
Under review as submission to TMLR

DeepReShape: Redesigning Neural Networks for Efficient
Private Inference

Anonymous authors
Paper under double-blind review

Abstract

Prior work on Private Inference (PI)–inferences performed directly on encrypted input–has
focused on minimizing a network’s ReLUs, which have been assumed to dominate PI latency
rather than FLOPs. Recent work has shown that FLOPs for PI can no longer be ignored
and have high latency penalties. In this paper, we develop DeepReShape, a network redesign
technique that tailors architectures to PI constraints, optimizing for both ReLUs and FLOPs
for the first time. The key insight is that a strategic allocation of channels such that the
network’s ReLUs are aligned in their criticality order simultaneously optimizes ReLU and
FLOPs efficiency. DeepReShape automates network development with an efficient process,
and we call generated networks HybReNets. We evaluate DeepReShape using standard PI
benchmarks and demonstrate a 2.1% accuracy gain with a 5.2× runtime improvement at
iso-ReLU on CIFAR-100 and an 8.7× runtime improvement at iso-accuracy on TinyImageNet.
Furthermore, we demystify the input network selection in prior ReLU optimizations and
shed light on the key network attributes enabling PI efficiency.

1 Introduction

Motivation. As machine learning inferences are increasingly performed in the cloud, privacy concerns have
emerged. This has led to the development of private inference (PI), where a client sends encrypted input
to the cloud service provider, enabling inferences without exposing their data. While effective, the complex
cryptographic primitives Demmler et al. (2015); Mohassel & Rindal (2018); Patra et al. (2021) in PI results
into substantially higher computational and storage overheads Mishra et al. (2020); Garimella et al. (2023).

Prior work on PI-specific network optimization Lou et al. (2021); Garimella et al. (2021); Ghodsi et al. (2021)
has primarily focused on mitigating overheads of non-linear computation (e.g., ReLU), often underestimating
the impact of FLOPs. CryptoNAS Ghodsi et al. (2020) and Sphynx Cho et al. (2022a) employ neural
architecture search to design ReLU-efficient baseline networks and disregard FLOP implications. Likewise,
ReLU-pruning methods Jha et al. (2021); Cho et al. (2022b); Kundu et al. (2023a) made overly-optimistic
assumption that FLOPs can be entirely processed offline without affecting real-time efficacy. Specifically,
current SOTA Kundu et al. (2023a) downplays the significance of FLOPs penalties, arguing they are 343× less
significant than ReLUs. However, a recent work Garimella et al. (2023) has challenged this assumption and
demonstrated that FLOPs do carry significant latency penalties in end-to-end system-level PI performance.1.

This necessitates the development of network design principles and strategies that optimize both ReLUs and
FLOPs counts simultaneously. Consequently, two immediate questions arise: (1) Can we leverage off-the-shelf
FLOP reduction techniques in conjunction with ReLU pruning methods devised for PI? (2) Can we integrate
existing ReLU-pruning techniques on networks already optimized for FLOPs efficiency?

Challenges. In PI, achieving FLOPs efficiency often comes at the cost of reduced ReLU efficiency when
FLOPs pruning is combined with ReLU pruning. For instance, SENet++ networks Kundu et al. (2023a)

1In real-world scenarios, there is invariably some degree of inference arrival, and even at very low arrival rates, processing
FLOPs offline becomes impractical due to limited resources and insufficient time. Consequently, FLOPs start affecting real-time
performance, becoming more pronounced for networks with higher FLOPs. The FLOPs penalties can only be disregarded when
there is no inference arrival or when an accelerator offering more than 1000× speedup is employed.

