
Towards Unsupervised Speech-to-Speech Translation

Anonymous ACL submission

Abstract
Most of the speech-to-speech translation mod-001
els heavily rely on parallel data, which is hard002
to collect especially for low-resource languages.003
To tackle this issue, we propose to build a004
speech-to-speech translation system without005
leveraging any kind of paired data. To the best006
of our knowledge, this work is the first one that007
has successfully built a speech-to-speech trans-008
lation system under an unsupervised scenario.009
We use fully unpaired data to train our unsuper-010
vised system and make comparable results with011
the other supervised methods proposed just a012
few years ago. Furthermore, to demonstrate013
that our method can generalize well across dif-014
ferent languages, we evaluate our system on015
CVSS, a multi-lingual speech-to-speech cor-016
pus, and get promising results in different trans-017
lation directions.018

1 Introduction019

Speech-to-speech translation (S2ST) converts020

speech from one language to another, attempting021

to bridge the communication barriers between peo-022

ple speaking different languages. Conventionally,023

an S2ST system is accomplished by concatenating024

the three components: automatic speech recogni-025

tion (ASR), text-to-text machine translation (MT),026

and text-to-speech (TTS) synthesis sub-modules027

(Lavie et al., 1997; Wahlster, 2000; Nakamura028

et al., 2006). Recently, with works on direct or029

end-to-end speech-to-text translation (ST; Bérard030

et al., 2018; Inaguma et al., 2019; Gangi et al.,031

2019), conducting 2-cascade systems (ST→TTS)032

may also be an option for S2ST. Moreover, stud-033

ies on S2ST without leveraging intermediate text034

representations are emerging, such as direct S2ST035

(Jia et al., 2019, 2021) and cascade S2ST based036

on discrete units or representation (Tjandra et al.,037

2019; Lee et al., 2021).038

However, most S2ST and ST systems are trained039

under supervision, making them heavily rely on par-040

allel data. For cascade systems, each component041

Figure 1: Overview of our unsupervised speech-to-
speech translation (US2ST) system.

requires its corresponding labeled data. Although 042

it can be collected separately, using data from dif- 043

ferent corpora might introduce domain mismatches 044

simultaneously. On the other hand, direct S2ST 045

and ST systems are more constrained by the lim- 046

ited amount of labeled data. Unlike ASR or MT, 047

parallel data for ST and S2ST is scarce and even 048

harder to collect, especially for low-resource lan- 049

guages. 050

In contrast to parallel data, unlabeled data is 051

much easier to obtain regardless of modalities. 052

Even though the unlabeled data is broadly acces- 053

sible, learning without supervision, namely unsu- 054

pervised learning, can be extraordinarily challeng- 055

ing. Thus, previous works on unsupervised MT 056

(UMT) started from word-level translation. For in- 057

stance, Cao et al. (2016); Zhang et al. (2017); Con- 058

neau et al. (2017) perform UMT by learning cross- 059

lingual alignments of word embeddings. These 060

alignment-based methods have demonstrated the 061

possibilities of unsupervised learning in translation- 062

related tasks. Meanwhile, Artetxe et al. (2017); 063

Lample et al. (2017) further improve the perfor- 064

mance of UMT by introducing the idea of back- 065

translation (Sennrich et al., 2015a). Nowadays, 066
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with cross-lingual pre-trained models, the results067

