 215 on the current task. **② Robustness Objective:** Enhance robustness to diverse merging scenarios by
 accounting for the worst-case merging parameters $\zeta(\alpha, K, \Delta\theta)$ within a feasible set \mathcal{B} .

216 Formally, we define the weight-space robust optimization (WRO) objective as:
 217

$$218 \min_{\theta_k} \sup_{(\alpha, K, \Delta\theta) \in \mathcal{B}} \mathbb{E} \left[\ell_k(\phi(\theta_k, \zeta(\alpha, K, \Delta\theta))) \right], \quad (6)$$

220 where $\phi(\theta_k, \zeta)$ denotes the merged parameters under **merge-induced offset** ζ , and \mathcal{B} is the ambiguity
 221 set in the weight space, capturing feasible merging configurations. The feasible set is defined as

$$222 \mathcal{B} = \left\{ (\alpha, K, \Delta\theta) : \alpha \in \mathcal{A}, K \in \mathbb{Z}_{>0}, K \leq K_{\max}, \Delta\theta \in \mathcal{Z} \subseteq \text{span}\{\Delta\theta_1, \Delta\theta_2, \dots, \Delta\theta_K\} \right\}, \quad (7)$$

224 which constrains the merging configuration so that the induced **merge offsets** remain within reasonable
 225 bounds. Here, \mathcal{A} denotes the set of admissible merging coefficients, K_{\max} specifies the maximum
 226 number of tasks allowed for merging, and \mathcal{Z} is the set of admissible **merge-offset vectors**, restricted
 227 to linear combinations of task-specific parameter differences $\Delta\theta_j$. Throughout, $\text{span}(\cdot)$ denotes the
 228 linear span of a given set of task vectors. Naturally, when Eq. 6 reaches its optimal solution, θ_k
 229 inherently satisfies both the previously introduced preservation objective and robustness objective.

230 To solve the proposed WRO objective in Eq. 6, we can employ an alternating optimization strategy.
 231 The outer minimization updates the model parameters θ_k using gradient descent, while the inner
 232 maximization finds the worst-case merging parameters $\zeta(\alpha, K, \Delta\theta)$ using projected gradient ascent.
 233 Specifically, the optimization proceeds as follows: **1 Inner Maximization:** Given the current task
 234 parameters θ_k , identify the worst-case merging configuration within the feasible set \mathcal{B} . The adversarial
 235 merging parameters are then obtained by solving the following problem:
 236

$$236 (\alpha^*, K^*, \Delta\theta^*) = \text{Proj}_{\mathcal{B}}(\alpha', K', \Delta\theta') = \arg \max_{(\alpha', K', \Delta\theta')} \mathcal{L}_{\text{task}}(\phi(\theta_k^*, \zeta(\alpha', K', \Delta\theta')); \mathcal{D}_k). \quad (8)$$

238 where $\text{Proj}_{\mathcal{B}}(x)$ is a projection operator that projects the x onto the feasible set \mathcal{B} . **2 Outer**
 239 **Minimization:** Update θ_k to minimize the loss under the adversarially selected merging parameters.
 240 This ensures that the model adapts to the worst-case **weight-shift** introduced by the merging operation:

$$241 \theta_k^* \leftarrow \theta_k - \eta \nabla_{\theta_k} \left(\mathcal{L}_{\text{task}}(\phi(\theta_k, \zeta(\alpha^*, K^*, \Delta\theta^*)); \mathcal{D}_k) \right), \quad (9)$$

243 where η is the learning rate.

244 This alternating minimax procedure continues until convergence, effectively ensuring that the fine-
 245 tuned model θ_k is not only optimized for its own task but also robust to a broad range of potential
 246 merging scenarios. **This alternating optimization strategy follows classical machine learning**
 247 **frameworks like gradient ascent/descent and min–max optimization** (Boyd & Vandenberghe, 2004).
 248 However, for model merging, the objective is impractical due to inaccessible task vectors and costly
 249 inner optimization. We tailor this framework to merging with efficient approximations in next section.

250 3.2.3 OPTIMIZATION STRATEGY

252 In this subsection, we discuss the practical challenges associated with optimizing the WRO objective
 253 in Eq. 6 and propose strategies to address these challenges.

254 **Optimization Challenges.** From the optimization problem in Sec. 3.2.2, the ideal worst-case
 255 robust optimization faces the following two constraints during practical optimization, rendering it
 256 inapplicable in real-world scenarios: **1 Unknowable Merge-Offset Variables:** As derived from Eq. 5
 257 and Eq. 7, the **merge-induced parameter shift** ζ is primarily determined by three types of variables: the
 258 merging coefficient α , the number of merged tasks K , and the task vectors $\Delta\theta = \{\Delta\theta_1, \dots, \Delta\theta_K\}$.
 259 However, when fine-tuning the model θ_k for task k (or its corresponding task vector $\Delta\theta_k$), the task
 260 vectors of other models to be merged are often inaccessible—this is because different developers
 261 typically fine-tune their respective models independently. Under such circumstances, the merging
 262 coefficient and the number of merged tasks that can achieve optimal merging performance are
 263 naturally unascertainable in advance. **2 Inefficient Inner Optimization:** Even though some of the
 264 aforementioned variables have been clearly defined, the solution process for the worst-case **merge**
 265 **offset** described in Eq. 8 remains highly time-consuming. **Specifically, the merging coefficients α ,**
 266 **the number of merged tasks K , and the task-vector space \mathcal{Z} together induce a feasible set whose**
 267 **size grows exponentially.** Performing an explicit worst-case maximization over this space would be
 268 computationally intractable, both in theory and in practice.

269 **Feasible Set Approximation.** To address the issue of unknowable variables, we propose to effectively
 270 approximate the feasible set based on a series of prior information. More specifically, we make the

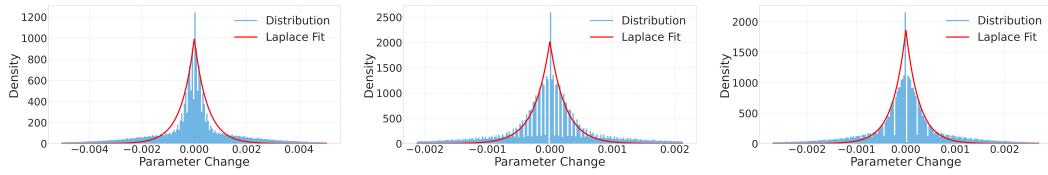


Figure 1: Distribution of parameter changes (i.e., task vectors) after fine-tuning different large language models: from left to right are Llama-3.2-1B, Qwen-2.5-1.5B, and Llama-3.2-3B. The blue curve represents the empirical distribution, while the red curve shows the fitted Laplace distribution. We observe that the Laplace distribution provides a close approximation to the empirical distribution.

following approximations. ❶ For task vectors $\{\theta_i\}_{i=1}^K$, we conducted analysis across three large language model architectures and seven downstream tasks (detailed in Sec. 4.1). We visualized the distribution of the cumulative task vectors (i.e., $\sum_{i=1}^K \Delta\theta_i$) in the main text and individual task vectors (i.e., $\{\Delta\theta_i\}_{i=1}^K$) in Appendix D.1.1. As shown in Fig. 1, all task vectors can be well-fitted by a specific Laplace distribution (Kotz et al., 2012), where an overwhelming majority of elements are concentrated around 0. ❷ For the optimal merging coefficient α , prior studies on model merging consistently indicate that α typically lies in the interval $(0, 1)$. Since fine-grained parameter search is computationally expensive, most works adopt a fixed small value; for example, $\alpha = 0.3$ is commonly used in Task Arithmetic (Ilharco et al., 2023) and Ties-Merging (Yadav et al., 2023). To further validate this observation, we evaluated the impact of different α values on merging performance (see Tab. 13 in Appendix D.1.2), which provides a practical discrete candidate set for α . ❸ For the maximum number of models to be merged, existing evidence shows that performance degrades more severely as more models are merged (Yadav et al., 2024). Consequently, most experiments restrict the number of merged models to fewer than ten. In the context of LLMs, merging is typically limited to two or three models (Goddard et al., 2024; Wan et al., 2024b; Yu et al., 2024; Du et al., 2024; Akiba et al., 2025), and few works explore merging at much larger scales (Wang et al., 2025)..

Single-Step Merge-Offset Approximation. To alleviate the computational inefficiency of iterative inner maximization, we approximate Eq. 8 using a single-step sampling strategy over merging configurations. Instead of performing multiple projection gradient-based updates to identify the worst-case merging parameters, we directly sample (α, K, z) from their respective feasible distributions and construct the merge-offset model in one step. In particular, z is drawn from a Laplace distribution fitted to the empirical task vectors, as established in the previous analysis. The offsets are then given by $\phi(\theta_k, \zeta(\alpha, K, z))$, and $\zeta(\alpha, K, z) = (K\alpha - 1)z$ denotes the **merge-induced parameter offset** induced by merging K tasks with coefficient α . To save sampling time, we note that each task vector is assumed to be z here. This single-step approximation substantially reduces the computational overhead while retaining the essential characteristics of the worst-case merge offsets. Moreover, since the offset z is sampled from a Laplace distribution that matches the empirical distribution of task vectors, repeated sampling naturally increases the probability of capturing directions that are close to the true worst-case, or at least adversarially challenging merge offsets. **This allows us to achieve substantial robustness improvements even when the combinatorial space is extremely large and computing the theoretical optimum is infeasible.**

Final Practical Objective. By combining the feasible-set approximation with the single-step merge-offset strategy, we derive a practical optimization objective that can be efficiently implemented during fine-tuning. At each training step, we first sample the merging coefficient α from the discrete candidate set \mathcal{A} , the number of tasks K from $\{1, 2, \dots, K_{\max}\}$, and the offset vector z from a Laplace distribution fitted to the empirical task vectors. The merge-offset model parameters are then obtained as $\phi(\theta_k, \zeta(\alpha, K, z))$. The task loss is evaluated at these parameters and used to update θ_k . Formally, the practical training objective at each step can be expressed as:

$$\begin{aligned} \min_{\theta_k} \mathbb{E}_{\alpha, K, z} [\mathcal{L}_{\text{task}}(\phi(\theta_k, \zeta(\alpha, K, z)); \mathcal{D}_k)], \\ \text{s.t. } \alpha \sim \text{Uniform}(\mathcal{A}), \quad K \sim \text{Uniform}(\{1, 2, \dots, K_{\max}\}), \quad z \sim \text{Laplace}(\mu, b), \end{aligned} \quad (10)$$

where the expectation is taken over the sampled merging parameters (α, K, z) . The Laplace distribution is defined as $\text{Laplace}(\mu, b) = \frac{1}{2b} \exp\left(-\frac{|x-\mu|}{b}\right)$, with location parameter μ and scale parameter b . The model parameters are finally updated using stochastic gradient descent: $\theta_k \leftarrow \theta_k - \eta \nabla \mathcal{L}_{\text{task}}(\phi(\theta_k, \zeta); \mathcal{D}_k)$. The optimization procedure is summarized in Alg. 1 of Appendix B.3.

Table 1: Performance comparison of model merging methods with Llama-3.2-1B-Instruct.

Method	Task Performance							Avg. (↑)
	C-STANCE	FOMC	MeetingBank	ScienceQA	NumGLUE-cm	NumGLUE-ds	20Minuten	
Pre-Trained	0.3386	0.2581	0.2036	0.6780	0.1220	0.1646	0.3802	0.3064
Standard Fine-Tuned	0.4980	0.5988	0.3707	0.8524	0.3902	0.5793	0.3880	0.5254
MergOPT Fine-Tuned	0.4957	0.6331	0.3158	0.8780	0.4390	0.5305	0.3829	0.5250
Weight Averaging	0.4206	0.5040	0.2179	0.7340	0.2195	0.3171	0.3813	0.3992
Weight Averaging w/ MergOPT	0.4202	0.4536	0.2093	0.7555	0.2927	0.3720	0.3825	0.4123 _(+3.28%)
Task Arithmetic	0.4219	0.4980	0.2094	0.7370	0.2439	0.3476	0.3805	0.4055
Task Arithmetic w/ MergOPT	0.4203	0.4718	0.2077	0.7530	0.3171	0.3659	0.3797	0.4165 _(+2.71%)
TIES-Merging	0.4236	0.4738	0.2145	0.7430	0.2439	0.3537	0.3862	0.4055
TIES-Merging w/ MergOPT	0.4202	0.4536	0.2093	0.7555	0.2927	0.3720	0.3825	0.4123 _(+1.68%)
DARE	0.4143	0.3810	0.2120	0.7180	0.2195	0.3232	0.3821	0.3786
DARE w/ MergOPT	0.4192	0.4819	0.2107	0.7485	0.2927	0.3659	0.3843	0.4147 _(+9.54%)

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

In this section, we detail the experimental setup used to evaluate the effectiveness of our proposed method. Due to space limitations, more experimental details can be found in Appendix B.