1

Under review as submission to TMLR

 56

 60

 64

 68

 72

 76

 80

 4 8 16 32 64 128 256

C
IF

A
R

-1
0

0
 A

cc
u

ra
cy

 (
%

)

#ReLUs (K)

SENet(ICLR’23)

SNL(ICML’22)

DeepReDuce(ICML’21)

HybReNet(Ours)

(a) ReLUs-Accuracy Pareto

 70

 72

 74

 76

 78

 80

 82

 64 128 256 512 1024 2048

12.5x FLOPs reduction

2.3x FLOPs
 reduction

2.1% Acc. gain

C
IF

A
R

-1
0

0
 A

cc
u

ra
cy

 (
%

)

FLOPs (M)

SENet(ICLR’23)

SNL(ICML’22)

HybReNet(Ours)

(b) FLOPs saving
Figure 1: HybReNet outperforms state-of-the-art (SOTA) ReLU-optimization methods SENetsKundu et al.
(2023a), SNLCho et al. (2022b), and DeepReDuceJha et al. (2021), achieving higher accuracy (CIFAR-100)
and significant reduction in FLOPs while using fewer ReLUs.
achieve a 4× FLOP reduction at the expense of ReLU-efficiency, and they are not utilized for Latency-
Accuracy Pareto. Moreover, prior FLOPs pruning methods have not adequately demonstrated their impact on
ReLU-efficiency, and Jha et al. (2021) found that the FLOPs-pruning method yields inferior ReLU efficiency.

Furthermore, our study suggests that integrating ReLU-pruning with the existing FLOPs-optimized networks
is inadequate for efficient PI, as they exhibit inferior ReLU efficiency. For instance, when applying ReLU-
pruning with MobileNets Howard et al. (2017); Sandler et al. (2018), they significantly lag in ReLU efficiency
compared to standard PI networks such as ResNet18. This trend persists even in SOTA FLOPs-efficient
networks like RegNet Radosavovic et al. (2020) and ConvNeXt-V2 Woo et al. (2023), which demonstrate
suboptimal ReLU efficiency compared to PI-specific networks (Figure 11(c) and Table 6).

These findings indicate that seamlessly integrating existing FLOP reduction techniques with the ReLU
pruning methods is ill-suited for efficient PI. Consequently, a unique set of challenges emerges when optimizing
FLOPs without compromising ReLU efficiency (refer to §3.1).

Another major challenge that persists in this domain is identifying network attributes that enhance PI
performance, as the effectiveness of PI-specific ReLU optimization techniques largely depends on the choice of
input networks. This leads to significant performance disparities that cannot be solely ascribed to the FLOP
count or accuracy of the input networks (refer to §3.2). Prior work Jha et al. (2021); Cho et al. (2022b);
Kundu et al. (2023a) offer limited insight into their network selection. For instance, SENets Kundu et al.
(2023a) and SNL Cho et al. (2022b) used WideResNet-22x8 for higher ReLU counts and ResNet18 for low
ReLU counts. Thus, whether a network with specific features can consistently outperform across various
ReLU counts or if targeted ReLU counts dictate the desired network attributes remains to be discovered.

The limitations of the existing ReLU-optimization techniques further bottleneck PI efficiency. Coarse-grained
ReLU optimizations Jha et al. (2021) encounter scalability issues, as their computational complexity depends
on the number of stages in the network. While fine-grained ReLU optimization Cho et al. (2022b); Kundu et al.
(2023a) shows potential, its effectiveness is confined to specific ReLU distributions and tends to underperform
in networks with higher ReLU counts or altered ReLU distribution (refer to §3.3).

Our techniques and insights. To this end, we thoroughly assess the design principles for ReLU and
FLOPs efficiency and pose a fundamental question: Which essential insight needs to be integrated into
the design framework for achieving FLOPs efficiency without compromising ReLU efficiency? Addressing
this, we introduce a novel design principle, “ReLU-equalization,” which incorporates our key insight that by
strategically expanding the network’s width and positioning ReLUs based on their criticality, we can regulate
FLOPs in the deeper layers without sacrificing ReLU efficiency; thereby striking a dual balance.

Our in-depth investigation into key network attributes for PI efficiency yields a counterintuitive finding: wider
networks enhance PI performance at higher ReLU counts, while the percentage of least-critical ReLUs in
the network is crucial for PI efficacy at lower ReLU counts when ReLU pruning is employed. Prior work,
unfortunately, does not leverage this insight, incurring substantial yet avoidable computational overheads. By
leveraging this, we achieved a significant, up to 45×, FLOP reduction when targeting lower ReLU counts.

