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Abstract

Efficient exploration in sparse-reward tasks is one of the biggest challenges in
deep reinforcement learning. Common approaches introduce intrinsic rewards to
motivate exploration. For example, visitation count and prediction-based curiosity
utilize some measures of novelty to drive the agent to visit novel states in the envi-
ronment. However, in partially-observable environments, these methods can easily
be misled by relatively “novel” or noisy observations and get stuck around them.
Motivated by humans’ exploration behavior of seeing around the environment to
get information and avoid unnecessary actions, we consider enlarging the agent’s
view area for efficient knowledge acquisition of the environment. In this work, we
propose a novel intrinsic reward combining two components: the view-based bonus
for ample view coverage and the classical count-based bonus for novel observation
discovery. The resulting method, ViewX, achieves state-of-the-art performance on
the 12 most challenging procedurally-generated tasks on MiniGrid. Additionally,
ViewX efficiently learns an exploration policy in the task-agnostic setting, which
generalizes well to unseen environments. When exploring new environments on
MiniGrid and Habitat, our learned policy significantly outperforms the baselines in
terms of scene coverage and extrinsic reward.

1 Introduction

Efficient exploration is an important long-standing problem in reinforcement learning (RL). In real-
world problems with unknown, vague, or multiple conflicting objectives, defining a proper reward
function can be highly non-trivial. In challenging scenarios without manually-designed dense rewards,
model-free RL algorithms often require numerous samples to learn a reasonable policy from the
sparse environment rewards [Mnih et al., 2013, 2016, Schulman et al., 2015, 2017].

A common traditional way of solving hard-exploration tasks is to introduce intrinsic rewards that
motivate the agents to explore [Schmidhuber, 1991, 2010, Oudeyer and Kaplan, 2009]. For example,
count-based approaches [Strehl and Littman, 2008, Kolter and Ng, 2009, Tang et al., 2017] record
all the states that the agent has visited and give high intrinsic rewards for the novel or rarely-visited
states, encouraging the agent to find new states in the environment. Curiosity-driven methods [Stadie
et al., 2015, Pathak et al., 2017, Burda et al., 2018b] learn dynamics models and use prediction errors
in dynamics to measure the novelty of states.

While the approaches in these works encourage exploration with bonuses for novel states, they may
easily fall short in many scenarios. For instance, the randomly-generated noisy observations in
noisy-TV problem [Burda et al., 2018a] may trap these agents seeking novel observations. The issue
may be worse in procedurally-generated environments [Cobbe et al., 2019, Chevalier-Boisvert et al.,
2018], where novel states are always generated in each new episode.

Our work is in part inspired by the research about humans’ visual space perception for knowledge
acquisition and action guidance [Rieser et al., 1990, Loomis et al., 1992]. Unlike prior exploration
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(a) Step 0 (b) Step 1 (c) Step 2

Figure 1: In MiniGrid, top-down view observations ot (left) and our constructed maps mt (right) in
consecutive steps t = 0, 1, 2. As is highlighted in ot, the agent has a partially-observable view of 7x7
units but cannot see through walls or closed doors. Other grid cells are invisible to the agent.

methods, we are motivated to maximize the agent’s knowledge coverage via visual perception, instead
of the agent’s visitation coverage of the environment. We focus more on where the agents “see” rather
than where the agents “go” in the environment, which is more natural based on humans’ exploration
behavior. When humans explore unknown environments, they tend to broaden their knowledge of
the region, i.e. “see” the most of the area. Only with the most information could people avoid
unnecessary actions. Imagine that a goal object is randomly placed in one of several empty rooms,
the most efficient way to find the goal is to glance around all rooms but not go into any of them until
spotting the goal in one room. In order to maximize view coverage during exploration, some object
interactions can be impactful because they instantly or later on help the agent reach new regions,
such as opening doors and picking up keys. We hope to intrinsically motivate the agent to prioritize
such object interactions and maximize its accumulated view of the space without wasting time with
unimportant objects. Therefore, we propose View-based eXploration - ViewX, which assigns a higher
intrinsic reward to newly discovered space than known space in the environment.

Our main contributions are summarized as follows: (1) We introduce a novel intrinsic reward
for sparse-reward exploration tasks. In procedurally-generated Gym Minigrid environments, it
dramatically improves the training sample efficiency in comparison with prior exploration methods.
(2) We investigate our intrinsic reward in the task-agnostic exploration setting and demonstrate
its exploration generalization performance. Our approach shows significant improvement over the
baselines on both 2D MiniGrid and realistic 3D simulated Habitat environments. (3) We analyze the
design of our intrinsic reward and compare it against several variations to verify its efficiency.

2 View-based Exploration

We consider reinforcement learning problems with partially observable Markov Decision Process
(POMDP) M = (S,A,Ω, T,O,R), where S, A, Ω denotes the state space, action space and
observation space. T : S ×A× S → [0, 1] is the state transition function. O : S ×A× Ω → [0, 1]
is the observation function. R : S ×A× S → R is the reward function. At each step t in an episode,
the agent observes ot ∈ Ω in underlying state st ∈ S, takes action at ∈ A, and transits to the next
underlying state st+1 ∈ S. It receives a new observation ot+1 ∈ Ω and an extrinsic reward rextt .

2.1 View-based Intrinsic Reward

We assume a top-down view observation o′t of the environment is included or can be learned/derived
from the observation ot. For example, in MiniGrid environments, the observation ot is exactly o′t,
a part of the ground-truth top-down view map of the environment visible in the agent’s front view.
In 3D environments, the top-down view observation o′t can be learned from the first-person view
observation ot [Gupta et al., 2017, Narasimhan et al., 2020, cha].

As is visualized in Figure 1, we gradually accumulate the top-down view observations o′t in the
past steps to construct a bird’s view map mt of the environment. The agent’s relative position and
orientation in any two consecutive steps are supposed to be available. Then we can append the
transformation of o′t to mt−1 based on the agent’s relative position and orientation to construct the
map mt. The map mt is reset as empty at the beginning of each episode, so mt only covers regions
seen by the agent in the current episode. xt denotes the area of map mt, which indicates how much
space the agent has seen up to the episode step t. Because the map mt is accumulated step by step,
we have xt ≥ xt−1,∀t = 1, 2, . . . ., T .
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We aim to encourage the agent to expand the frontier of its view and discover novel states for
exploration. Thus, we propose a novel intrinsic reward, combining the view-based bonus and the
count-based reward. Formally, we define the intrinsic reward as:

rintt =
xt+1 − xt + λ√

N(ot+1)
(1)

where N denotes the (pseudo)count of ot+1 throughout the training. The view-based bonus
(xt+1 − xt)/

√
N(ot+1) encourages the agent to find unexplored regions. The count-based reward

1/
√
N(ot+1) drives the agent to visit globally less frequently visited states. The hyper-parameter

λ > 0 controls the relative importance of count-based bonus given the view-based bonus.