Datasets and Metrics. We evaluate our proposed method on seven datasets from TraceBench (Wang et al., 2023), including C-STANCE (Zhao et al., 2023), FOMC (Shah et al., 2023), MeetingBank (Hu et al., 2023), ScienceQA (Lu et al., 2022), NumGLUE-cm (Mishra et al., 2022), NumGLUE-ds (Mishra et al., 2022), and 20Minuten (Rios et al., 2021). These datasets span a variety of tasks, including domain-specific applications, multilingual understanding, and mathematical reasoning. The evaluation metric for each task is as follows: accuracy for C-STANCE, FOMC, ScienceQA, NumGLUE-cm, and NumGLUE-ds; ROUGE-L for MeetingBank; and SARI for 20Minuten. **For all metrics, the higher the value, the better.** We report the average score across all tasks as the overall performance metric. The statistics of these datasets are summarized in Table 6 in the Appendix.

Base Models and Optimizers. We conduct experiments on four base models: **Llama-3.2-1B-Instruct (Meta, 2024)**, **Qwen2.5-1.5B-Instruct (Qwen et al., 2025)**, **Llama-3.2-3B-Instruct (Meta, 2024)**, and **Llama-3.1-8B-Instruct (Meta, 2024)**. In this work, we adopt AdamW (Loshchilov & Hutter, 2017) as the default base optimizer for both the standard fine-tuning baseline and our merge-aware fine-tuning; implementation details are provided in Appendix B.2. We further verify optimizer agnosticism by instantiating our method with SGD and by comparing it against the SAM optimizer; the corresponding results are reported in Appendix D.2.

Merging Methods. Since our method operates during the fine-tuning stage, it remains independent of the specific choice of merging algorithms. To verify its effectiveness, we employ four representative merging strategies, including Weight Averaging (Wortsman et al., 2022), Task Arithmetic (Ilharco et al., 2023), TIES-Merging (Yadav et al., 2023), and DARE (Yu et al., 2024), applied to models obtained from both standard fine-tuning and our proposed **MergOPT** fine-tuning approach.

4.2 PERFORMANCE COMPARISON AND ANALYSIS

This section presents the main results and analysis of our experiments, demonstrating the effectiveness of **MergOPT** in enhancing merging performance. More experimental results and analyses can be found in Appendix C and Appendix D.

Robustness Across Architectures and Downstream Tasks. In Tables 1 and 2, we evaluate robustness under the challenging setting of merging seven independently fine-tuned expert models, comparing the performance of different merging strategies using Llama-3.2-1B and Llama-3.2-3B as the base models, respectively. We assess robustness by applying four representative merging strategies (Weight Averaging, Task Arithmetic, TIES-Merging, and DARE) to models fine-tuned either with the standard procedure or with **MergOPT**. Across all model scales, incorporating **MergOPT** consistently improves the merged performance. For example, in Table 1, Weight Averaging combined with **MergOPT** achieves an average score of 0.4123, outperforming plain Weight Averaging (0.3992). The same trend is observed for Task Arithmetic (0.4165 vs. 0.4055) and DARE (0.4147 vs. 0.3786). Then, on the larger Llama-3.2-3B (Table 2), the merged models with **MergOPT** still show consistent improvements, e.g., Task Arithmetic increases from 0.4871 to 0.5045 (+3.6%) and TIES-Merging from 0.4898 to 0.5098 (+4.1%). On average, these enhancements correspond to about 3.5% relative improvement across 8 cases, with the largest observed gain reaching 9.5% (i.e., DARE on Llama-3.2-1B). **Tables 7 and 8 in the appendix further demonstrate that we have validated the effectiveness of**

Table 2: Performance comparison of model merging methods with Llama-3.2-3B-Instruct.

Method	Task Performance							Avg. (↑)
	C-STANCE	FOMC	MeetingBank	ScienceQA	NumGLUE-cm	NumGLUE-ds	20Minuten	
Pre-Trained	0.4082	0.3528	0.2054	0.8962	0.1707	0.2195	0.3857	0.3770
Standard Fine-Tuned	0.5415	0.6835	0.4317	0.9335	0.6098	0.6463	0.3898	0.6057
MergOPT Fine-Tuned	0.5545	0.6653	0.3896	0.9360	0.5122	0.6341	0.3886	0.5836
Weight Averaging	0.4617	0.5665	0.2213	0.9140	0.4390	0.4146	0.3891	0.4866
Weight Averaging w/ MergOPT	0.4700	0.5867	0.2181	0.9180	0.4390	0.4085	0.3876	0.4897 _(+0.64%)
Task Arithmetic	0.4685	0.5605	0.2186	0.9100	0.4634	0.4024	0.3862	0.4871
Task Arithmetic w/ MergOPT	0.4755	0.5948	0.2167	0.9110	0.4878	0.4573	0.3883	0.5045 _(+3.56%)
TIES-Merging	0.4670	0.5706	0.2217	0.9130	0.4634	0.4024	0.3906	0.4898
TIES-Merging w/ MergOPT	0.4770	0.6028	0.2142	0.9175	0.5122	0.4573	0.3878	0.5098 _(+4.09%)
DARE	0.4630	0.5867	0.2203	0.9055	0.4634	0.4085	0.3871	0.4906
DARE w/ MergOPT	0.4690	0.6129	0.2198	0.9140	0.4878	0.4451	0.3851	0.5048 _(+2.89%)

Table 3: Performance of different merging methods on 4-task groups (Llama-3.2-1B-Instruct).

Method	Group 1					Group 2				
	FOMC	MeetingBank	NumGLUE-ds	20Minuten	Avg. (↑)	C-STANCE	FOMC	ScienceQA	NumGLUE-cm	Avg. (↑)
Task Arithmetic	0.4093	0.2412	0.4512	0.3816	0.3708	0.4320	0.4637	0.7710	0.3171	0.4959
Task Arithmetic w/ MergOPT	0.4758	0.2320	0.4512	0.3814	0.3851 _(+3.86%)	0.4320	0.4597	0.7945	0.3659	0.5130 _(+3.46%)
TIES-Merging	0.3992	0.2412	0.4573	0.3846	0.3706	0.4285	0.4718	0.7790	0.3415	0.5052
TIES-Merging w/ MergOPT	0.4657	0.2352	0.4512	0.3843	0.3841 _(+3.64%)	0.4274	0.4698	0.7985	0.3659	0.5154 _(+2.02%)

our method on Qwen2.5-1.5B and LLama-8B. In a word, the improvements are consistent across model scales and merging methods, highlighting the generality and practicality of our approach.

Robustness to the Number of Tasks. Tables 1–2 report results when merging all seven expert models. To further evaluate the effectiveness of our method under varying numbers of tasks, we also conduct experiments on smaller groups of experts, specifically 2-task, 4-task, and 6-task settings. Due to space constraints, Table 3 presents results on 4-task groups, while the results for 2-task and 6-task groups are deferred to the Appendix (Tables 20 and 21). Concretely, we randomly sample two groups of four tasks from the full set of seven, merge the corresponding fine-tuned models within each group, and then evaluate the merged models. As shown in Table 3, Task Arithmetic w/ MergOPT achieves an average score of 0.3851 in Group 1, compared to 0.3708 without MergOPT yielding a 3.86% relative improvement. Similarly, in Group 2 the average score improves from 0.4959 to 0.5130 (+3.46%). Comparable gains are also observed for TIES-Merging, highlighting that our method consistently enhances merging robustness and generality across different task configurations.

Robustness to Merging Coefficients. In this part, we visualize the joint loss landscapes of models fine-tuned with the standard AdamW optimizer and with our proposed MergOPT method, in order to illustrate the robustness of our approach under varying merging coefficients. Specifically, we randomly selected four pairs of tasks (e.g., C-STANCE & MeetingBank, MeetingBank & ScienceQA), and plotted contour maps of the joint-task loss as a function of the merging coefficients. As shown in Figure 2, each pixel in the heatmap corresponds to the joint loss value of a merged model defined by $\theta_{\text{merged}} = \theta_0 + \alpha_1 \Delta \theta_1 + \alpha_2 \Delta \theta_2$, where the joint loss is given by $L(\theta_{\text{merged}}; \mathcal{D}_1) + L(\theta_{\text{merged}}; \mathcal{D}_2)$. The horizontal and vertical axes represent the merging coefficients (α_1, α_2), while the color intensity indicates the magnitude of the loss. Across the four task pairs, we observe the following: (i) *AdamW fine-tuning* (left column): the low-loss regions are relatively narrow, and the loss increases sharply as the merging coefficients deviate from the optimum. This indicates sensitivity to merging shifts and weaker robustness. (ii) *Our method* (right column): the low-loss regions are substantially larger, and the contours around the optimum are flatter. This suggests that models fine-tuned with our optimizer exhibit greater stability under merging shifts, allowing them to better tolerate diverse coefficient configurations. These visualizations provide intuitive evidence that our method leads to more favorable loss landscapes for model merging.

4.3 COMPARE WITH OTHER FINE-TUNING METHODS

Compare with SAM-based Fine-Tuning. SAFT-Merge (Lee et al., 2025) employs SAM-based optimizers (Foret et al., 2021; Kwon et al., 2021) during the fine-tuning stage to improve model mergeability. We compare SAFT-Merge and MergOPT from two perspectives: (i) As shown in Table 4 (a), under the same number of training epochs, SAFT-Merge and MergOPT each exhibit distinct advantages. For instance, under Weight Averaging and DARE, MergOPT outperforms SAFT-Merge (SAM) by 2.59% and 5.20%, respectively. In contrast, under Task Arithmetic and TIES-Merging, MergOPT falls behind by 2.24% and 1.29%. However, SAM-based optimization requires 2.04× the cost of AdamW, whereas MergOPT incurs only a 1.17× cost. (ii) Furthermore, Table 4 (b) demonstrates that when training time is comparable, MergOPT consistently surpasses SAFT-Merge. More specifically, MergOPT achieves improvements of 4.08%, 0.70%, 0.95%, and 3.98% over SAFT-Merge across the four merging strategies. In addition, comparing SAFT-Merge (SAM) and

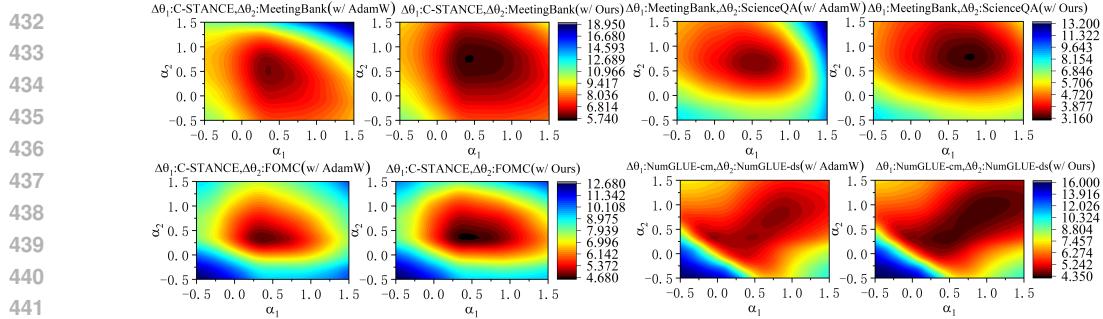


Figure 2: Visualization of the joint loss landscape for two task-specific models across two downstream tasks. The left panel shows AdamW-fine-tuned models, the right shows models fine-tuned with our MergOPT; darker colors indicate lower loss.

SAFT-Merge (ASAM), we observe that ASAM is generally superior when trained for the same number of epochs, whereas SAM becomes slightly better under comparable training cost. Under the same configuration, the two methods exhibit similar training time.

