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Abstract

Most of the speech-to-speech translation mod-
els heavily rely on parallel data, which is hard
to collect especially for low-resource languages.
To tackle this issue, we propose to build a
speech-to-speech translation system without
leveraging any kind of paired data. To the best
of our knowledge, this work is the first one that
has successfully built a speech-to-speech trans-
lation system under an unsupervised scenario.
We use fully unpaired data to train our unsuper-
vised system and make comparable results with
the other supervised methods proposed just a
few years ago. Furthermore, to demonstrate
that our method can generalize well across dif-
ferent languages, we evaluate our system on
CVSS, a multi-lingual speech-to-speech cor-
pus, and get promising results in different trans-
lation directions.

1 Introduction

Speech-to-speech translation (S2ST) converts
speech from one language to another, attempting
to bridge the communication barriers between peo-
ple speaking different languages. Conventionally,
an S2ST system is accomplished by concatenating
the three components: automatic speech recogni-
tion (ASR), text-to-text machine translation (MT),
and text-to-speech (TTS) synthesis sub-modules
(Lavie et al., 1997; Wahlster, 2000; Nakamura
et al., 2006). Recently, with works on direct or
end-to-end speech-to-text translation (ST; Bérard
et al., 2018; Inaguma et al., 2019; Gangi et al.,
2019), conducting 2-cascade systems (ST—TTS)
may also be an option for S2ST. Moreover, stud-
ies on S2ST without leveraging intermediate text
representations are emerging, such as direct S2ST
(Jia et al., 2019, 2021) and cascade S2ST based
on discrete units or representation (Tjandra et al.,
2019; Lee et al., 2021).

However, most S2ST and ST systems are trained
under supervision, making them heavily rely on par-
allel data. For cascade systems, each component
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Figure 1: Overview of our unsupervised speech-to-
speech translation (US2ST) system.

requires its corresponding labeled data. Although
it can be collected separately, using data from dif-
ferent corpora might introduce domain mismatches
simultaneously. On the other hand, direct S2ST
and ST systems are more constrained by the lim-
ited amount of labeled data. Unlike ASR or MT,
parallel data for ST and S2ST is scarce and even
harder to collect, especially for low-resource lan-
guages.

In contrast to parallel data, unlabeled data is
much easier to obtain regardless of modalities.
Even though the unlabeled data is broadly acces-
sible, learning without supervision, namely unsu-
pervised learning, can be extraordinarily challeng-
ing. Thus, previous works on unsupervised MT
(UMT) started from word-level translation. For in-
stance, Cao et al. (2016); Zhang et al. (2017); Con-
neau et al. (2017) perform UMT by learning cross-
lingual alignments of word embeddings. These
alignment-based methods have demonstrated the
possibilities of unsupervised learning in translation-
related tasks. Meanwhile, Artetxe et al. (2017);
Lample et al. (2017) further improve the perfor-
mance of UMT by introducing the idea of back-
translation (Sennrich et al., 2015a). Nowadays,



with cross-lingual pre-trained models, the results
of UMT are even comparable with some previous
supervised methods (Lample and Conneau, 2019;
Liu et al., 2020)

Despite the breaking-through of UMT, unsuper-
vised ST (UST; Chung et al., 2018, 2019b) and
unsupervised S2ST (US2ST) remain rarely studied.
Motivated by recent success in unsupervised ASR
(UASR; Baevski et al., 2021; Liu et al., 2022a)
and unsupervised TTS (UTTS; Ni et al., 2022; Liu
et al., 2022b), in this work, we proposed a cascade
US2ST framework, dealing with both ST and S2ST
tasks. To our best knowledge, this is the first paper
that tackles S2ST under a completely unsupervised
scenario.

