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ABSTRACT

Model merging aims to integrate multiple independently fine-tuned expert models
into a single model while preserving the knowledge of all experts. However, exist-
ing approaches mainly address parameter conflicts at the merging stage and over-
look the role of the fine-tuning process, which often leads to significant post-merge
performance degradation. To address this limitation, we propose a novel merging-
aware optimizer (abbreviated as MergOPT) that injects principled merge-induced
parameter shifts into the weight update steps so that the fine-tuned model exhibits
a more stable loss landscape under subsequent merging operations. Specifically,
we first formulate model merging as a distributionally robust optimization problem
in the weight space: the parameters of other experts to be merged are viewed as ad-
versarial merge-offsets, and fine-tuning adapts to the worst-case merging scenario.
Building on this formulation, we analyze the distribution of parameter updates and
the effects of merging hyperparameters, from which we derive a merging-guided
feasible region for weight shifts. Finally, extensive experiments across four large
language models (LLMs) and one vision model show that our approach consistently
outperforms standard fine-tuning, yielding an average relative gain of 3.5% and a
maximum gain of 9.5% across four merging strategies when merging seven experts.

1 INTRODUCTION

Multi-task learning is the conventional approach for adapting a foundation model to multiple down-
stream tasks, where diverse datasets are jointly used to update the model (Zhang & Yang, 2021; Chen
et al., 2024). However, this strategy requires centralized access to data, leading to high management
costs and privacy concerns. To overcome these limitations, model merging has recently been pro-
posed as an alternative paradigm (Yang et al., 2024a). In this setting, multiple expert models are first
fine-tuned independently on different tasks and then merged into a single model at the parameter
level, with the goal of inheriting the knowledge of all experts without centralized data sharing. This
paradigm has shown promising results in various domains, including computer vision (Ilharco et al.,
2023; Ortiz-Jimenez et al., 2023; Jin et al., 2024; Gargiulo et al., 2025) and natural language process-
ing (Yadav et al., 2023; Wan et al., 2024a; Yu et al., 2024; Akiba et al., 2025). A central challenge in
model merging lies in effectively mitigating parameter conflicts that arise when integrating multiple
expert models, as such conflicts often lead to severe performance degradation.

The most straightforward merging strategy is linear interpolation, where model parameters are simply
averaged across experts (Wortsman et al., 2022). However, due to the highly nonlinear nature of deep
neural networks and the complex interdependencies between tasks, this approach typically yields
suboptimal results. To overcome these limitations, recent research has explored more sophisticated
merging strategies. For instance, task arithmetic (Ilharco et al., 2023) first represents the difference
between a fine-tuned model and its pre-trained counterpart as a task vector, and constructs a unified
multi-task model by linearly combining these vectors, thereby partially preserving task-specific
knowledge. In addition, adaptive weighting methods dynamically adjust the contribution of each
task according to task characteristics, employing either heuristic approaches such as evolutionary
search (Akiba et al., 2025; Mencattini et al., 2025) or data-driven weight optimization (Matena &
Raffel, 2022; Jin et al., 2023; Yang et al., 2024b; Tang et al., 2024a). Another line of work, subspace
merging methods, alleviates task interference by projecting parameters into a sparse (Yadav et al.,
2023; Yu et al., 2024; Wang et al., 2024; Zhu et al., 2024) or low-rank subspace (Gargiulo et al.,
2025; Marczak et al., 2025), thereby mitigating performance loss caused by conflicts. Lastly, weight
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alignment methods exploit the property of linear mode connectivity in deep neural networks, which
suggests that multiple equivalent loss landscapes can exist (Garipov et al., 2018; Draxler et al., 2018).
By parameter permutations or aligning the parameters of expert models such that they lie within the
same loss landscape, these approaches aim to reduce potential conflicts during model merging (Jordan
et al., 2023; Ainsworth et al., 2023; Rinaldi et al., 2025). By leveraging fine-grained parameter
manipulation, these methods typically achieve better performance than simple averaging.

Even with these advances, most of the existing methods predominantly focus on the merging stage,
i.e., designing strategies to reduce conflicts when merging expert models, while largely overlooking
the role of the fine-tuning stage. In this work, we contend that the effectiveness of the final merged
model crucially depends on both stages: fine-tuning must prepare models in a way that facilitates
compatibility, while merging must integrate them effectively. To the best of our knowledge, only
a few model merging works explicitly focus on the fine-tuning stage. For example, tangent-space
fine-tuning methods linearize the model and perform optimization in its tangent space to enhance
weight disentanglement (Ortiz-Jimenez et al., 2023; Jin et al., 2024; Tang et al., 2024b), thereby
alleviating conflicts during merging. However, inference with such linearized models typically incurs
a 2−3× higher computational cost compared to standard models (Ortiz-Jimenez et al., 2023). In
another line of work, SAFT-Merge (Lee et al., 2025) is inspired by sharpness-aware minimization
(SAM) (Foret et al., 2021; Kwon et al., 2021) and aims to improve mergeability by encouraging
flatter loss landscapes during fine-tuning. Yet SAM-based fine-tuning usually doubles the training
time relative to standard fine-tuning. Given that most existing approaches focus primarily on the
merging stage and that the few methods targeting fine-tuning often come with substantial training or
inference overhead, we argue that there is a strong need for a fine-tuning scheme that is both efficient
and effective, while further improving the overall performance of model merging.

To address this limitation, this paper proposes a novel optimization approach for the fine-tuning
stage, called Merging-Aware Optimizer (referred to as MergOPT), specifically designed to produce
expert models that are more amenable to merging. More specifically, the core idea of MergOPT
is to formalize the parameter merging process as a merge-induced parameter offset operation and
explicitly construct it during training as a distributionally robust optimization (DRO) (Lin et al.,
2022) problem in weight space. In other words, the parameters (or task vectors) from other expert
models to be merged can be regarded as merge-induced parameter offsets applied to a target model’s
parameters. The training objective is then to optimize against the worst-case merge-induced offset
within the feasible region of this space, thereby improving the stability and effectiveness of the
model during merging. To this end, we further specify the feasible region over these merge-offset
configurations. Specifically, we decompose it into three dimensions: the distribution of task vectors,
the range of merging coefficients, and the number of models to be merged. However, when training
a single expert model, these three components are usually unknown. To solve this problem, we
conduct an empirical analysis of task vectors. Results across three mainstream LLM architectures and
seven real-world tasks demonstrate that each task vector can be well approximated by a Laplacian
distribution (Kotz et al., 2012). For merging coefficients and model numbers, we define discrete
feasible regions grounded in empirical observations and prior experience, ensuring both the prac-
ticality and interpretability of the resulting merge-offset space. Finally, we evaluate MergOPT on
four LLM architectures of different scales (Llama 1B & 3B & 8B, Qwen 1.5B) combined with four
representative model merging methods, applied to multiple downstream expert models. Experimental
results demonstrate that MergOPT delivers substantial performance gains, with average relative
improvements of about 3.5% and up to 9.5% when merging seven experts across four strategies,
thereby validating its effectiveness in enhancing the robustness and practicality of model merging.

The main contributions of this work are summarized as follows: ❶ We highlight a critical yet
underexplored aspect of model merging: the fine-tuning stage. We argue that the effectiveness
of the merged model depends on both fine-tuning and merging, and emphasize the need for a
dedicated fine-tuning scheme to improve model compatibility. ❷ We propose MergOPT, a merging-
aware optimizer that formalizes merging as a merge-induced parameter offset in weight space
and applies distributionally robust optimization to enhance stability and effectiveness. We further
define the feasible region of these merge-offset configurations through analysis of task vectors,
merging coefficients, and model numbers. ❸ We perform extensive experiments on four large-
scale LLM architectures and one vision model with four representative merging methods across
seven downstream tasks. Results show that MergOPT consistently outperforms standard fine-tuning,
demonstrating its effectiveness in improving the robustness and utility of model merging.
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2 RELATED WORK

Methods in the Merging Phase. The most straightforward strategies are weight averaging (Wortsman
et al., 2022) or task arithmetic (Ilharco et al., 2023), but their performance is often limited due to
potential conflicts among models. To address this issue, more advanced merging techniques have
been developed, which can be broadly categorized into three families: weighted merging, subspace-
based merging, and weight alignment merging. (i) importance-based weighting methods aim to
balance the contributions of different models using strategies such as grid search (Ilharco et al.,
2023; Yadav et al., 2023), evolutionary algorithms (Akiba et al., 2025), or data-driven adaptive
weighting (Matena & Raffel, 2022; Jin et al., 2023; Yang et al., 2024b; Tang et al., 2024a). For
example, Fisher merging (Matena & Raffel, 2022) leverages Fisher information to assign parameter
importance, while AdaMerging (Yang et al., 2024b) optimizes merging coefficients with unlabeled
test data. (ii) subspace-based methods mitigate conflicts and reduce computational overhead by
discarding redundant information and constraining merging to low-rank or sparse subspaces. Such
as TIES-Merging (Yadav et al., 2023) and DARE (Yu et al., 2024), remove a large portion of
unimportant parameter updates and adjust the remaining ones through sign aligning or rescaling. (iii)
Weight alignment methods apply parameter permutations to obtain functionally equivalent solutions
that lie in different loss basins (Jordan et al., 2023; Ainsworth et al., 2023; Rinaldi et al., 2025).
By adjusting expert models to lie within the same basin, merging can typically be performed more
smoothly and effectively.

Methods in the Fine-Tuning Phase. However, while these methods introduce clever designs at the
merging stage, they still rely on standard optimizers and largely overlook the importance of preparing
models to facilitate subsequent merging. To the best of our knowledge, only a few works focus on
how to train models that are more amenable to merging. Ortiz-Jimenez et al. (2023) first pointed
out that weight disentanglement is a key factor for the effectiveness of task-arithmetic-based model
merging. Their method amplifies weight disentanglement by linearizing the model and performing
fine-tuning in its tangent space (Jin et al., 2024; Tang et al., 2024b; Liu et al., 2024). Nevertheless,
inference with the linearized model typically takes about two to three times longer than with its
original nonlinear counterpart (Ortiz-Jimenez et al., 2023). In addition, our experimental results
show that such approaches are still inferior in performance to the method proposed in this paper.
SAFT-Merge (Lee et al., 2025) enhances mergeability during fine-tuning by applying sharpness-
aware minimization. However, its training cost is nearly twice that of standard fine-tuning, making it
inefficient for large models or datasets. In contrast, our MergOPTmatches the efficiency of a standard
optimizer while explicitly simulating merging via cross-expert merge-offsets, thereby improving
stability and overall merging performance. It is worth mentioning that while most existing methods
have been evaluated on vision models and image classification tasks, our work is conducted in the
context of LLMs and text generation tasks.

3 METHOD

In this section, we first introduce the preliminaries and notations used in this paper (Sec. 3.1). Then,
we present our proposed method, merge-aware fine-tuning via weight-space robust optimization,
which aims to enhance the robustness of model merging (Sec. 3.2).

3.1 PRELIMINARIES

Fine-Tuning from a Pre-Trained Model. Let θ0 ∈ Rd denote the parameters of a pre-trained base
model. We denote the training dataset as Dtrain

k = {(xi, yi)}Ni=1, where xi is the input and yi is the
corresponding label for the i-th sample in task k (k ∈ {1, 2, . . . ,K}). The fine-tuned parameters
are denoted as θk ∈ Rd. The loss function is represented as ℓk(θk; (x, y)), which measures the
discrepancy between the model’s prediction and the true label for a given input. The expected
empirical risk on the training dataset is defined as:

Ltask(θk;Dtrain
k ) = E(x,y)∼Dtrain

k
[ℓk(θk; (x, y))] . (1)

Model Merging. Model merging aims to combine multiple fine-tuned models into a single merged
model θmerged. Given a set of K fine-tuned models with parameters {θk}Kk=1, a common approach is

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

to use task arithmetic (Ilharco et al., 2023):

θmerged = θ0 + α

K∑
k=1

∆θk, (2)

where θ0 is the base model, ∆θk = θk − θ0 denotes the task vector for task k, and α > 0 is a scaling
factor. The objective of the merged model is to achieve consistently low test loss across all tasks.
Formally, the expected test risk of the merged model is defined as:

Lmerge(θmerged; {Dtest
k }Kk=1) =

1

K

K∑
k=1

E(x,y)∼Dtest
k

[
ℓk(θmerged; (x, y))

]
, (3)

where Dtest
k is the test dataset for task k.

Distributionally Robust Optimization (DRO). DRO seeks to optimize model parameters under
distributional uncertainty by minimizing the worst-case expected loss over a family of probability
distributions P that are close to the empirical data distribution (Lin et al., 2022). Formally, the DRO
objective can be expressed as:

min
θk

sup
P∈P

E(x,y)∼P [ℓk(θk; (x, y))] . (4)

Here, P denotes an ambiguity set of candidate distributions around the empirical distribution. P is
typically defined by imposing constraints based on a divergence metric (e.g., Wasserstein distance,
KL divergence), which controls the proximity between P and the empirical distribution. In this work,
unlike conventional DRO that operates in the data space, we extend the DRO framework to the weight
space and interpret model merging as a form of distributional uncertainty over model parameters.