Table 4: Performance comparison of MergOPT and SAFT-Merge (based on SAM and ASAM) under (a) equal training epochs or (b) close to the training duration on Llama-3.2-1B-Instruct.

Method	Weight Averaging	Task Arithmetic	TIES-Merging	DARE	Time
(a) SAFT-Merge (SAM)	0.3980	0.4260	0.4177	0.3942	2.04x
(a) SAFT-Merge (ASAM)	0.4047 _(+1.68%)	0.4119 _(-3.30%)	0.4226 _(+1.17%)	0.4101 _(+4.03%)	2.06x
(a) MergOPT	0.4083_(+2.59%)	0.4165_(-2.24%)	0.4123_(-1.29%)	0.4147_(+5.20%)	1.17x
(b) SAFT-Merge (SAM)	0.3923	0.4136	0.4084	0.3988	1.04x
(b) SAFT-Merge (ASAM)	0.3868 _(-1.40%)	0.4181 _(+1.08%)	0.4030 _(-1.32%)	0.3943 _(-1.12%)	1.04x
(b) MergOPT	0.4083_(+4.08%)	0.4165_(+0.70%)	0.4123_(+0.95%)	0.4147_(+3.98%)	1.17x

Compare with Tangent Space Fine-Tuning. Ortiz-Jimenez et al. (2023) proposes fine-tuning models in the tangent space to enhance their mergeability. In Table 5, we compare standard fine-tuning, tangent-space fine-tuning, and our MergOPT fine-tuning. We observe that: (i) under Task Arithmetic, TIES-Merging, and DARE, tangent-space fine-tuning improves over standard fine-tuning by 3.13%, 3.95%, and 2.53%, respectively, but drops by 8.01% under Weight Averaging; (ii) MergOPT improves over standard fine-tuning by 2.36%, 3.43%, 4.10%, and 3.58% under Weight Averaging, Task Arithmetic, TIES-Merging, and DARE, respectively, and yields larger gains than tangent-space fine-tuning. Note that the inference cost of linear models obtained via tangent-space fine-tuning is typically 2-3x that of standard models, leading to efficiency issues.

Table 5: Performance comparison of MergOPT and Tangent Space Fine-tuning on ViT-B/32.

Method	Weight Averaging	Task Arithmetic	TIES-Merging	DARE	WUDI-Merging
Standard	54.9	66.9	65.8	67.0	83.2
Tangent	50.5 _(-8.01%)	69.0 _(+3.13%)	68.4 _(+3.95%)	68.7 _(+2.53%)	77.1 _(-7.33%)
MergOPT (Ours)	56.2_(+2.36%)	69.2_(+3.43%)	68.5_(+4.10%)	69.4_(+3.58%)	84.3_(+1.32%)

Summary. These results indicate that MergOPT is both more efficient and more effective than SAM-based and tangent-space fine-tuning methods.

5 CONCLUSION AND FUTURE WORK

This paper introduced a novel fine-tuning optimizer (MergOPT) designed to enhance the robustness of expert models during model merging. By reformulating fine-tuning as a robust optimization problem in the weight space, our method guides models to converge toward minima that are more amenable to merging and more resilient to the parameter changes introduced at the merging stage. Extensive experiments demonstrate that MergOPT consistently improves the performance of merged models. Several promising avenues for future research remain: First, developing more accurate approximation techniques to simulate key merging factors during fine-tuning could further enhance the model’s adaptability to merging. Second, combining MergOPT with other robustness-oriented training techniques may further strengthen merging stability. Third, integrating the models trained via our MergOPT method into various more advanced merging schemes is also feasible and valuable.

486 ETHICS STATEMENT
487488 This work proposes an optimizer intended to make models more amenable to parameter-level merging.
489 Whether and how to use it is entirely at the discretion of practitioners. All base models, datasets, and
490 evaluation benchmarks employed are publicly available and used under their respective licenses; no
491 proprietary or personally identifiable data are involved, and no human subjects were recruited.
492493 REPRODUCIBILITY STATEMENT
494495 To facilitate reproducibility, the code for our experiments is publicly available at <https://anonymous.4open.science/r/MergOPT-Optimizer-B767>. It includes all necessary
496 scripts and configuration files for training and evaluation.
497498 REFERENCES
500501 Samuel Ainsworth, Jonathan Hayase, and Siddhartha Srinivasa. Git re-basin: Merging models modulo
502 permutation symmetries. In *The Eleventh International Conference on Learning Representations*,
503 2023.504 Takuya Akiba, Makoto Shing, Yujin Tang, Qi Sun, and David Ha. Evolutionary optimization of
505 model merging recipes. *Nature Machine Intelligence*, 7(2):195–204, 2025.
506507 Stephen Boyd and Lieven Vandenberghe. *Convex optimization*. Cambridge university press, 2004.
508509 Shijie Chen, Yu Zhang, and Qiang Yang. Multi-task learning in natural language processing: An
510 overview. *ACM Computing Surveys*, 56(12):1–32, 2024.511 Gong Cheng, Junwei Han, and Xiaoqiang Lu. Remote sensing image scene classification: Benchmark
512 and state of the art. *Proceedings of the IEEE*, 105(10):1865–1883, 2017.
513514 Runxi Cheng, Feng Xiong, Yongxian Wei, Wanyun Zhu, and Chun Yuan. Whoever started the
515 interference should end it: Guiding data-free model merging via task vectors. In *Forty-second
516 International Conference on Machine Learning*, 2025.517 Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, and Andrea Vedaldi. De-
518 scribing textures in the wild. In *CVPR*, pp. 3606–3613, 2014.
519520 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
521 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
522 and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
523 *ICLR*, 2021.524 Felix Draxler, Kambis Veschgini, Manfred Salmhofer, and Fred Hamprecht. Essentially no barriers in
525 neural network energy landscape. In *International conference on machine learning*, pp. 1309–1318.
526 PMLR, 2018.527 Guodong Du, Junlin Lee, Jing Li, Runhua Jiang, Yifei Guo, Shuyang Yu, Hanting Liu, Sim K Goh,
528 Ho-Kin Tang, Daojing He, et al. Parameter competition balancing for model merging. *Advances
529 in Neural Information Processing Systems*, 37:84746–84776, 2024.
530531 Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware minimization
532 for efficiently improving generalization. In *The International Conference on Learning Representa-
533 tions*, 2021.534 Antonio Andrea Gargiulo, Donato Crisostomi, Maria Sofia Bucarelli, Simone Scardapane, Fabrizio
535 Silvestri, and Emanuele Rodola. Task singular vectors: Reducing task interference in model
536 merging. In *CVPR*, pp. 18695–18705, 2025.
537538 Timur Garipov, Pavel Izmailov, Dmitrii Podoprikhin, Dmitry P Vetrov, and Andrew G Wilson.
539 Loss surfaces, mode connectivity, and fast ensembling of dnns. *Advances in neural information
processing systems*, 31, 2018.

540 Charles Goddard, Shamane Siriwardhana, Malikeh Ehghaghi, Luke Meyers, Vladimir Karpukhin,
 541 Brian Benedict, Mark McQuade, and Jacob Solawetz. Arcee’s mergekit: A toolkit for merging
 542 large language models. In *Proceedings of the 2024 Conference on Empirical Methods in Natural
 543 Language Processing: Industry Track*, pp. 477–485, 2024.

544 Patrick Helber, Benjamin Bischke, Andreas Dengel, and Damian Borth. Eurosat: A novel dataset and
 545 deep learning benchmark for land use and land cover classification. *JSTARS*, 12(7):2217–2226,
 546 2019.

548 Yebowen Hu, Tim Ganter, Hanieh Deilamsalehy, Franck Dernoncourt, Hassan Foroosh, and Fei Liu.
 549 Meetingbank: A benchmark dataset for meeting summarization, 2023.

550 Gabriel Ilharco, Marco Túlio Ribeiro, Mitchell Wortsman, Suchin Gururangan, Ludwig Schmidt,
 551 Hannaneh Hajishirzi, and Ali Farhadi. Editing models with task arithmetic. *The Thirteenth
 552 International Conference on Learning Representations*, 2023.

554 Ruochen Jin, Bojian Hou, Jiancong Xiao, Weijie J Su, and Li Shen. Fine-tuning attention modules
 555 only: Enhancing weight disentanglement in task arithmetic. In *The Thirteenth International
 556 Conference on Learning Representations*, 2024.

558 Xisen Jin, Xiang Ren, Daniel Preotiuc-Pietro, and Pengxiang Cheng. Dataless knowledge fusion
 559 by merging weights of language models. In *The Eleventh International Conference on Learning
 560 Representations*, 2023.

561 Keller Jordan, Hanie Sedghi, Olga Saukh, Rahim Entezari, and Behnam Neyshabur. Repair: Renor-
 562 malizing permuted activations for interpolation repair. In *11th International Conference on
 563 Learning Representations: ICLR 2023*, 2023.

565 Samuel Kotz, Tomasz Kozubowski, and Krzysztof Podgorski. *The Laplace distribution and gener-
 566 alizations: a revisit with applications to communications, economics, engineering, and finance*.
 567 Springer Science & Business Media, 2012.

568 Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained
 569 categorization. In *ICCV workshops*, pp. 554–561, 2013.

571 Jungmin Kwon, Jeongseop Kim, Hyunseo Park, and In Kwon Choi. ASAM: adaptive sharpness-aware
 572 minimization for scale-invariant learning of deep neural networks. In *Proceedings of the 38th
 573 International Conference on Machine Learning*, volume 139 of *Proceedings of Machine Learning
 574 Research*, pp. 5905–5914. PMLR, 2021.

575 Yann LeCun. The mnist database of handwritten digits. <http://yann.lecun.com/exdb/mnist/>, 1998.

577 Yeoreum Lee, Jinwook Jung, and Sungyong Baik. Mitigating parameter interference in model merging
 578 via sharpness-aware fine-tuning. In *The International Conference on Learning Representations*,
 579 2025.

580 Fengming Lin, Xiaolei Fang, and Zheming Gao. Distributionally robust optimization: A review on
 581 theory and applications. *Numerical Algebra, Control and Optimization*, 12(1):159–212, 2022.

583 Tian Yu Liu, Aditya Golatkar, and Stefano Soatto. Tangent transformers for composition, privacy and
 584 removal. In *The Twelfth International Conference on Learning Representations*, 2024.

586 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. *arXiv preprint
 587 arXiv:1711.05101*, 2017.

588 Pan Lu, Swaroop Mishra, Tony Xia, Liang Qiu, Kai-Wei Chang, Song-Chun Zhu, Oyvind Tafjord,
 589 Peter Clark, and Ashwin Kalyan. Learn to explain: Multimodal reasoning via thought chains for
 590 science question answering, 2022.

592 Daniel Marczak, Simone Magistri, Sebastian Cygert, Bartłomiej Twardowski, Andrew D Bagdanov,
 593 and Joost van de Weijer. No task left behind: Isotropic model merging with common and task-
 specific subspaces. In *International Conference on Machine Learning*, 2025.

594 Michael S Matena and Colin A Raffel. Merging models with fisher-weighted averaging. *Advances in*
 595 *Neural Information Processing Systems*, 35:17703–17716, 2022.
 596

597 Tommaso Mencattini, Robert Adrian Minut, Donato Crisostomi, Andrea Santilli, and Emanuele
 598 Rodolà. Merge³: Efficient evolutionary merging on consumer-grade gpus. In *Forty-second*
 599 *International Conference on Machine Learning*, 2025.

600 AI Meta. Llama 3.2: Revolutionizing edge ai and vision with open, customizable models. *Meta AI*
 601 *Blog*. Retrieved December, 20:2024, 2024.

602 Swaroop Mishra, Arindam Mitra, Neeraj Varshney, Bhavdeep Sachdeva, Peter Clark, Chitta Baral,
 603 and Ashwin Kalyan. Numglue: A suite of fundamental yet challenging mathematical reasoning
 604 tasks, 2022.

605 Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number
 606 of classes. In *2008 Sixth Indian conference on computer vision, graphics & image processing*, pp.
 607 722–729. IEEE, 2008.

608 Guillermo Ortiz-Jimenez, Alessandro Favero, and Pascal Frossard. Task arithmetic in the tangent
 609 space: Improved editing of pre-trained models. *Advances in Neural Information Processing*
 610 *Systems*, 36:66727–66754, 2023.

611 Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
 612 Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
 613 Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
 614 Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tianyi
 615 Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan,
 616 Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025.