We evaluate our cascade US2ST system on
CVSS (Jia et al., 2022), a multi-lingual S2ST cor-
pus. The corpus is built on top of an ST corpus,
CoVoST 2 (Wang et al., 2020b), thus we also eval-
uate our UST performance on the ST corpus. We
demonstrate that our system can generalize well
across different languages by conducting experi-
ments on three different translation directions. De-
spite that our system learns with only unlabeled
data, the results are still promising. On CoVoST 2,
our system not only shows comparable results with
some supervised direct ST but also outperforms
them in some translation directions. For S2ST, our
system can generate natural and clean speech, with
less than 5.0 BLEU score degradation compared to
our supervised upper bound. To demonstrate that
our results might be as good as some supervised
S2ST models, the audio samples are also available
on the website!.

2 Related works

S2ST Typically, conventional S2ST systems are
composed of ASR, MT and TTS subsystems (Lavie
etal., 1997; Wahlster, 2000; Nakamura et al., 2006).
With research on direct ST (Bérard et al., 2016;
Weiss et al., 2017; Li et al., 2020), conducting 2-
cascade S2ST systems (ST—TTS) is also avail-
able and can alleviate the error propagation issue
between ASR and MT. Besides the cascade sys-
tems, recent research also focus on direct S2ST.
Jia et al. (2019) proposed Translatotron, the first
sequence-to-sequence S2ST model that can be di-
rectly trained end-to-end on multi-objectives; and
the follow-up work, Translatotron 2 (Jia et al.,
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2021), further bridged the performance gap be-
tween direct S2ST and ST—TTS cascade systems.

Apart from direct S2ST, some works intend to
learn S2ST models with discrete units or repre-
sentations instead of intermediate text representa-
tions, aiming to solve S2ST for unwritten or un-
transcribed languages. Tjandra et al. (2019); Zhang
et al. (2021) proposed to learn their S2ST models
through discrete tokens generated by vector quan-
tized variational autoencoder (VQ-VAE) related
techniques. Lee et al. (2021) proposed to utilize
discrete units from HuBERT (Hsu et al., 2021) and
showed comparable results with some text-based
methods, indicating their potential on S2ST be-
tween unwritten languages.

Among all the works regarding S2ST, none of
them is under unsupervised scenarios. Even for
unwritten S2ST, speech-to-speech data from the
source language to the target language is required.

UMT and UST Different from US2ST, UMT
has been studied for a long time, trying to solve
the translation problem with mono-lingual data
only. Starting from word-level translation, Cao
et al. (2016) learns bilingual word embeddings by
distribution matching; while (Zhang et al., 2017;
Conneau et al., 2017) focuses on learning the cross-
lingual mapping between the monolingual word
embeddings through adversarial training. These
methods can only perform word-by-word trans-
lation, which might lead to unnatural sentences.
Based on previous work on cross-lingual word em-
beddings, Artetxe et al. (2017); Lample et al. (2017)
further improve the performance of UMT by intro-
ducing the idea of back-translation (Sennrich et al.,
2015a) and denoising auto-encoder (DAE; Vin-
cent et al., 2008). Moreover, Lample et al. (2018)
demonstrated that UMT can be accomplished with
suitable initialization of the translation models, lan-
guage modeling and iterative back-translation.
Over the past few years, language model pre-
training has brought a significant impact on natural
language understanding (NLU) and cross-lingual
understanding (XLU). Lample and Conneau (2019)
proposed two methods to learn cross-lingual lan-
guage models (XLM), showing that cross-lingual
pre-training may also benefit UMT. Their results of
UMT outperformed previous SOTA and were even
comparable with some supervised models.
Compared with UMT, UST remains rarely stud-
ied. Chung et al. (2018) proposed a method based
on cross-modal alignments between spoken word
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and text word embeddings, performed word-level
UST. Furthermore, to improve the quality of trans-
lation, they integrated the method with a pre-
trained language model (LM) and DAE (Chung
et al., 2019b).