3.2 MERGOPT : A MERGE-AWARE OPTIMIZER VIA WEIGHT ROBUST OPTIMIZATION

In this section, we introduce our proposed method, MergOPT, which aims to enhance the robustness
of model merging through weight-space robust optimization. More specifically, we treat the merging
process as a form of merge offsets in the weight space and apply distributionally robust optimization
techniques in the fine-tuning stage to train models that are resilient to various merging scenarios.

3.2.1 REFORMULATING MODEL MERGING AS WEIGHT-SPACE MERGE OFFSETS

Consider fine-tuning on task k, where the resulting model parameters can be expressed as θk =
θ0 +∆θk, where ∆θk is the task vector corresponding to task k. When merging K tasks, the merged
model parameters θmerged = ϕ(θk, ζ(α,K,∆θ)) can be reformulated as:

ϕ(θk, ζ(α,K,∆θ)) :=θ0+α

K∑
j=1

∆θj=(θ0+∆θk)−∆θk+α

K∑
j=1

∆θj=θk+
(
(α−1)∆θk+α

∑
j ̸=k

∆θj
)

︸ ︷︷ ︸
ζ(α,K,∆θ)

,

(5)
where ϕ(θk, ζ(α,K,∆θ)) formalizes the process of merging the current task-specific model (i.e., θk)
with the remaining fine-tuned models. The additional term ζ(α,K,∆θ) represents the parameter
offset introduced by the merging operation, which depends on the merging coefficient α, the number of
tasks K, and the task vectors ∆θj (j ∈ {1, 2, . . . ,K}) from the other models. It is worth emphasizing
that this formulation is consistent with SAFT-Merge (Lee et al., 2025), but our interpretation and
solution strategy are fundamentally different. We provide a detailed comparison between the two
methods in both the related work section and our experiments.

3.2.2 WEIGHT ROBUST OPTIMIZATION OBJECTIVE

Building on the above interpretation of model merging as merge-induced parameter shifts in weight
space, we argue that a merge-aware optimizer during fine-tuning should satisfy two key objectives: ❶
Preservation Objective: Preserve the standard task loss Ltask(θk;Dk) to ensure strong performance
on the current task. ❷ Robustness Objective: Enhance robustness to diverse merging scenarios by
accounting for the worst-case merging parameters ζ(α,K,∆θ) within a feasible set B.
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Formally, we define the weight-space robust optimization (WRO) objective as:

min
θk

sup
(α,K,∆θ)∈B

E
[
ℓk
(
ϕ(θk, ζ(α,K,∆θ))

)]
, (6)

where ϕ(θk, ζ) denotes the merged parameters under merge-induced offset ζ, and B is the ambiguity
set in the weight space, capturing feasible merging configurations. The feasible set is defined as

B =
{
(α,K,∆θ) : α ∈ A, K ∈ Z>0, K ≤ Kmax, ∆θ ∈ Z ⊆ span{∆θ1,∆θ2, . . . ,∆θK}

}
, (7)

which constrains the merging configuration so that the induced merge offsets remain within reasonable
bounds. Here, A denotes the set of admissible merging coefficients, Kmax specifies the maximum
number of tasks allowed for merging, and Z is the set of admissible merge-offset vectors, restricted
to linear combinations of task-specific parameter differences ∆θj . Throughout, span(·) denotes the
linear span of a given set of task vectors. Naturally, when Eq. 6 reaches its optimal solution, θk
inherently satisfies both the previously introduced preservation objective and robustness objective.

To solve the proposed WRO objective in Eq. 6, we can employ an alternating optimization strategy.
The outer minimization updates the model parameters θk using gradient descent, while the inner
maximization finds the worst-case merging parameters ζ(α,K,∆θ) using projected gradient ascent.
Specifically, the optimization proceeds as follows: ❶ Inner Maximization: Given the current task
parameters θk, identify the worst-case merging configuration within the feasible set B. The adversarial
merging parameters are then obtained by solving the following problem:

(α∗,K∗,∆θ∗) = ProjB(α
′,K′,∆θ′) = arg max

(α
′
,K

′
,∆θ

′
)
Ltask

(
ϕ(θ∗k, ζ(α

′,K′,∆θ′));Dk

)
. (8)

where ProjB(x) is a projection operator that projects the x onto the feasible set B. ❷ Outer
Minimization: Update θk to minimize the loss under the adversarially selected merging parameters.
This ensures that the model adapts to the worst-case weight-shift introduced by the merging operation:

θ∗k ← θk − η∇θk

(
Ltask

(
ϕ(θk, ζ(α

∗,K∗,∆θ∗));Dk

))
, (9)

where η is the learning rate.

This alternating minimax procedure continues until convergence, effectively ensuring that the fine-
tuned model θk is not only optimized for its own task but also robust to a broad range of poten-
tial merging scenarios. This alternating optimization strategy follows classical machine learning
frameworks like gradient ascent/descent and min–max optimization (Boyd & Vandenberghe, 2004).
However, for model merging, the objective is impractical due to inaccessible task vectors and costly
inner optimization. We tailor this framework to merging with efficient approximations in next setion.

3.2.3 OPTIMIZATION STRATEGY

In this subsection, we discuss the practical challenges associated with optimizing the WRO objective
in Eq. 6 and propose strategies to address these challenges.

Optimization Challenges. From the optimization problem in Sec. 3.2.2, the ideal worst-case
robust optimization faces the following two constraints during practical optimization, rendering it
inapplicable in real-world scenarios: ❶ Unknowable Merge-Offset Variables: As derived from Eq. 5
and Eq. 7, the merge-induced parameter shift ζ is primarily determined by three types of variables: the
merging coefficient α, the number of merged tasks K, and the task vectors ∆θ = {∆θ1, . . . ,∆θK}.
However, when fine-tuning the model θk for task k (or its corresponding task vector ∆θk), the task
vectors of other models to be merged are often inaccessible—this is because different developers
typically fine-tune their respective models independently. Under such circumstances, the merging
coefficient and the number of merged tasks that can achieve optimal merging performance are
naturally unascertainable in advance. ❷ Inefficient Inner Optimization: Even though some of the
aforementioned variables have been clearly defined, the solution process for the worst-case merge
offset described in Eq. 8 remains highly time-consuming. Specifically, the merging coefficients α,
the number of merged tasks K, and the task-vector space Z together induce a feasible set whose
size grows exponentially. Performing an explicit worst-case maximization over this space would be
computationally intractable, both in theory and in practice.

Feasible Set Approximation. To address the issue of unknowable variables, we propose to effectively
approximate the feasible set based on a series of prior information. More specifically, we make the
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Figure 1: Distribution of parameter changes (i.e., task vectors) after fine-tuning different large
language models: from left to right are Llama-3.2-1B, Qwen2.5-1.5B, and Llama-3.2-3B. The blue
curve represents the empirical distribution, while the red curve shows the fitted Laplace distribution.
We observe that the Laplace distribution provides a close approximation to the empirical distribution.

following approximations. ❶ For task vectors {θi}Ki=1, we conducted analysis across three large
language model architectures and seven downstream tasks (detailed in Sec. 4.1). We visualized
the distribution of the cumulative task vectors (i.e.,

∑K
i=1 ∆θi) in the main text and individual task

vectors (i.e., {∆θi}Ki=1) in Appendix D.1.1. As shown in Fig. 1, all task vectors can be well-fitted
by a specific Laplace distribution (Kotz et al., 2012), where an overwhelming majority of elements
are concentrated around 0. ❷ For the optimal merging coefficient α, prior studies on model merging
consistently indicate that α typically lies in the interval (0, 1). Since fine-grained parameter search is
computationally expensive, most works adopt a fixed small value; for example, α = 0.3 is commonly
used in Task Arithmetic (Ilharco et al., 2023) and Ties-Merging (Yadav et al., 2023). To further
validate this observation, we evaluated the impact of different α values on merging performance
(see Tab. 13 in Appendix D.1.2), which provides a practical discrete candidate set for α. ❸ For the
maximum number of models to be merged, existing evidence shows that performance degrades more
severely as more models are merged (Yadav et al., 2024). Consequently, most experiments restrict the
number of merged models to fewer than ten. In the context of LLMs, merging is typically limited to
two or three models (Goddard et al., 2024; Wan et al., 2024b; Yu et al., 2024; Du et al., 2024; Akiba
et al., 2025), and few works explore merging at much larger scales (Wang et al., 2025)..

Single-Step Merge-Offset Approximation. To alleviate the computational inefficiency of iterative
inner maximization, we approximate Eq. 8 using a single-step sampling strategy over merging
configurations. Instead of performing multiple projection gradient-based updates to identify the worst-
case merging parameters, we directly sample (α,K, z) from their respective feasible distributions
and construct the merge-offset model in one step. In particular, z is drawn from a Laplace distribution
fitted to the empirical task vectors, as established in the previous analysis. The offsets are then given
by ϕ(θk, ζ(α,K, z)), and ζ(α,K, z) = (Kα − 1)z denotes the merge-induced parameter offset
induced by merging K tasks with coefficient α. To save sampling time, we note that each task vector
is assumed to be z here. This single-step approximation substantially reduces the computational
overhead while retaining the essential characteristics of the worst-case merge offsets. Moreover,
since the offset z is sampled from a Laplace distribution that matches the empirical distribution of
task vectors, repeated sampling naturally increases the probability of capturing directions that are
close to the true worst-case, or at least adversarially challenging merge offsets. This allows us to
achieve substantial robustness improvements even when the combinatorial space is extremely large
and computing the theoretical optimum is infeasible.

Final Practical Objective. By combining the feasible-set approximation with the single-step merge-
offset strategy, we derive a practical optimization objective that can be efficiently implemented
during fine-tuning. At each training step, we first sample the merging coefficient α from the discrete
candidate setA, the number of tasks K from {1, 2, . . . ,Kmax}, and the offset vector z from a Laplace
distribution fitted to the empirical task vectors. The merge-offset model parameters are then obtained
as ϕ(θk, ζ(α,K, z)). The task loss is evaluated at these parameters and used to update θk. Formally,
the practical training objective at each step can be expressed as:

min
θk

Eα,K,z

[
Ltask

(
ϕ(θk, ζ(α,K, z));Dk

)]
,

s.t. α ∼ Uniform(A), K ∼ Uniform({1, 2, . . . ,Kmax}), z ∼ Laplace(µ, b),
(10)

where the expectation is taken over the sampled merging parameters (α,K, z). The Laplace dis-
tribution is defined as Laplace(µ, b) = 1

2b exp
(
− |x−µ|

b

)
, with location parameter µ and scale pa-

rameter b. The model parameters are finally updated using stochastic gradient descent: θk ←
θk − η∇Ltask

(
ϕ(θk, ζ);Dk

)
. The optimization procedure is summarized in Alg. 1 of Appendix B.3.
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Table 1: Performance comparison of model merging methods with Llama-3.2-1B-Instruct.
Method Task Performance Avg. (↑)

C-STANCE FOMC MeetingBank ScienceQA NumGLUE-cm NumGLUE-ds 20Minuten

Pre-Trained 0.3386 0.2581 0.2036 0.6780 0.1220 0.1646 0.3802 0.3064
Standard Fine-Tuned 0.4980 0.5988 0.3707 0.8524 0.3902 0.5793 0.3880 0.5254
MergOPT Fine-Tuned 0.4957 0.6331 0.3158 0.8780 0.4390 0.5305 0.3829 0.5250

Weight Averaging 0.4206 0.5040 0.2179 0.7340 0.2195 0.3171 0.3813 0.3992
Weight Averaging w/ MergOPT 0.4202 0.4536 0.2093 0.7555 0.2927 0.3720 0.3825 0.4123(+3.28%)
Task Arithmetic 0.4219 0.4980 0.2094 0.7370 0.2439 0.3476 0.3805 0.4055
Task Arithmetic w/ MergOPT 0.4203 0.4718 0.2077 0.7530 0.3171 0.3659 0.3797 0.4165(+2.71%)
TIES-Merging 0.4236 0.4738 0.2145 0.7430 0.2439 0.3537 0.3862 0.4055
TIES-Merging w/ MergOPT 0.4202 0.4536 0.2093 0.7555 0.2927 0.3720 0.3825 0.4123(+1.68%)
DARE 0.4143 0.3810 0.2120 0.7180 0.2195 0.3232 0.3821 0.3786
DARE w/ MergOPT 0.4192 0.4819 0.2107 0.7485 0.2927 0.3659 0.3843 0.4147(+9.54%)

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

In this section, we detail the experimental setup used to evaluate the effectiveness of our proposed
method. Due to space limitations, more experimental details can be found in Appendix B.