of UMT are even comparable with some previous068

supervised methods (Lample and Conneau, 2019;069

Liu et al., 2020)070

Despite the breaking-through of UMT, unsuper-071

vised ST (UST; Chung et al., 2018, 2019b) and072

unsupervised S2ST (US2ST) remain rarely studied.073

Motivated by recent success in unsupervised ASR074

(UASR; Baevski et al., 2021; Liu et al., 2022a)075

and unsupervised TTS (UTTS; Ni et al., 2022; Liu076

et al., 2022b), in this work, we proposed a cascade077

US2ST framework, dealing with both ST and S2ST078

tasks. To our best knowledge, this is the first paper079

that tackles S2ST under a completely unsupervised080

scenario.081

We evaluate our cascade US2ST system on082

CVSS (Jia et al., 2022), a multi-lingual S2ST cor-083

pus. The corpus is built on top of an ST corpus,084

CoVoST 2 (Wang et al., 2020b), thus we also eval-085

uate our UST performance on the ST corpus. We086

demonstrate that our system can generalize well087

across different languages by conducting experi-088

ments on three different translation directions. De-089

spite that our system learns with only unlabeled090

data, the results are still promising. On CoVoST 2,091

our system not only shows comparable results with092

some supervised direct ST but also outperforms093

them in some translation directions. For S2ST, our094

system can generate natural and clean speech, with095

less than 5.0 BLEU score degradation compared to096

our supervised upper bound. To demonstrate that097

our results might be as good as some supervised098

S2ST models, the audio samples are also available099

on the website1.100

2 Related works101

S2ST Typically, conventional S2ST systems are102

composed of ASR, MT and TTS subsystems (Lavie103

et al., 1997; Wahlster, 2000; Nakamura et al., 2006).104

With research on direct ST (Bérard et al., 2016;105

Weiss et al., 2017; Li et al., 2020), conducting 2-106

cascade S2ST systems (ST→TTS) is also avail-107

able and can alleviate the error propagation issue108

between ASR and MT. Besides the cascade sys-109

tems, recent research also focus on direct S2ST.110

Jia et al. (2019) proposed Translatotron, the first111

sequence-to-sequence S2ST model that can be di-112

rectly trained end-to-end on multi-objectives; and113

the follow-up work, Translatotron 2 (Jia et al.,114

1https://acl2022anonymous.github.io/us2s-demo

2021), further bridged the performance gap be- 115

tween direct S2ST and ST→TTS cascade systems. 116

Apart from direct S2ST, some works intend to 117

learn S2ST models with discrete units or repre- 118

sentations instead of intermediate text representa- 119

tions, aiming to solve S2ST for unwritten or un- 120

transcribed languages. Tjandra et al. (2019); Zhang 121

et al. (2021) proposed to learn their S2ST models 122

through discrete tokens generated by vector quan- 123

tized variational autoencoder (VQ-VAE) related 124

techniques. Lee et al. (2021) proposed to utilize 125

discrete units from HuBERT (Hsu et al., 2021) and 126

showed comparable results with some text-based 127

methods, indicating their potential on S2ST be- 128

tween unwritten languages. 129

Among all the works regarding S2ST, none of 130

them is under unsupervised scenarios. Even for 131

unwritten S2ST, speech-to-speech data from the 132

source language to the target language is required. 133

UMT and UST Different from US2ST, UMT 134

has been studied for a long time, trying to solve 135

the translation problem with mono-lingual data 136

only. Starting from word-level translation, Cao 137

et al. (2016) learns bilingual word embeddings by 138

distribution matching; while (Zhang et al., 2017; 139

Conneau et al., 2017) focuses on learning the cross- 140

lingual mapping between the monolingual word 141

embeddings through adversarial training. These 142

methods can only perform word-by-word trans- 143

lation, which might lead to unnatural sentences. 144

Based on previous work on cross-lingual word em- 145

beddings, Artetxe et al. (2017); Lample et al. (2017) 146

further improve the performance of UMT by intro- 147

ducing the idea of back-translation (Sennrich et al., 148

2015a) and denoising auto-encoder (DAE; Vin- 149

cent et al., 2008). Moreover, Lample et al. (2018) 150

demonstrated that UMT can be accomplished with 151

suitable initialization of the translation models, lan- 152

guage modeling and iterative back-translation. 153

Over the past few years, language model pre- 154

training has brought a significant impact on natural 155

language understanding (NLU) and cross-lingual 156

understanding (XLU). Lample and Conneau (2019) 157

proposed two methods to learn cross-lingual lan- 158

guage models (XLM), showing that cross-lingual 159

pre-training may also benefit UMT. Their results of 160

UMT outperformed previous SOTA and were even 161

comparable with some supervised models. 162

Compared with UMT, UST remains rarely stud- 163

ied. Chung et al. (2018) proposed a method based 164

on cross-modal alignments between spoken word 165
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and text word embeddings, performed word-level166