2.2 Conceptual Advantages of ViewX
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Figure 2: An illustrative example
of procedurally-generated environment.
The agent starts in the middle of a 1D en-
vironment and can either go left or right.
The goal is hidden behind a closed door.
The “novel” state emits different obser-
vations in each episode. An agent trained
with COUNT prioritizes going right and
gets stuck at the “novel” cell for some
steps because observations there yield
high COUNT rewards.

COUNT An illustrative example is shown in Figure 2.
We have an environment with the same structure for every
episode except for a different novel state at the 6th position.
The agent is placed in the middle of the environment and
can see up to 3 grids ahead of it. Its task is to reach the
goal hidden behind a closed door, while the closed door
locks its visibility. It can choose to stay, go left, or go right.
In episode n, COUNT assigns a high intrinsic reward for
the novel state, making the agent go to the novel state
and stay there for several steps until the COUNT reward
goes down. However, an agent trained with ViewX may
turn right but not go forward to the novel state because it
already knows the three units in the right end. Instead, the
ViewX agent prefers turning back to the door to discover
more space.

Coverage Maximization Some recent works [Chaplot
et al., 2020a, Chen et al., 2019] directly use coverage in-
crease xt+1 − xt as an intrinsic reward for policy learning
or as a measurement of performance, where xt is the ab-
solute or relative area in the space known to be traversable
or non-traversable for the agent. This view coverage maximization method seeks information gain
for exploration in spatial environments [Mirchev et al., 2018, Charrow et al., 2015] (In Appendix
E, we derive the relation in detail.) With such an intrinsic reward function, the agent aims to see
the most of the environment. However, using this reward alone has some potential disadvantages.
First, the view coverage maximization reward is sparse because it is non-zero only when the agent
discovers some new space for the first time[Ramakrishnan et al., 2020]. Imagine a large room without
any obstacles. An agent with a large field of view can simply rotate around to see the whole space
and get high intrinsic rewards. However, it gets no more reward for any actions in the room after
the rotation. This will lead to random exploration in this large room, which is inefficient for the
agent to discover the door and see more space. Second, unlike the COUNT reward, view coverage
maximization reward does not asymptotically approach 0 during training, because the map mt is reset
as empty in each episode to deal with the procedurally-generated environments. Therefore, it is more
likely to introduce bias to the original RL objective. We experimentally show this in Section 4.4.

ViewX ViewX is designed to take advantage of both COUNT and view coverage maximization and
mitigate their issues. We use view coverage change as a weight for COUNT. Therefore the agent
is intrinsically rewarded the most when it finds some new regions for the first time. Besides, the
intrinsic reward theoretically diminishes at the later stage of the training to trace back to the original
objective of maximizing extrinsic rewards. Similar to the global score in RAPID[Zha et al., 2021],
we also add a small constant λ > 0 to stimulate the visitation of globally novel states and prevent the
intrinsic reward from being too sparse.

2.3 Exploration with Intrinsic Rewards

Many exploration methods in RL focus on the task-driven exploration setting, where an extrinsic
reward function is well-defined and the agent’s goal is to maximize accumulated extrinsic rewards.
Intrinsic reward works as an bonus to facilitate reaching states with high extrinsic rewards. In this

3



setup, the total reward received by the agent at step t is rt = rextt + αrintt . In Section 4.2, we study
the effectiveness of ViewX as an intrinsic bonus on sparse-reward tasks in procedurally-generated
environments, where the agent only gets extrinsic rewards when it successfully reaches the goal.

On the other hand, task-agnostic exploration considers policy learning without any external rewards.
The goal is to learn an exploration policy useful for downstream tasks. A good exploration policy may
be able to collect diverse and informative transition data for multiple downstream tasks [Zhang et al.,
2020b], or be able to explore new environments efficiently and achieve high space coverage [Parisi
et al., 2021, Chen et al., 2019]. In Section 4.3, we learn the exploration policy with only intrinsic
reward rintt in a task-agnostic manner and further test the learned policy in unseen environments.

3 Related Work

Intrinsic Motivation Intrinsic motivation with bonus rewards is a natural way to encourage
exploration. Prior works [Tang et al., 2017, Bellemare et al., 2016, Ostrovski et al., 2017, Burda
et al., 2018b, Pathak et al., 2017, Burda et al., 2018a] use pseudo count or prediction error as intrinsic
reward signals to incentivize visiting novel states. While these prior methods encourage the agent
to observes novel observations, ours additionally drives the agent to seek larger view coverage of
the environment for efficient exploration. On the other hand, some prior works aim to maximize
information gain for exploration [Storck et al., 1995, Little and Sommer, 2013, Mobin et al., 2014,
Shyam et al., 2019]. Information gain corresponds to knowledge increase acquired upon each step
to update the agent’s internal environment model. The view coverage maximization method in
navigation tasks [Chen et al., 2019, cha, Chaplot et al., 2020b] fall into this category (See Appendix E
for more explanation). Apart from calculating coverage, these works use accurate top-down view
maps as inputs of the policy or planner. However, ViewX only needs the area of view coverage rather
than the accurate map inference to guide exploration. Furthermore, coverage maximization reward
does not asymptotically vanish to 0 in procedurally-generated environments. So the final policy does
not necessarily maximize the environment reward. ViewX combines the advantages of count-based
bonus and view coverage maximization bonus and alleviates the issues of both components.

Exploration in Procedurally-generated Environments Many existing methods in RL study the
exploration in “singleton” environments [Ecoffet et al., 2019, Burda et al., 2018a, Choi et al., 2018,
Guo et al., 2020, Badia et al., 2020], where the environment and tasks keep the same in every
episode. Procedurally-generated environments [Cobbe et al., 2019, 2020, Justesen et al., 2018,
Chevalier-Boisvert et al., 2018, Küttler et al., 2020] pose a new challenge for exploration. The
environment structure changes in every episode and the agent is unlikely to ever visit the same
state twice. Therefore, it requires an exploration policy generalizing well across a very large state
space. In order to solve these exploration challenges, RIDE [Raileanu and Rocktäschel, 2020]
proposes to reward the agent’s actions that have an impact on the environment state representation;
RAPID[Zha et al., 2021] employs imitation learning to encourage episode-level good exploration
behavior with high visitation coverage; NovelD [Zhang et al., 2021b] applies regulated difference
of novelty measurement using random network distillation. MADE [Zhang et al., 2021a] aims to
maximize the deviation of the occupancy of the next policy from the explored region. ViewX shares
the intuition of encouraging exploration in episode-level and push the exploration frontier in the
environment. However, we emphasize that the exploration frontier for ViewX is where the agent sees
or knows about the environment, rather than where the agent actually visits.