617

618 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 619 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 620 models from natural language supervision. In *ICML*, pp. 8748–8763. PMLR, 2021.

621

622 Filippo Rinaldi, Giacomo Capitani, Lorenzo Bonicelli, Donato Crisostomi, Federico Bolelli, ELISA
 623 FICARRA, Emanuele Rodolà, Simone Calderara, and Angelo Porrello. Update your transformer to
 624 the latest release: Re-basin of task vectors. In *Forty-second International Conference on Machine*
 625 *Learning*, 2025.

626

627 Annette Rios, Nicolas Spring, Tannon Kew, Marek Kostrzewa, Andreas Säuberli, Mathias Müller,
 628 and Sarah Ebliing. A new dataset and efficient baselines for document-level text simplification in
 629 German. In *Proceedings of the Third Workshop on New Frontiers in Summarization*, Online and in
 630 Dominican Republic, 2021. Association for Computational Linguistics.

631

632 Agam Shah, Suvan Paturi, and Sudheer Chava. Trillion dollar words: A new financial dataset, task &
 633 market analysis, 2023.

634

635 Johannes Stallkamp, Marc Schlipsing, Jan Salmen, and Christian Igel. The german traffic sign
 636 recognition benchmark: a multi-class classification competition. In *IJCNN*, pp. 1453–1460. IEEE,
 637 2011.

638

639 Anke Tang, Li Shen, Yong Luo, Nan Yin, Lefei Zhang, and Dacheng Tao. Merging multi-task models
 640 via weight-ensembling mixture of experts. In *Proceedings of the 41st International Conference on*
 641 *Machine Learning*, pp. 47778–47799, 2024a.

642

643 Anke Tang, Li Shen, Yong Luo, Yibing Zhan, Han Hu, Bo Du, Yixin Chen, and Dacheng Tao.
 644 Parameter-efficient multi-task model fusion with partial linearization. In *The Twelfth International*
 645 *Conference on Learning Representations*, 2024b.

646

647 Bastiaan S Veeling, Jasper Linmans, Jim Winkens, Taco Cohen, and Max Welling. Rotation equivariant
 648 cnns for digital pathology. In *MICCAI*, pp. 210–218. Springer, 2018.

649

650 Fanqi Wan, Xinting Huang, Deng Cai, Xiaojun Quan, Wei Bi, and Shuming Shi. Knowledge fusion
 651 of large language models. *The Thirteenth International Conference on Learning Representations*,
 652 2024a.

648 Fanqi Wan, Xinting Huang, Deng Cai, Xiaojun Quan, Wei Bi, and Shuming Shi. Knowledge fusion
 649 of large language models. In *The Twelfth International Conference on Learning Representations*,
 650 2024b.

651 Ke Wang, Nikolaos Dimitriadis, Guillermo Ortiz-Jiménez, François Fleuret, and Pascal Frossard.
 652 Localizing task information for improved model merging and compression. In *International
 653 Conference on Machine Learning*, pp. 50268–50287, 2024.

654 Xiao Wang, Yuansen Zhang, Tianze Chen, Songyang Gao, Senjie Jin, Xianjun Yang, Zhiheng Xi, Rui
 655 Zheng, Yicheng Zou, Tao Gui, et al. Trace: A comprehensive benchmark for continual learning in
 656 large language models. *arXiv preprint arXiv:2310.06762*, 2023.

657 Yuanyi Wang, Yanggan Gu, Yiming Zhang, Qi Zhou, Zhaoyi Yan, Congkai Xie, Xinyao Wang, Jianbo
 658 Yuan, and Hongxia Yang. Model merging scaling laws in large language models. *arXiv preprint
 659 arXiv:2509.24244*, 2025.

660 Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
 661 Pierrick Cistac, Tim Rault, Remi Louf, Morgan Funtowicz, et al. Transformers: State-of-the-art
 662 natural language processing. In *Proceedings of the 2020 conference on empirical methods in
 663 natural language processing: system demonstrations*, pp. 38–45, 2020.

664 Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes,
 665 Ari S Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, et al. Model
 666 soups: averaging weights of multiple fine-tuned models improves accuracy without increasing
 667 inference time. In *International Conference on Machine Learning*, pp. 23965–23998. PMLR,
 668 2022.

669 Jianxiong Xiao, Krista A Ehinger, James Hays, Antonio Torralba, and Aude Oliva. Sun database:
 670 Exploring a large collection of scene categories. *IJCV*, 119:3–22, 2016.

671 Prateek Yadav, Derek Tam, Leshem Choshen, Colin A Raffel, and Mohit Bansal. Ties-merging:
 672 Resolving interference when merging models. *Advances in Neural Information Processing Systems*,
 673 36:7093–7115, 2023.

674 Prateek Yadav, Tu Vu, Jonathan Lai, Alexandra Chronopoulou, Manaal Faruqui, Mohit Bansal,
 675 and Tsendsuren Munkhdalai. What matters for model merging at scale? *arXiv preprint
 676 arXiv:2410.03617*, 2024.

677 Enneng Yang, Li Shen, Guibing Guo, Xingwei Wang, Xiaochun Cao, Jie Zhang, and Dacheng Tao.
 678 Model merging in llms, mllms, and beyond: Methods, theories, applications and opportunities.
 679 *arXiv preprint arXiv:2408.07666*, 2024a.

680 Enneng Yang, Zhenyi Wang, Li Shen, Shiwei Liu, Guibing Guo, Xingwei Wang, and Dacheng
 681 Tao. Adamerging: Adaptive model merging for multi-task learning. *The Thirteenth International
 682 Conference on Learning Representations*, 2024b.

683 Le Yu, Bowen Yu, Haiyang Yu, Fei Huang, and Yongbin Li. Language models are super mario:
 684 Absorbing abilities from homologous models as a free lunch. In *International Conference on
 685 Machine Learning*. PMLR, 2024.

686 Netzer Yuval. Reading digits in natural images with unsupervised feature learning. In *NIPS Workshop*,
 687 2011.

688 Yu Zhang and Qiang Yang. A survey on multi-task learning. *IEEE transactions on knowledge and
 689 data engineering*, 34(12):5586–5609, 2021.

690 Chenye Zhao, Yingjie Li, and Cornelia Caragea. C-STANCE: A large dataset for Chinese zero-shot
 691 stance detection. In *Proceedings of the 61st Annual Meeting of the Association for Computational
 692 Linguistics (Volume 1: Long Papers)*, Toronto, Canada, 2023. Association for Computational
 693 Linguistics.

694 Didi Zhu, Zhongyisun Sun, Zexi Li, Tao Shen, Ke Yan, Shouhong Ding, Chao Wu, and Kun
 695 Kuang. Model tailor: Mitigating catastrophic forgetting in multi-modal large language models. In
 696 *International Conference on Machine Learning*, pp. 62581–62598. PMLR, 2024.

702	Appendix Contents.	The appendix is structured into several sections, each presenting supplementary
703	information and detailed explanations to support the main text.	
704		
705	A LLM Usage Statement	14
706	B Experimental Details	14
707	B.1 Dataset Statistics	15
709	B.2 Implementation Details	15
710	B.3 Algorithm	16
711		
712	C Additional Experimental Results	16
714	C.1 Applications in Other LLM Architecture	16
715	C.2 Applications in Large-Scale LLM Architecture	16
716	C.3 Applications in Visual Architecture and Tasks	17
717		
718	D Additional Experimental Analysis	18
719	D.1 Analysis of the Feasible Region of Hyperparameters	18
721	D.1.1 Analysis on Task Vectors $\Delta\theta$	18
722	D.1.2 Analysis on Scale Parameter b of Laplace Distribution	20
723	D.1.3 Analysis on Location Parameter μ of Laplace Distribution	20
724	D.1.4 Analysis on Merging Coefficient α	20
725	D.2 Comparison with Different Optimizers	20
726	D.2.1 Comparison with SAM Optimizer	20
727	D.2.2 Combined with Other Base Optimizer	21
728	D.2.3 Comparative Analysis of Model Merging via Different Optimization Methods	22
729	D.3 Ablation Study on Number of Tasks to Merge	22
730	D.4 Hyperparameter Sensitivity Analysis	23
731	D.4.1 Different Task Vector Distributions	23
732	D.4.2 Batch Sizes	23
733	D.4.3 Learning Rates	23
734		

A LLM USAGE STATEMENT

This paper makes use of a large language model (ChatGPT) exclusively for language polishing, spelling correction, and grammar checking. The LLM was not involved in literature retrieval or in the development of specific ideas. Following the polishing process, the authors carefully reviewed and revised the content as necessary and assume full responsibility for the final published version.

B EXPERIMENTAL DETAILS

In this section, we provide detailed statistics of the datasets used in our experiments (Sec. B.1) and elaborate on the implementation details of our proposed MergOPT method (Sec. B.2).

756
 757 Table 6: An overview of dataset statistics in experiments. ‘Source’ indicates the origin of the context.
 758 ‘Avg. Len.’ denotes the average length in words for English, German, and code datasets, and in
 759 characters for Chinese. ‘SARI’ is a metric specific to simplification. **For all metrics, the larger the**
corresponding value, the better.

760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 Dataset	760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 Source	760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 Language	760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 Avg. Len.	760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 Metric
<i>Domain-specific</i>				
ScienceQA (Lu et al., 2022)	Science	English	210	Accuracy
FOMC (Shah et al., 2023)	Finance	English	51	Accuracy
MeetingBank (Hu et al., 2023)	Meeting	English	2,853	ROUGE-L
<i>Multi-lingual</i>				
C-STANCE (Zhao et al., 2023)	Social media	Chinese	127	Accuracy
20Minuten (Rios et al., 2021)	News	Germany	382	SARI
<i>Mathematical reasoning</i>				
NumGLUE-cm (Mishra et al., 2022)	Math	English	32	Accuracy
NumGLUE-ds (Mishra et al., 2022)	Math	English	21	Accuracy

773 B.1 DATASET STATISTICS

775 This section provides detailed statistics of the datasets used in our experiments, as summarized in
 776 Table 6. The datasets in TraceBench (Wang et al., 2023) are constructed based on the following
 777 principles: (i) they are sufficiently novel such that most LLMs have not been trained on them; (ii)
 778 they are designed to pose a meaningful level of challenge to LLMs; and (iii) they cover a diverse
 779 range of tasks to provide a comprehensive evaluation of model capabilities. A detailed description of
 780 the seven datasets is provided below.

781 **Domain-specific Applications.** ScienceQA (Lu et al., 2022) is a multi-hop question answering
 782 dataset built upon elementary and high school science curricula. It exhibits rich domain diversity,
 783 covering natural sciences, social sciences, and language sciences. FOMC (Shah et al., 2023) is a novel
 784 financial-domain classification task focused on hawkish–dovish categorization. The dataset consists
 785 of three subsets: meeting minutes, press conference transcripts, and speeches, each capturing different
 786 aspects of monetary policy communication. MeetingBank (Hu et al., 2023) is a new benchmark
 787 dataset for summarization of city council meetings. It requires a comprehensive understanding of
 788 lengthy background materials, making it particularly challenging.

789 **Multilingual Understanding Tasks.** C-STANCE (Zhao et al., 2023) is a zero-shot stance detection
 790 dataset collected from Sina Weibo, one of the most popular social media platforms in China.
 791 It serves as a benchmark for evaluating models’ ability to understand and analyze Chinese text.
 792 20Minuten (Rios et al., 2021) is a text simplification dataset consisting of full-length articles paired
 793 with shorter, simplified summaries from a Swiss news magazine. It provides a benchmark for
 794 assessing models’ capability in generating German text, particularly for simplification tasks.

795 **Mathematical Reasoning Tasks.** NumGLUE (Mishra et al., 2022) is designed to evaluate the
 796 mathematical reasoning ability of AI systems, with a core focus on understanding and performing
 797 basic arithmetic. In our experiments, we adopt two subsets: NumGLUE-cm (Commonsense), which
 798 involves simple arithmetic computations based on mathematical facts, and NumGLUE-ds (Domain
 799 Specific), which extends arithmetic reasoning by requiring additional domain-specific knowledge.