UASR and UTTS UASR takes audio features
or representations as input and generates phoneme
sequences without supervision. To tackle the chal-
lenging problem, Liu et al. (2018) first came out
with the idea of applying a Generative Adversarial
Network (GAN) (Goodfellow et al., 2020). How-
ever, phoneme-level boundaries are required to seg-
ment the audio and construct embedding sequences.
(Chen et al., 2019) breaks the limit by iteratively
refining the audio segments with Hidden Markov
Model (HMM) and GAN, achieving completely
UASR.

Recently, Baevski et al. (2021) proposed
wav2vec-U, building the GAN-based UASR frame-
work on top of the representation from wav2vec 2.0
(W2V2) (Baevski et al., 2020), a self-supervised
speech model. The results outperformed previ-
ous SOTA, and are even comparable with some
of the best-known supervised methods. More-
over, the original paper has shown that with the
cross-lingual pre-trained version of W2V2 (Con-
neau et al., 2020), UASR in other languages is
also available. The follow-up work, wav2vec-U
2.0 (Liu et al., 2022a), enabled the model to be
trained end-to-end with the simplified pipeline and
the improved training objective.

Inspired by the recent success of UASR, Ni et al.
(2022); Liu et al. (2022b) accomplished UTTS
by leveraging pseudo labels from wav2vec-U or
wav2vec-U 2.0. The results of their UTTS mod-
els achieve comparable performance against those
trained on the true labels.

3 Methods

Our cascade US2ST architecture is composed of
three components: UASR, UMT, and UTTS, as
indicated in Fig. 2. We trained each of the compo-
nent separately with fully unpaired data. During
inference, we concatenate all of them and form the
functionality of S2ST. In this section, We will go
through the details of each sub-module individually
from sections 3.1 to 3.3.

3.1 UASR

We conduct UASR subsystem following wav2vec-
U (Baevski et al., 2021), and our code is based
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Figure 2: The framework of our cascade US2ST.

on their implementation in fairseq’. Besides its
breakthrough performance on UASR in multiple
languages, the robustness and stabilities across dif-
ferent corpora have also been analyzed (Lin et al.,
2022).

Wav2vec 2.0 Wav2vec-U utilizes the inner-layer
representations from wav2vec 2.0 (W2V2). Re-
cent studies have shown that the layerwise repre-
sentations of the transformer model might be in-
formative (Pasad et al., 2021) and can be adopted
for different downstream tasks with promising re-
sults (Yang et al., 2021). In this work, following
wav2vec-U, we also leverage the intermediate rep-
resentations extracted from the transformer of the
pre-trained W2V2.

Audio preparation First, we detect the silence
segments in the raw audio by rVAD, which is an
unsupervised voice detection method (Tan et al.,
2020). We then remove all of the detected si-
lence segments, making the audio more compact.
Next, we feed the compact audio into the pre-
trained W2V2, and extract single-layer represen-
tations from it. After getting the W2V2 represen-
tations, we follow the dimension reduction proce-
dures proposed in wav2vec-U to get more compact
sequences for later training.

Text preparation We normalize our text data
by removing the punctuation marks and making
them lowercase. Then, we phonemicize each sen-
tence using an off-the-shelf Phonemizer® (Bernard
and Titeux, 2021), which supports the phonemi-
cization across multiple languages based on the
International Phonetic Alphabet (IPA). Since the
silence removal process adopted in audio prepara-

% https://github.com/facebookresearch/fairseq
3https://github.com/bootphon/phonemizer
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tion might be incomplete, wav2vec-U tackle such
a problem by introducing a silence token (<SIL>)
into the set of generator outputs. For better sim-
ulation of the generator output behavior, we in-
sert <SIL> at the beginning and at the end of each
phoneme sequence. Moreover, random <SIL> in-
sertion between word boundaries at a certain rate
is also adopted, suggested by wav2vec-U.