UST. Furthermore, to improve the quality of trans-167

lation, they integrated the method with a pre-168

trained language model (LM) and DAE (Chung169

et al., 2019b).170

UASR and UTTS UASR takes audio features171

or representations as input and generates phoneme172

sequences without supervision. To tackle the chal-173

lenging problem, Liu et al. (2018) first came out174

with the idea of applying a Generative Adversarial175

Network (GAN) (Goodfellow et al., 2020). How-176

ever, phoneme-level boundaries are required to seg-177

ment the audio and construct embedding sequences.178

(Chen et al., 2019) breaks the limit by iteratively179

refining the audio segments with Hidden Markov180

Model (HMM) and GAN, achieving completely181

UASR.182

Recently, Baevski et al. (2021) proposed183

wav2vec-U, building the GAN-based UASR frame-184

work on top of the representation from wav2vec 2.0185

(W2V2) (Baevski et al., 2020), a self-supervised186

speech model. The results outperformed previ-187

ous SOTA, and are even comparable with some188

of the best-known supervised methods. More-189

over, the original paper has shown that with the190

cross-lingual pre-trained version of W2V2 (Con-191

neau et al., 2020), UASR in other languages is192

also available. The follow-up work, wav2vec-U193

2.0 (Liu et al., 2022a), enabled the model to be194

trained end-to-end with the simplified pipeline and195

the improved training objective.196

Inspired by the recent success of UASR, Ni et al.197

(2022); Liu et al. (2022b) accomplished UTTS198

by leveraging pseudo labels from wav2vec-U or199

wav2vec-U 2.0. The results of their UTTS mod-200

els achieve comparable performance against those201

trained on the true labels.202

3 Methods203

Our cascade US2ST architecture is composed of204

three components: UASR, UMT, and UTTS, as205

indicated in Fig. 2. We trained each of the compo-206

nent separately with fully unpaired data. During207

inference, we concatenate all of them and form the208

functionality of S2ST. In this section, We will go209

through the details of each sub-module individually210

from sections 3.1 to 3.3.211

3.1 UASR212

We conduct UASR subsystem following wav2vec-213

U (Baevski et al., 2021), and our code is based214

Figure 2: The framework of our cascade US2ST.

on their implementation in fairseq2. Besides its 215

breakthrough performance on UASR in multiple 216

languages, the robustness and stabilities across dif- 217

ferent corpora have also been analyzed (Lin et al., 218

2022). 219

Wav2vec 2.0 Wav2vec-U utilizes the inner-layer 220

representations from wav2vec 2.0 (W2V2). Re- 221

cent studies have shown that the layerwise repre- 222

sentations of the transformer model might be in- 223

formative (Pasad et al., 2021) and can be adopted 224

for different downstream tasks with promising re- 225

sults (Yang et al., 2021). In this work, following 226

wav2vec-U, we also leverage the intermediate rep- 227

resentations extracted from the transformer of the 228

pre-trained W2V2. 229

Audio preparation First, we detect the silence 230

segments in the raw audio by rVAD, which is an 231

unsupervised voice detection method (Tan et al., 232

2020). We then remove all of the detected si- 233

lence segments, making the audio more compact. 234

Next, we feed the compact audio into the pre- 235

trained W2V2, and extract single-layer represen- 236

tations from it. After getting the W2V2 represen- 237

tations, we follow the dimension reduction proce- 238

dures proposed in wav2vec-U to get more compact 239

sequences for later training. 240

Text preparation We normalize our text data 241

by removing the punctuation marks and making 242

them lowercase. Then, we phonemicize each sen- 243

tence using an off-the-shelf Phonemizer3 (Bernard 244

and Titeux, 2021), which supports the phonemi- 245

cization across multiple languages based on the 246

International Phonetic Alphabet (IPA). Since the 247

silence removal process adopted in audio prepara- 248

2 https://github.com/facebookresearch/fairseq
3https://github.com/bootphon/phonemizer
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tion might be incomplete, wav2vec-U tackle such249