2

Under review as submission to TMLR

Building on the above insights, we develop “DeepReShape,” a design framework to redesign the classical
networks, with an efficient process of computational complexity O(1), and synthesize PI-efficient networks
“HybReNet”. Our approach results in a substantial FLOP reduction with fewer ReLUs, outperforming the
state-of-the-art in PI. Specifically, compared to SENet Kundu et al. (2023a), we achieve a 2.3× ReLU and
3.4× FLOP reduction at iso-accuracy, and a 2.1% accuracy gain with a 12.5× FLOP reduction at iso-ReLU
on CIFAR-100. On TinyImageNet, our approach saves 12.4× FLOPs at iso-accuracy.

Contributions. Our key contributions are summarized as follows.

1. Perform an exhaustive characterization to identify the key network attributes for PI efficiency and
demonstrate their applicability across a wide range of ReLU counts.

2. Propose a novel design principle ReLU-equalization, and designed a family of networks, HybReNet, tailored
to PI constraints. Also, we devise ReLU-reuse, a channel-wise ReLU dropping technique to systematically
reduce the ReLUs count by 16×, allowing efficient ReLU optimization even at very low ReLU counts.

3. Rigorously evaluate our proposed techniques against SOTA in PI, SENets Kundu et al. (2023a), and
SNLCho et al. (2022b); as well as SOTA FLOPs efficient models, ConvNeXt-V2 Woo et al. (2023) and
RegNet Radosavovic et al. (2020), on CIFAR-100 and TinyImageNet datasets.

Scope of the paper. This paper delves into the challenges of strategically dropping ReLUs from the
convolutional neural networks (CNNs) without resorting to any approximated computations for nonlinearity.
Thus, we do not consider models that employ complex nonlinearities, such as transformer-based models
and FLOPs efficient models like EfficientNet and MobileNetV3 2, often relying on approximated nonlinear
computations in PI. Also, we exclude the CrypTen-based PI in CNNs Tan et al. (2021); Peng et al. (2023), as
it operates under different security assumptions and cost dynamics for linear and nonlinear computations 3.

2 Preliminary

Private inference protocols and threat model: We use Delphi Mishra et al. (2020) two-party protocols,
as used in Jha et al. (2021); Cho et al. (2022b), for private inference. In particular, for linear layers, Delphi
performs compute-heavy homomorphic operations Gentry et al. (2009); Fan & Vercauteren (2012); Brakerski
et al. (2014); Cheon et al. (2017) in the offline phase (preprocessing) and additive secret sharing Shamir
(1979) in the online phase, once the client’s input is available. Whereas, for nonlinear (ReLU) layers, it uses
garbled circuits Yao (1986); Ball et al. (2019). Further, similar to Liu et al. (2017); Juvekar et al. (2018);
Mishra et al. (2020); Rathee et al. (2020), we assume an honest-but-curious adversary where parties follow
the protocols and learn nothing beyond their output shares.

Architectural building blocks: Figure 2 illustrates a schematic view of a standard four-stage network with
design hyperparameters. Similar to ResNet He et al. (2016), it has a stem cell (to increase the channel count
from 3 to m), followed by the network’s main body (composed of linear and nonlinear layers, performing most
of the computation), followed by a head (a fully connected layer) yielding the scores for the output classes.
The network’s main body is composed of a sequence of four stages, and the spatial dimensions of feature
maps (dk × dk) are progressively reduced by 2× in each stage (except Stage1), and feature dimensions remain
constant within a stage. We keep the structure of the stem cell and head fixed and change the structure of
the network’s body using design hyperparameters.