GAN-based training Generative adversarial nets
(GAN; Goodfellow et al., 2020) are composed of a
generator G and a discriminator D. The generator G
aims at producing samples that are undistinguished
by D; while the discriminator D learns to classify
if the samples come from training data or G. In
wav2vec-U, both G and D are simple convolutional
neural networks (CNN). The training objective of
wav2vec-U consists of the original GAN objective
with gradient penalty (Gulrajani et al., 2017), a seg-
ment smoothness penalty, and a phoneme diversity
penalty.

Decoding & self-training Once the UASR mod-
els were trained, we integrate the generator outputs
with some decoding strategies to get the final text
sequences. Besides traditional Viterbi decoding,
lexicon-based kenlm decoder* and the weighted
finite-state transducer (Mohri et al., 2002) are also
introduced as different decoding methods. To make
further improvements, we also apply self-training
on Hidden Markov Models (HMM; Rabiner and
Juang, 1986). The procedure of self-training is
described as follows: First, we use the decoded out-
puts from the generator as pseudo labels; next, we
train the HMM through these pseudo labels along
with the speech representations extracted from the
W2V2; finally, we obtain word-level or phoneme-
level sequences with WFST decoding. Note that
the representations come directly from pre-trained
W2V2 without modifications.

3.2 UMT

We implement the UMT by following XLLM (Lam-
ple and Conneau, 2019), which initializes a seq2seq
model by pre-trained XLLM, and train the model
with online back-translation.

XLM XLM is a cross-lingual transformer lan-
guage model, which pre-trains on sentences from
two or more languages. The shared Byte Pair En-
coding (BPE; Sennrich et al., 2015b) vocabularies

* We adopt the implementation in fairseq which has inte-
grated the functionalities from flashlight

and masked-based language model pre-training pro-
vide embeddings with multilingual alignment and
contextualized information (Lample et al., 2018;
Lample and Conneau, 2019).

Masked language modeling (MLM) The objec-
tive of XLM pre-training is masked language model
(MLM) loss. We sample some of the tokens from
a sentence randomly and substitute the sampled
token with (1) a special token [MASK] (2) random
tokens (3) left unchanged. The model aims to re-
cover the masked tokens from the noisy sentences.
Moreover, to prevent the model from predicting
common words, we calculate the frequencies of
the tokens in sentences, and the sample weight is
proportional to its inverted frequency. The Masked
language modeling captures the relation between
tokens, which learns contextualized understanding.

Back-translation Let u*(y) be the transcribed
sentence of y, which belongs to the source language
S; v*(z) be the transcribed sentence of x, which
belongs to the target language 7. The (u*(y),y)
and (v*(z), ) form the pseudo-parallel data, and
the objective for the translation model is to map
u*(y) and v*(x) back to y and x respectively, the
back-translation loss is as follows:

Loack =Erze7[—10g Pt (y|u™(y))] 0
HEes[ log Prss(zlo* (x))

In the first few steps, we add denoising auto-
encoder loss to help the training process, and the
weight of the denoising auto-encoder will decay as
the iteration increases.

3.3 UTTS

Some works intend to improve the performance
of TTS through unlabeled data. For instance,
pre-training the encoder/decoder (Chung et al.,
2019a); utilizing the dual nature of TTS and ASR
tasks (Ren et al., 2019); applying variational auto-
encoder to learn from speech disentanglement
(Lian et al., 2022).

In spite of the improvement they brought, these
methods still depend on certain levels of paired data.
Directly training a UTTS without any supervision
from paired data seems to be extremely hard. How-
ever, with recent success in UASR, UTTS might
be accomplished in another way—training on the
pseudo labels generated from UASR systems (Ni
et al., 2022; Liu et al., 2022b).
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Table 1: The training data for each part of the US2ST
system and the corresponding evaluation corpus. Wiki
stands for Wikipedia; CV4 is the abbreviation for Com-
mon Voice version 4. The * indicates mono-lingual
data.