a problem by introducing a silence token (<SIL>)250

into the set of generator outputs. For better sim-251

ulation of the generator output behavior, we in-252

sert <SIL> at the beginning and at the end of each253

phoneme sequence. Moreover, random <SIL> in-254

sertion between word boundaries at a certain rate255

is also adopted, suggested by wav2vec-U.256

GAN-based training Generative adversarial nets257

(GAN; Goodfellow et al., 2020) are composed of a258

generator G and a discriminator D. The generator G259

aims at producing samples that are undistinguished260

by D; while the discriminator D learns to classify261

if the samples come from training data or G. In262

wav2vec-U, both G and D are simple convolutional263

neural networks (CNN). The training objective of264

wav2vec-U consists of the original GAN objective265

with gradient penalty (Gulrajani et al., 2017), a seg-266

ment smoothness penalty, and a phoneme diversity267

penalty.268

Decoding & self-training Once the UASR mod-269

els were trained, we integrate the generator outputs270

with some decoding strategies to get the final text271

sequences. Besides traditional Viterbi decoding,272

lexicon-based kenlm decoder4 and the weighted273

finite-state transducer (Mohri et al., 2002) are also274

introduced as different decoding methods. To make275

further improvements, we also apply self-training276

on Hidden Markov Models (HMM; Rabiner and277

Juang, 1986). The procedure of self-training is278

described as follows: First, we use the decoded out-279

puts from the generator as pseudo labels; next, we280

train the HMM through these pseudo labels along281

with the speech representations extracted from the282

W2V2; finally, we obtain word-level or phoneme-283

level sequences with WFST decoding. Note that284

the representations come directly from pre-trained285

W2V2 without modifications.286

3.2 UMT287

We implement the UMT by following XLM (Lam-288

ple and Conneau, 2019), which initializes a seq2seq289

model by pre-trained XLM, and train the model290

with online back-translation.291

XLM XLM is a cross-lingual transformer lan-292

guage model, which pre-trains on sentences from293

two or more languages. The shared Byte Pair En-294

coding (BPE; Sennrich et al., 2015b) vocabularies295

4 We adopt the implementation in fairseq which has inte-
grated the functionalities from flashlight

and masked-based language model pre-training pro- 296

vide embeddings with multilingual alignment and 297

contextualized information (Lample et al., 2018; 298

Lample and Conneau, 2019). 299

Masked language modeling (MLM) The objec- 300

tive of XLM pre-training is masked language model 301

(MLM) loss. We sample some of the tokens from 302

a sentence randomly and substitute the sampled 303

token with (1) a special token [MASK] (2) random 304

tokens (3) left unchanged. The model aims to re- 305

cover the masked tokens from the noisy sentences. 306

Moreover, to prevent the model from predicting 307

common words, we calculate the frequencies of 308

the tokens in sentences, and the sample weight is 309

proportional to its inverted frequency. The Masked 310

language modeling captures the relation between 311

tokens, which learns contextualized understanding. 312

Back-translation Let u∗(y) be the transcribed 313

sentence of y, which belongs to the source language 314

S; v∗(x) be the transcribed sentence of x, which 315

belongs to the target language T . The (u∗(y), y) 316

and (v∗(x), x) form the pseudo-parallel data, and 317

the objective for the translation model is to map 318

u∗(y) and v∗(x) back to y and x respectively, the 319

back-translation loss is as follows: 320

Lback =Ex∈T [− logPs→t(y|u∗(y))]
+Ey∈S [− logPt→s(x|v∗(x))]

(1) 321

In the first few steps, we add denoising auto- 322

encoder loss to help the training process, and the 323

weight of the denoising auto-encoder will decay as 324

the iteration increases. 325

3.3 UTTS 326

Some works intend to improve the performance 327

of TTS through unlabeled data. For instance, 328

pre-training the encoder/decoder (Chung et al., 329

2019a); utilizing the dual nature of TTS and ASR 330

tasks (Ren et al., 2019); applying variational auto- 331

encoder to learn from speech disentanglement 332

(Lian et al., 2022). 333

In spite of the improvement they brought, these 334

methods still depend on certain levels of paired data. 335

Directly training a UTTS without any supervision 336

from paired data seems to be extremely hard. How- 337

ever, with recent success in UASR, UTTS might 338

be accomplished in another way—training on the 339

pseudo labels generated from UASR systems (Ni 340

et al., 2022; Liu et al., 2022b). 341
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Table 1: The training data for each part of the US2ST
system and the corresponding evaluation corpus. Wiki
stands for Wikipedia; CV4 is the abbreviation for Com-
mon Voice version 4. The ∗ indicates mono-lingual
data.