800 801 B.2 IMPLEMENTATION DETAILS

802 The main experiments in this work focus on LLM architectures and language tasks, while the details
 803 for vision tasks are provided separately in Section C.3. More specifically, we build our experiments
 804 on the HuggingFace Transformers (Wolf et al., 2020) library for loading pre-trained models and
 805 conducting task-specific fine-tuning. The pre-trained models include Llama-3.2-1B-Instruct (Meta,
 806 2024), Qwen2.5-1.5B-Instruct (Qwen et al., 2025), Llama-3.2-3B-Instruct (Meta, 2024), and Llama-
 807 3.1-8B-Instruct (Meta, 2024). Unless otherwise specified, we adopt AdamW (Loshchilov & Hutter,
 808 2017) as the default base optimizer during fine-tuning. Following the TraceBench (Wang et al., 2023)
 809 protocol, we fine-tune the models on C-STANCE, FOMC, MeetingBank, ScienceQA, NumGLUE-cm,

Algorithm 1 MergOPT: A Merge-Aware Optimizer for Robust Model Merging

Require: Pretrained model f_{θ_0} , task dataset \mathcal{D}_k , candidate merging coefficient set \mathcal{A} , maximum number of merged tasks K_{\max} , Laplace distribution parameters (μ, b) , base optimizer (e.g., SGD or AdamW)

Ensure: Fine-tuned parameters θ_k

- 1: Initialize $\theta_k \leftarrow \theta_0$
- 2: **for** each training step **do**
- 3: Sample a mini-batch $\mathcal{B}_k \leftarrow \{(x_i, y_i)\}_{i=1}^{|\mathcal{B}_k|} \sim \mathcal{D}_k$
- 4: Sample merging parameters: $\alpha \sim \text{Uniform}(\mathcal{A})$, $K \sim \text{Uniform}(\{1, 2, \dots, K_{\max}\})$, $z \sim \text{Laplace}(\mu, b)$
- 5: Construct merge-offset parameters: $\theta'_k \leftarrow \phi(\theta_k, \zeta(\alpha, K, z)) = \theta_k + (K\alpha - 1)z$
- 6: Compute task loss and gradient at θ'_k : $g \leftarrow \nabla \mathcal{L}_{\text{task}}(\theta'_k; \mathcal{B}_k)$
- 7: Update parameters using the base optimizer: $\theta_k \leftarrow \text{Optimizer}(\theta_k, g)$
- 8: **end for**
- 9: **return** θ_k

NumGLUE-ds, and 20Minuten for 5, 3, 7, 3, 5, 5, and 7 epochs, respectively. The learning rate is set to 2e-5, the batch size to 8, and the weight decay to 0.001.

For our proposed MergOPT method, we set the default parameters of the Laplace distribution to $(\mu, b) = (0, 0.0005)$. We further evaluate different values of b , including 0.05, 0.001, and 0.0005 in Table 11, and observe consistently strong robustness across these settings. For the feasible set \mathcal{A} of merging coefficients, we adopt a default configuration of $\mathcal{A} = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6]$. Additionally, we report results in Table 13 for coefficient values ranging from 0.1 to 1.0 with an increment of 0.1. The maximum number of tasks K_{\max} considered for merging is set to 7 by default.

All experiments are conducted on a machine with an Intel(R) Xeon(R) Gold 6459C CPU (12 cores), NVIDIA RTX 4090 GPUs (48 GB memory), and 90 GB of RAM. The software environment consists of Python 3.8 and PyTorch 2.1.2.

B.3 ALGORITHM

The pseudocode of the proposed MergOPT algorithm is presented in Algorithm 1. Given the input hyperparameters, for each task (k) we initialize the model with the pretrained parameters (Line 1). At each optimization step, we first sample a mini-batch of data (Line 3), then sample the merging coefficients, the number of tasks, and the task vectors from a predefined feasible region (Line 4). Next, we construct a merged parameter offset (Line 5), and finally compute the gradients (Line 6) and update the parameters (Line 7).

C ADDITIONAL EXPERIMENTAL RESULTS

In this section, we validate the effectiveness of the proposed method on other architectures, including two LLMs (Owen2.5-1.5B-Instruct and Llama3.1-8B-Instruct) and a vision model (ViT-B/32).

C.1 APPLICATIONS IN OTHER LLM ARCHITECTURE

Beyond the mainstream Llama (e.g., Tables 1 and 2) architecture, we also validate the effectiveness of our proposed method on the Qwen architecture by merging seven Qwen2.5-1.5B-Instruct models, each fine-tuned separately on a single task. As shown in Table 7, our MergOPT-based fine-tuning improves performance over standard fine-tuning by 2.34%, 5.51%, 4.45%, and 1.56% under Weight Averaging, Task Arithmetic, TIES-Merging, and DARE, respectively. These results demonstrate that our method exhibits robust cross-architecture generalization.

C.2 APPLICATIONS IN LARGE-SCALE LLM ARCHITECTURE

In the main text, we primarily conduct experiments on Llama-1B/3B and Qwen2.5-1.5B. To further validate the effectiveness of our approach on larger-scale architectures, in this section we additionally present results on Llama-8B. Specifically, we merge expert models fine-tuned on C-STANCE, FOMC, ScienceQA, and NumGLUE-cm, and apply our proposed method to four representative model

864
865

Table 7: Performance comparison of model merging methods with Qwen2.5-1.5B-Instruct.

866
867
868
869
870
871
872
873
874

Method	Task Performance							Avg. (↑)
	C-STANCE	FOMC	MeetingBank	ScienceQA	NumGLUE-cm	NumGLUE-ds	20Minuten	
Pre-Trained	0.4700	0.3569	0.1895	0.7182	0.0976	0.2195	0.3885	0.3486
Standard Fine-Tuned	0.5385	0.6230	0.3190	0.8439	0.3902	0.4695	0.3956	0.4974
MergOPT Fine-Tuned	0.5250	0.6351	0.3459	0.8775	0.5122	0.4390	0.3977	0.5336
Weight Averaging	0.4880	0.4012	0.1967	0.7500	0.4390	0.3841	0.3920	0.4359
Weight Averaging w/ MergOPT	0.5005	0.4536	0.1994	0.7530	0.4390	0.3841	0.3928	0.4461 _(+2.34%)
Task Arithmetic	0.5055	0.4677	0.2189	0.7540	0.4146	0.3902	0.3880	0.4484
Task Arithmetic w/ MergOPT	0.5220	0.5121	0.2205	0.7625	0.5122	0.3963	0.3859	0.4731 _(+5.51%)
TIES-Merging	0.5160	0.4597	0.2253	0.7475	0.4390	0.4024	0.3875	0.4539
TIES-Merging w/ MergOPT	0.5260	0.5081	0.2210	0.7660	0.5122	0.3963	0.3890	0.4741 _(+4.45%)
DARE	0.5035	0.4536	0.2260	0.7425	0.4390	0.3963	0.3829	0.4491
DARE w/ MergOPT	0.5100	0.5161	0.2174	0.7710	0.4390	0.3598	0.3794	0.4561 _(+1.56%)

875
876
877
878
879
880

merging techniques: Weight Averaging, Task Arithmetic, TIES-Merging, and DARE. As shown in Table 8, **MergOPT** yields average performance improvements of 1.08%, 1.40%, 0.46%, and 0.51% for Weight Averaging, Task Arithmetic, TIES-Merging, and DARE, respectively. These results provide strong evidence that our method remains effective at larger parameter scales.

881
882

Table 8: Performance Comparison of Model Merging Methods on Llama3.1-8B-Instruct.

883
884
885
886
887
888
889
890
891
892
893
894
895

Method	Task Performance				Avg. (↑)
	C-STANCE	FOMC	ScienceQA	NumGLUE-cm	
Pre-Trained	0.4197	0.3085	0.9075	0.2927	0.4821
Standard Fine-Tuned	0.5712	0.7234	0.9418	0.6721	0.7271
MergOPT Fine-Tuned	0.5637	0.7335	0.9403	0.6234	0.7152
Weight Averaging	0.4982	0.6489	0.9293	0.7319	0.7021
Weight Averaging w/ MergOPT	0.5071	0.6627	0.9307	0.7384	0.7097 _(+1.08%)
Task Arithmetic	0.5268	0.6731	0.9218	0.6833	0.7012
Task Arithmetic w/ MergOPT	0.5318	0.6803	0.9251	0.7069	0.7110 _(+1.40%)
TIES-Merging	0.5193	0.6792	0.9212	0.7074	0.7068
TIES-Merging w/ MergOPT	0.5236	0.6824	0.9237	0.7106	0.7101 _(+0.46%)
DARE	0.5227	0.6696	0.9168	0.7071	0.7041
DARE w/ MergOPT	0.5259	0.6765	0.9192	0.7092	0.7077 _(+0.51%)

896
897

C.3 APPLICATIONS IN VISUAL ARCHITECTURE AND TASKS

900
901
902

Beyond language tasks, vision tasks are also a major application area for model merging methods. To evaluate the effectiveness of our approach across different domains, we further conduct experiments in the vision setting.

903
904
905
906
907
908
909
910

Architecture and Datasets. We follow standard configurations used in prior work on vision model merging (Ilharco et al., 2023), adopting CLIP-ViT-B/32 (Dosovitskiy et al., 2021; Radford et al., 2021) as the base model and fine-tuning it into expert models on ten downstream tasks: SUN397 (Xiao et al., 2016), Cars (Krause et al., 2013), RESISC45 (Cheng et al., 2017), EuroSAT (Helber et al., 2019), SVHN (Yuval, 2011), GTSRB (Stallkamp et al., 2011), MNIST (LeCun, 1998), DTD (Cimpoi et al., 2014), Flowers102 (Nilsback & Zisserman, 2008), and PCAM (Veeling et al., 2018). As all tasks are classification tasks, we adopt Top-1 classification accuracy as the unified evaluation metric and report the average value across all tasks.

911
912
913

Fine-tuning Methods. We use AdamW as the standard fine-tuning baseline, with hyperparameters following previous work. In addition, we consider fine-tuning in the tangent space (Ortiz-Jimenez et al., 2023) as well as our proposed **MergOPT**-based fine-tuning scheme.

914
915
916
917

Merging Methods. Consistent with our LLM experiments, we compare four representative model merging approaches: Weight Averaging (Wortsman et al., 2022), Task Arithmetic (Ilharco et al., 2023), TIES-Merging (Yadav et al., 2023), and DARE (Yu et al., 2024). Moreover, we include WUDI-Merging (Cheng et al., 2025), a recent optimization-based, data-free merging method that has been shown to significantly outperform several typical model merging baselines.

918 **Performance Comparison.** As shown in Table 9, we make the following observations: (i) Compared with standard fine-tuning, the proposed MergOPT significantly improves performance when
 919 merging 10 tasks. For example, under five representative merging methods—Weight Averaging,
 920 Task Arithmetic, TIES-Merging, DARE, and WUDI-Merging—MergOPT yields average gains of
 921 2.36%, 3.43%, 4.10%, 3.58%, and 1.32%, respectively. (ii) Fine-tuning in the tangent space allows a
 922 better decoupling between the input space and the weight space, thereby reducing interference during
 923 merging (Ortiz-Jimenez et al., 2023)¹. We observe that, in most cases, tangent-space fine-tuning
 924 indeed improves performance over standard fine-tuning: under Task Arithmetic, TIES-Merging, and
 925 DARE, it brings gains of 3.13%, 3.95%, and 2.53%, respectively, although these improvements are
 926 still lower than those achieved by MergOPT in the corresponding settings. However, under Weight
 927 Averaging and WUDI-Merging, the merged models exhibit some performance degradation; we leave
 928 a deeper investigation of this phenomenon to future work. (iii) WUDI-Merging shows consistently
 929 stronger performance than other merging baselines, as it constructs a data-free optimization objective
 930 and explicitly optimizes the merged model parameters. Overall, these results provide consistent
 931 evidence that our proposed method is broadly applicable across diverse domains.