Text Audio
UASR Wiki Cv4
UMT WMT’ 14 + Wiki -
UTTS LibriSpeech LM*®  LJspeech*

4 Experiments

4.1 Data

To demonstrate our US2ST systems across differ-
ent languages, we evaluate our results on CVSS (Jia
et al., 2022), which is a newly proposed multilin-
gual S2ST corpus based on CoVoST 2 (Wang et al.,
2020b) and Common Voice ver.4 (CV4; Ardila
et al., 2019). By the transcriptions files from CV4
and translation data from CoVoST 2, we are able
to evaluate each of our components individually.
However, we do not utilize any paired data from
the corpus during training stage; instead, we use au-
dio and text data from different corpora, construct-
ing a fully unpaired scenario for our US2ST. For au-
dio, we adopt Common Voice ver.4 for UASR and
LJspeech (Ito and Johnson, 2017) for UTTS with-
out using any transcriptions from them; and for text,
we extract sentences from Wikipedia®, WMT’ 14,
and LibriSpeech LM data® (Panayotov et al., 2015).

4.2 System setups

To evaluate the generalization abilities of our meth-
ods across different languages, we conducted ex-
periments on three S2ST directions, which are
German— English (De-En), French— English (Fr—
En), and Spanish— English (Es—En).

4.2.1 UASR

As indicated in Table 1, we used audio from CV4
and text data from Wikipedia to train our UASR
models. More precisely, we use 100 hours of audio
and about 1-3M sentences for each language. After
training, we evaluate the results with the transcrip-
tions from CV4. For the pre-trained W2V2 model,
we directly use the cross-lingual version (XLSR;
Conneau et al., 2020) without finetuning. XLSR

5 Extract the data using WikiExtractor (Attardi, 2015)
®Following Liu et al. (2022b), we exclude the transcrip-
tions of LJspeech to form fully unpaired scenario

had pre-trained in many different languages thus
suiting our needs for training UASR in languages
other than English.

During audio preprocessing, we apply 512 PCA
dimension reduction, followed by mean-pooling
based on k-means clustering (KX = 128) and ad-
jacent mean-pooling. For text preparation, we in-
sert the <SIL> tokens at the rate of 0.25, except
for French. We found that our French model con-
verged better when <SIL> token insertion rate is
0.5 instead.

As for GAN training configuration, we chose
the coefficients of the loss function according to
the original paper as follows: the gradient penalty
weight A = 1.5 or 2.0, the smoothness penalty
weight v = 0.5, and the phoneme diversity loss
weight n = 4. We trained 3 seeds for each con-
figuration, conducting 6 models totally for each
language.

For decoding, we apply all three strategies de-
scribed in Section 3.1 for generating phoneme-level
outputs. After that, we adopted self-training (ST)
on HMM to further improve the performance and
obtain word-level outputs.

4.22 UMT

For subword-level translation, we used the pre-
trained English—-German and English—French XLM
released by Meta’, and we collected 50M of mono-
lingual Spanish, English texts from WMT’ 14 to
train an English-Spanish XLLM. We set all model
to the same size (L = 6, H = 1024, A = 8, model
size is about 798M)®.

The pre-training process follows (Devlin et al.,
2018) roughly, 15% of tokens are sampled from
a sentence randomly, and 80% of the sampled to-
kens are replaced by [MASK], 10% are replaced
by random tokens, and the remaining 10% are left
unchanged.

For the back-translation, we extracted 1M to 3M
sentences from Wikipedia® for each language, re-
moved all punctuation marks, and normalized all
characters to lowercase. The model is a seq2seq
model, and both the encoder and decoder are ini-
tialized by the pre-trained XLLM, the weight of auto-
encoder loss linearly decreased from 1 to 0.1 in the
first 10k steps, and linearly decreased from 0.1 to
0 in the following 20k steps.