Task-agnostic Exploration Task-agnostic exploration (or pure exploration) probes the problem of
learning exploration policies in the absence of any external rewards. The objective is to effectively
accumulate information about the environment for data collection [Zhang et al., 2020b], state repre-
sentation learning [Yarats et al., 2021], model learning [Shyam et al., 2019], or policy learning [Chen
et al., 2019, Parisi et al., 2021]. The collected trajectories, learned representation, model or policy
can be exploited to assist solving diverse downstream tasks. C-BET [Parisi et al., 2021] proposes to
first learn exploration without any extrinsic reward and then transfer the learned exploration policy
to different environments that share some structure similarities. In this work, we follow C-BET
to evaluate the learned exploration policy via offline transfer/generalization to new environments.
While C-BET tends to more actively interact with objects, ViewX is better at exploration in larger
environments with more complicated layouts.
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(a) MultiRoom-N12-S10 (b) KeyCorridorS6R3 (c) ObstructedMaze-Full (d) Apartment 0 in Replica

Figure 3: Example of the environments Minigrid and Habitat.

4 Experiments

In this section, we aim to answer the following research questions: (1) can ViewX outperform
previous state-of-the-art exploration methods in terms of training-time sample efficiency? (2) can
ViewX efficiently learn an exploration policy in the task-agnostic setting and generalize well to unseen
test environments? (3) how does each component of our intrinsic reward (Equation 1) contribute to
the performance? To answer these questions, we investigate our method on two benchmarks: 2D
Minigrid environments[Chevalier-Boisvert et al., 2018] with procedurally-generated hard-exploration
tasks and simulated 3D Habitat environments[Szot et al., 2021].

4.1 Minigrid Environments and Baselines

Figure 3 shows the rendering of a few example environments we use in the experiments. MiniGrid
[Chevalier-Boisvert et al., 2018] is a set of procedurally-generated environments. In this work, we
test our intrinsic reward design on MultiRooms (MR), KeyCorrdor (KC), Obstructed Maze (OM),
and BlockedUnlockPickup (BUP) tasks. In each task, the agent is randomly placed in a 2D grid
board and is expected to achieve a goal by exploring the environment and interacting with objects. At
each step, the agent has a field of vision of 7x7 cells in the partially-observable environment and can
conduct one of the seven actions: turn left, turn right, move forward, pick up, drop, toggle, and done.

Specifically, in Multiroom-Ny-Sz environments (see Figure 3a as an example), y represents the
number of rooms and z represents the maximum size of each room. The agent needs to navigate
rooms through the closed doors to find the goal in the last room. In KeyCorridor-SyRz environments
(Figure 3b), y represents the room size and z represents the number of rows. The agent has to
pick up an object goal which is placed behind a locked door. ObstructedMaze (Figure 3c) and
BlockedUnlockPickup are similar to KeyCorridor but with more constraints. The agent has to reach
a goal behind a door, but the doors are locked, keys are hidden in some boxes, and doors may be
obstructed by balls.

For the task-driven exploration, we compare with previous state-of-the-art algorithms including
MADE[Zhang et al., 2020b], NovelD[Zhang et al., 2021b], RIDE[Raileanu and Rocktäschel, 2020],
and RND[Burda et al., 2018b]. In all experiments, we follow the same basic RL algorithm and
network architecture as in RIDE and only change the intrinsic rewards. For task-agnostic setting, we
compare against C-BET[Parisi et al., 2021], COUNT, RIDE[Raileanu and Rocktäschel, 2020], and
RND[Burda et al., 2018b] which are the strongest methods for exploration generalization as reported
in [Parisi et al., 2021]. We employ the same codebase as C-BET for a fair comparison of different
designs of intrinsic rewards. Implementation details of our method and baselines are in Appendix A.

4.2 Task-driven Exploration

Figure 4 shows the learning curves of ViewX and state-of-the-art exploration baselines MADE,
NovelD, RIDE, and RND in 12 challenging Minigrid environments, including MultiRooms (MR),
KeyCorridor (KC), and ObstructedMaze (OM). In all of the environments, ViewX significantly
outperforms previous methods in terms of sample efficiency. For instance, on MR-N12-S10, ViewX
is about two times more sample efficient than MADE and NovelD. On the hardest environment
OM-Full, our method learns to solve the task within 45M timesteps, which greatly improves the
previous state-of-the-arts. We remark that a single λ = 0.01 works well across all the tasks.
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Figure 4: Task-driven training performance of ViewX and the baselines on 12 MiniGrid environments.
The x-axis shows the number of training timesteps. The curves are averaged across 7 seeds.

4.3 Task-agnostic Exploration

We further investigate our proposed intrinsic reward in the task-agnostic setting. To prevent the
ViewX intrinsic reward from vanishing to 0, we randomly reset the observation count N(ot) with a
probability 0.001 at any time step during the training (similarly to C-BET [Parisi et al., 2021]). We
set λ = 1 without any hyper-parameter tuning for ViewX in the following experiments.

4.3.1 Minigrid Environments

The exploration policy is trained on one environment for 10M timesteps with only intrinsic rewards.
Then we evaluate the learned exploration policies on the test environments that share some similarities
with the training environment. We measure the quality of the exploration policy with two criteria:
number of visited cells in the grid and episode return. We expect that good exploration policies can
bring the agent to the goal more often by visiting more cells in the grid faster. Within the limit of
training steps (10M), compared with other methods, ViewX learns a better exploration policy during
training with higher sample efficiency and the learned policy better explores new environments.

MultiRoom On Multiroom-Ny-Sz environments, increasing room number y and room size z
makes the exploration more challenging. We examine the exploration policy on test environments
(e.g. MR-N12-S10, MR-N6-S12, etc.) with higher difficulty levels than the training environment
MR-N6-S8. In Figure 5a, ViewX visits more states and obtains higher episode return than baselines.
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Figure 5: Exploration performance on MR. In (b)(c), small red triangles annotate the agent’s positions
and orientations and the darker red color means more visitations. White regions are seen by the agent.

6



Figure 5b, 5c visualize the agent’s exploration behavior on test environment MR-N12-S10. While
ViewX agent successfully opens all the doors along the path to the goal (green square), C-BET fails
to get to the last three rooms within the limited time steps. C-BET agent learns to move around doors
for many times because opening a door leads to environment panorama change. With the intrinsic
reward 1/(N(change) +N(o)), C-BET agent receives a high intrinsic reward when interacting with
doors. The reward is still attractive (though gradually decreasing) when it interacts with the door for
more times. On the contrary, ViewX agent opens each door just once, because only opening a door
for the first time increases its view area. More interactions with an opened door means no view-based
reward. Therefore, ViewX agent is more efficient navigating more rooms within limited time steps.