933 Table 9: Performance Comparison of Model Merging Methods on Visual Tasks with CLIP-ViT-B/32.

Method	SUN397	Cars	RESISC45	EuroSAT	SVHN	GTSRB	MNIST	DTD	Flowers102	PCAM	Avg. (%)
Weight Averaging (Standard)	60.7	54.4	59.0	35.9	33.4	33.2	58.7	42.0	77.5	94.3	54.9
Weight Averaging (Tangent)	56.1	51.2	53.7	36.4	26.3	29.8	58.2	44.1	68.6	80.3	50.5 _(-8.01%)
Weight Averaging (MergOPT)	60.8	56.6	59.7	36.9	32.9	35.5	66.9	42.6	77.5	92.3	56.2 _(+2.36%)
Task Arithmetic (Standard)	62.1	57.0	72.0	77.7	64.5	59.0	91.4	46.3	68.6	70.5	66.9
Task Arithmetic (Tangent)	62.7	64.1	77.8	89.3	54.7	55.9	84.5	52.7	72.5	76.0	69.0 _(+3.13%)
Task Arithmetic (MergOPT)	57.0	55.5	70.0	71.8	76.6	74.6	95.7	47.3	63.7	80.0	69.2 _(+3.43%)
TIES-Merging (Standard)	64.6	64.9	70.6	74.7	62.8	55.4	92.0	44.1	65.7	62.8	65.8
TIES-Merging (Tangent)	63.8	65.0	78.1	90.1	54.0	55.9	85.0	50.5	70.6	71.5	68.4 _(+3.95%)
TIES-Merging (MergOPT)	56.2	58.1	70.0	66.7	78.0	73.0	96.7	45.2	64.7	75.8	68.5 _(+4.10%)
DARE (Standard)	61.1	56.9	71.5	78.5	65.6	56.7	92.1	45.2	67.6	71.6	67.0
DARE (Tangent)	62.7	64.5	77.1	90.1	51.3	56.7	85.2	51.6	72.5	76.1	68.7 _(+2.53%)
DARE (MergOPT)	59.3	55.4	70.2	74.2	74.8	73.2	95.1	48.4	64.7	78.4	69.4 _(+3.88%)
WUDI-Merging (Standard)	67.5	72.6	84.0	93.8	89.4	95.8	99.2	61.2	77.5	91.2	83.2
WUDI-Merging (Tangent)	66.8	67.0	81.9	92.1	76.3	79.7	94.4	61.2	80.4	71.2	77.1 _(-7.33%)
WUDI-Merging (MergOPT)	70.2	69.9	86.6	92.9	90.7	97.3	99.0	63.8	79.4	93.0	84.3 _(+1.32%)

947

D ADDITIONAL EXPERIMENTAL ANALYSIS

949 In this section, we provide a comprehensive analysis of the feasible region of hyperparameters in
 950 our proposed MergOPT method (Sec. D.1) and compare its performance with different optimizers
 951 (Sec. D.2). Next, we present additional experimental results on various task combinations (Sec. D.3).
 952 Finally, in Appendix D.4, we discussed the sensitivity of the proposed method to the hyperparameters.

954

D.1 ANALYSIS OF THE FEASIBLE REGION OF HYPERPARAMETERS

956

D.1.1 ANALYSIS ON TASK VECTORS $\Delta\theta$

957 Our MergOPT approach requires treating task vectors from other expert models as merge-induced
 958 parameter shifts during single-task fine-tuning, in order to simulate potential merging disturbances.
 959 However, in practice, such task vectors from other experts are typically inaccessible. To address
 960 this, we conduct a detailed analysis of the distributional properties of task vectors. Interestingly, we
 961 find that these vectors can be well approximated by a Laplace distribution $\text{Laplace}(\mu, b)$, where μ
 962 denotes the location parameter corresponding to the mean of the task vectors, and b represents the
 963 scale parameter that characterizes their dispersion around the mean.

964 To validate this, we visualize the distribution of task vectors $\{\Delta\theta_1, \Delta\theta_2, \dots, \Delta\theta_K\}$ ² obtained from
 965 fine-tuning Llama-3.2-1B-Instruct on the six (i.e., ScienceQA, FOMC, MeetingBank, C-STANKE,

967 ¹It is important to note that the inference cost of linear models obtained via tangent-space fine-tuning
 968 is typically 2 – 3× higher than that of standard fine-tuning. For details, please refer to the Computational
 969 complexity section in Appendix B of the original paper (Ortiz-Jimenez et al., 2023). In contrast, our method
 970 does not incur additional inference costs for the model.

971 ²Since the dimensionality of task vectors matches that of model parameters, direct visualization of the
 972 complete task vector distribution is infeasible. To address this, we randomly sampled one million parameters
 973 from the entire task vector for visualization purposes.

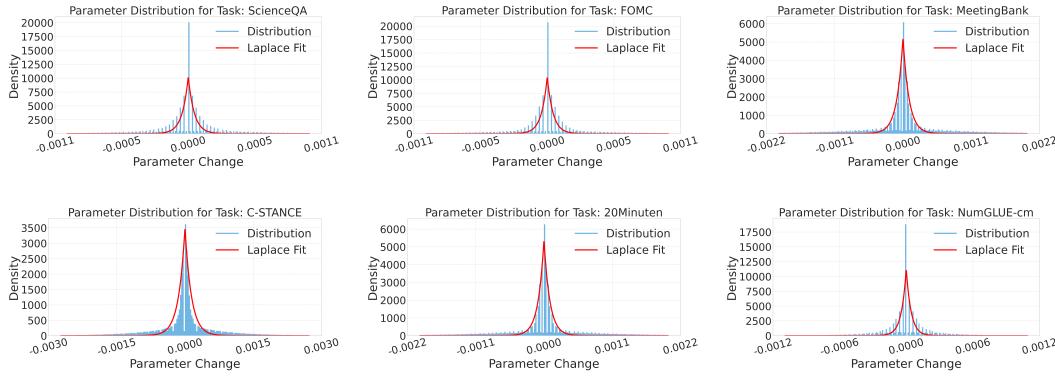


Figure 3: Distribution of task vectors for different tasks. The histograms show the empirical distributions of task vectors (blue), along with the fitted Laplace distributions (red).

20Minuten, and NumGLUE-cm) tasks, as shown in Figure 3. The histograms illustrate that the empirical distributions (blue color) of these task vectors closely align³ with the fitted Laplace distributions (red color), confirming our assumption. Based on this observation, we set the location parameter μ to 0 (the mean of the task vectors) and treat the scale parameter b as a tunable hyperparameter in our method. Table 11 further explores the impact of different b values on merging performance.

Moreover, as shown in Figure 1, we also observe that the accumulated task vectors (i.e., $\sum_{i=1}^K \Delta \theta_i$) closely follow a Laplace distribution. This finding holds consistently across three mainstream architectures, namely Llama-3.2-1B-Instruct, Llama-3.2-3B-Instruct, and Qwen2.5-1.5B-Instruct. This property enables us to approximate real merging scenarios during expert fine-tuning by sampling from the corresponding Laplace distribution, thereby effectively simulating the parameter changes induced by accumulated task vectors.

The above analysis is primarily based on visual inspection and empirical fitting of the task-vector distributions. To provide a more rigorous statistical validation, we additionally randomly sample three tasks and, for each, compute the Kolmogorov–Smirnov (K–S) distance and the average log-likelihood to quantify the goodness-of-fit of the Laplace distribution. As shown in Table 10, the K–S distances for the three tasks are 0.101, 0.106, and 0.106, all around 0.10, indicating a reasonably close match between the Laplace distribution and the empirical distributions in terms of overall shape. Meanwhile, the corresponding average log-likelihoods are 5.76, 5.87, and 6.54, which are relatively high and stable, further suggesting that the Laplace distribution provides a good approximation to the main mass of the task-vector distributions.

It is important to emphasize that MergOPT does not rely on the Laplace distribution to perfectly capture the full, true distribution of task vectors. Instead, Laplace is adopted as a structurally simple and easily sampled approximation to potential worst-case merge offsets, enabling a distributionally robust optimization objective in weight space.

Table 10: K–S Distance and Average Log Likelihood for Each Task Vector.

Task	K–S Distance	Avg. Log Likelihood
C-STANCE	0.101	5.76
MeetingBank	0.106	5.87
ScienceQA	0.106	6.54

³It is worth emphasizing that the empirical distribution in the figure does not perfectly fit a Laplace distribution; there are noticeable deviations, especially a slight underestimation of the tail mass. In practice, optimization in deep learning is highly complex, and the distribution of parameter updates induced by optimization is difficult to capture exactly with any simple explicit distribution.

1026
1027D.1.2 ANALYSIS ON SCALE PARAMETER b OF LAPLACE DISTRIBUTION1028
1029
1030
1031
1032
1033
1034

Table 11 presents the performance of Task Arithmetic merging on seven models using Llama-3.2-1B-Instruct, under different values of the Laplace scale parameter b . We observe that our proposed *MergOPT* method consistently enhances merging performance across a range of b values, demonstrating its robustness to this hyperparameter. Notably, setting $b = 0.0005$ yields the best average score of 0.4164, representing a +2.68% relative improvement over the task arithmetic baseline (average score of 0.4055). This indicates that our approach effectively simulates merging shifts during fine-tuning, leading to more robust merged models.

1035
1036D.1.3 ANALYSIS ON LOCATION PARAMETER μ OF LAPLACE DISTRIBUTION1037
1038
1039
1040
1041
1042
1043
1044
1045
1046

Based on the results in Figures 1 and 3, we empirically observe that the task vectors approximately follow a $\text{Laplace}(\mu, b)$ distribution with μ concentrated around 0. Therefore, in our main experiments, we set $\mu = 0$ by default. In this section, we further analyze the impact of shifting the mean μ in the Laplace distribution on performance. As shown in Table 12, under both Task Arithmetic and TIES-Merging, performance consistently degrades when μ deviates from 0. For example, when merging two models with Task Arithmetic, the average scores with $\mu = 0.1$ and $\mu = -0.1$ are 0.4878 and 0.4877, both lower than 0.4902 obtained with $\mu = 0$. Similarly, for TIES-Merging, the scores with $\mu = 0.1$ and $\mu = -0.1$ are 0.4910 and 0.4912, compared to 0.4929 when $\mu = 0$. These results indicate that setting $\mu = 0$ is a well-justified default choice that better matches the empirical distribution of task vectors.

1047
1048Table 11: Task Arithmetic Merging Results on Llama-3.2-1B-Instruct with Varying Laplace Scale b .

b	Task Performance							Avg. (↑)
	C-STAN	FOMC	MeetingBank	ScienceQA	NumGLUE-cm	NumGLUE-ds	20Minuten	
(base)	0.4219	0.4980	0.2094	0.7370	0.2439	0.3476	0.3805	0.4055
0.0005 (Default)	0.3995	0.5101	0.2039	0.7499	0.2683	0.4024	0.3808	0.4164
0.001	0.3991	0.5040	0.2060	0.7479	0.2439	0.4024	0.3801	0.4119
0.05	0.3991	0.5020	0.2014	0.7365	0.2683	0.4024	0.3861	0.4137

1055

Table 12: Task Arithmetic Merging Results on Llama-3.2-1B-Instruct with Varying Location μ

Method	$\mu = -0.1$			$\mu = 0$ (Default)			$\mu = 0.1$		
	C-STAN	FOMC	Avg. (↑)	C-STAN	FOMC	Avg. (↑)	C-STAN	FOMC	Avg. (↑)
Task Arithmetic w/ <i>MergOPT</i>	0.4417	0.5339	0.4878	0.4440	0.5363	0.4902	0.4423	0.5331	0.4877
TIES-Merging w/ <i>MergOPT</i>	0.4396	0.5423	0.4910	0.4414	0.5444	0.4929	0.4408	0.5416	0.4912

1062

D.1.4 ANALYSIS ON MERGING COEFFICIENT α 1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073

Table 13 reports the performance of Task Arithmetic merging on the Llama-3.2-1B-Instruct model under different merging coefficients α . We observe that smaller merging coefficients (i.e., α in Eq. 2) generally yield better results. For example, when α ranges from 0.1 to 0.6, the merged models consistently achieve scores above 0.34, with the best performance of 0.4055 attained at $\alpha = 0.2$. In contrast, larger coefficients cause severe performance degradation, with results even falling below those of the pretrained model (e.g., 0.3064). In particular, when $\alpha = 1.0$, the merged model drops to 0.2194, which is approximately half of the best score. These findings suggest that optimal merging coefficients are typically small. Accordingly, we adopt the range $[0.1, 0.6]$ as the feasible set (i.e., \mathcal{A}) of coefficients throughout this work.