Datasets and Metrics. We evaluate our proposed method on seven datasets from TraceBench (Wang
et al., 2023), including C-STANCE (Zhao et al., 2023), FOMC (Shah et al., 2023), MeetingBank (Hu
et al., 2023), ScienceQA (Lu et al., 2022), NumGLUE-cm (Mishra et al., 2022), NumGLUE-
ds (Mishra et al., 2022), and 20Minuten (Rios et al., 2021). These datasets span a variety of tasks,
including domain-specific applications, multilingual understanding, and mathematical reasoning.
The evaluation metric for each task is as follows: accuracy for C-STANCE, FOMC, ScienceQA,
NumGLUE-cm, and NumGLUE-ds; ROUGE-L for MeetingBank; and SARI for 20Minuten. For all
metrics, the higher the value, the better. We report the average score across all tasks as the overall
performance metric. The statistics of these datasets are summarized in Table 6 in the Appendix.

Base Models and Optimizers. We conduct experiments on four base models: Llama-3.2-1B-
Instruct (Meta, 2024), Qwen2.5-1.5B-Instruct (Qwen et al., 2025), Llama-3.2-3B-Instruct (Meta,
2024), and Llama-3.1-8B-Instruct (Meta, 2024). In this work, we adopt AdamW (Loshchilov &
Hutter, 2017) as the default base optimizer for both the standard fine-tuning baseline and our merge-
aware fine-tuning; implementation details are provided in Appendix B.2. We further verify optimizer
agnosticism by instantiating our method with SGD and by comparing it against the SAM optimizer;
the corresponding results are reported in Appendix D.2.

Merging Methods. Since our method operates during the fine-tuning stage, it remains independent of
the specific choice of merging algorithms. To verify its effectiveness, we employ four representative
merging strategies, including Weight Averaging (Wortsman et al., 2022), Task Arithmetic (Ilharco
et al., 2023), TIES-Merging (Yadav et al., 2023), and DARE (Yu et al., 2024), applied to models
obtained from both standard fine-tuning and our proposed MergOPT fine-tuning approach.

4.2 PERFORMANCE COMPARISON AND ANALYSIS

This section presents the main results and analysis of our experiments, demonstrating the effectiveness
of MergOPT in enhancing merging performance. More experimental results and analyses can be
found in Appendix C and Appendix D.

Robustness Across Architectures and Downstream Tasks. In Tables 1 and 2, we evaluate ro-
bustness under the challenging setting of merging seven independently fine-tuned expert models,
comparing the performance of different merging strategies using Llama-3.2-1B and Llama-3.2-3B as
the base models, respectively. We assess robustness by applying four representative merging strategies
(Weight Averaging, Task Arithmetic, TIES-Merging, and DARE) to models fine-tuned either with the
standard procedure or with MergOPT. Across all model scales, incorporating MergOPT consistently
improves the merged performance. For example, in Table 1, Weight Averaging combined with
MergOPT achieves an average score of 0.4123, outperforming plain Weight Averaging (0.3992).
The same trend is observed for Task Arithmetic (0.4165 vs. 0.4055) and DARE (0.4147 vs. 0.3786).
Then, on the larger Llama-3.2-3B (Table 2), the merged models with MergOPT still show consistent
improvements, e.g., Task Arithmetic increases from 0.4871 to 0.5045 (+3.6%) and TIES-Merging
from 0.4898 to 0.5098 (+4.1%). On average, these enhancements correspond to about 3.5% relative
improvement across 8 cases, with the largest observed gain reaching 9.5% (i.e., DARE on Llama-3.2-
1B). Tables 7 and 8 in the appendix further demonstrate that we have validated the effectiveness of
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Table 2: Performance comparison of model merging methods with Llama-3.2-3B-Instruct.
Method Task Performance Avg. (↑)

C-STANCE FOMC MeetingBank ScienceQA NumGLUE-cm NumGLUE-ds 20Minuten

Pre-Trained 0.4082 0.3528 0.2054 0.8962 0.1707 0.2195 0.3857 0.3770
Standard Fine-Tuned 0.5415 0.6835 0.4317 0.9335 0.6098 0.6463 0.3898 0.6057
MergOPT Fine-Tuned 0.5545 0.6653 0.3896 0.9360 0.5122 0.6341 0.3886 0.5836

Weight Averaging 0.4617 0.5665 0.2213 0.9140 0.4390 0.4146 0.3891 0.4866
Weight Averaging w/ MergOPT 0.4700 0.5867 0.2181 0.9180 0.4390 0.4085 0.3876 0.4897(+0.64%)
Task Arithmetic 0.4685 0.5605 0.2186 0.9100 0.4634 0.4024 0.3862 0.4871
Task Arithmetic w/ MergOPT 0.4755 0.5948 0.2167 0.9110 0.4878 0.4573 0.3883 0.5045(+3.56%)
TIES-Merging 0.4670 0.5706 0.2217 0.9130 0.4634 0.4024 0.3906 0.4898
TIES-Merging w/ MergOPT 0.4770 0.6028 0.2142 0.9175 0.5122 0.4573 0.3878 0.5098(+4.09%)
DARE 0.4630 0.5867 0.2203 0.9055 0.4634 0.4085 0.3871 0.4906
DARE w/ MergOPT 0.4690 0.6129 0.2198 0.9140 0.4878 0.4451 0.3851 0.5048(+2.89%)

Table 3: Performance of different merging methods on 4-task groups (Llama-3.2-1B-Instruct).
Method Group 1 Group 2

FOMC MeetingBank NumGLUE-ds 20Minuten Avg. (↑) C-STANCE FOMC ScienceQA NumGLUE-cm Avg. (↑)
Task Arithmetic 0.4093 0.2412 0.4512 0.3816 0.3708 0.4320 0.4637 0.7710 0.3171 0.4959
Task Arithmetic w/ MergOPT 0.4758 0.2320 0.4512 0.3814 0.3851(+3.86%) 0.4320 0.4597 0.7945 0.3659 0.5130(+3.46%)
TIES-Merging 0.3992 0.2412 0.4573 0.3846 0.3706 0.4285 0.4718 0.7790 0.3415 0.5052
TIES-Merging w/ MergOPT 0.4657 0.2352 0.4512 0.3843 0.3841(+3.64%) 0.4274 0.4698 0.7985 0.3659 0.5154(+2.02%)

our method on Qwen2.5-1.5B and LLama-8B. In a word, the improvements are consistent across
model scales and merging methods, highlighting the generality and practicality of our approach.

Robustness to the Number of Tasks. Tables 1–2 report results when merging all seven expert
models. To further evaluate the effectiveness of our method under varying numbers of tasks, we also
conduct experiments on smaller groups of experts, specifically 2-task, 4-task, and 6-task settings.
Due to space constraints, Table 3 presents results on 4-task groups, while the results for 2-task and
6-task groups are deferred to the Appendix (Tables 20 and 21). Concretely, we randomly sample two
groups of four tasks from the full set of seven, merge the corresponding fine-tuned models within each
group, and then evaluate the merged models. As shown in Table 3, Task Arithmetic w/ MergOPT
achieves an average score of 0.3851 in Group 1, compared to 0.3708 without MergOPT yielding a
3.86% relative improvement. Similarly, in Group 2 the average score improves from 0.4959 to 0.5130
(+3.46%). Comparable gains are also observed for TIES-Merging, highlighting that our method
consistently enhances merging robustness and generality across different task configurations.

Robustness to Merging Coefficients. In this part, we visualize the joint loss landscapes of models
fine-tuned with the standard AdamW optimizer and with our proposed MergOPT method, in order
to illustrate the robustness of our approach under varying merging coefficients. Specifically, we
randomly selected four pairs of tasks (e.g., C-STANCE & MeetingBank, MeetingBank & ScienceQA),
and plotted contour maps of the joint-task loss as a function of the merging coefficients. As shown in
Figure 2, each pixel in the heatmap corresponds to the joint loss value of a merged model defined
by θmerged = θ0 + α1∆θ1 + α2∆θ2, where the joint loss is given by L(θmerged;D1) + L(θmerged;D2).
The horizontal and vertical axes represent the merging coefficients (α1, α2), while the color intensity
indicates the magnitude of the loss. Across the four task pairs, we observe the following: (i) AdamW
fine-tuning (left column): the low-loss regions are relatively narrow, and the loss increases sharply
as the merging coefficients deviate from the optimum. This indicates sensitivity to merging shifts
and weaker robustness. (ii) Our method (right column): the low-loss regions are substantially larger,
and the contours around the optimum are flatter. This suggests that models fine-tuned with our
optimizer exhibit greater stability under merging shifts, allowing them to better tolerate diverse
coefficient configurations. These visualizations provide intuitive evidence that our method leads to
more favorable loss landscapes for model merging.

4.3 COMPARE WITH OTHER FINE-TUNING METHODS

Compare with SAM-based Fine-Tuning. SAFT-Merge (Lee et al., 2025) employs SAM-based
optimizers (Foret et al., 2021; Kwon et al., 2021) during the fine-tuning stage to improve model
mergeability. We compare SAFT-Merge and MergOPT from two perspectives: (i) As shown in Table
4 (a), under the same number of training epochs, SAFT-Merge and MergOPT each exhibit distinct
advantages. For instance, under Weight Averaging and DARE, MergOPT outperforms SAFT-Merge
(SAM) by 2.59% and 5.20%, respectively. In contrast, under Task Arithmetic and TIES-Merging,
MergOPT falls behind by 2.24% and 1.29%. However, SAM-based optimization requires 2.04×
the cost of AdamW, whereas MergOPT incurs only a 1.17× cost. (ii) Furthermore, Table 4 (b)
demonstrates that when training time is comparable, MergOPT consistently surpasses SAFT-Merge.
More specifically, MergOPT achieves improvements of 4.08%, 0.70%, 0.95%, and 3.98% over
SAFT-Merge across the four merging strategies. In addition, comparing SAFT-Merge (SAM) and
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Figure 2: Visualization of the joint loss landscape for two task-specific models across two downstream
tasks. The left panel shows AdamW-fine-tuned models, the right shows models fine-tuned with our
MergOPT; darker colors indicate lower loss.

SAFT-Merge (ASAM), we observe that ASAM is generally superior when trained for the same
number of epochs, whereas SAM becomes slightly better under comparable training cost. Under the
same configuration, the two methods exhibit similar training time.

Table 4: Performance comparison of MergOPT and SAFT-Merge (based on SAM and ASAM) under
(a) equal training epochs or (b) close to the training duration on Llama-3.2-1B-Instruct.

Method Weight Averaging Task Arithmetic TIES-Merging DARE Time

(a) SAFT-Merge (SAM) 0.3980 0.4260 0.4177 0.3942 2.04×
(a) SAFT-Merge (ASAM) 0.4047(+1.68%) 0.4119(-3.30%) 0.4226(+1.17%) 0.4101(+4.03%) 2.06×
(a) MergOPT 0.4083(+2.59%) 0.4165(-2.24%) 0.4123(-1.29%) 0.4147(+5.20%) 1.17×

(b) SAFT-Merge (SAM) 0.3923 0.4136 0.4084 0.3988 1.04×
(b) SAFT-Merge (ASAM) 0.3868(-1.40%) 0.4181(+1.08%) 0.4030(-1.32%) 0.3943(-1.12%) 1.04×
(b) MergOPT 0.4083(+4.08%) 0.4165(+0.70%) 0.4123(+0.95%) 0.4147(+3.98%) 1.17×

Compare with Tangent Space Fine-Tuning. Ortiz-Jimenez et al. (2023) proposes fine-tuning
models in the tangent space to enhance their mergeability. In Table 5, we compare standard fine-
tuning, tangent-space fine-tuning, and our MergOPT fine-tuning. We observe that: (i) under Task
Arithmetic, TIES-Merging, and DARE, tangent-space fine-tuning improves over standard fine-tuning
by 3.13%, 3.95%, and 2.53%, respectively, but drops by 8.01% under Weight Averaging; (ii)
MergOPT improves over standard fine-tuning by 2.36%, 3.43%, 4.10%, and 3.58% under Weight
Averaging, Task Arithmetic, TIES-Merging, and DARE, respectively, and yields larger gains than
tangent-space fine-tuning. Note that the inference cost of linear models obtained via tangent-space
fine-tuning is typically 2-3× that of standard models, leading to efficiency issues.

Table 5: Performance comparison of MergOPT and Tangent Space Fine-tuning on ViT-B/32.
Method Weight Averaging Task Arithmetic TIES-Merging DARE WUDI-Merging

Standard 54.9 66.9 65.8 67.0 83.2
Tangent 50.5(-8.01%) 69.0(+3.13%) 68.4(+3.95%) 68.7(+2.53%) 77.1(-7.33%)
MergOPT (Ours) 56.2(+2.36%) 69.2(+3.43%) 68.5(+4.10%) 69.4(+3.58%) 84.3(+1.32%)

Summary. These results indicate that MergOPT is both more efficient and more effective than
SAM-based and tangent-space fine-tuning methods.