ObstructedMaze We train exploration policies in the obstructed maze with only two rooms and
test their generalization ability on obstructed mazes with more rooms. Figure 6a shows that ViewX
learns a reasonable policy on the training environment OM-1Dlhb with satisfactory episode return. In
contrast, other methods fail to explore the training environment widely enough to receive any reward
of discovering the goal. Note that here episode return only works as an evaluation metric, and the
agent does not receive any extrinsic reward during training.
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Figure 6: Performance of the exploration policies on training and test ObstructedMaze environments.

On the test environments with larger and more complicated maps, ViewX exploration policy demon-
strates better generalization performance (Figure 6a). ViewX agent focuses on view coverage and
is highly rewarded when it first opens a door to see a new space. C-BET agent is interested in the
interactions with objects but fails to quickly complete the complicated process of getting hidden
keys and removing obstacles to open a door. As illustrated in Figure 6b, 6c, ViewX agent visits
more locations than C-BET in the test environment OM-Full. This better state coverage increases its
possibility of finding the goal state.

BlockedUnlockPickup The training environment BlockedUnlockPickup (BUP) requires the agent
to pick up a box which is placed in another room. We evaluate the generalization performance on
other environments with larger room size and room number. In Figure 7a, ViewX outperforms the
baselines in terms of state visitation and goal discovery.
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Figure 7: Performance of the exploration policies on training and test environments.

To be concrete, the ViewX agent picks up the key, moves the obstacle ball and opens the door in BUP
successfully, as shown by the agent’s path in Figure 7b (top). Figure 7b (bottom) demonstrates that
the ViewX agent never unnecessarily drops the key in the left room. However, C-BET agent pays

7



apart
ment_0

apart
ment_1

apart
ment_2

frl_
apart

ment_0

frl_
apart

ment_1

frl_
apart

ment_2

frl_
apart

ment_3

frl_
apart

ment_4

frl_
apart

ment_5
roo

m_0
roo

m_1
roo

m_2
hote

l_0
offi

ce_
0

offi
ce_

1
offi

ce_
2

offi
ce_

3
offi

ce_
4

0

2000

4000

6000

8000

10000

Ep
iso

de
 S

ta
te

s

From Habitat Apartment-0
       Algorithms          Avg. States 

ViewX (ours)
C-BET
COUNT
RIDE
RND

5218.466667  
4241.122222  
2409.611111  
1861.800000  
702.355556  

Figure 8: Exploration performance on scenes in Replica datasets.

Figure 9: State visitation during
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attention to interactions with objects, such as dropping and picking up the key in different locations
of the environment. Figure 7c (bottom) shows where C-BET agent drops the key. These interactions
cause novel panorama change to delight the agent with C-BET intrinsic reward, but actually distract
the agent in the goal-reaching task.

4.3.2 Habitat Environments

Habitat simulator [Szot et al., 2021] provides a platform to run embodied AI tasks. Following the
prior work [Parisi et al., 2021], we set up experiments with the Replica dataset [Straub et al., 2019], a
set of indoor scenes with realistic visual observations. The agent partially observes the environment
when navigating around, and its field of view is limited from first-person view point. Its visibility
may be obstructed by walls, closed door, or corners of obstacles. We first train the exploration policy
in one scene Apartment 0 with only intrinsic rewards for 2M steps. The start position is randomly
sampled in the environment in each episode. We test the learned exploration policy on new scenes
with layouts different from the training scene. On each scene, we report the total number of visited
states in 100 test episodes. Figure 8 shows that ViewX agent visits more locations in comparison
with the baselines. We also visualize the state coverage for each exploration policy in the test scene
FRL apartment 0. In Figure 9, we annotate the visited states on ground truth environment map with
red dots and qualitatively show the efficacy of our learned exploration policy.

4.4 Ablation Study

In this section, we analyze the importance of each component of our intrinsic reward by doing
ablation tests. Specifically, in the task-driven exploration (Section 4.2) and task-agnostic exploration
(Section 4.3) settings, we run experiments using the following intrinsic reward functions.

• ViewX: (xt+1 − xt + λ)/
√
N(ot+1)

• R1: view coverage maximization reward xt+1 − xt

• R2: without the constant term (xt+1 − xt)/
√
N(ot+1)

• R3: indicator of whether view expands (1{xt+1 − xt > 0}+ λ)/
√
N(ot+1)

The results of task-driven training performance are summarized in Appendix B.1. We make the
following observations: (1) R1 results in slightly sub-optimal policies, especially on harder environ-
ments like OM. (2) R2 contributes the most to the success of ViewX. Comparing ViewX and R2, the
constant term λ in ViewX slightly helps its performance on all the tasks. (3) R3 still works on easy
environment like MR, but totally fails on harder ones.

The reason behinds observation (1) is that the view coverage maximization reward rintt = xt+1 − xt

lies in a range between 0 and the agent’s largest view area. This reward never goes to 0 for
all new states. Given the reward function rt = rextt + αrintt in task-driven exploration setting,
rintt = xt+1 − xt is problematic because non-zero rintt changes the reward function rextt of the
original POMDP. The optimal policy for the new POMDP with intrinsic rewards differs from the
optimal policy for the original POMDP. Thus, the final policy of R1 does not maximize the cumulative
extrinsic reward. The count-based reward 1/

√
N(ot+1) asymptotically vanishes to 0 during training.

Therefore, a multiplication of R1 view coverage maximization reward xt+1 − xt with the count-based
reward 1/

√
N(ot+1) can mitigate the misleading effect of R1.

An illustrative example is provided in Figure 10. The example shows a KC-S3R3 environment, where
the agent is expected to find the key to unlock the locked blue door and pick up the yellow ball behind
the door. Figure 10a shows that the agent has reached the key. Figure 10b 10c show how ViewX and
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(a) (b) (c)
Figure 10: Comparison between ViewX and R1
on KC-S3R3 in task-driven setting. The agent
(red triangle) should pick up the yellow ball be-
hind the locked blue door. It has a view of 7x7
units (highlighted). (a) Visualization of agent
reaching the blue key. (b) ViewX agent’s be-
havior after picking up the key. (c) R1 agent’s
behavior after picking up the key.

Setting ViewX R1 R2 R3

BUP 0.6788
(±0.1669)

0.0131
(±0.0129)

0.0123
(±0.0041)

0.0049
(±0.0039)

OM-1Dl 0.5798
(±0.2270)

0.0257
(±0.0243)

0.0296
(±0.0169)

0.0078
(±0.0051)

OM-2Dl 0.4154
(±0.1222)

0.0444
(±0.0212)

0.0629
(±0.0151)

0.0125
(±0.0034)

DK-6x6 0.1920
(±0.1318)

0.1077
(±0.0254)

0.1473
(±0.0466)

0.0629
(±0.0137)

DK-8x8 0.2617
(±0.1420)

0.0901
(±0.0370)

0.1349
(±0.0584)

0.0408
(±0.0182)

DK-16x16 0.1405
(±0.0598)

0.0328
(±0.0174)

0.0555
(±0.0307)

0.0127
(±0.0043)

Table 1: Mean episodic rewards and standard de-
viations after training with a specific timesteps in
task-agnostic setting.