7 https://github.com/facebookresearch/XLM
8L: numbers of transformer blocks. H: hidden size. A:
numbers of attention heads.
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Table 2: The results of our US2ST system on CVSS. Following Jia et al. (2022), the ST results are evaluated on
CoVoST 2. C-ST stands for cascade ST; D-SS for direct S2ST.

ASR | ST (X—En) 1 S2ST (X—En) 1
Method Type Fr De Es Fr De Es Fr De Es
SUPERVISED LEARNING
(a) Wang et al. (2020b) C-ST | 183 214 160 276 21.0 274 - - -
(b) fairseq S2T (T-Sm) (Wang et al., 2020a) D-ST | - - - 263 17.1  23.0 - - -
(c) fairseq S2T (Multi. T-Md) D-ST | - - - 265 175 270 - - -
(d) Translatotron (Jia et al., 2019) D-SS - - - - - - 15.5 6.9 14.1
(e) Translatotron 2 (Jia et al., 2021) D-SS - - - - - - 283 19.7 235
(f) CVSS-C (ST—TTS) (Jia et al., 2022) C-SS | - - - 319 239 339 312 239 333
(g) Our upper bound CSS |162 141 11.0 233 21.7 272 139 139 172
UNSUPERVISED LEARNING
(h) Our cascade US2ST C-SS (332 238 174 180 182 234 94 9.6 12.2
4.2.3 UTTS MT loss, without adding the auto-encoder loss and

To achieve UTTS, Ni et al. 2022 used Tactron2
for the acoustic modeling, while Liu et al. 2022b
applied Transformer TTS for the acoustic modeling.
And they both select HiFi-GAN as the vocoder.
However, according to recent advances in TTS,
Variational Inference with adversarial learning for
end-to-end Text-to-Speech (VITS) has shown a
significant performance gain over Tacotron2 and
Transformer TTS in both subjective and objective
evaluation(Kim et al., 2021; Hayashi et al., 2021).
Therefore, in this paper, we employ VITS as our
backbone TTS model.

For implementation, we utilize ESPnet-TTS to
train the phonemicized text from UMT (Hayashi
et al., 2020, 2021). The detailed configuration fol-
low the LISpeech recipe.’

4.3 Supervised cascade S2ST

We constructed our upper bound model by train-
ing a supervised cascade S2ST (ASR—-MT—TTS)
which shares similar model architecture with our
US2ST.

For ASR, we finetune the whole XLSR instead
of treating it as a feature extractor. We adopt letter-
based training followed the whole configuration
from fairseq® (Ott et al., 2019). The amount of
audio data is exactly the same as those in UASR.
Furthermore, we finetune the XLSR models indi-
vidually for each language. MT is achieved by
training the same seq2seq model with UMT, but
the training data are the transcriptions of CVSS,
and we randomly initialize the model, instead of
using pre-trained XLM. The loss is the supervised

*https://github.com/espnet/espnet/blob/master/egs2/ljspeech/

tts1/conf/tuning/train_vits.yaml

back-translation loss. Finally, instead of training
on pseudo labels from UASR, the supervised TTS
model directly use the reference phonemes and
their corresponding utterance as paired data.

By constructing cascade supervised S2ST, we
can discuss the performance individually for each
component.

4.4 Evaluation

The evaluation metric of ASR is word error rate
(WER). We use the multi-bleu.perl script from
Moses toolkit!? to calculate the BLEU score of
ST. For the final S2ST results, we use Whisper!!
(Radford et al., 2022), a supervised ASR model
released by OpenAl, to transcribe the hypothesized
audio, and calculate BLEU score.

4.5 Results

We show our overall results in Table 2, including
the results of ASR, ST, and the final S2ST, indicat-
ing the performance in each stage of our cascade
system. To compare our US2ST system with other
supervised methods, we collect some of the results
from the previous works on CoVoST 2 ((a)—(c))
and CVSS ((d)—(f)). Furthermore, to get a more
complete comparison, both cascade and direct sys-
tems are included.