1074
1075

D.2 COMPARISON WITH DIFFERENT OPTIMIZERS

1076
1077

D.2.1 COMPARISON WITH SAM OPTIMIZER

1078
1079

SAFT-Merge (Lee et al., 2025) is a robust model merging approach that employs the Sharpness-Aware Minimization (SAM) (Foret et al., 2021) or Adaptive SAM (ASAM) (Kwon et al., 2021) optimizer during fine-tuning to seek flatter minima, thereby reducing performance degradation at the merging

1080
1081 Table 13: Task Arithmetic Merging Results on Llama-3.2-1B-Instruct with Varying Merging Coeffi-
1082 cient.
1083

α	Task Performance							Avg. (↑)
	C-STANCE	FOMC	MeetingBank	ScienceQA	NumGLUE-cm	NumGLUE-ds	20Minuten	
Pre-Trained	0.3386	0.2581	0.2036	0.6780	0.1220	0.1646	0.3802	0.3064
0.1	0.4098	0.4456	0.2094	0.7125	0.1951	0.2927	0.3878	0.3790
0.2	0.4220	0.4980	0.2094	0.7370	0.2439	0.3476	0.3805	0.4055
0.3	0.4120	0.4718	0.2274	0.7355	0.1951	0.3902	0.3809	0.4019
0.4	0.4104	0.4355	0.2336	0.7170	0.2439	0.3963	0.3772	0.4020
0.5	0.3931	0.4476	0.2242	0.6735	0.1707	0.3902	0.3790	0.3826
0.6	0.3517	0.4395	0.1758	0.6264	0.0976	0.3598	0.3783	0.3470
0.7	0.3503	0.3952	0.1231	0.5615	0.0976	0.3354	0.3718	0.3193
0.8	0.3090	0.3690	0.0949	0.4667	0.0000	0.3171	0.3687	0.2750
0.9	0.2998	0.2621	0.0895	0.4094	0.0488	0.2500	0.3665	0.2466
1.0	0.3138	0.2823	0.0848	0.3611	0.0000	0.1280	0.3658	0.2194

1093
1094
1095 stage. In this section, we compare our proposed MergOPT with SAFT-Merge from two perspectives:
1096 equal training epochs and comparable fine-tuning time.
1097

Equal Training Epochs. As shown in Table 14, when all optimizers are trained for the same number of parameter updates, the results exhibit the following trends: Under Weight Averaging and DARE, our method surpasses SAFT-Merge (SAM) by 2.59% and 5.20%, respectively. In contrast, SAFT-Merge (SAM) slightly outperforms MergOPT under Task Arithmetic and TIES-Merging, with relative gains of 2.24% and 1.29%. Furthermore, when comparing SAFT-Merge (SAM) and SAFT-Merge (ASAM), we observe that ASAM is generally more effective: under Weight Averaging, TIES-Merging, and DARE, it achieves improvements of 1.68%, 1.17%, and 4.03%, respectively. This advantage may stem from the adaptive perturbation radius used in ASAM, as opposed to that in SAM. However, as shown in Table 15, SAFT-Merge (SAM) and SAFT-Merge (ASAM) require an average runtime that is $2.04\times$ and $2.06\times$ AdamW, while MergOPT only incurs $1.17\times$ AdamW overhead. SAFT-Merge (SAM) and SAFT-Merge (ASAM) are computationally expensive because they require one gradient ascent step to compute the perturbation direction at each parameter update step, followed by one gradient descent step for parameter updates. Consequently, each update step involves two full forward-backward propagation passes, leading to a computational cost roughly twice that of standard fine-tuning. In contrast, our MergOPT method directly samples the perturbation direction, resulting in a computational cost much closer to that of standard fine-tuning. This highlights that MergOPT offers better efficiency while still delivering competitive robustness.

Comparable Fine-tuning Time. To ensure a fair comparison, we further align the computational cost of SAM (ASAM) and MergOPT ($1.04\times$ and $1.17\times$ AdamW, respectively, see Table 17). As shown in Table 16, in this setting, the performance improvements become more consistent: With Weight Averaging, Task Arithmetic, TIES-Merging, and DARE, MergOPT achieves relative gains of 4.08%, 0.70%, 0.95%, and 3.98% over SAFT-Merge (SAM), respectively. Compared with SAFT-Merge (SAM), SAFT-Merge (ASAM) shows only limited gains under Weight Averaging, Task Arithmetic, and TIES-Merging. This may be because, when restricted to a training budget comparable to AdamW, the optimizations performed by ASAM and SAM are less thorough than those of AdamW, which in turn limits their performance. These results demonstrate that at comparable computational cost, MergOPT consistently outperforms SAFT-Merge (SAM) and SAFT-Merge (ASAM), striking a better balance between efficiency and robustness.

1124
1125 D.2.2 COMBINED WITH OTHER BASE OPTIMIZER
1126

1127 While AdamW is our default base optimizer, MergOPT is optimizer-agnostic and can be combined
1128 with any standard optimizer. To assess this generality, we also instantiate MergOPT with SGD.
1129 Table 18 reports results on Llama-3.2-1B-Instruct when SGD is used as the base optimizer.

1130 Relative to the naive SGD fine-tuning, MergOPT yields more robust post-merge performance for
1131 most merging procedures: Task Arithmetic improves from 0.3286 to 0.3566 (+8.52%), TIES-Merging
1132 from 0.3225 to 0.3552 (+10.01%), and DARE from 0.2313 to 0.2471 (+6.83%), while Weight
1133 Averaging decreases slightly from 0.3634 to 0.3468 (-4.56%). We also note that both MergOPT and
standard SGD achieve relatively low absolute scores under DARE (0.2471 vs. 0.2313). A plausible

Table 14: Performance comparison of MergOPT and **SAFT-Merge (based on SAM and ASAM)** under equal training epochs on Llama-3.2-1B-Instruct. Notably, SAM incurs $2.04\times$ the optimization cost of standard AdamW, whereas ours incurs only $1.17\times$.

Method	Task Performance							Avg. (\uparrow)
	C-STANCE	FOMC	MeetingBank	ScienceQA	NumGLUE-cm	NumGLUE-ds	20Minuten	
Fine-Tuned w/ SAFT-Merge (SAM)	0.4820	0.5927	0.3354	0.8724	0.5122	0.5488	0.3838	0.5325
Fine-Tuned w/ SAFT-Merge (ASAM)	0.4867	0.6005	0.3287	0.8651	0.4878	0.5215	0.3814	0.5245
Fine-Tuned w/ MergOPT	0.4957	0.6331	0.3158	0.8780	0.4390	0.5305	0.3829	0.5250
Weight Averaging w/ SAFT-Merge (SAM)	0.4320	0.4355	0.2108	0.7075	0.2927	0.3293	0.3781	0.3980
Weight Averaging w/ SAFT-Merge (ASAM)	0.4362	0.4487	0.2138	0.7143	0.3048	0.3356	0.3796	0.4047_(+1.68\%)
Weight Averaging w/ MergOPT	0.4130	0.4819	0.2153	0.7530	0.2927	0.3171	0.3850	0.4083 _(+2.59\%)
Task Arithmetic w/ SAFT-Merge (SAM)	0.4365	0.4839	0.2031	0.7100	0.3902	0.3720	0.3861	0.4260
Task Arithmetic w/ SAFT-Merge (ASAM)	0.4280	0.4798	0.2027	0.6885	0.3415	0.3598	0.3826	0.4119_(-3.30\%)
Task Arithmetic w/ MergOPT	0.4203	0.4718	0.2077	0.7530	0.3171	0.3659	0.3797	0.4165 _(-2.24\%)
TIES-Merging w/ SAFT-Merge (SAM)	0.4395	0.4698	0.2063	0.7232	0.3415	0.3598	0.3836	0.4177
TIES-Merging w/ SAFT-Merge (ASAM)	0.4423	0.4752	0.2089	0.7268	0.3561	0.3648	0.3843	0.4226_(+1.17\%)
TIES-Merging w/ MergOPT	0.4202	0.4536	0.2093	0.7555	0.2927	0.3720	0.3825	0.4123 _(-1.29\%)
DARE w/ SAFT-Merge (SAM)	0.4240	0.4234	0.2079	0.6895	0.2927	0.3415	0.3807	0.3942
DARE w/ SAFT-Merge (ASAM)	0.4318	0.4615	0.2037	0.7142	0.3268	0.3512	0.3815	0.4101_(+4.03\%)
DARE w/ MergOPT	0.4192	0.4819	0.2107	0.7485	0.2927	0.3659	0.3843	0.4147 _(+5.20\%)

Table 15: Average fine-tuning time (seconds) of AdamW, **SAFT-Merge (based on SAM and ASAM)**, and MergOPT under equal training epochs.

Optimizer	Task Fine-tuning Time (s)							Avg. (\downarrow)
	C-STANCE	FOMC	MeetingBank	ScienceQA	NumGLUE-cm	NumGLUE-ds	20Minuten	
AdamW	1927.74	1155.33	2688.37	1156.57	1923.30	1921.97	2684.57	1922.55
SAFT-Merge (SAM)	3933.49	2360.41	5497.92	2363.90	3927.65	3927.04	5488.63	3928.43 _(+2.04\%)
SAFT-Merge (ASAM)	3968.43	2377.58	5531.46	2378.92	3958.27	3953.68	5527.37	3956.54 _(+2.06\%)
MergOPT	2247.64	1348.34	3147.20	1349.36	2241.04	2240.76	3141.03	2245.05 _(-1.17\%)

explanation is that DARE’s stochastic masking of task-vector coordinates can inadvertently suppress salient parameters, leading to nontrivial information loss during merging.

D.2.3 COMPARATIVE ANALYSIS OF MODEL MERGING VIA DIFFERENT OPTIMIZATION METHODS

In our main experiments, we assume that all models are fine-tuned either with standard AdamW or with the proposed MergOPT. A natural question is: *can models fine-tuned with standard AdamW and with MergOPT be merged together effectively?* To investigate this, we conduct experiments on Llama3.2-1B-Instruct. Specifically, we randomly select two tasks, NumGLUE-cm and NumGLUE-ds, and fine-tune models on each task using both AdamW and MergOPT. We then evaluate the following three merging settings: (i) AdamW+AdamW: merging two models fine-tuned with standard AdamW; (ii) AdamW+MergOPT: merging one AdamW fine-tuned model with one MergOPT fine-tuned model; and (iii) MergOPT+MergOPT: merging two models fine-tuned with MergOPT.

As shown in Table 19, we observe that even when only one of the two models (AdamW+MergOPT) is fine-tuned with MergOPT, the merged model already achieves noticeably better performance than merging two standard AdamW models (AdamW+AdamW). For example, under Task Arithmetic, AdamW+MergOPT attains an average score of 0.4116, compared to 0.3994 for AdamW+AdamW. When both models are fine-tuned with MergOPT, the performance further improves. These results indicate that MergOPT is compatible with and beneficial for merging models obtained from heterogeneous fine-tuning strategies.

D.3 ABLATION STUDY ON NUMBER OF TASKS TO MERGE

In Table 3 of the main text, we have already reported the results for the 4-task merging scenario. To further examine the effectiveness of our approach under different task scales, this section extends the study to 2-task and 6-task merging. Specifically, we randomly sampled subsets from the full set of seven tasks, with each subset containing either 2 or 6 tasks. We then merged the expert models fine-tuned with the standard AdamW optimizer, as well as those fine-tuned with our proposed MergOPT, and evaluated their performance.

The results are presented in Tables 20 and 21. Overall, we observe the following: (i) 2-task merging, as shown in Table 20: For both Task Arithmetic and TIES-Merging, incorporating MergOPT

1188
1189
1190
1191 Table 16: Performance comparison of MergOPT and **SAFT-Merge (based on SAM and ASAM)**
1192 under comparable fine-tuning cost on Llama-3.2-1B-Instruct.