R1 agents behave after picking up the key. ViewX agent directly turns back and opens the locked
door. However, R1 agent opens the gray and red doors to gain coverage reward before going back to
the locked door. R1 agent achieves larger view coverage than ViewX, but it costs more steps to reach
the goal, which is a sub-optimal solution with lower extrinsic reward in this task.

The results of ablations on task-agnostic exploration can be found in Table 1. To sum up, when
trained on a difficult task like BlockedUnlockPickup (BUP), ViewX agent explores environments
better than the variations R1, R2, and R3. R1 and R2 agents fail to solve the BUP task because the
view coverage maximization reward is mostly 0 before opening the door. Simply doing random
exploration without any rewards makes it challenging to open the door through a tedious process
of picking up the key and moving around the obstacle. The agent has a slight chance to correctly
interact with objects or find passages to leave the current room via random exploration. R3 agent
takes the indicator of coverage increase for bonus reward, but this bonus is less informative compared
to ViewX. At the same time, the use of indicator may make R3 agent prefer to only see a bit more in
each step, and thus, it explores much worse than ViewX in complex environments.

5 Limitations and Discussion
The scope of this work is for navigation-like tasks, which is the same as many prior works [Raileanu
and Rocktäschel, 2020, Zha et al., 2021, Zhang et al., 2020a, 2021a, Parisi et al., 2021]. The
underlying assumption to support ViewX is that seeing more space in the environment expedites
the discovery of higher extrinsic rewards. However, obtaining a large view space coverage does not
always mean advancing to the task goal. For example, the agent may be expected to conduct careful
and complicated operations only in a small portion of a large environment. Therefore, we propose to
deal with this issue by further extending our key idea to maximize knowledge coverage. In navigation
tasks, the view coverage in ViewX is an easily-accessible proxy for the knowledge coverage. In
general RL problems, our motivation is to consider how much area in the state space the agent has
known to be reachable or non-reachable in an episode. We do not necessarily require the agent to
really visit a new state for a bonus reward, but knowing whether a new state is reachable or not yields
an intrinsic reward. We believe this high-level idea (e.g. maximizing knowledge coverage rather
than visitation coverage of the state space) is more general and could be applicable to broader RL
problems with some extensions. We leave this as future work. Besides, our approach assumes the
agent’s relative position and orientation are available information to construct the map. Combination
with localization techniques to release this assumption is another interesting future direction.

6 Conclusion
Exploration in sparse-reward tasks, especially in procedurally-generated environments with partial
observability, is challenging due to misleading novel observations. We propose a simple intrinsic
reward to simultaneously seek large view space and novel observations to take advantage of both
intrinsic motivations. We develop a novel algorithm, ViewX, for task-driven and task-agnostic
exploration and empirically show its efficiency in various environments, including the 2D minigrid
domain and the 3D visually-realistic environment. We verify that ViewX offers substantial gains in
sample efficiency when solving tasks in procedurally-generated environments, and it outperforms
previous state-of-the-art exploration methods with intrinsic rewards.
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A Implementation Details

A.1 Task-driven exploration

Implementations of ViewX, NovelD, RIDE, and RND are built on the official codebase of Nov-
elD[Zhang et al., 2021b]. For MADE, we directly take the results reported in the paper[Zhang et al.,
2021a]. The intrinsic reward functions of the rest are as follows:

• ViewX: (xt+1 − xt + λ)/
√
N(ot+1), where xt is the area of our constructed map and the

map is reset at the beginning of each episode.

• NovelD: max[novelty(ot+1) − β ∗ novelty(ot), 0] ∗ 1{Ne(ot+1 = 1)}, where
novelty(ot) = ∥ϕ(ot) − ϕ̂(ot)∥2 - the difference between a random fixed target network
ϕ̂ and a trainable predictor network ϕ. ϕ is trained to be close to ϕ̂ with the objective of
minimizing ∥ϕ(ot+1)− ϕ̂(ot+1)∥2.

• RIDE: ∥ϕ(ot)− ϕ(ot+1)∥2/
√

N(ot+1), where ϕ is the state embedding network trained to
minimize the prediction error of both an inverse and a forward dynamics model, N(ot+1) is
reset at the beginning of each episode.

• RND: ∥ϕ(ot+1)− ϕ̂(ot+1)∥2, where ϕ̂ is a fixed random network, ϕ is the state embedding
network trained to minimize ∥ϕ(ot+1)− ϕ̂(ot+1)∥2.

Policy and value function The policy network and value function network are shared across
different approaches. Given an input of dimension 7 × 7 × 3 on MiniGrid, we fed it into three
convolutional layers with kernel size 3× 3, padding 1, number of channels 32, 128, 512, stride 1,
2, 2 respectively. Each convolutional layer is followed by a ELU activation function. After the last
convolutional layer, the feature is flattened and processed by two linear layers with 1024 units and a
ReLU activation function. The output from linear layers are put into an LSTM layer with 1024 units.
After that, two separate fully-connected layers with 1024 units output action distribution as policy
and value estimation as value function, respectively.

State embedding The state embedding network ϕ is learned for NovelD, RIDE, and RND. The
input is the observation in MiniGrid with dimension 7×7×3. It is passed through three convolutional
layers with kernel size 3× 3, padding 1, stride 1,2,2, number of channels 32, 128, 512 respectively.
Each convolutional layer is followed by a ELU layer. The output is then passed to two linear layers
of 2048 and 1024 units with ReLU activation.

Dynamics model RIDE requires training of the dynamics models to learn the state embedding
network ϕ. For the forward dynamics model, the input is the state embedding and action. It is
passed through two fully-connected layers with 256 and 128 units. The non-linear activation is ReLU
activation function following each fully-connected layer. As for the inverse dynamics model, the
input is state embeddings of two consecutive steps. The input is fed into two fully-connected layers
with 256 units and a ReLU activation function.

Count dictionary In MiniGrid, the observation is of shape 7× 7× 3 with values in the range of
[0, 10] as integers. We directly convert the observations o to tuples and store them as the keys in a
dictionary to record the visitation counts N(o).

Hyper-parameters Table 2 shows the values of hyper-parameters shared across different methods.

Parameter name Value

Batch size 32
#Steps for LSTM 100

Optimizer RMSProp
Learning rate 0.0001

Discount factor γ 0.99
Weight of policy entropy loss 0.0005
Weight of value function loss 0.5

Table 2: The hyper-parameters for experiments in task-driven setting.
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For ViewX, we set the λ in Equation 1 as 0.01 for all tasks. For MultiRoom and KeyCorridor, the
value of α is set to 0.01 and for ObstructedMaze environments it is set to 0.02.