Next, we discuss the details of the methods in
the table. In (a), the results come from Wang et al.
(2020b). Among all the experiments in their pa-
per, we only report the results from the cascade
ST constructed by mono-lingual ASR and bilin-
gual MT. We consider the setup is the most suit-

Ohttp://www2.statmt.org/moses/

""we use the English base model
https://github.com/openai/whisper

released by
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able one against ours. According to the table, our
US2ST performances in De-En and Es—En are just
having small degradation from theirs ((2) vs (a)).

From (b) to (c), we report the results of the di-
rect ST systems from Wang et al. (2020a). They
have developed a tool kit for ST and demonstrated
it on CoVoST 2 with different model backbones.
We compare our UST results (row (%)) with their
Transformer-based models. Our results have not
only outperformed their small model ((b)) in two
translation directions but also shown comparable
results with their larger multi-lingual model (row
(c)).

From (d) to (f), we present the S2ST results from
the original paper of CVSS (Jia et al., 2022). As
indicated in Table 2, our US2ST results might be
comparable with the direct S2ST model, Transla-
totron (row (f); Jia et al., 2019). However, their
results came from literature, which might not be
directly comparable due to using different ASR
models for the S2ST evaluation. Finally, in row
(g), we show the results of our upper bound model,
which is a supervised cascade S2ST system. Com-
paring with our upper bound method, our US2ST
(row (h)) is just having a reasonable performance
degradation across all the translation directions.
In UST the results of US2ST are only about 4.2
BLEU score behind the upper bound in average.
As for the US2ST, despite using the UTTS for sys-
thesis, the performance gap just became slightly
larger. In the three translation directions that we
have implemented, all of them are having less than
5.0 BLEU score degradation against the supervised
upper bound.

4.6 Analysis

In this section, we discuss and analyze more as-
pects and details of our cascade US2ST, showing
how we choose between different sub-models and
strategies.

Table 3: Stabilities of UASR across different languages.

L <SIL>  Best PER  %-converged

AN | ins.rate  (Viterbi)  (PER < 50%)
De | 025 25.3% 66%
Es | 025 27.0% 50%
Fr 0.25 49.2% <10%
0.50 35.2% 17%

Table 4: Comparison of different decoding strategies
and the improvement brought by HMM self-training.
We use the same 4-gram LM (phoneme-level or word-
level) across different methods.

Method LM PER(%) WER(%)
(I) Without self-training

Viterbi X 25.2 -
Kenlm v 29.5 39.5
WEST v 21.3 344
(I1) With self-training

Viterbi—- HMM v/ 15.2 25.3
WEFST— HMM v/ 14.4 23.8

Stabilities of UASR cross different languages
First of all, we found that the stabilities of our
UASR models vary between languages. The mea-
surement of the stability is by calculating the per-
centage of the converged rate among the models
under the same setting. We consider a UASR model
is converged if its PER < 50%. We summarize
the discoveries in Table 3. According to our experi-
ments, German and Spanish are easier to converge;
while French usually can not converge well. How-
ever, we found that it might be better for French
UASR models to converge if we change the <SIL>
token insertion rate from 0.25 to 0.5.

Decoding and self-training in UASR  The orig-
inal outputs of wav2vec-U are in phoneme-level,
which are incompatible with the UMT. However,
with the integration with LM, we are available to
obtain word-level output sequences. As shown in
the part (I) of Table 4, we demonstrate that the
two decoding methods, Kenlm and WFST can both
generate word sequences by incorporating with
phoneme-level or word-level LM. The second part
(II) in the table illustrates the effectiveness of self-
training on HMM. Among all the methods, we
considered that the best strategy we found was by
conducting self-training on HMM with the pseudo
labels from WFST decoding. More surprisingly,
even if the pseudo labels come from Viterbi decod-
ing, using these labels on HMM can make huge
improvements. After self-training, the performance
gap between Viterbi and WFST decoding became
relatively small. Note that for simplicity, we only
show the results on the testing set of CV4-German;
while the results on other languages also share sim-
ilar trends.