Method	Task Performance							Avg. (↑)
	C-STANCE	FOMC	MeetingBank	ScienceQA	NumGLUE-cm	NumGLUE-ds	20Minuten	
Fine-Tuned w/ SAFT-Merge (SAM)	0.4940	0.5746	0.3616	0.8305	0.4390	0.5671	0.3850	0.5217
Fine-Tuned w/ SAFT-Merge (ASAM)	0.4829	0.5874	0.3725	0.8452	0.4634	0.5842	0.3897	0.5322
MergOPT Fine-Tuned	0.4957	0.6331	0.3158	0.8780	0.4390	0.5305	0.3829	0.5250
Weight Averaging w/ SAFT-Merge (SAM)	0.4245	0.4315	0.2149	0.6930	0.2683	0.3293	0.3846	0.3923
Weight Averaging w/ SAFT-Merge (ASAM)	0.4198	0.4267	0.2127	0.6852	0.2631	0.3214	0.3821	0.3868_(+1.40%)
Weight Averaging w/ MergOPT	0.4130	0.4819	0.2153	0.7530	0.2927	0.3171	0.3850	0.4083 _(+4.08%)
Task Arithmetic SAFT-Merge (SAM)	0.4285	0.4919	0.2075	0.6840	0.3415	0.3598	0.3822	0.4136
Task Arithmetic w/ SAFT-Merge (ASAM)	0.4316	0.4967	0.2098	0.6942	0.3456	0.3651	0.3837	0.4181_(+1.08%)
Task Arithmetic w/ MergOPT	0.4203	0.4718	0.2077	0.7530	0.3171	0.3659	0.3797	0.4165 _(+0.70%)
TIES-Merging w/ SAFT-Merge (SAM)	0.4295	0.4758	0.2075	0.6930	0.3171	0.3537	0.3826	0.4084
TIES-Merging w/ SAFT-Merge (ASAM)	0.4251	0.4698	0.2043	0.6837	0.3109	0.3472	0.3798	0.4030_(-1.32%)
TIES-Merging w/ MergOPT	0.4202	0.4536	0.2093	0.7555	0.2927	0.3720	0.3825	0.4123 _(+0.95%)
DARE w/ SAFT-Merge (SAM)	0.4335	0.4395	0.2134	0.6630	0.3171	0.3476	0.3776	0.3988
DARE w/ SAFT-Merge (ASAM)	0.4298	0.4351	0.2108	0.6548	0.3127	0.3421	0.3751	0.3943_(-1.12%)
DARE w/ MergOPT	0.4192	0.4819	0.2107	0.7485	0.2927	0.3659	0.3843	0.4147 _(+3.98%)

1201
1202 Table 17: Average fine-tuning time (seconds) of AdamW, **SAFT-Merge (based on SAM and ASAM)**,
1203 and MergOPT under comparable fine-tuning cost settings.

Optimizer	Task Fine-tuning Time (s)							Avg. (↓)
	C-STANCE	FOMC	MeetingBank	ScienceQA	NumGLUE-cm	NumGLUE-ds	20Minuten	
AdamW	1927.74	1155.33	2688.37	1156.57	1923.30	1921.97	2684.57	1922.55
SAFT-Merge (SAM)	1994.25	1196.54	2788.16	1197.83	1990.56	1994.05	2782.05	1991.92 _(+1.04x)
SAFT-Merge (ASAM)	1923.38	1153.39	2782.19	1254.05	2018.30	2020.72	2782.95	1990.71_(+1.04x)
MergOPT	2247.64	1348.34	3147.20	1349.36	2241.04	2240.76	3141.03	2245.05 _(+1.17x)

1211 consistently improves the average performance of the merged models, with the maximum gain
1212 exceeding 8%. (ii) 6-task merging, as shown in Table 21: Compared to standard fine-tuning,
1213 MergOPT also provides stable improvements across different task groups, with relative performance
1214 gains ranging from 2.57% to 6.78%. These findings indicate that MergOPT remains robust across
1215 both small- and large-scale merging scenarios, further validating its generality and reliability.

D.4 HYPERPARAMETER SENSITIVITY ANALYSIS

D.4.1 DIFFERENT TASK VECTOR DISTRIBUTIONS

1220 In this work, our analysis suggests that the Laplace distribution provides a better fit to the empirical
1221 task-vector distribution. Accordingly, in MergOPT we sample a perturbation vector from this
1222 Laplace distribution at each optimization step to simulate merge-induced parameter offsets. To
1223 further assess the sensitivity to the choice of distribution, we additionally experiment with sampling
1224 task vectors from a Gaussian distribution, i.e., at each step we draw perturbations from a Gaussian
1225 instead of a Laplace. As shown in Table 22, both choices lead to consistent gains over standard
1226 fine-tuning. For example, under TIES-Merging, the average performance of MergOPT w/ Gaussian
1227 and MergOPT w/ Laplace when merging two tasks is 0.4912 and 0.4929, respectively, both higher
1228 than the baseline value of 0.4854. This indicates that Gaussian sampling can also serve as a reasonable
1229 approximation for task vectors, even though it is slightly weaker than the better-motivated Laplace-
1230 based approximation.

D.4.2 BATCH SIZES

1231 In this part, we analyze the sensitivity of the proposed method to the batch size. In our main
1232 experiments, we use a default batch size of 8, and here we additionally evaluate batch sizes of 4 and
1233 16. As shown in Table 23, MergOPT improves over standard fine-tuning by 6.60% and 1.53% when
1234 the batch size is 4 and 8, respectively. When the batch size is increased to 16, we observe a slight
1235 decrease of 1.04%. Overall, across a reasonable range of batch sizes, MergOPT remains competitive
1236 and often yields clear gains over the standard fine-tuning baseline.

D.4.3 LEARNING RATES

1237 In this part, we analyze the sensitivity of the proposed method to the choice of learning rate. In the
1238 main experiments, we use a default learning rate of 2×10^{-5} . Here, we additionally consider two

1242 Table 18: Performance Comparison of Model Merging Methods on Llama-3.2-1B-Instruct (SGD as
1243 base optimizer).

Method	Task Performance							Avg. (↑)
	C-STANCE	FOMC	MeetingBank	ScienceQA	NumGLUE-cm	NumGLUE-ds	20Minuten	
Pre-Trained	0.3386	0.2581	0.2036	0.6780	0.1220	0.1646	0.3802	0.3064
SGD Fine-Tuned	0.4920	0.5423	0.3630	0.8605	0.2439	0.3415	0.3834	0.4601
MergOPT Fine-Tuned	0.4710	0.6129	0.2969	0.7694	0.1463	0.4207	0.3933	0.4441
Weight Averaging	0.4023	0.3407	0.1700	0.6268	0.3659	0.2622	0.3762	0.3634
Weight Averaging w/ MergOPT	0.3912	0.3185	0.1535	0.6351	0.2439	0.3049	0.3804	0.3468_(-3.56%)
Task Arithmetic	0.4068	0.2782	0.1382	0.5983	0.2439	0.2561	0.3788	0.3286
Task Arithmetic w/ MergOPT	0.3722	0.4556	0.1279	0.5888	0.2439	0.3293	0.3783	0.3566_(+8.52%)
TIES-Merging	0.4169	0.2782	0.1368	0.5914	0.2195	0.2378	0.3767	0.3225
TIES-Merging w/ MergOPT	0.3712	0.4476	0.1286	0.5791	0.2439	0.3354	0.3808	0.3552_(+10.01%)
DARE	0.3393	0.2449	0.0938	0.3073	0.0976	0.1585	0.3779	0.2313
DARE w/ MergOPT	0.3164	0.2883	0.0906	0.4131	0.0732	0.1768	0.3710	0.2471_(+6.83%)

1254 Table 19: Performance Comparison of Merged Models Trained with Different Fine-Tuning Methods
1255 on Llama-3.2-1B-Instruct.

Method	NumGLUE-cm	NumGLUE-ds	Avg. (↑)
Task Arithmetic (AdamW+AdamW)	0.3659	0.4329	0.3994
Task Arithmetic (AdamW+MergOPT)	0.3659	0.4573	0.4116 _(+3.05%)
Task Arithmetic (MergOPT+MergOPT)	0.3659	0.4817	0.4238_(+6.10%)
TIES-Merging (AdamW+AdamW)	0.3415	0.4390	0.3903
TIES-Merging (AdamW+MergOPT)	0.3659	0.4450	0.4055 _(+3.89%)
TIES-Merging (MergOPT+MergOPT)	0.3659	0.4817	0.4238_(+8.58%)

1265 variants by halving and doubling the learning rate to 1×10^{-5} and 4×10^{-5} , respectively. As shown
1266 in Table 24, MergOPT consistently outperforms standard fine-tuning under all three learning-rate
1267 settings. For example, when the learning rate is set to 1×10^{-5} , 2×10^{-5} , and 4×10^{-5} , MergOPT
1268 yields relative improvements of 2.92%, 1.53%, and 0.32%, respectively, over the Task Arithmetic
1269 baseline. These results suggest that our method is robust to reasonable variations in the learning rate.

1296

1297

1298

Table 20: Performance of different merging methods on 2-task groups (Llama-3.2-1B-Instruct).

Method	Group 1			Group 2		
	C-STANCE	FOMC	Avg. (↑)	NumGLUE-cm	NumGLUE-ds	Avg. (↑)
Task Arithmetic	0.4475	0.5181	0.4828	0.3659	0.4329	0.3994
Task Arithmetic w/ MergOPT	0.4440	0.5363	0.4901 _(+1.51%)	0.3659	0.4817	0.4238 _(+6.12%)
TIES-Merging	0.4445	0.5262	0.4854	0.3415	0.4390	0.3902
TIES-Merging w/ MergOPT	0.4414	0.5444	0.4929 _(+1.54%)	0.3659	0.4817	0.4238 _(+8.62%)

1305

1306

1307

Table 21: Performance of different merging methods on 6-task groups (Llama-3.2-1B-Instruct).

Method	Group 1						
	C-STANCE	FOMC	MeetingBank	ScienceQA	NumGLUE-cm	NumGLUE-ds	Avg. (↑)
Task Arithmetic	0.4284	0.5101	0.2136	0.7380	0.2439	0.3537	0.4146
Task Arithmetic w/ MergOPT	0.4237	0.5101	0.2115	0.7785	0.3415	0.3537	0.4365 _(+5.28%)
TIES-Merging	0.4288	0.4899	0.2090	0.7400	0.2195	0.3598	0.4078
TIES-Merging w/ MergOPT	0.4199	0.5121	0.2099	0.7695	0.3415	0.3598	0.4354 _(+6.78%)

Method	Group 2						
	C-STANCE	FOMC	MeetingBank	NumGLUE-cm	NumGLUE-ds	20Minuten	Avg. (↑)
Task Arithmetic	0.4242	0.5363	0.2177	0.2683	0.3476	0.3811	0.3625
Task Arithmetic w/ MergOPT	0.4221	0.5363	0.2139	0.3171	0.3537	0.3877	0.3718 _(+2.57%)
TIES-Merging	0.4242	0.5181	0.2171	0.2439	0.3476	0.3789	0.3550
TIES-Merging w/ MergOPT	0.4215	0.5302	0.2143	0.3171	0.3537	0.3873	0.3707 _(+4.42%)

1319

1320

1321

1322

Table 22: Performance Comparison of Different Task Vector Sampling Methods for 2-Task Groups on Llama-3.2-1B-Instruct.

1324

Method	C-STANCE	FOMC	Avg. (↑)
Task Arithmetic	0.4475	0.5181	0.4828
Task Arithmetic (MergOPT w/ Gaussian)	0.4440	0.5363	0.4901 _(+1.51%)
Task Arithmetic (MergOPT w/ Laplace)	0.4485	0.5320	0.4903 _(+1.55%)
TIES-Merging	0.4445	0.5262	0.4854
TIES-Merging (MergOPT w/ Gaussian)	0.4452	0.5372	0.4912 _(+1.19%)
TIES-Merging (MergOPT w/ Laplace)	0.4414	0.5444	0.4929 _(+1.54%)

1332

1333

1334

1335

Table 23: The Effect of Different Batch Sizes on MergOPT Performance on Llama-3.2-1B-Instruct.

1336

1337

1338

1339

1340

1341

1342

1343

Table 24: The Effect of Different Learning Rates on MergOPT Performance on Llama-3.2-1B-Instruct.

1344

1345

1346

1347

1348

1349

Method	lr = 1e-5			lr = 2e-5 (Default)			lr = 4e-5		
	C-STANCE	FOMC	Avg. (↑)	C-STANCE	FOMC	Avg. (↑)	C-STANCE	FOMC	Avg. (↑)
Task Arithmetic	0.4270	0.5020	0.4645	0.4475	0.5181	0.4828	0.4805	0.5600	0.5203
Task Arithmetic w/ MergOPT	0.4260	0.5302	0.4781 _(+2.92%)	0.4440	0.5363	0.4902 _(+1.53%)	0.4790	0.5650	0.5220 _(+0.32%)