For NovelD, we set α = 0.05 for all the environments as is suggested in their official codebase.

Following [Raileanu and Rocktäschel, 2020], we use α = 0.1 on KeyCorridor-S3R3 and α = 0.5 on
all other environments for RIDE and α = 0.1 on all the environments for RND.

Compute resource Each job is run with an Nvidia TITAN X GPU and 40 CPUs. One job of ViewX
takes around 4 hours for 10M steps.

In the supplementary material, we provide the code for experiments in the task-driven setting. More
details can be found in the code.

A.2 Task-agnostic exploration

For a fair comparison, we implement ViewX for task-agnostic exploration on the codebase of [Parisi
et al., 2021]. We compare exploration methods (ViewX, C-BET, RIDE, RND) with different intrinsic
reward functions in the same codebase. The basic RL algorithm is IMPALA, the same for all these
methods. The intrinsic reward functions are as follows:

• ViewX: (xt+1 − xt + λ)/
√
N(ot+1), where xt is area of our constructed map and the map

is reset at the beginning of each episode, the count N(ot+1) is reset with a probability of
0.001 at each step.

• C-BET: 1/(N(change) +N(ot+1)), where change is the environment panorama change
of a transition {ot, at, ot+1}. The count N of change and ot+1 is reset with a probability
of 0.001 at each step.

• COUNT: 1/
√
N(ot+1), where the count N(ot+1) is never reset.

• RIDE: ∥ϕ(ot)− ϕ(ot+1)∥2/
√

N(ot+1), where ϕ is the state embedding network trained to
minimize the prediction error of both an inverse and a forward dynamics model, N(ot+1) is
reset at the beginning of each episode.

• RND: ∥ϕ(ot+1)− ϕ̂(ot+1)∥2, where ϕ̂ is a fixed random network, ϕ is the state embedding
network trained to minimize ∥ϕ(ot+1)− ϕ̂(ot+1)∥2.

A.2.1 MiniGrid

Environment setting The episode length is the default maximum steps in each environment. In the
task-agnostic setting, task is unknown so the episode is not terminated when the goal is achieved. We
only terminate an episode when the number of steps reaches the maximum.

Policy and value function The network architecture for the policy and value function are the
same for all methods. The input is the partial observations from the environment, with the shape of
7× 7× 3. The input is fed into the convolutional neural network with three convolutional layers, and
each layer has 32 filters, kernel size 3× 3, stride 2 and padding 1. The non-linear activation function
is ELU following each convolutional layer. The output of the convolutional network is flattened
and then passed through two linear layers with 1024 hidden units and ReLU activation function.
After the linear layers, the output is processed by LSTM layer with 1024 units. Finally, two separate
fully-connected layers of 1024 units are used for output of policy and value function, respectively.

State embedding RIDE and RND requires learning of the state embedding network ϕ. The input
is the observation in MiniGrid with dimension 7× 7× 3. It is passed through three convolutional
layers with kernel size 3× 3, stride 2, padding 1, number of channels 32, 32, 128 respectively. Each
convolutional layer is followed by a ELU layer. The output feature is flattened as state embedding.

The architecture of the dynamics network for RIDE, and the way to record count N(o) are the same
as we explained in Appendix A.1.

Count dictionary For C-BET, N(change) is the count of any change in the panoramic view with
dimension 7× 7× 3× 4. The change in panoramic view is directly converted to tuples and stored as
the key in the count dictionary.
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Figure 11: Training process of exploration policies in task-agnostic setting on MiniGrid

Hyper-parameters The values of hyper-parameters are listed in Table 3. The choice of the hyper-
parameters follows the prior work [Parisi et al., 2021]. Most of the hyper-parameters are the same
across different methods. The constant term λ in ViewX is set as 1 for simplicity without any
hyper-parameter tuning.

Parameter name Value

Batch size 8
#Steps for LSTM 100

Optimizer RMSProp
Learning rate 0.0001

Discount factor γ 0.99
Gradient clip max norm 40

Weight of intrinsic reward α
0.005 (ViewX,C-BET, COUNT)

0.1(RIDE, RND)
Weight of policy entropy loss 0.0005
Weight of value function loss 0.5

Weight of forward dynamics loss 1.0 (RIDE)
Weight of inverse dynamics loss 0.1 (RIDE)
Weight of random network loss 0.1 (RND)

Constant term λ 1.0 (ViewX)
Table 3: The hyper-parameters for experiments in task-agnostic setting.

Compute resource Each job is run with an Nvidia TITAN X GPU and 10 CPUs. We set IMPALA
using 10 actors. One job of ViewX takes around 20 hours for 10M steps.

We add more experiment details in Figure 11. We present the learning curves of the exploration
policies on the training environments. The statistics we recorded during training is the number
of visited cells and total extrinsic rewards in an episode. The episode rewards are measured only
for evaluation, not for policy learning. The test performance of the learned exploration policy are
presented in Figure 5,6,7 in the paper.

A.2.2 Habitat
Environment setting At each step, the agent can move forward by 0.25 meter or turn left/right by
10◦. The episode length is 500 steps and each episode terminates at 500 steps.
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Policy and value function The input is an environment partial observation with dimension 64×
64× 3. It is passed through five convolutional layers and each layer has 32 filters, kernel size 3× 3,
stride 2 and padding 1. The non-linear activation function is ELU. The output of the convolutional
layers is flattened and fed into two fully-connected layers with 1024 hidden units and ReLU activation.
Then the output is processed by LSTM layer with 1024 units. Finally, two separate linear layers of
1024 units are after LSTM and used for policy and value function respectively.

Count dictionary The observations are RGB images of dimension 64× 64× 3, with integer values
in the range of [0, 255]. We convert the observations to 128 bits with a hash function, the same as
[Parisi et al., 2021]. The hash encoding is then used as the key of the count dictionary.

Compute resource Each job is run with an Nvidia TITAN X GPU and 10 CPUs. We set IMPALA
using 10 actors. One run of ViewX tasks around 20 hours for 2M steps.

The network architecture of the state embedding network, forward dynamics model, inverse dynamics
model, and the hyper-parameters are the same as experiments in MiniGrid.

In the supplementary materials, we provide some examples of videos showing the exploration
behavior of different methods on training and test environments.
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B Ablation Study

In this section, we provide more experiment details for Section 4.4.

B.1 Task-driven exploration
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Figure 12: Learning curves of ViewX and the ablations.