5 CONCLUSION AND FUTURE WORK

This paper introduced a novel fine-tuning optimizer (MergOPT) designed to enhance the robustness
of expert models during model merging. By reformulating fine-tuning as a robust optimization
problem in the weight space, our method guides models to converge toward minima that are more
amenable to merging and more resilient to the parameter changes introduced at the merging stage.
Extensive experiments demonstrate that MergOPT consistently improves the performance of merged
models. Several promising avenues for future research remain: First, developing more accurate
approximation techniques to simulate key merging factors during fine-tuning could further enhance
the model’s adaptability to merging. Second, combining MergOPT with other robustness-oriented
training techniques may further strengthen merging stability. Third, integrating the models trained via
our MergOPT method into various more advanced merging schemes is also feasible and valuable.
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This work proposes an optimizer intended to make models more amenable to parameter-level merging.
Whether and how to use it is entirely at the discretion of practitioners. All base models, datasets, and
evaluation benchmarks employed are publicly available and used under their respective licenses; no
proprietary or personally identifiable data are involved, and no human subjects were recruited.
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anonymous.4open.science/r/MergOPT-Optimizer-B767. It includes all necessary
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REFERENCES

Samuel Ainsworth, Jonathan Hayase, and Siddhartha Srinivasa. Git re-basin: Merging models modulo
permutation symmetries. In The Eleventh International Conference on Learning Representations,
2023.

Takuya Akiba, Makoto Shing, Yujin Tang, Qi Sun, and David Ha. Evolutionary optimization of
model merging recipes. Nature Machine Intelligence, 7(2):195–204, 2025.

Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press, 2004.

Shijie Chen, Yu Zhang, and Qiang Yang. Multi-task learning in natural language processing: An
overview. ACM Computing Surveys, 56(12):1–32, 2024.

Gong Cheng, Junwei Han, and Xiaoqiang Lu. Remote sensing image scene classification: Benchmark
and state of the art. Proceedings of the IEEE, 105(10):1865–1883, 2017.

Runxi Cheng, Feng Xiong, Yongxian Wei, Wanyun Zhu, and Chun Yuan. Whoever started the
interference should end it: Guiding data-free model merging via task vectors. In Forty-second
International Conference on Machine Learning, 2025.

Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, and Andrea Vedaldi. De-
scribing textures in the wild. In CVPR, pp. 3606–3613, 2014.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
ICLR, 2021.

Felix Draxler, Kambis Veschgini, Manfred Salmhofer, and Fred Hamprecht. Essentially no barriers in
neural network energy landscape. In International conference on machine learning, pp. 1309–1318.
PMLR, 2018.

Guodong Du, Junlin Lee, Jing Li, Runhua Jiang, Yifei Guo, Shuyang Yu, Hanting Liu, Sim K Goh,
Ho-Kin Tang, Daojing He, et al. Parameter competition balancing for model merging. Advances
in Neural Information Processing Systems, 37:84746–84776, 2024.

Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware minimization
for efficiently improving generalization. In The International Conference on Learning Representa-
tions, 2021.

Antonio Andrea Gargiulo, Donato Crisostomi, Maria Sofia Bucarelli, Simone Scardapane, Fabrizio
Silvestri, and Emanuele Rodola. Task singular vectors: Reducing task interference in model
merging. In CVPR, pp. 18695–18705, 2025.

Timur Garipov, Pavel Izmailov, Dmitrii Podoprikhin, Dmitry P Vetrov, and Andrew G Wilson.
Loss surfaces, mode connectivity, and fast ensembling of dnns. Advances in neural information
processing systems, 31, 2018.

10

https://anonymous.4open.science/r/MergOPT-Optimizer-B767
https://anonymous.4open.science/r/MergOPT-Optimizer-B767


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Charles Goddard, Shamane Siriwardhana, Malikeh Ehghaghi, Luke Meyers, Vladimir Karpukhin,
Brian Benedict, Mark McQuade, and Jacob Solawetz. Arcee’s mergekit: A toolkit for merging
large language models. In Proceedings of the 2024 Conference on Empirical Methods in Natural
Language Processing: Industry Track, pp. 477–485, 2024.

Patrick Helber, Benjamin Bischke, Andreas Dengel, and Damian Borth. Eurosat: A novel dataset and
deep learning benchmark for land use and land cover classification. JSTARS, 12(7):2217–2226,
2019.

Yebowen Hu, Tim Ganter, Hanieh Deilamsalehy, Franck Dernoncourt, Hassan Foroosh, and Fei Liu.
Meetingbank: A benchmark dataset for meeting summarization, 2023.

Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Suchin Gururangan, Ludwig Schmidt,
Hannaneh Hajishirzi, and Ali Farhadi. Editing models with task arithmetic. The Thirteenth
International Conference on Learning Representations, 2023.

Ruochen Jin, Bojian Hou, Jiancong Xiao, Weijie J Su, and Li Shen. Fine-tuning attention modules
only: Enhancing weight disentanglement in task arithmetic. In The Thirteenth International
Conference on Learning Representations, 2024.

Xisen Jin, Xiang Ren, Daniel Preotiuc-Pietro, and Pengxiang Cheng. Dataless knowledge fusion
by merging weights of language models. In The Eleventh International Conference on Learning
Representations, 2023.

Keller Jordan, Hanie Sedghi, Olga Saukh, Rahim Entezari, and Behnam Neyshabur. Repair: Renor-
malizing permuted activations for interpolation repair. In 11th International Conference on
Learning Representations: ICLR 2023, 2023.

Samuel Kotz, Tomasz Kozubowski, and Krzystof Podgorski. The Laplace distribution and gener-
alizations: a revisit with applications to communications, economics, engineering, and finance.
Springer Science & Business Media, 2012.

Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained
categorization. In ICCV workshops, pp. 554–561, 2013.

Jungmin Kwon, Jeongseop Kim, Hyunseo Park, and In Kwon Choi. ASAM: adaptive sharpness-aware
minimization for scale-invariant learning of deep neural networks. In Proceedings of the 38th
International Conference on Machine Learning, volume 139 of Proceedings of Machine Learning
Research, pp. 5905–5914. PMLR, 2021.

Yann LeCun. The mnist database of handwritten digits. http://yann. lecun. com/exdb/mnist/, 1998.

Yeoreum Lee, Jinwook Jung, and Sungyong Baik. Mitigating parameter interference in model merging
via sharpness-aware fine-tuning. In The International Conference on Learning Representations,
2025.

Fengming Lin, Xiaolei Fang, and Zheming Gao. Distributionally robust optimization: A review on
theory and applications. Numerical Algebra, Control and Optimization, 12(1):159–212, 2022.

Tian Yu Liu, Aditya Golatkar, and Stefano Soatto. Tangent transformers for composition, privacy and
removal. In The Twelfth International Conference on Learning Representations, 2024.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Pan Lu, Swaroop Mishra, Tony Xia, Liang Qiu, Kai-Wei Chang, Song-Chun Zhu, Oyvind Tafjord,
Peter Clark, and Ashwin Kalyan. Learn to explain: Multimodal reasoning via thought chains for
science question answering, 2022.

Daniel Marczak, Simone Magistri, Sebastian Cygert, Bartłomiej Twardowski, Andrew D Bagdanov,
and Joost van de Weijer. No task left behind: Isotropic model merging with common and task-
specific subspaces. In International Conference on Machine Learning, 2025.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Michael S Matena and Colin A Raffel. Merging models with fisher-weighted averaging. Advances in
Neural Information Processing Systems, 35:17703–17716, 2022.

Tommaso Mencattini, Robert Adrian Minut, Donato Crisostomi, Andrea Santilli, and Emanuele
Rodolà. Merge3: Efficient evolutionary merging on consumer-grade gpus. In Forty-second
International Conference on Machine Learning, 2025.

AI Meta. Llama 3.2: Revolutionizing edge ai and vision with open, customizable models. Meta AI
Blog. Retrieved December, 20:2024, 2024.

Swaroop Mishra, Arindam Mitra, Neeraj Varshney, Bhavdeep Sachdeva, Peter Clark, Chitta Baral,
and Ashwin Kalyan. Numglue: A suite of fundamental yet challenging mathematical reasoning
tasks, 2022.

Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number
of classes. In 2008 Sixth Indian conference on computer vision, graphics & image processing, pp.
722–729. IEEE, 2008.

Guillermo Ortiz-Jimenez, Alessandro Favero, and Pascal Frossard. Task arithmetic in the tangent
space: Improved editing of pre-trained models. Advances in Neural Information Processing
Systems, 36:66727–66754, 2023.

Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tianyi
Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan,
Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In ICML, pp. 8748–8763. PMLR, 2021.

Filippo Rinaldi, Giacomo Capitani, Lorenzo Bonicelli, Donato Crisostomi, Federico Bolelli, ELISA
FICARRA, Emanuele Rodolà, Simone Calderara, and Angelo Porrello. Update your transformer to
the latest release: Re-basin of task vectors. In Forty-second International Conference on Machine
Learning, 2025.

Annette Rios, Nicolas Spring, Tannon Kew, Marek Kostrzewa, Andreas Säuberli, Mathias Müller,
and Sarah Ebling. A new dataset and efficient baselines for document-level text simplification in
German. In Proceedings of the Third Workshop on New Frontiers in Summarization, Online and in
Dominican Republic, 2021. Association for Computational Linguistics.

Agam Shah, Suvan Paturi, and Sudheer Chava. Trillion dollar words: A new financial dataset, task &
market analysis, 2023.

Johannes Stallkamp, Marc Schlipsing, Jan Salmen, and Christian Igel. The german traffic sign
recognition benchmark: a multi-class classification competition. In IJCNN, pp. 1453–1460. IEEE,
2011.

Anke Tang, Li Shen, Yong Luo, Nan Yin, Lefei Zhang, and Dacheng Tao. Merging multi-task models
via weight-ensembling mixture of experts. In Proceedings of the 41st International Conference on
Machine Learning, pp. 47778–47799, 2024a.

Anke Tang, Li Shen, Yong Luo, Yibing Zhan, Han Hu, Bo Du, Yixin Chen, and Dacheng Tao.
Parameter-efficient multi-task model fusion with partial linearization. In The Twelfth International
Conference on Learning Representations, 2024b.

Bastiaan S Veeling, Jasper Linmans, Jim Winkens, Taco Cohen, and Max Welling. Rotation equivari-
ant cnns for digital pathology. In MICCAI, pp. 210–218. Springer, 2018.

Fanqi Wan, Xinting Huang, Deng Cai, Xiaojun Quan, Wei Bi, and Shuming Shi. Knowledge fusion
of large language models. The Thirteenth International Conference on Learning Representations,
2024a.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Fanqi Wan, Xinting Huang, Deng Cai, Xiaojun Quan, Wei Bi, and Shuming Shi. Knowledge fusion
of large language models. In The Twelfth International Conference on Learning Representations,
2024b.

Ke Wang, Nikolaos Dimitriadis, Guillermo Ortiz-Jiménez, François Fleuret, and Pascal Frossard.
Localizing task information for improved model merging and compression. In International
Conference on Machine Learning, pp. 50268–50287, 2024.

Xiao Wang, Yuansen Zhang, Tianze Chen, Songyang Gao, Senjie Jin, Xianjun Yang, Zhiheng Xi, Rui
Zheng, Yicheng Zou, Tao Gui, et al. Trace: A comprehensive benchmark for continual learning in
large language models. arXiv preprint arXiv:2310.06762, 2023.

Yuanyi Wang, Yanggan Gu, Yiming Zhang, Qi Zhou, Zhaoyi Yan, Congkai Xie, Xinyao Wang, Jianbo
Yuan, and Hongxia Yang. Model merging scaling laws in large language models. arXiv preprint
arXiv:2509.24244, 2025.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz, et al. Transformers: State-of-the-art
natural language processing. In Proceedings of the 2020 conference on empirical methods in
natural language processing: system demonstrations, pp. 38–45, 2020.

Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes,
Ari S Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, et al. Model
soups: averaging weights of multiple fine-tuned models improves accuracy without increasing
inference time. In International Conference on Machine Learning, pp. 23965–23998. PMLR,
2022.

Jianxiong Xiao, Krista A Ehinger, James Hays, Antonio Torralba, and Aude Oliva. Sun database:
Exploring a large collection of scene categories. IJCV, 119:3–22, 2016.

Prateek Yadav, Derek Tam, Leshem Choshen, Colin A Raffel, and Mohit Bansal. Ties-merging:
Resolving interference when merging models. Advances in Neural Information Processing Systems,
36:7093–7115, 2023.