Notations and definitions: Each stage is composed of identical blocks4 repeated φ1, φ2, φ3, and φ4 times
in Stage1, Stage2, Stage3, and Stage4 (respectively), and known as stage compute ratios. The output channels

2Private inference on transformer-based models entail fundamentally different challenges Chen et al. (2022b); Hao et al. (2022);
Akimoto et al. (2023); Zheng et al. (2023); Hou et al. (2023); Gupta et al. (2023) CNNs predominantly employ crypto-friendly
nonlinearities, e.g., ReLUs (and MaxPool, if at all used); while, transformers utilize complex nonlinearities like Softmax, GeLU,
and LayerNorm. Notably, ReLUs in PI are precisely computed using Garbled-circuit Mishra et al. (2020), whereas transformers
often resort to approximations for their nonlinear computations due to performance objectives and numerical stability Wang
et al. (2022); Li et al. (2023); Zeng et al. (2023); Zhang et al. (2023). Likewise, FLOPs efficient models such as EfficientNets
Tan & Le (2019; 2021) and MobileNetV3 Howard et al. (2019) utilize Swish and Sigmoid nonlinearities, which offer additional
network expressivity. These nonlinearities are approximated as discreet piecewise polynomials in PI Fan et al. (2022).

3CrypTen resembles a three-party framework since it adopts a Trusted Third Party (TTP) to produce beaver triples during
the offline phase Knott et al. (2021). Consequently, the actual FLOP overheads are not reflected in end-to-end PI latency.

4Except the first block (in all but Stage1) which performs downsampling of feature maps by 2×.

3

Under review as submission to TMLR

Stage1 Stage2 Stage3 Stage4

feature
maps

#c
ha

nn
el
s

stem

body

head

Figure 2: Depiction of architectural hyperparameters and
feature dimensions in a four stage network. For ResNet18
m = 64, φ1=φ2=φ3 =φ4=2, and α=β=γ=2.

Stage1 Stage2 Stage3 Stage4
#Params

#ReLU m(f
2

d2
k

) αm(4f2

d2
k

) αβm(16f2

d2
k

) αβγm(64f2

d2
k

)
#FLOPs
#ReLU mf2 αmf2 αβmf2 αβγmf2

Table 1: Network’s complexity (FLOPs and
Params) per unit of nonlinearity varies with
network’s width, and independent of the net-
work’s depth. Consequently, Wider network
need fewer ReLUs for a given complexity, com-
pared to their deeper counterparts.

in stem cell (m) are known as base channels, and the number of channels progressively increases by a factor of
α, β, and γ in Stage2, Stage3, and Stage4 (respectively), and we termed it as stagewise channel multiplication
factors. The spatial size of the kernel is denoted as f×f (e.g., 3×3). These width and depth hyperparameters
primarily determine the distribution of ReLUs, FLOPs, and (learnable) parameters in the network.

Channel scaling methods: When the network’s width is increased by uniformly scaling channels across
all stages by the same factor, we refer to these networks as BaseCh, often used in networks optimized for
FLOPs efficiency, where (α, β, γ) values set to (2, 2, 2). For instance, WideResNets Zagoruyko & Komodakis
(2016), or scaling the base channel from m=64 to m=128 in ResNets. Alternatively, networks widen by
homogeneously augmenting the α, β, and γ, are termed as StageCh. Such scaling is used for designing ReLU
efficient baseline networks, for instance, CryptoNAS Ghodsi et al. (2020) and Sphynx Cho et al. (2022a).
Lastly, when at least one of the values in (α, β, γ) is different, we termed it as heterogeneous channel scaling,
for instance, in semi-automated designed RegNets Radosavovic et al. (2020). Refer to Table 15 for details.

Criticality of ReLUs in a network: We employ the criticality metric Ck from Jha et al. (2021) to quantify
the significance of ReLUs’ within a network stage for overall accuracy. Higher Ck values indicate more critical
ReLUs, while the least significant ReLUs are assigned a value of zero (see Table 8 and 9).

Coarse-grained vs fine-grained ReLU optimization: The coarse-grained ReLU optimization method
Jha et al. (2021) drops ReLUs at the level of an entire stage or a layer in the network. Whereas fine-grained
ReLU optimizations (Cho et al., 2022b; Kundu et al., 2023a) target individual channels or activation. These
approaches differ in performance, scalability, and configurability for achieving a specific ReLU count. The
latter allows achieving any desired independent ReLU count automatically, while the former requires manual
adjustments based on the network’s overall ReLU count and distribution. Nonetheless, the coarse-grained
method demonstrates flexibility and adapting to various network configurations. In contrast, the fine-grained
method exhibits less efficient adaptation and can lead to suboptimal performance.