Text Audio

UASR Wiki CV4
UMT WMT’14 + Wiki -
UTTS LibriSpeech LM∗6 LJspeech∗

4 Experiments342

4.1 Data343

To demonstrate our US2ST systems across differ-344

ent languages, we evaluate our results on CVSS (Jia345

et al., 2022), which is a newly proposed multilin-346

gual S2ST corpus based on CoVoST 2 (Wang et al.,347

2020b) and Common Voice ver.4 (CV4; Ardila348

et al., 2019). By the transcriptions files from CV4349

and translation data from CoVoST 2, we are able350

to evaluate each of our components individually.351

However, we do not utilize any paired data from352

the corpus during training stage; instead, we use au-353

dio and text data from different corpora, construct-354

ing a fully unpaired scenario for our US2ST. For au-355

dio, we adopt Common Voice ver.4 for UASR and356

LJspeech (Ito and Johnson, 2017) for UTTS with-357

out using any transcriptions from them; and for text,358

we extract sentences from Wikipedia5, WMT’14,359

and LibriSpeech LM data6 (Panayotov et al., 2015).360

361

4.2 System setups362

To evaluate the generalization abilities of our meth-363

ods across different languages, we conducted ex-364

periments on three S2ST directions, which are365

German→English (De–En), French→English (Fr–366

En), and Spanish→English (Es–En).367

4.2.1 UASR368

As indicated in Table 1, we used audio from CV4369

and text data from Wikipedia to train our UASR370

models. More precisely, we use 100 hours of audio371

and about 1–3M sentences for each language. After372

training, we evaluate the results with the transcrip-373

tions from CV4. For the pre-trained W2V2 model,374

we directly use the cross-lingual version (XLSR;375

Conneau et al., 2020) without finetuning. XLSR376

5 Extract the data using WikiExtractor (Attardi, 2015)
6Following Liu et al. (2022b), we exclude the transcrip-

tions of LJspeech to form fully unpaired scenario

had pre-trained in many different languages thus 377

suiting our needs for training UASR in languages 378

other than English. 379

During audio preprocessing, we apply 512 PCA 380

dimension reduction, followed by mean-pooling 381

based on k-means clustering (K = 128) and ad- 382

jacent mean-pooling. For text preparation, we in- 383

sert the <SIL> tokens at the rate of 0.25, except 384

for French. We found that our French model con- 385

verged better when <SIL> token insertion rate is 386

0.5 instead. 387

As for GAN training configuration, we chose 388

the coefficients of the loss function according to 389

the original paper as follows: the gradient penalty 390

weight λ = 1.5 or 2.0, the smoothness penalty 391

weight γ = 0.5, and the phoneme diversity loss 392

weight η = 4. We trained 3 seeds for each con- 393

figuration, conducting 6 models totally for each 394

language. 395

For decoding, we apply all three strategies de- 396

scribed in Section 3.1 for generating phoneme-level 397

outputs. After that, we adopted self-training (ST) 398

on HMM to further improve the performance and 399

obtain word-level outputs. 400

4.2.2 UMT 401

For subword-level translation, we used the pre- 402

trained English–German and English–French XLM 403

released by Meta7, and we collected 50M of mono- 404

lingual Spanish, English texts from WMT’14 to 405

train an English-Spanish XLM. We set all model 406

to the same size (L = 6, H = 1024, A = 8, model 407

size is about 798M)8. 408

The pre-training process follows (Devlin et al., 409

2018) roughly, 15% of tokens are sampled from 410

a sentence randomly, and 80% of the sampled to- 411

kens are replaced by [MASK], 10% are replaced 412

by random tokens, and the remaining 10% are left 413

unchanged. 414

For the back-translation, we extracted 1M to 3M 415

sentences from Wikipedia5 for each language, re- 416

moved all punctuation marks, and normalized all 417

characters to lowercase. The model is a seq2seq 418

model, and both the encoder and decoder are ini- 419

tialized by the pre-trained XLM, the weight of auto- 420

encoder loss linearly decreased from 1 to 0.1 in the 421

first 10k steps, and linearly decreased from 0.1 to 422

0 in the following 20k steps. 423

7 https://github.com/facebookresearch/XLM
8L: numbers of transformer blocks. H: hidden size. A:

numbers of attention heads.
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Table 2: The results of our US2ST system on CVSS. Following Jia et al. (2022), the ST results are evaluated on
CoVoST 2. C-ST stands for cascade ST; D-SS for direct S2ST.