Prateek Yadav, Tu Vu, Jonathan Lai, Alexandra Chronopoulou, Manaal Faruqui, Mohit Bansal,
and Tsendsuren Munkhdalai. What matters for model merging at scale? arXiv preprint
arXiv:2410.03617, 2024.

Enneng Yang, Li Shen, Guibing Guo, Xingwei Wang, Xiaochun Cao, Jie Zhang, and Dacheng Tao.
Model merging in llms, mllms, and beyond: Methods, theories, applications and opportunities.
arXiv preprint arXiv:2408.07666, 2024a.

Enneng Yang, Zhenyi Wang, Li Shen, Shiwei Liu, Guibing Guo, Xingwei Wang, and Dacheng
Tao. Adamerging: Adaptive model merging for multi-task learning. The Thirteenth International
Conference on Learning Representations, 2024b.

Le Yu, Bowen Yu, Haiyang Yu, Fei Huang, and Yongbin Li. Language models are super mario:
Absorbing abilities from homologous models as a free lunch. In International Conference on
Machine Learning. PMLR, 2024.

Netzer Yuval. Reading digits in natural images with unsupervised feature learning. In NIPS Workshop,
2011.

Yu Zhang and Qiang Yang. A survey on multi-task learning. IEEE transactions on knowledge and
data engineering, 34(12):5586–5609, 2021.

Chenye Zhao, Yingjie Li, and Cornelia Caragea. C-STANCE: A large dataset for Chinese zero-shot
stance detection. In Proceedings of the 61st Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), Toronto, Canada, 2023. Association for Computational
Linguistics.

Didi Zhu, Zhongyisun Sun, Zexi Li, Tao Shen, Ke Yan, Shouhong Ding, Chao Wu, and Kun
Kuang. Model tailor: Mitigating catastrophic forgetting in multi-modal large language models. In
International Conference on Machine Learning, pp. 62581–62598. PMLR, 2024.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Appendix Contents. The appendix is structured into several sections, each presenting supplementary
information and detailed explanations to support the main text.
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A LLM USAGE STATEMENT

This paper makes use of a large language model (ChatGPT) exclusively for language polishing,
spelling correction, and grammar checking. The LLM was not involved in literature retrieval or in the
development of specific ideas. Following the polishing process, the authors carefully reviewed and
revised the content as necessary and assume full responsibility for the final published version.

B EXPERIMENTAL DETAILS

In this section, we provide detailed statistics of the datasets used in our experiments (Sec. B.1) and
elaborate on the implementation details of our proposed MergOPT method (Sec. B.2).
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Table 6: An overview of dataset statistics in experiments. ‘Source’ indicates the origin of the context.
‘Avg. Len.’ denotes the average length in words for English, German, and code datasets, and in
characters for Chinese. ‘SARI’ is a metric specific to simplification. For all metrics, the larger the
corresponding value, the better.

Dataset Source Language Avg. Len. Metric

Domain-specific
ScienceQA (Lu et al., 2022) Science English 210 Accuracy
FOMC (Shah et al., 2023) Finance English 51 Accuracy
MeetingBank (Hu et al., 2023) Meeting English 2,853 ROUGE-L

Multi-lingual
C-STANCE (Zhao et al., 2023) Social media Chinese 127 Accuracy
20Minuten (Rios et al., 2021) News Germany 382 SARI

Mathematical reasoning
NumGLUE-cm (Mishra et al., 2022) Math English 32 Accuracy
NumGLUE-ds (Mishra et al., 2022) Math English 21 Accuracy

B.1 DATASET STATISTICS

This section provides detailed statistics of the datasets used in our experiments, as summarized in
Table 6. The datasets in TraceBench (Wang et al., 2023) are constructed based on the following
principles: (i) they are sufficiently novel such that most LLMs have not been trained on them; (ii)
they are designed to pose a meaningful level of challenge to LLMs; and (iii) they cover a diverse
range of tasks to provide a comprehensive evaluation of model capabilities. A detailed description of
the seven datasets is provided below.

Domain-specific Applications. ScienceQA (Lu et al., 2022) is a multi-hop question answering
dataset built upon elementary and high school science curricula. It exhibits rich domain diversity,
covering natural sciences, social sciences, and language sciences. FOMC (Shah et al., 2023) is a novel
financial-domain classification task focused on hawkish–dovish categorization. The dataset consists
of three subsets: meeting minutes, press conference transcripts, and speeches, each capturing different
aspects of monetary policy communication. MeetingBank (Hu et al., 2023) is a new benchmark
dataset for summarization of city council meetings. It requires a comprehensive understanding of
lengthy background materials, making it particularly challenging.

Multilingual Understanding Tasks. C-STANCE (Zhao et al., 2023) is a zero-shot stance detec-
tion dataset collected from Sina Weibo, one of the most popular social media platforms in China.
It serves as a benchmark for evaluating models’ ability to understand and analyze Chinese text.
20Minuten (Rios et al., 2021) is a text simplification dataset consisting of full-length articles paired
with shorter, simplified summaries from a Swiss news magazine. It provides a benchmark for
assessing models’ capability in generating German text, particularly for simplification tasks.

Mathematical Reasoning Tasks. NumGLUE (Mishra et al., 2022) is designed to evaluate the
mathematical reasoning ability of AI systems, with a core focus on understanding and performing
basic arithmetic. In our experiments, we adopt two subsets: NumGLUE-cm (Commonsense), which
involves simple arithmetic computations based on mathematical facts, and NumGLUE-ds (Domain
Specific), which extends arithmetic reasoning by requiring additional domain-specific knowledge.

B.2 IMPLEMENTATION DETAILS

The main experiments in this work focus on LLM architectures and language tasks, while the details
for vision tasks are provided separately in Section C.3. More specifically, we build our experiments
on the HuggingFace Transformers (Wolf et al., 2020) library for loading pre-trained models and
conducting task-specific fine-tuning. The pre-trained models include Llama-3.2-1B-Instruct (Meta,
2024), Qwen2.5-1.5B-Instruct (Qwen et al., 2025), Llama-3.2-3B-Instruct (Meta, 2024), and Llama-
3.1-8B-Instruct (Meta, 2024). Unless otherwise specified, we adopt AdamW (Loshchilov & Hutter,
2017) as the default base optimizer during fine-tuning. Following the TraceBench (Wang et al., 2023)
protocol, we fine-tune the models on C-STANCE, FOMC, MeetingBank, ScienceQA, NumGLUE-cm,
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Algorithm 1 MergOPT: A Merge-Aware Optimizer for Robust Model Merging
Require: Pretrained model fθ0 , task dataset Dk, candidate merging coefficient set A, maximum number of

merged tasks Kmax, Laplace distribution parameters (µ, b), base optimizer (e.g., SGD or AdamW)
Ensure: Fine-tuned parameters θk
1: Initialize θk ← θ0
2: for each training step do
3: Sample a mini-batch Bk ← {(xi, yi)}|Bk|

i=1 ∼ Dk

4: Sample merging parameters: α ∼ Uniform(A), K ∼ Uniform({1, 2, . . . ,Kmax}), z ∼
Laplace(µ, b)

5: Construct merge-offset parameters: θ′k ← ϕ(θk, ζ(α,K, z)) = θk + (Kα− 1)z
6: Compute task loss and gradient at θ′k: g ← ∇Ltask(θ

′
k;Bk)

7: Update parameters using the base optimizer: θk ← Optimizer(θk, g)
8: end for
9: return θk

NumGLUE-ds, and 20Minuten for 5, 3, 7, 3, 5, 5, and 7 epochs, respectively. The learning rate is set
to 2e-5, the batch size to 8, and the weight decay to 0.001.

For our proposed MergOPT method, we set the default parameters of the Laplace distribution to
(µ, b) = (0, 0.0005). We further evaluate different values of b, including 0.05, 0.001, and 0.0005
in Table 11, and observe consistently strong robustness across these settings. For the feasible set
A of merging coefficients, we adopt a default configuration of A = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6].
Additionally, we report results in Table 13 for coefficient values ranging from 0.1 to 1.0 with an
increment of 0.1. The maximum number of tasks Kmax considered for merging is set to 7 by default.

All experiments are conducted on a machine with an Intel(R) Xeon(R) Gold 6459C CPU (12 cores),
NVIDIA RTX 4090 GPUs (48 GB memory), and 90 GB of RAM. The software environment consists
of Python 3.8 and PyTorch 2.1.2.

B.3 ALGORITHM

The pseudocode of the proposed MergOPT algorithm is presented in Algorithm 1. Given the input
hyperparameters, for each task (k) we initialize the model with the pretrained parameters (Line 1).
At each optimization step, we first sample a mini-batch of data (Line 3), then sample the merging
coefficients, the number of tasks, and the task vectors from a predefined feasible region (Line 4).
Next, we construct a merged parameter offset (Line 5), and finally compute the gradients (Line 6)
and update the parameters (Line 7).

C ADDITIONAL EXPERIMENTAL RESULTS

In this section, we validate the effectiveness of the proposed method on other architectures, including
two LLMs (Qwen2.5-1.5B-Instruct and Llama3.1-8B-Instruct) and a vision model (ViT-B/32).

C.1 APPLICATIONS IN OTHER LLM ARCHITECTURE

Beyond the mainstream Llama (e.g., Tables 1 and 2) architecture, we also validate the effectiveness
of our proposed method on the Qwen architecture by merging seven Qwen2.5-1.5B-Instruct models,
each fine-tuned separately on a single task. As shown in Table 7, our MergOPTbased fine-tuning
improves performance over standard fine-tuning by 2.34%, 5.51%, 4.45%, and 1.56% under Weight
Averaging, Task Arithmetic, TIES-Merging, and DARE, respectively. These results demonstrate that
our method exhibits robust cross-architecture generalization.

C.2 APPLICATIONS IN LARGE-SCALE LLM ARCHITECTURE

In the main text, we primarily conduct experiments on Llama-1B/3B and Qwen2.5-1.5B. To further
validate the effectiveness of our approach on larger-scale architectures, in this section we additionally
present results on Llama-8B. Specifically, we merge expert models fine-tuned on C-STANCE, FOMC,
ScienceQA, and NumGLUE-cm, and apply our proposed method to four representative model
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Table 7: Performance comparison of model merging methods with Qwen2.5-1.5B-Instruct.

Method Task Performance Avg. (↑)
C-STANCE FOMC MeetingBank ScienceQA NumGLUE-cm NumGLUE-ds 20Minuten

Pre-Trained 0.4700 0.3569 0.1895 0.7182 0.0976 0.2195 0.3885 0.3486
Standard Fine-Tuned 0.5385 0.6230 0.3190 0.8439 0.3902 0.4695 0.3956 0.4974
MergOPT Fine-Tuned 0.5250 0.6351 0.3459 0.8775 0.5122 0.4390 0.3977 0.5336

Weight Averaging 0.4880 0.4012 0.1967 0.7500 0.4390 0.3841 0.3920 0.4359
Weight Averaging w/ MergOPT 0.5005 0.4536 0.1994 0.7530 0.4390 0.3841 0.3928 0.4461(+2.34%)
Task Arithmetic 0.5055 0.4677 0.2189 0.7540 0.4146 0.3902 0.3880 0.4484
Task Arithmetic w/ MergOPT 0.5220 0.5121 0.2205 0.7625 0.5122 0.3963 0.3859 0.4731(+5.51%)
TIES-Merging 0.5160 0.4597 0.2253 0.7475 0.4390 0.4024 0.3875 0.4539
TIES-Merging w/ MergOPT 0.5260 0.5081 0.2210 0.7660 0.5122 0.3963 0.3890 0.4741(+4.45%)
DARE 0.5035 0.4536 0.2260 0.7425 0.4390 0.3963 0.3829 0.4491
DARE w/ MergOPT 0.5100 0.5161 0.2174 0.7710 0.4390 0.3598 0.3794 0.4561(+1.56%)

merging techniques: Weight Averaging, Task Arithmetic, TIES-Merging, and DARE. As shown in
Table 8, MergOPT yields average performance improvements of 1.08%, 1.40%, 0.46%, and 0.51%
for Weight Averaging, Task Arithmetic, TIES-Merging, and DARE, respectively. These results
provide strong evidence that our method remains effective at larger parameter scales.

Table 8: Performance Comparison of Model Merging Methods on Llama3.1-8B-Instruct.