Table 5: The UST and US2ST performance of using
phoneme-level UMT.

Lang. | ref. PPL  UST PPL US2ST BLEU
Fr 14.5 545.4 0.03
De 13.8 104.9 0.08
Es 13.4 14.7 0.10

Phoneme-level UMT Since the PER from UASR
is lower than WER, besides the original setting,
we also tried to perform our US2ST at phoneme
level. In this setup, We followed the same training
criterion of the subword-level UMT, but trained on
a phonemicized sequence.

Direct calculating BLEU score on the phoneme
sequence generated by UST is unmeaningful. The
number of phonemes is greatly less than that of
words, so randomly generating some phoneme se-
quences can still get a reasonable score. As a re-
sult, we turn to test the naturalness of generated
phonemes, we trained a phoneme-level 4-gram lan-
guage model, and calculate the perplexity of UST
results.

The results are shown in Table 5. The models of
French and German are unable to generate a natural
English phoneme sequence; thus the US2ST also
failed. Although the Spanish model can generate
natural English phoneme sequences, the perfor-
mance of US2ST is still terrible, which implies the
model did not retain the original meaning of the
input.

The phoneme-level UMT might be too hard:
word boundary information is missing in the
phoneme sequence, so the model should find the
word boundary between phonemes, and tries to

Table 6: Analysis of our UTTS models. We use WER
as the evaluation metric.

TTS
sup. | per = 22%

UTTS train on diff. PER

Input phn.
putp per = 14%

(I) Using phonemicized or UASR-generated phn.

Phonemicized 23.5% 37.7% 31.5%
UASR-generated - 40.4% 28.9%
(1I) Using phonemicized UST results

Fr—En 46.5% 61.9% 54.2%
De—En 38.6% 56.0% 47.0%
Es—En 43.3% 59.2% 50.2%

translate the words to English. Such difficulty
might prevent the phoneme-level UMT from work-
ing well.

Analysis on UTTS First of all, to get more in-
sights about the impact of using different level of
PER for training UTTS, we train two UTTS models
with different PER; furthermore, a supervised TTS
are trained to form the upper bound, as shown in Ta-
ble 6. Initially, to validate our TTS models, we just
feed the phonemicized sequences from reference
sentences into the models and calculate WER af-
ter transcribing the generated waveform. However,
since all of the UTTS models have never seen the
real, or the phonemicized sequences before, we are
wondering if the UTTS models can perform better
when taking sequences from their corresponding
UASR as input. Thus, in the section (/) in Table 6,
we aim to analyze the issue by taking either phone-
micized or generated sequences as the inputs for
UTTS. Interestingly, we found that in some cases
the UTTS models actually performed better with
their corresponding UASR-generated sequences.

Secondly, in section (II) of the table, we mea-
sure the performance degradation by showing the
detailed WER of our UTTS models taking as input
from UST. Although the WER of UTTS models are
higher than the supervised upper bound, the per-
formance degradation on supervised TTS is also
severe, indicating the impact of mismatch between
the input data for the TTS models.

5 Conclusions

In this paper, we proposed a cascade US2ST (unsu-
pervised speech-to-speech translation) system, the
training process does not rely on any labeled data,
and the performance can be comparable with or
even outperform supervised works in some cases.
In addition, we analyzed how languages and decod-
ing strategies influence the performance of UASR
and UTTS.

While there is still a big gap between our work
and the SOTA supervised S2ST system. Inspired
by recent success in the self-supervised speech pre-
trained model, our future work includes translat-
ing between discrete tokens generated by the self-
supervised pre-trained model in an unsupervised
scenario (Tjandra et al., 2019), and we expect that
leveraging representations from self-supervised
model to build US2ST system can mitigate the

gap.
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