Setting ViewX R1 R2 R3

KC-S4R3 (10M) 0.9134 (±0.0029) 0.9057(±0.0024) 0.8969(±0.0029) 0.0023(±0.0008)

KC-S5R3 (15M) 0.924 (±0.0031) 0.9185 (±0.0011) 0.9234 (±0.0047) 0.0031 (±0.0028)

KC-S6R3 (20M) 0.9332(±0.0024) 0.9245 (±0.0037) 0.9313 (±0.0024) 0.0000 (±0.0000)

MR-N12-S10(10M) 0.6402(±0.0029) 0.6401 (±0.0010) 0.6336 (±0.0086) 0.6399 (±0.0054)

OM-2Dlh (12M) 0.9461 (±0.0007) 0.9239 (±0.0068) 0.9434 (±0.0014) 0.1359 (±0.1280)

OM-2Dlhb (20M) 0.8598 (±0.0038) 0.8402 (±0.0143) 0.8281 (±0.0106) 0.0113 (±0.0015)

Table 4: Mean episodic rewards and standard deviations after training with a specific timesteps

Figure 12 shows the learning curves of ViewX and the three intrinsic reward designs we proposed in
section 4.4 in task-driven setting. The performance of learned policy after task-driven training are
summarized in Table 4. R1 has comparable sample efficiency with ViewX, but usually converges to
sub-optimal policies. R2 has slightly worse sample efficiency than ViewX and R1, and R3 fails to
learn in hard environments like KC-S6R3.

B.2 Task-agnostic exploration

In Figure 13, we show the learning process of exploration policies with different intrinsic reward
functions. The policies are trained only with intrinsic rewards, and ViewX agent is about to visit
more cells in the grid in an episode on the training environment. When trained on a difficult task
like BlockedUnlockPickup (BUP), ViewX agent explores environments better than the variations R1,
R2, and R3. In Table 5, we list the test performance of exploration policies in various environments,
including training environment BUP and test environments. R1 and R2 agents fail to solve the BUP
task because the view coverage maximization reward is mostly 0 before opening the door. Simply
doing random exploration without any reward makes it challenging to open the door through a tedious
process of picking up the key and moving around the obstacle. The agent has a slight chance to
correctly interact with objects or find passages to leave the current room via random exploration. R3
agent takes the indicator of coverage increase for bonus reward, but this bonus is less informative
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compared to ViewX. At the same time, the use of indicator may make the R3 agent prefer to only see
a bit more in each step, and thus, it explores much worse than ViewX in complex environments.
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Figure 13: Learning curves of exploration
policies in task-agnostic setting.

Setting ViewX R1 R2 R3

BUP 0.6788
(±0.1669)

0.0131
(±0.0129)

0.0123
(±0.0041)

0.0049
(±0.0039)

OM-1Dl 0.5798
(±0.2270)

0.0257
(±0.0243)

0.0296
(±0.0169)

0.0078
(±0.0051)

OM-2Dl 0.4154
(±0.1222)

0.0444
(±0.0212)

0.0629
(±0.0151)

0.0125
(±0.0034)

DK-6x6 0.1920
(±0.1318)

0.1077
(±0.0254)

0.1473
(±0.0466)

0.0629
(±0.0137)

DK-8x8 0.2617
(±0.1420)

0.0901
(±0.0370)

0.1349
(±0.0584)

0.0408
(±0.0182)

DK-16x16 0.1405
(±0.0598)

0.0328
(±0.0174)

0.0555
(±0.0307)

0.0127
(±0.0043)

Table 5: Mean episode rewards and standard devia-
tion after during with 10M timesteps.
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C Map construction process

In Figure 14 and Figure 15, we provide an illustrative example to explain our process to construct the
map mt. At each step t, we suppose the partial observation o′t from top-down viewpoint is available
in (or can be learned from) the environment partial observation ot. We assume the agent’s relative
position and orientation in any two consecutive steps are available. At the start of each episode, we
assign a simple position and orientation p0 (e.g. (0, 0, up) in MiniGrid environment) and then update
pt step by step based on the relative position and orientation. The map m0 is reset as empty at the
start of each episode. The top-down view observations o′t are filled into our map according to the
assumed position, and thus, mt is incrementally accumulated in the episode.

Ground 
truth map

Assumed 
Agent’s position

Top-down view 
observation

Top-down 
view map

Turn
left

Move 
forward

Turn
left(0, 0, Up)

t=0

(0, 0, Left)

t=1

(1, 0, Left)

t=2

(1, 0, Down)

t=3

Figure 14: Illustrative example of map construction on MiniGrid Environment. The small red triangle
annotates the agent’s position and orientation, but this agent information is not available in observation
ot from the environment. We show it here only for better visualization and clearer explanation.

Move 
forward

Ground 
truth map

Assumed 
Agent’s position

Camera & 
Top-down view 
observation 

Top-down 
view map

Turn 
left

Move 
forward(0, 0, 0°)

t=0

(30, 36, 0°)

t=1

(30, 36, -30°)

t=2

(75, 52, -30°)

t=3

&

Figure 15: Illustrative example of map construction on Habitat. For more clear visualization, we
make the action ’move forward’, ’turn left’ and ’turn right’ to move more aggressively than the
default setting (see Appendix A), so the observation difference in consecutive steps is more obvious.

As for our experiments in Section 4.3.2 in the Habitat environments, we assume that we have the
ground truth top-down view observations o′t corresponding to the partial observations ot, as shown in
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Figure 16: Exploration performance of ViewX with learned top-down view map

Figure 15. We further relax this assumption by utilizing an approach to approximate top-down view
map from the first-person view observations [cha]. The performance of our approach and baselines is
shown in Figure 16. ViewX with learned top-down view map still outperforms the baselines.
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D Additional Experimental Results on Habitat

In this section, we provide results of additional experiments on Habitat environment.

D.1 Ablation Study

Figure 17 shows the exploration performance of ViewX and the intrinsic reward design R1, R2, and
R3 in task-agnostic setting. The exploration policy is trained in one scene Apartment 0 with only
intrinsic rewards for 2M steps. Here the intrinsic reward design R1 maximizes its view coverage, R2
excludes the constant term λ, and R3 uses indicator of whether view expands instead of raw increment
of view coverage. Similar to the experimental results on MiniGrid environments, the performance of
ViewX is also better than the view-coverage maximization reward in Habitat environment.
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Figure 17: Exploration performance of ViewX and ablation models on scenes in Replica datasets
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Figure 18: Success Rate of ViewX and ablation models on PointNav task on scenes in Replica
datasets

D.2 Additional Evaluation Metric

To further explore the capability of ViewX, we apply the learned exploration policy into Point
Navigation task in test scenes in Replica datasets. Point Navigation task requires the agent to start
from a specific position, and reaches the given goal in limited steps. Both the start and goal position
are randomly sampled in the environment in every episode. We regard it as success once the distance
between the goal and the agent is less than 0.2m, and the agent has 500 steps at maximum to explore
the scene in each episode. On each scene, we report the average success rate in 200 test episodes.
Figure 18 shows that ViewX outperforms the intrinsic reward design R1, R2, and R3 on the success
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rate of point navigation task, which means under the situation that both the start and goal position is
unknown to the agent, ViewX helps to better explore more unknown areas in limited steps.
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E Relation with Information-Gain Exploration

In this section, we explain the relation between information gain exploration [Storck et al., 1995,
Little and Sommer, 2013, Mobin et al., 2014, Charrow et al., 2015, Mirchev et al., 2018] and view
coverage maximization method. The information gain exploration method maintains an internal
model of the environment and optimizes the agent to achieve largest change in information in the
internal model.