Method Task Performance Avg. (↑)
C-STANCE FOMC ScienceQA NumGLUE-cm

Pre-Trained 0.4197 0.3085 0.9075 0.2927 0.4821
Standard Fine-Tuned 0.5712 0.7234 0.9418 0.6721 0.7271
MergOPT Fine-Tuned 0.5637 0.7335 0.9403 0.6234 0.7152

Weight Averaging 0.4982 0.6489 0.9293 0.7319 0.7021
Weight Averaging w/ MergOPT 0.5071 0.6627 0.9307 0.7384 0.7097(+1.08%)
Task Arithmetic 0.5268 0.6731 0.9218 0.6833 0.7012
Task Arithmetic w/ MergOPT 0.5318 0.6803 0.9251 0.7069 0.7110(+1.40%)
TIES-Merging 0.5193 0.6792 0.9212 0.7074 0.7068
TIES-Merging w/ MergOPT 0.5236 0.6824 0.9237 0.7106 0.7101(+0.46%)
DARE 0.5227 0.6696 0.9168 0.7071 0.7041
DARE w/ MergOPT 0.5259 0.6765 0.9192 0.7092 0.7077(+0.51%)

C.3 APPLICATIONS IN VISUAL ARCHITECTURE AND TASKS

Beyond language tasks, vision tasks are also a major application area for model merging methods. To
evaluate the effectiveness of our approach across different domains, we further conduct experiments
in the vision setting.

Architecture and Datasets. We follow standard configurations used in prior work on vision model
merging (Ilharco et al., 2023), adopting CLIP-ViT-B/32 (Dosovitskiy et al., 2021; Radford et al., 2021)
as the base model and fine-tuning it into expert models on ten downstream tasks: SUN397 (Xiao
et al., 2016), Cars (Krause et al., 2013), RESISC45 (Cheng et al., 2017), EuroSAT (Helber et al.,
2019), SVHN (Yuval, 2011), GTSRB (Stallkamp et al., 2011), MNIST (LeCun, 1998), DTD (Cimpoi
et al., 2014), Flowers102 (Nilsback & Zisserman, 2008), and PCAM (Veeling et al., 2018). As all
tasks are classification tasks, we adopt Top-1 classification accuracy as the unified evaluation metric
and report the average value across all tasks.

Fine-tuning Methods. We use AdamW as the standard fine-tuning baseline, with hyperparameters
following previous work. In addition, we consider fine-tuning in the tangent space (Ortiz-Jimenez
et al., 2023) as well as our proposed MergOPT-based fine-tuning scheme.

Merging Methods. Consistent with our LLM experiments, we compare four representative model
merging approaches: Weight Averaging (Wortsman et al., 2022), Task Arithmetic (Ilharco et al.,
2023), TIES-Merging (Yadav et al., 2023), and DARE (Yu et al., 2024). Moreover, we include
WUDI-Merging (Cheng et al., 2025), a recent optimization-based, data-free merging method that has
been shown to significantly outperform several typical model merging baselines.
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Performance Comparison. As shown in Table 9, we make the following observations: (i) Com-
pared with standard fine-tuning, the proposed MergOPT significantly improves performance when
merging 10 tasks. For example, under five representative merging methods—Weight Averaging,
Task Arithmetic, TIES-Merging, DARE, and WUDI-Merging—MergOPT yields average gains of
2.36%, 3.43%, 4.10%, 3.58%, and 1.32%, respectively. (ii) Fine-tuning in the tangent space allows a
better decoupling between the input space and the weight space, thereby reducing interference during
merging (Ortiz-Jimenez et al., 2023)1. We observe that, in most cases, tangent-space fine-tuning
indeed improves performance over standard fine-tuning: under Task Arithmetic, TIES-Merging, and
DARE, it brings gains of 3.13%, 3.95%, and 2.53%, respectively, although these improvements are
still lower than those achieved by MergOPT in the corresponding settings. However, under Weight
Averaging and WUDI-Merging, the merged models exhibit some performance degradation; we leave
a deeper investigation of this phenomenon to future work. (iii) WUDI-Merging shows consistently
stronger performance than other merging baselines, as it constructs a data-free optimization objective
and explicitly optimizes the merged model parameters. Overall, these results provide consistent
evidence that our proposed method is broadly applicable across diverse domains.

Table 9: Performance Comparison of Model Merging Methods on Visual Tasks with CLIP-ViT-B/32.

Method SUN397 Cars RESISC45 EuroSAT SVHN GTSRB MNIST DTD Flowers102 PCAM Avg. (↑)
Weight Averaging (Standard) 60.7 54.4 59.0 35.9 33.4 33.2 58.7 42.0 77.5 94.3 54.9
Weight Averaging (Tangent) 56.1 51.2 53.7 36.4 26.3 29.8 58.2 44.1 68.6 80.3 50.5(-8.01%)
Weight Averaging (MergOPT) 60.8 56.6 59.7 36.9 32.9 35.5 66.9 42.6 77.5 92.3 56.2(+2.36%)

Task Arithmetic (Standard) 62.1 57.0 72.0 77.7 64.5 59.0 91.4 46.3 68.6 70.5 66.9
Task Arithmetic (Tangent) 62.7 64.1 77.8 89.3 54.7 55.9 84.5 52.7 72.5 76.0 69.0(+3.13%)
Task Arithmetic (MergOPT) 57.0 55.5 70.0 71.8 76.6 74.6 95.7 47.3 63.7 80.0 69.2(+3.43%)

TIES-Merging (Standard) 64.6 64.9 70.6 74.7 62.8 55.4 92.0 44.1 65.7 62.8 65.8
TIES-Merging (Tangent) 63.8 65.0 78.1 90.1 54.0 55.9 85.0 50.5 70.6 71.5 68.4(+3.95%)
TIES-Merging (MergOPT) 56.2 58.1 70.0 66.7 78.0 73.0 96.7 45.2 64.7 75.8 68.5(+4.10%)

DARE (Standard) 61.1 56.9 71.5 78.5 65.6 56.7 92.1 45.2 67.6 71.6 67.0
DARE (Tangent) 62.7 64.5 77.1 90.1 51.3 56.7 85.2 51.6 72.5 76.1 68.7(+2.53%)
DARE (MergOPT) 59.3 55.4 70.2 74.2 74.8 73.2 95.1 48.4 64.7 78.4 69.4(+3.58%)

WUDI-Merging (Standard) 67.5 72.6 84.0 93.8 89.4 95.8 99.2 61.2 77.5 91.2 83.2
WUDI-Merging (Tangent) 66.8 67.0 81.9 92.1 76.3 79.7 94.4 61.2 80.4 71.2 77.1(-7.33%)
WUDI-Merging (MergOPT) 70.2 69.9 86.6 92.9 90.7 97.3 99.0 63.8 79.4 93.0 84.3(+1.32%)

D ADDITIONAL EXPERIMENTAL ANALYSIS

In this section, we provide a comprehensive analysis of the feasible region of hyperparameters in
our proposed MergOPT method (Sec. D.1) and compare its performance with different optimizers
(Sec. D.2). Next, we present additional experimental results on various task combinations (Sec. D.3).
Finally, in Appendix D.4, we discussed the sensitivity of the proposed method to the hyperparameters.

D.1 ANALYSIS OF THE FEASIBLE REGION OF HYPERPARAMETERS

D.1.1 ANALYSIS ON TASK VECTORS ∆θ

Our MergOPT approach requires treating task vectors from other expert models as merge-induced
parameter shifts during single-task fine-tuning, in order to simulate potential merging disturbances.
However, in practice, such task vectors from other experts are typically inaccessible. To address
this, we conduct a detailed analysis of the distributional properties of task vectors. Interestingly, we
find that these vectors can be well approximated by a Laplace distribution Laplace(µ, b), where µ
denotes the location parameter corresponding to the mean of the task vectors, and b represents the
scale parameter that characterizes their dispersion around the mean.

To validate this, we visualize the distribution of task vectors {∆θ1,∆θ2, . . . ,∆θK}2 obtained from
fine-tuning Llama-3.2-1B-Instruct on the six (i.e., ScienceQA, FOMC, MeetingBank, C-STANCE,

1It is important to note that the inference cost of linear models obtained via tangent-space fine-tuning
is typically 2 − 3× higher than that of standard fine-tuning. For details, please refer to the Computational
complexity section in Appendix B of the original paper (Ortiz-Jimenez et al., 2023). In contrast, our method
does not incur additional inference costs for the model.

2Since the dimensionality of task vectors matches that of model parameters, direct visualization of the
complete task vector distribution is infeasible. To address this, we randomly sampled one million parameters
from the entire task vector for visualization purposes.
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Figure 3: Distribution of task vectors for different tasks. The histograms show the empirical
distributions of task vectors (blue), along with the fitted Laplace distributions (red).

20Minuten, and NumGLUE-cm) tasks, as shown in Figure 3. The histograms illustrate that the empir-
ical distributions (blue color) of these task vectors closely align3 with the fitted Laplace distributions
(red color), confirming our assumption. Based on this observation, we set the location parameter µ to
0 (the mean of the task vectors) and treat the scale parameter b as a tunable hyperparameter in our
method. Table 11 further explores the impact of different b values on merging performance.

Moreover, as shown in Figure 1, we also observe that the accumulated task vectors (i.e.,
∑K

i=1 ∆θi)
closely follow a Laplace distribution. This finding holds consistently across three mainstream
architectures, namely Llama-3.2-1B-Instruct, Llama-3.2-3B-Instruct, and Qwen2.5-1.5B-Instruct.
This property enables us to approximate real merging scenarios during expert fine-tuning by sampling
from the corresponding Laplace distribution, thereby effectively simulating the parameter changes
induced by accumulated task vectors.

The above analysis is primarily based on visual inspection and empirical fitting of the task-vector
distributions. To provide a more rigorous statistical validation, we additionally randomly sample three
tasks and, for each, compute the Kolmogorov–Smirnov (K–S) distance and the average log-likelihood
to quantify the goodness-of-fit of the Laplace distribution. As shown in Table 10, the K–S distances
for the three tasks are 0.101, 0.106, and 0.106, all around 0.10, indicating a reasonably close match
between the Laplace distribution and the empirical distributions in terms of overall shape. Meanwhile,
the corresponding average log-likelihoods are 5.76, 5.87, and 6.54, which are relatively high and
stable, further suggesting that the Laplace distribution provides a good approximation to the main
mass of the task-vector distributions.

It is important to emphasize that MergOPT does not rely on the Laplace distribution to perfectly
capture the full, true distribution of task vectors. Instead, Laplace is adopted as a structurally simple
and easily sampled approximation to potential worst-case merge offsets, enabling a distributionally
robust optimization objective in weight space.

Table 10: K–S Distance and Average Log Likelihood for Each Task Vector.

Task K-S Distance Avg. Log Likelihood

C-STANCE 0.101 5.76
MeetingBank 0.106 5.87
ScienceQA 0.106 6.54

3It is worth emphasizing that the empirical distribution in the figure does not perfectly fit a Laplace distribu-
tion; there are noticeable deviations, especially a slight underestimation of the tail mass. In practice, optimization
in deep learning is highly complex, and the distribution of parameter updates induced by optimization is difficult
to capture exactly with any simple explicit distribution.
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D.1.2 ANALYSIS ON SCALE PARAMETER b OF LAPLACE DISTRIBUTION

Table 11 presents the performance of Task Arithmetic merging on seven models using Llama-
3.2-1B-Instruct, under different values of the Laplace scale parameter b. We observe that our
proposed MergOPT method consistently enhances merging performance across a range of b values,
demonstrating its robustness to this hyperparameter. Notably, setting b = 0.0005 yields the best
average score of 0.4164, representing a +2.68% relative improvement over the task arithmetic baseline
(average score of 0.4055). This indicates that our approach effectively simulates merging shifts
during fine-tuning, leading to more robust merged models.

D.1.3 ANALYSIS ON LOCATION PARAMETER µ OF LAPLACE DISTRIBUTION

Based on the results in Figures 1 and 3, we empirically observe that the task vectors approximately
follow a Laplace(µ, b) distribution with µ concentrated around 0. Therefore, in our main experiments,
we set µ = 0 by default. In this section, we further analyze the impact of shifting the mean µ in
the Laplace distribution on performance. As shown in Table 12, under both Task Arithmetic and
TIES-Merging, performance consistently degrades when µ deviates from 0. For example, when
merging two models with Task Arithmetic, the average scores with µ = 0.1 and µ = −0.1 are
0.4878 and 0.4877, both lower than 0.4902 obtained with µ = 0. Similarly, for TIES-Merging, the
scores with µ = 0.1 and µ = −0.1 are 0.4910 and 0.4912, compared to 0.4929 when µ = 0. These
results indicate that setting µ = 0 is a well-justified default choice that better matches the empirical
distribution of task vectors.