Method Type
ASR ↓ ST (X→En) ↑ S2ST (X→En) ↑

Fr De Es Fr De Es Fr De Es

SUPERVISED LEARNING
(a) Wang et al. (2020b) C-ST 18.3 21.4 16.0 27.6 21.0 27.4 - - -
(b) fairseq S2T (T-Sm) (Wang et al., 2020a) D-ST - - - 26.3 17.1 23.0 - - -
(c) fairseq S2T (Multi. T-Md) D-ST - - - 26.5 17.5 27.0 - - -
(d) Translatotron (Jia et al., 2019) D-SS - - - - - - 15.5 6.9 14.1
(e) Translatotron 2 (Jia et al., 2021) D-SS - - - - - - 28.3 19.7 23.5
(f) CVSS-C (ST→TTS) (Jia et al., 2022) C-SS - - - 31.9 23.9 33.9 31.2 23.9 33.3
(g) Our upper bound C-SS 16.2 14.1 11.0 23.3 21.7 27.2 13.9 13.9 17.2

UNSUPERVISED LEARNING
(h) Our cascade US2ST C-SS 33.2 23.8 17.4 18.0 18.2 23.4 9.4 9.6 12.2

4.2.3 UTTS424

To achieve UTTS, Ni et al. 2022 used Tactron2425

for the acoustic modeling, while Liu et al. 2022b426

applied Transformer TTS for the acoustic modeling.427

And they both select HiFi-GAN as the vocoder.428

However, according to recent advances in TTS,429

Variational Inference with adversarial learning for430

end-to-end Text-to-Speech (VITS) has shown a431

significant performance gain over Tacotron2 and432

Transformer TTS in both subjective and objective433

evaluation(Kim et al., 2021; Hayashi et al., 2021).434

Therefore, in this paper, we employ VITS as our435

backbone TTS model.436

For implementation, we utilize ESPnet-TTS to437

train the phonemicized text from UMT (Hayashi438

et al., 2020, 2021). The detailed configuration fol-439

low the LJSpeech recipe.9440

4.3 Supervised cascade S2ST441

We constructed our upper bound model by train-442

ing a supervised cascade S2ST (ASR→MT→TTS)443

which shares similar model architecture with our444

US2ST.445

For ASR, we finetune the whole XLSR instead446

of treating it as a feature extractor. We adopt letter-447

based training followed the whole configuration448

from fairseq2 (Ott et al., 2019). The amount of449

audio data is exactly the same as those in UASR.450

Furthermore, we finetune the XLSR models indi-451

vidually for each language. MT is achieved by452

training the same seq2seq model with UMT, but453

the training data are the transcriptions of CVSS,454

and we randomly initialize the model, instead of455

using pre-trained XLM. The loss is the supervised456

9https://github.com/espnet/espnet/blob/master/egs2/ljspeech/
tts1/conf/tuning/train_vits.yaml

MT loss, without adding the auto-encoder loss and 457

back-translation loss. Finally, instead of training 458

on pseudo labels from UASR, the supervised TTS 459

model directly use the reference phonemes and 460

their corresponding utterance as paired data. 461

By constructing cascade supervised S2ST, we 462

can discuss the performance individually for each 463

component. 464

4.4 Evaluation 465

The evaluation metric of ASR is word error rate 466

(WER). We use the multi-bleu.perl script from 467

Moses toolkit10 to calculate the BLEU score of 468

ST. For the final S2ST results, we use Whisper11 469

(Radford et al., 2022), a supervised ASR model 470

released by OpenAI, to transcribe the hypothesized 471

audio, and calculate BLEU score. 472

4.5 Results 473

We show our overall results in Table 2, including 474

the results of ASR, ST, and the final S2ST, indicat- 475

ing the performance in each stage of our cascade 476

system. To compare our US2ST system with other 477

supervised methods, we collect some of the results 478

from the previous works on CoVoST 2 ((a)–(c)) 479

and CVSS ((d)–(f)). Furthermore, to get a more 480

complete comparison, both cascade and direct sys- 481

tems are included. 482

Next, we discuss the details of the methods in 483

the table. In (a), the results come from Wang et al. 484

(2020b). Among all the experiments in their pa- 485

per, we only report the results from the cascade 486

ST constructed by mono-lingual ASR and bilin- 487

gual MT. We consider the setup is the most suit- 488

10http://www2.statmt.org/moses/
11we use the English base model released by

https://github.com/openai/whisper
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able one against ours. According to the table, our489