In our case, the map mt is the agent’s internal model of the environment. The change in information
is quantified as the KL divergence between the map variable distributions at the start and end of an
episode KL(p(m|o1, o2, · · · , oT )∥p(m)), where m ∈ RH×W is the environment map with height
H and width W , and T is the limit of timesteps in an episode.

The distribution of the map variable at each cell (i, j) is independent from each other. Thus, p(m) =∏
1≤i≤H,1≤j≤W p(mi,j) and p(m|o1, o2, · · · , oT ) =

∏
1≤i≤H,1≤j≤W p(mi,j |o1, o2, · · · , oT ).

For each cell, the initial distribution p(mi,j) follows the discrete uniform distribution on 1, 2, · · · ,K,
where K is the total number of possible objects and it is a prefixed constant. If the agent ever sees the
cell (i, j) in its view after T steps, p(mi,j |o1, o2, · · · , oT ) = 1; if mi,j is the correct object k at the
cell (i, j) then p(mi,j |o1, o2, · · · , oT ) = 0 otherwise.

According to these assumptions, the change in information can be simplified as:

KL(p(m|o1, o2, · · · , oT )∥p(m))

=
∑

m∈{1,2,··· ,K}H×W

p(m|o1, o2, · · · , oT ) log
p(m|o1, o2, · · · , oT )

p(m)

=
∑

m∈{1,2,··· ,K}H×W

p(m|o1, o2, · · · , oT ) log
∏

1≤i≤H,1≤j≤W p(mi,j |o1, o2, · · · , oT )∏
1≤i≤H,1≤j≤W p(mi,j)

=
∑

m∈{1,2,··· ,K}H×W

p(m|o1, o2, · · · , oT )
∑

1≤i≤H,1≤j≤W

log
p(mi,j |o1, o2, · · · , oT )

p(mi,j)

=
∑

1≤i≤H,1≤j≤W

∑
m∈{1,2,··· ,K}H×W

p(m|o1, o2, · · · , oT ) log
p(mi,j |o1, o2, · · · , oT )

p(mi,j)

=
∑

1≤i≤H,1≤j≤W

∑
m/i,j∈{1,2,··· ,K}H×W−1

p(m/i,j |o1, o2, · · · , oT )

∑
mi,j∈{1,2,··· ,K}

p(mi,j |o1, o2, · · · , oT ) log
p(mi,j |o1, o2, · · · , oT )

p(mi,j)

=
∑

1≤i≤H,1≤j≤W

∑
mi,j∈{1,2,··· ,K}

p(mi,j |o1, o2, · · · , oT ) log
p(mi,j |o1, o2, · · · , oT )

p(mi,j)

=
∑

1≤i≤H,1≤j≤W

KL(p(mi,j |o1, o2, · · · , oT )∥p(mi,j))

If the cell (i, j) is never seen at this episode for T steps, the distribution p(mi,j |o1, o2, · · · , oT ) is
the same as initial distribution p(mi,j)). So the KL divergence for this cell in the map is 0.

If the cell (i, j) is seen in the agent’s view and the object is k ∈ {1, 2, · · · ,K}, we have:
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KL(p(mi,j |o1, o2, · · · , oT )∥p(mi,j))

=
∑

mi,j∈{1,2,··· ,K}

p(mi,j |o1, o2, · · · , oT ) log
p(mi,j |o1, o2, · · · , oT )

p(mi,j)

= 1 · log 1

1/K
+

∑
mi,j ̸=k,mi,j∈{1,2,··· ,K}

p(mi,j |o1, o2, · · · , oT ) log
p(mi,j |o1, o2, · · · , oT )

p(mi,j)

= logK

Overall, KL(p(m|o1, o2, · · · , oT )∥p(m)) can be written as number of seen cells × logK. In our
notations, the number of seen cells after T steps in an episode is xT .

Therefore, the information gain exploration seeking largest change in information is equivalent to
seeking largest seen area in our setup. The view coverage maximization method with intrinsic reward
xt+1 − xt for each step t is a special case of the information gain exploration.
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F Hyper-parameter Sensitivity

The two major hyper-parameters for ViewX include the intrinsic reward coefficient and the λ from
equation 1. For the intrinsic reward coefficient, most previous methods use 0.05, however, our
intrinsic reward design includes an area change term which may be greater than 1. Therefore we
lower the coefficient to 0.01 to avoid the intrinsic rewards being too large. For λ, we search the
hyper-parameter in [0.001, 0.01, 0.05, 0.1]. As is shown in Figure 19, the performance of ViewX is
not greatly influenced by λ and we set it to 0.01 across all the task-driven experiments for simplicity.
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Figure 19: Task-driven experiment results with different λ.
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G Comparison with Baselines using Localization Assumption

In this section, we experiment with one more baseline that uses localization assumption. Instead
of recording the area that the agent "sees", we record the area where the agent has been to. More
specifically, the intrinsic reward is designed as

rintt =
lt+1 − lt + λ√

N(ot+1)
(2)

where lt denotes the total area that the agent has been to. The result is shown in Figure 20. We can
see that changing view coverage to the coverage of the parts that the agent has physically been to
makes the training much slower. The result is reasonable because in this baseline, if the agent sees
some empty space, it still goes there for higher intrinsic reward, which prevents it from reaching
the goal more efficiently. Therefore, visitation coverage lt cannot replace view coverage xt in our
intrinsic reward design. Because the view coverage maximization reward in ViewX can be interpreted
as an information-gain exploration bonus (see Appendix E), this comparison also implicitly verifies
the benefit of pursuing information gain in ViewX intrinsic reward.
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Figure 20: Compare ViewX with Location Count.

26


	Introduction
	View-based Exploration
	View-based Intrinsic Reward
	Conceptual Advantages of ViewX
	Exploration with Intrinsic Rewards

	Related Work
	Experiments
	Minigrid Environments and Baselines
	Task-driven Exploration
	Task-agnostic Exploration
	Minigrid Environments
	Habitat Environments

	Ablation Study

	Limitations and Discussion
	Conclusion
	Implementation Details
	Task-driven exploration
	Task-agnostic exploration
	MiniGrid
	Habitat


	Ablation Study
	Task-driven exploration
	Task-agnostic exploration

	Map construction process
	Additional Experimental Results on Habitat
	Ablation Study
	Additional Evaluation Metric

	Relation with Information-Gain Exploration
	Hyper-parameter Sensitivity
	Comparison with Baselines using Localization Assumption