Table 11: Task Arithmetic Merging Results on Llama-3.2-1B-Instruct with Varying Laplace Scale b.

b
Task Performance Avg. (↑)

C-STANCE FOMC MeetingBank ScienceQA NumGLUE-cm NumGLUE-ds 20Minuten

(base) 0.4219 0.4980 0.2094 0.7370 0.2439 0.3476 0.3805 0.4055

0.0005 (Default) 0.3995 0.5101 0.2039 0.7499 0.2683 0.4024 0.3808 0.4164
0.001 0.3991 0.5040 0.2060 0.7479 0.2439 0.4024 0.3801 0.4119
0.05 0.3991 0.5020 0.2014 0.7365 0.2683 0.4024 0.3861 0.4137

Table 12: Task Arithmetic Merging Results on Llama-3.2-1B-Instruct with Varying Location µ

Method µ = −0.1 µ = 0 (Default) µ = 0.1

C-STANCE FOMC Avg. (↑) C-STANCE FOMC Avg. (↑) C-STANCE FOMC Avg. (↑)
Task Arithmetic w/ MergOPT 0.4417 0.5339 0.4878 0.4440 0.5363 0.4902 0.4423 0.5331 0.4877
TIES-Merging w/ MergOPT 0.4396 0.5423 0.4910 0.4414 0.5444 0.4929 0.4408 0.5416 0.4912

D.1.4 ANALYSIS ON MERGING COEFFICIENT α

Table 13 reports the performance of Task Arithmetic merging on the Llama-3.2-1B-Instruct model
under different merging coefficients α. We observe that smaller merging coefficients (i.e., α in Eq. 2)
generally yield better results. For example, when α ranges from 0.1 to 0.6, the merged models
consistently achieve scores above 0.34, with the best performance of 0.4055 attained at α = 0.2. In
contrast, larger coefficients cause severe performance degradation, with results even falling below
those of the pretrained model (e.g., 0.3064). In particular, when α = 1.0, the merged model drops to
0.2194, which is approximately half of the best score. These findings suggest that optimal merging
coefficients are typically small. Accordingly, we adopt the range [0.1, 0.6] as the feasible set (i.e., A)
of coefficients throughout this work.

D.2 COMPARISON WITH DIFFERENT OPTIMIZERS

D.2.1 COMPARISON WITH SAM OPTIMIZER

SAFT-Merge (Lee et al., 2025) is a robust model merging approach that employs the Sharpness-Aware
Minimization (SAM) (Foret et al., 2021) or Adaptive SAM (ASAM) (Kwon et al., 2021) optimizer
during fine-tuning to seek flatter minima, thereby reducing performance degradation at the merging
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Table 13: Task Arithmetic Merging Results on Llama-3.2-1B-Instruct with Varying Merging Coeffi-
cient.

α
Task Performance Avg. (↑)

C-STANCE FOMC MeetingBank ScienceQA NumGLUE-cm NumGLUE-ds 20Minuten

Pre-Trained 0.3386 0.2581 0.2036 0.6780 0.1220 0.1646 0.3802 0.3064

0.1 0.4098 0.4456 0.2094 0.7125 0.1951 0.2927 0.3878 0.3790
0.2 0.4220 0.4980 0.2094 0.7370 0.2439 0.3476 0.3805 0.4055
0.3 0.4120 0.4718 0.2274 0.7355 0.1951 0.3902 0.3809 0.4019
0.4 0.4104 0.4355 0.2336 0.7170 0.2439 0.3963 0.3772 0.4020
0.5 0.3931 0.4476 0.2242 0.6735 0.1707 0.3902 0.3790 0.3826
0.6 0.3517 0.4395 0.1758 0.6264 0.0976 0.3598 0.3783 0.3470
0.7 0.3503 0.3952 0.1231 0.5615 0.0976 0.3354 0.3718 0.3193
0.8 0.3090 0.3690 0.0949 0.4667 0.0000 0.3171 0.3687 0.2750
0.9 0.2998 0.2621 0.0895 0.4094 0.0488 0.2500 0.3665 0.2466
1.0 0.3138 0.2823 0.0848 0.3611 0.0000 0.1280 0.3658 0.2194

stage. In this section, we compare our proposed MergOPT with SAFT-Merge from two perspectives:
equal training epochs and comparable fine-tuning time.

Equal Training Epochs. As shown in Table 14, when all optimizers are trained for the same
number of parameter updates, the results exhibit the following trends: Under Weight Averaging and
DARE, our method surpasses SAFT-Merge (SAM) by 2.59% and 5.20%, respectively. In contrast,
SAFT-Merge (SAM) slightly outperforms MergOPT under Task Arithmetic and TIES-Merging,
with relative gains of 2.24% and 1.29%. Furthermore, when comparing SAFT-Merge (SAM) and
SAFT-Merge (ASAM), we observe that ASAM is generally more effective: under Weight Averaging,
TIES-Merging, and DARE, it achieves improvements of 1.68%, 1.17%, and 4.03%, respectively. This
advantage may stem from the adaptive perturbation radius used in ASAM, as opposed to that in SAM.
However, as shown in Table 15, SAFT-Merge (SAM) and SAFT-Merge (ASAM) require an average
runtime that is 2.04× and 2.06× AdamW, while MergOPT only incurs 1.17× AdamW overhead.
SAFT-Merge (SAM) and SAFT-Merge (ASAM) are computationally expensive because they require
one gradient ascent step to compute the perturbation direction at each parameter update step, followed
by one gradient descent step for parameter updates. Consequently, each update step involves two full
forward-backward propagation passes, leading to a computational cost roughly twice that of standard
fine-tuning. In contrast, our MergOPT method directly samples the perturbation direction, resulting
in a computational cost much closer to that of standard fine-tuning. This highlights that MergOPT
offers better efficiency while still delivering competitive robustness.

Comparable Fine-tuning Time. To ensure a fair comparison, we further align the computational cost
of SAM (ASAM) and MergOPT (1.04× and 1.17× AdamW, respectively, see Table 17). As shown
in Table 16, in this setting, the performance improvements become more consistent: With Weight
Averaging, Task Arithmetic, TIES-Merging, and DARE, MergOPT achieves relative gains of 4.08%,
0.70%, 0.95%, and 3.98% over SAFT-Merge (SAM), respectively. Compared with SAFT-Merge
(SAM), SAFT-Merge (ASAM) shows only limited gains under Weight Averaging, Task Arithmetic,
and TIES-Merging. This may be because, when restricted to a training budget comparable to AdamW,
the optimizations performed by ASAM and SAM are less thorough than those of AdamW, which
in turn limits their performance. These results demonstrate that at comparable computational cost,
MergOPT consistently outperforms SAFT-Merge (SAM) and SAFT-Merge (ASAM), striking a better
balance between efficiency and robustness.

D.2.2 COMBINED WITH OTHER BASE OPTIMIZER

While AdamW is our default base optimizer, MergOPT is optimizer-agnostic and can be combined
with any standard optimizer. To assess this generality, we also instantiate MergOPT with SGD.
Table 18 reports results on Llama-3.2-1B-Instruct when SGD is used as the base optimizer.

Relative to the naive SGD fine-tuning, MergOPT yields more robust post-merge performance for
most merging procedures: Task Arithmetic improves from 0.3286 to 0.3566 (+8.52%), TIES-Merging
from 0.3225 to 0.3552 (+10.01%), and DARE from 0.2313 to 0.2471 (+6.83%), while Weight
Averaging decreases slightly from 0.3634 to 0.3468 (–4.56%). We also note that both MergOPT and
standard SGD achieve relatively low absolute scores under DARE (0.2471 vs. 0.2313). A plausible
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Table 14: Performance comparison of MergOPT and SAFT-Merge (based on SAM and ASAM)
under equal training epochs on Llama-3.2-1B-Instruct. Notably, SAM incurs 2.04× the optimization
cost of standard AdamW, whereas ours incurs only 1.17×.

Method Task Performance Avg. (↑)
C-STANCE FOMC MeetingBank ScienceQA NumGLUE-cm NumGLUE-ds 20Minuten

Fine-Tuned w/ SAFT-Merge (SAM) 0.4820 0.5927 0.3354 0.8724 0.5122 0.5488 0.3838 0.5325
Fine-Tuned w/ SAFT-Merge (ASAM) 0.4867 0.6005 0.3287 0.8651 0.4878 0.5215 0.3814 0.5245
Fine-Tuned w/ MergOPT 0.4957 0.6331 0.3158 0.8780 0.4390 0.5305 0.3829 0.5250

Weight Averaging w/ SAFT-Merge (SAM) 0.4320 0.4355 0.2108 0.7075 0.2927 0.3293 0.3781 0.3980
Weight Averaging w/ SAFT-Merge (ASAM) 0.4362 0.4487 0.2138 0.7143 0.3048 0.3356 0.3796 0.4047(+1.68%)
Weight Averaging w/ MergOPT 0.4130 0.4819 0.2153 0.7530 0.2927 0.3171 0.3850 0.4083(+2.59%)
Task Arithmetic w/ SAFT-Merge (SAM) 0.4365 0.4839 0.2031 0.7100 0.3902 0.3720 0.3861 0.4260
Task Arithmetic w/ SAFT-Merge (ASAM) 0.4280 0.4798 0.2027 0.6885 0.3415 0.3598 0.3826 0.4119(-3.30%)
Task Arithmetic w/ MergOPT 0.4203 0.4718 0.2077 0.7530 0.3171 0.3659 0.3797 0.4165(-2.24%)
TIES-Merging w/ SAFT-Merge (SAM) 0.4395 0.4698 0.2063 0.7232 0.3415 0.3598 0.3836 0.4177
TIES-Merging w/ SAFT-Merge (ASAM) 0.4423 0.4752 0.2089 0.7268 0.3561 0.3648 0.3843 0.4226(+1.17%)
TIES-Merging w/ MergOPT 0.4202 0.4536 0.2093 0.7555 0.2927 0.3720 0.3825 0.4123(-1.29%)
DARE w/ SAFT-Merge (SAM) 0.4240 0.4234 0.2079 0.6895 0.2927 0.3415 0.3807 0.3942
DARE w/ SAFT-Merge (ASAM) 0.4318 0.4615 0.2037 0.7142 0.3268 0.3512 0.3815 0.4101(+4.03%)
DARE w/ MergOPT 0.4192 0.4819 0.2107 0.7485 0.2927 0.3659 0.3843 0.4147(+5.20%)

Table 15: Average fine-tuning time (seconds) of AdamW, SAFT-Merge (based on SAM and ASAM),
and MergOPT under equal training epochs.

Optimizer Task Fine-tuning Time (s) Avg. (↓)
C-STANCE FOMC MeetingBank ScienceQA NumGLUE-cm NumGLUE-ds 20Minuten

AdamW 1927.74 1155.33 2688.37 1156.57 1923.30 1921.97 2684.57 1922.55
SAFT-Merge (SAM) 3933.49 2360.41 5497.92 2363.90 3927.65 3927.04 5488.63 3928.43(2.04×)
SAFT-Merge (ASAM) 3968.43 2377.58 5531.46 2378.92 3958.27 3953.68 5527.37 3956.54(2.06×)
MergOPT 2247.64 1348.34 3147.20 1349.36 2241.04 2240.76 3141.03 2245.05(1.17×)

explanation is that DARE’s stochastic masking of task-vector coordinates can inadvertently suppress
salient parameters, leading to nontrivial information loss during merging.

D.2.3 COMPARATIVE ANALYSIS OF MODEL MERGING VIA DIFFERENT OPTIMIZATION
METHODS

In our main experiments, we assume that all models are fine-tuned either with standard AdamW or
with the proposed MergOPT. A natural question is: can models fine-tuned with standard AdamW
and with MergOPT be merged together effectively? To investigate this, we conduct experiments on
Llama3.2-1B-Instruct. Specifically, we randomly select two tasks, NumGLUE-cm and NumGLUE-ds,
and fine-tune models on each task using both AdamW and MergOPT. We then evaluate the following
three merging settings: (i) AdamW+AdamW: merging two models fine-tuned with standard AdamW;
(ii) AdamW+MergOPT: merging one AdamW fine-tuned model with one MergOPT fine-tuned model;
and (iii) MergOPT+MergOPT: merging two models fine-tuned with MergOPT.

As shown in Table 19, we observe that even when only one of the two models (AdamW+MergOPT)
is fine-tuned with MergOPT, the merged model already achieves noticeably better performance than
merging two standard AdamW models (AdamW+AdamW). For example, under Task Arithmetic,
AdamW+MergOPT attains an average score of 0.4116, compared to 0.3994 for AdamW+AdamW.
When both models are fine-tuned with MergOPT, the performance further improves. These re-
sults indicate that MergOPT is compatible with and beneficial for merging models obtained from
heterogeneous fine-tuning strategies.

D.3 ABLATION STUDY ON NUMBER OF TASKS TO MERGE

In Table 3 of the main text, we have already reported the results for the 4-task merging scenario. To
further examine the effectiveness of our approach under different task scales, this section extends
the study to 2-task and 6-task merging. Specifically, we randomly sampled subsets from the full
set of seven tasks, with each subset containing either 2 or 6 tasks. We then merged the expert
models fine-tuned with the standard AdamW optimizer, as well as those fine-tuned with our proposed
MergOPT, and evaluated their performance.

The results are presented in Tables 20 and 21. Overall, we observe the following: (i) 2-task merging,
as shown in Table 20: For both Task Arithmetic and TIES-Merging, incorporating MergOPT
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Table 16: Performance comparison of MergOPT and SAFT-Merge (based on SAM and ASAM)
under comparable fine-tuning cost on Llama-3.2-1B-Instruct.