US2ST performances in De–En and Es–En are just490

having small degradation from theirs ((h) vs (a)).491

From (b) to (c), we report the results of the di-492

rect ST systems from Wang et al. (2020a). They493

have developed a tool kit for ST and demonstrated494

it on CoVoST 2 with different model backbones.495

We compare our UST results (row (h)) with their496

Transformer-based models. Our results have not497

only outperformed their small model ((b)) in two498

translation directions but also shown comparable499

results with their larger multi-lingual model (row500

(c)).501

From (d) to (f), we present the S2ST results from502

the original paper of CVSS (Jia et al., 2022). As503

indicated in Table 2, our US2ST results might be504

comparable with the direct S2ST model, Transla-505

totron (row (f); Jia et al., 2019). However, their506

results came from literature, which might not be507

directly comparable due to using different ASR508

models for the S2ST evaluation. Finally, in row509

(g), we show the results of our upper bound model,510

which is a supervised cascade S2ST system. Com-511

paring with our upper bound method, our US2ST512

(row (h)) is just having a reasonable performance513

degradation across all the translation directions.514

In UST the results of US2ST are only about 4.2515

BLEU score behind the upper bound in average.516

As for the US2ST, despite using the UTTS for sys-517

thesis, the performance gap just became slightly518

larger. In the three translation directions that we519

have implemented, all of them are having less than520

5.0 BLEU score degradation against the supervised521

upper bound.522

4.6 Analysis523

In this section, we discuss and analyze more as-524

pects and details of our cascade US2ST, showing525

how we choose between different sub-models and526

strategies.527

Table 3: Stabilities of UASR across different languages.

Lang. <SIL>
ins. rate

Best PER
(Viterbi)

%-converged
(PER < 50%)

De 0.25 25.3% 66%

Es 0.25 27.0% 50%

Fr 0.25 49.2% <10%
0.50 35.2% 17%

Table 4: Comparison of different decoding strategies
and the improvement brought by HMM self-training.
We use the same 4-gram LM (phoneme-level or word-
level) across different methods.

Method LM PER(%) WER(%)

(I) Without self-training
Viterbi ✗ 25.2 -
Kenlm ✓ 29.5 39.5
WFST ✓ 21.3 34.4

(II) With self-training
Viterbi→ HMM ✓ 15.2 25.3
WFST→ HMM ✓ 14.4 23.8

Stabilities of UASR cross different languages 528

First of all, we found that the stabilities of our 529

UASR models vary between languages. The mea- 530

surement of the stability is by calculating the per- 531

centage of the converged rate among the models 532

under the same setting. We consider a UASR model 533

is converged if its PER < 50%. We summarize 534

the discoveries in Table 3. According to our experi- 535

ments, German and Spanish are easier to converge; 536

while French usually can not converge well. How- 537

ever, we found that it might be better for French 538

UASR models to converge if we change the <SIL> 539

token insertion rate from 0.25 to 0.5. 540

Decoding and self-training in UASR The orig- 541

inal outputs of wav2vec-U are in phoneme-level, 542

which are incompatible with the UMT. However, 543

with the integration with LM, we are available to 544

obtain word-level output sequences. As shown in 545

the part (I) of Table 4, we demonstrate that the 546

two decoding methods, Kenlm and WFST can both 547

generate word sequences by incorporating with 548

phoneme-level or word-level LM. The second part 549

(II) in the table illustrates the effectiveness of self- 550

training on HMM. Among all the methods, we 551

considered that the best strategy we found was by 552

conducting self-training on HMM with the pseudo 553

labels from WFST decoding. More surprisingly, 554

even if the pseudo labels come from Viterbi decod- 555

ing, using these labels on HMM can make huge 556

improvements. After self-training, the performance 557

gap between Viterbi and WFST decoding became 558

relatively small. Note that for simplicity, we only 559

show the results on the testing set of CV4-German; 560

while the results on other languages also share sim- 561

ilar trends. 562
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Table 5: The UST and US2ST performance of using
phoneme-level UMT.