Method Task Performance Avg. (↑)
C-STANCE FOMC MeetingBank ScienceQA NumGLUE-cm NumGLUE-ds 20Minuten

Fine-Tuned w/ SAFT-Merge (SAM) 0.4940 0.5746 0.3616 0.8305 0.4390 0.5671 0.3850 0.5217
Fine-Tuned w/ SAFT-Merge (ASAM) 0.4829 0.5874 0.3725 0.8452 0.4634 0.5842 0.3897 0.5322
MergOPT Fine-Tuned 0.4957 0.6331 0.3158 0.8780 0.4390 0.5305 0.3829 0.5250

Weight Averaging w/ SAFT-Merge (SAM) 0.4245 0.4315 0.2149 0.6930 0.2683 0.3293 0.3846 0.3923
Weight Averaging w/ SAFT-Merge (ASAM) 0.4198 0.4267 0.2127 0.6852 0.2631 0.3214 0.3821 0.3868(-1.40%)
Weight Averaging w/ MergOPT 0.4130 0.4819 0.2153 0.7530 0.2927 0.3171 0.3850 0.4083(+4.08%)
Task Arithmetic SAFT-Merge (SAM) 0.4285 0.4919 0.2075 0.6840 0.3415 0.3598 0.3822 0.4136
Task Arithmetic w/ SAFT-Merge (ASAM) 0.4316 0.4967 0.2098 0.6942 0.3456 0.3651 0.3837 0.4181(+1.08%)
Task Arithmetic w/ MergOPT 0.4203 0.4718 0.2077 0.7530 0.3171 0.3659 0.3797 0.4165(+0.70%)
TIES-Merging w/ SAFT-Merge (SAM) 0.4295 0.4758 0.2075 0.6930 0.3171 0.3537 0.3826 0.4084
TIES-Merging w/ SAFT-Merge (ASAM) 0.4251 0.4698 0.2043 0.6837 0.3109 0.3472 0.3798 0.4030(-1.32%)
TIES-Merging w/ MergOPT 0.4202 0.4536 0.2093 0.7555 0.2927 0.3720 0.3825 0.4123(+0.95%)
DARE w/ SAFT-Merge (SAM) 0.4335 0.4395 0.2134 0.6630 0.3171 0.3476 0.3776 0.3988
DARE w/ SAFT-Merge (ASAM) 0.4298 0.4351 0.2108 0.6548 0.3127 0.3421 0.3751 0.3943(-1.12%)
DARE w/ MergOPT 0.4192 0.4819 0.2107 0.7485 0.2927 0.3659 0.3843 0.4147(+3.98%)

Table 17: Average fine-tuning time (seconds) of AdamW, SAFT-Merge (based on SAM and ASAM),
and MergOPT under comparable fine-tuning cost settings.

Optimizer Task Fine-tuning Time (s) Avg. (↓)
C-STANCE FOMC MeetingBank ScienceQA NumGLUE-cm NumGLUE-ds 20Minuten

AdamW 1927.74 1155.33 2688.37 1156.57 1923.30 1921.97 2684.57 1922.55
SAFT-Merge (SAM) 1994.25 1196.54 2788.16 1197.83 1990.56 1994.05 2782.05 1991.92(1.04×)
SAFT-Merge (ASAM) 1923.38 1153.39 2782.19 1254.05 2018.30 2020.72 2782.95 1990.71(1.04×)
MergOPT 2247.64 1348.34 3147.20 1349.36 2241.04 2240.76 3141.03 2245.05(1.17×)

consistently improves the average performance of the merged models, with the maximum gain
exceeding 8%. (ii) 6-task merging, as shown in Table 21: Compared to standard fine-tuning,
MergOPT also provides stable improvements across different task groups, with relative performance
gains ranging from 2.57% to 6.78%. These findings indicate that MergOPT remains robust across
both small- and large-scale merging scenarios, further validating its generality and reliability.

D.4 HYPERPARAMETER SENSITIVITY ANALYSIS

D.4.1 DIFFERENT TASK VECTOR DISTRIBUTIONS

In this work, our analysis suggests that the Laplace distribution provides a better fit to the empirical
task-vector distribution. Accordingly, in MergOPT we sample a perturbation vector from this
Laplace distribution at each optimization step to simulate merge-induced parameter offsets. To
further assess the sensitivity to the choice of distribution, we additionally experiment with sampling
task vectors from a Gaussian distribution, i.e., at each step we draw perturbations from a Gaussian
instead of a Laplace. As shown in Table 22, both choices lead to consistent gains over standard
fine-tuning. For example, under TIES-Merging, the average performance of MergOPT w/ Gaussian
and MergOPT w/ Laplace when merging two tasks is 0.4912 and 0.4929, respectively, both higher
than the baseline value of 0.4854. This indicates that Gaussian sampling can also serve as a reasonable
approximation for task vectors, even though it is slightly weaker than the better-motivated Laplace-
based approximation.

D.4.2 BATCH SIZES

In this part, we analyze the sensitivity of the proposed method to the batch size. In our main
experiments, we use a default batch size of 8, and here we additionally evaluate batch sizes of 4 and
16. As shown in Table 23, MergOPT improves over standard fine-tuning by 6.60% and 1.53% when
the batch size is 4 and 8, respectively. When the batch size is increased to 16, we observe a slight
decrease of 1.04%. Overall, across a reasonable range of batch sizes, MergOPT remains competitive
and often yields clear gains over the standard fine-tuning baseline.

D.4.3 LEARNING RATES

In this part, we analyze the sensitivity of the proposed method to the choice of learning rate. In the
main experiments, we use a default learning rate of 2× 10−5. Here, we additionally consider two
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Table 18: Performance Comparison of Model Merging Methods on Llama-3.2-1B-Instruct (SGD as
base optimizer).

Method Task Performance Avg. (↑)
C-STANCE FOMC MeetingBank ScienceQA NumGLUE-cm NumGLUE-ds 20Minuten

Pre-Trained 0.3386 0.2581 0.2036 0.6780 0.1220 0.1646 0.3802 0.3064
SGD Fine-Tuned 0.4920 0.5423 0.3630 0.8605 0.2439 0.3415 0.3834 0.4601
MergOPT Fine-Tuned 0.4710 0.6129 0.2969 0.7694 0.1463 0.4207 0.3933 0.4441

Weight Averaging 0.4023 0.3407 0.1700 0.6268 0.3659 0.2622 0.3762 0.3634
Weight Averaging w/ MergOPT 0.3912 0.3185 0.1535 0.6351 0.2439 0.3049 0.3804 0.3468(-4.56%)
Task Arithmetic 0.4068 0.2782 0.1382 0.5983 0.2439 0.2561 0.3788 0.3286
Task Arithmetic w/ MergOPT 0.3722 0.4556 0.1279 0.5888 0.2439 0.3293 0.3783 0.3566(+8.52%)
TIES-Merging 0.4169 0.2782 0.1368 0.5914 0.2195 0.2378 0.3767 0.3225
TIES-Merging w/ MergOPT 0.3712 0.4476 0.1286 0.5791 0.2439 0.3354 0.3808 0.3552(+10.01%)
DARE 0.3393 0.2449 0.0938 0.3073 0.0976 0.1585 0.3779 0.2313
DARE w/ MergOPT 0.3164 0.2883 0.0906 0.4131 0.0732 0.1768 0.3710 0.2471(+6.83%)

Table 19: Performance Comparison of Merged Models Trained with Different Fine-Tuning Methods
on Llama-3.2-1B-Instruct.

Method NumGLUE-cm NumGLUE-ds Avg. (↑)
Task Arithmetic (AdamW+AdamW) 0.3659 0.4329 0.3994
Task Arithmetic (AdamW+MergOPT) 0.3659 0.4573 0.4116(+3.05%)
Task Arithmetic (MergOPT+MergOPT) 0.3659 0.4817 0.4238(+6.10%)
TIES-Merging (AdamW+AdamW) 0.3415 0.4390 0.3903
TIES-Merging (AdamW+MergOPT) 0.3659 0.4450 0.4055(+3.89%)
TIES-Merging (MergOPT+MergOPT) 0.3659 0.4817 0.4238(+8.58%)

variants by halving and doubling the learning rate to 1× 10−5 and 4× 10−5, respectively. As shown
in Table 24, MergOPT consistently outperforms standard fine-tuning under all three learning-rate
settings. For example, when the learning rate is set to 1× 10−5, 2× 10−5, and 4× 10−5, MergOPT
yields relative improvements of 2.92%, 1.53%, and 0.32%, respectively, over the Task Arithmetic
baseline. These results suggest that our method is robust to reasonable variations in the learning rate.
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Table 20: Performance of different merging methods on 2-task groups (Llama-3.2-1B-Instruct).

Method Group 1 Group 2

C-STANCE FOMC Avg. (↑) NumGLUE-cm NumGLUE-ds Avg. (↑)
Task Arithmetic 0.4475 0.5181 0.4828 0.3659 0.4329 0.3994
Task Arithmetic w/ MergOPT 0.4440 0.5363 0.4901(+1.51%) 0.3659 0.4817 0.4238(+6.12%)
TIES-Merging 0.4445 0.5262 0.4854 0.3415 0.4390 0.3902
TIES-Merging w/ MergOPT 0.4414 0.5444 0.4929(+1.54%) 0.3659 0.4817 0.4238(+8.62%)

Table 21: Performance of different merging methods on 6-task groups (Llama-3.2-1B-Instruct).

Method Group 1

C-STANCE FOMC MeetingBank ScienceQA NumGLUE-cm NumGLUE-ds Avg. (↑)
Task Arithmetic 0.4284 0.5101 0.2136 0.7380 0.2439 0.3537 0.4146
Task Arithmetic w/ MergOPT 0.4237 0.5101 0.2115 0.7785 0.3415 0.3537 0.4365(+5.28%)
TIES-Merging 0.4288 0.4899 0.2090 0.7400 0.2195 0.3598 0.4078
TIES-Merging w/ MergOPT 0.4199 0.5121 0.2099 0.7695 0.3415 0.3598 0.4354(+6.78%)

Method Group 2

C-STANCE FOMC MeetingBank NumGLUE-cm NumGLUE-ds 20Minuten Avg. (↑)
Task Arithmetic 0.4242 0.5363 0.2177 0.2683 0.3476 0.3811 0.3625
Task Arithmetic w/ MergOPT 0.4221 0.5363 0.2139 0.3171 0.3537 0.3877 0.3718(+2.57%)
TIES-Merging 0.4242 0.5181 0.2171 0.2439 0.3476 0.3789 0.3550
TIES-Merging w/ MergOPT 0.4215 0.5302 0.2143 0.3171 0.3537 0.3873 0.3707(+4.42%)

Table 22: Performance Comparison of Different Task Vector Sampling Methods for 2-Task Groups
on Llama-3.2-1B-Instruct.

Method C-STANCE FOMC Avg. (↑)
Task Arithmetic 0.4475 0.5181 0.4828
Task Arithmetic (MergOPT w/ Gaussian) 0.4440 0.5363 0.4901(+1.51%)
Task Arithmetic (MergOPT w/ Laplace) 0.4485 0.5320 0.4903(+1.55%)
TIES-Merging 0.4445 0.5262 0.4854
TIES-Merging (MergOPT w/ Gaussian) 0.4452 0.5372 0.4912(+1.19%)
TIES-Merging (MergOPT w/ Laplace) 0.4414 0.5444 0.4929(+1.54%)

Table 23: The Effect of Different Batch Sizes on MergOPT Performance on Llama-3.2-1B-Instruct.

Method Batch Size=4 Batch Size=8 (Default) Batch Size=16

C-STANCE FOMC Avg. (↑) C-STANCE FOMC Avg. (↑) C-STANCE FOMC Avg. (↑)
Task Arithmetic 0.4570 0.4879 0.4725 0.4475 0.5181 0.4828 0.4530 0.5222 0.4876
Task Arithmetic w/ MergOPT 0.4610 0.5464 0.5037(+6.60%) 0.4440 0.5363 0.4902(+1.53%) 0.4570 0.5081 0.4825(-1.04%)

Table 24: The Effect of Different Learning Rates on MergOPT Performance on Llama-3.2-1B-
Instruct.

Method lr = 1e-5 lr = 2e-5 (Default) lr = 4e-5

C-STANCE FOMC Avg. (↑) C-STANCE FOMC Avg. (↑) C-STANCE FOMC Avg. (↑)
Task Arithmetic 0.4270 0.5020 0.4645 0.4475 0.5181 0.4828 0.4805 0.5600 0.5203
Task Arithmetic w/ MergOPT 0.4260 0.5302 0.4781(+2.92%) 0.4440 0.5363 0.4902(+1.53%) 0.4790 0.5650 0.5220(+0.32%)
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