Lang. ref. PPL UST PPL US2ST BLEU

Fr 14.5 545.4 0.03
De 13.8 104.9 0.08
Es 13.4 14.7 0.10

Phoneme-level UMT Since the PER from UASR563

is lower than WER, besides the original setting,564

we also tried to perform our US2ST at phoneme565

level. In this setup, We followed the same training566

criterion of the subword-level UMT, but trained on567

a phonemicized sequence.568

Direct calculating BLEU score on the phoneme569

sequence generated by UST is unmeaningful. The570

number of phonemes is greatly less than that of571

words, so randomly generating some phoneme se-572

quences can still get a reasonable score. As a re-573

sult, we turn to test the naturalness of generated574

phonemes, we trained a phoneme-level 4-gram lan-575

guage model, and calculate the perplexity of UST576

results.577

The results are shown in Table 5. The models of578

French and German are unable to generate a natural579

English phoneme sequence; thus the US2ST also580

failed. Although the Spanish model can generate581

natural English phoneme sequences, the perfor-582

mance of US2ST is still terrible, which implies the583

model did not retain the original meaning of the584

input.585

The phoneme-level UMT might be too hard:586

word boundary information is missing in the587

phoneme sequence, so the model should find the588

word boundary between phonemes, and tries to589

Table 6: Analysis of our UTTS models. We use WER
as the evaluation metric.

Input phn.
TTS UTTS train on diff. PER
sup. per = 22% per = 14%

(I) Using phonemicized or UASR-generated phn.

Phonemicized 23.5% 37.7% 31.5%
UASR-generated - 40.4% 28.9%

(II) Using phonemicized UST results

Fr→En 46.5% 61.9% 54.2%
De→En 38.6% 56.0% 47.0%
Es→En 43.3% 59.2% 50.2%

translate the words to English. Such difficulty 590

might prevent the phoneme-level UMT from work- 591

ing well. 592

Analysis on UTTS First of all, to get more in- 593

sights about the impact of using different level of 594

PER for training UTTS, we train two UTTS models 595

with different PER; furthermore, a supervised TTS 596

are trained to form the upper bound, as shown in Ta- 597

ble 6. Initially, to validate our TTS models, we just 598

feed the phonemicized sequences from reference 599

sentences into the models and calculate WER af- 600

ter transcribing the generated waveform. However, 601

since all of the UTTS models have never seen the 602

real, or the phonemicized sequences before, we are 603

wondering if the UTTS models can perform better 604

when taking sequences from their corresponding 605

UASR as input. Thus, in the section (I) in Table 6, 606

we aim to analyze the issue by taking either phone- 607

micized or generated sequences as the inputs for 608

UTTS. Interestingly, we found that in some cases 609

the UTTS models actually performed better with 610

their corresponding UASR-generated sequences. 611

Secondly, in section (II) of the table, we mea- 612

sure the performance degradation by showing the 613

detailed WER of our UTTS models taking as input 614

from UST. Although the WER of UTTS models are 615

higher than the supervised upper bound, the per- 616

formance degradation on supervised TTS is also 617

severe, indicating the impact of mismatch between 618

the input data for the TTS models. 619

5 Conclusions 620

In this paper, we proposed a cascade US2ST (unsu- 621

pervised speech-to-speech translation) system, the 622

training process does not rely on any labeled data, 623

and the performance can be comparable with or 624

even outperform supervised works in some cases. 625

In addition, we analyzed how languages and decod- 626

ing strategies influence the performance of UASR 627

and UTTS. 628

While there is still a big gap between our work 629

and the SOTA supervised S2ST system. Inspired 630

by recent success in the self-supervised speech pre- 631

trained model, our future work includes translat- 632

ing between discrete tokens generated by the self- 633

supervised pre-trained model in an unsupervised 634

scenario (Tjandra et al., 2019), and we expect that 635

leveraging representations from self-supervised 636

model to build US2ST system can mitigate the 637

gap. 638
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