3 Network Design and Optimization for Efficient Private Inference

We present our key observations highlighting the significance of network architecture and ReLUs’ distribution
for end-to-end PI performance and motivate the need for redesigning the classical networks for efficient PI.

3.1 Addressing Pitfalls of Baseline Network Design for Efficient Private Inference

The conventional uniform channel scaling leads to suboptimal ReLU efficiency. Table 1 shows
that the (stagewise) complexity of the network, quantified as #FLOPs and #Params Radosavovic et al.
(2019), per units of ReLU nonlinearity scales linearly with base channel count m, while α, β, and γ introduce
multiplicative effect. This implies that for a given network complexity, a network widened by augmenting
α, β, and γ requires fewer ReLUs than the one widened by augmenting m. The uniform channel scaling in
BaseCh networks, including WideResNet, often resorts to conservative (α, β, γ) = (2, 2, 2), which limits the
potential ReLU efficiency benefit from wider networks.

Homogeneous channel scaling offers superior ReLU efficiency until accuracy plateaus. In contrast
to BaseCh networks, homogeneous channel scaling in StageCh networks significantly improves ReLU efficiency
by removing the constraint on (α, β, γ) (Figure 3(a)). Nonetheless, the superiority of StageCh networks

4

Under review as submission to TMLR

 72

 75

 78

 81

 128 256 512 1024 2048

∆2
∆1

∆1 = 2.6%

∆2 = 4.2%

C
IF

A
R

-1
0
0
 A

cc
u
ra

cy
 (

%
)

#ReLUs (K)

ResNet18(StageCh)

ResNet18(BaseCh)

ResNet20(StageCh)

ResNet20(BaseCh)

(a) ReLU efficiency: StageCh vs BaseCh

 72

 75

 78

 81

 128 256 512 1024 2048

C
IF

A
R

-1
0
0
 A

cc
u
ra

cy
 (

%
)

#ReLUs (K)

ResNet18(StageCh)

ResNet20(StageCh)

ResNet32(StageCh)

ResNet56(StageCh)

(b) Accuracy saturation in StageCh

 0

 20

 40

 60

 80

 100

m=16 m=32 m=64 m=128 m=256

T
o

ta
l

R
eL

U
 (

%
)

Stem
Stage1

Stage2
Stage3

Stage4

(c) ReLUs’ distribution: BaseCh networks

 0

 20

 40

 60

 80

 100

2,2,2 3,3,3 4,4,4 5,5,5 6,6,6 7,7,7 8,8,8

T
o

ta
l

R
eL

U
 (

%
)

Stem
Stage 1

Stage 2
Stage 3

Stage 4

(d) ReLUs’ distribution: StageCh networks

 70

 72

 74

 76

 78

 80

 128 256 512C
IF

A
R

-1
0
0
 A

cc
u
ra

cy
(%

)

#ReLUs (K)

Alpha

Beta

Gamma

(e) Sensitivity analysis: ReLU efficiency

 70

 72

 74

 76

 78

 80

 64 256 1024C
IF

A
R

-1
0
0
 A

cc
u
ra

cy
(%

)

#FLOPs (M)

Alpha

Beta

Gamma

(f) Sensitivity analysis: FLOPs efficiency

Figure 3: (a) Homogeneous channel scaling in StageCh networks enables superior ReLU efficiency compared
to uniform channel scaling in BaseCh networks; however, (b) the accuracy in StageCh networks tends to
plateau unpredictably. (c,d) Unlike uniform channel scaling, homogeneous scaling reduces the proportion
of least-critical ReLUs in StageCh networks. (e,f) Each network stage affects ReLU and FLOPs efficiency
differently, requiring heterogeneous channel scaling for optimizing both ReLUs and FLOPs for efficient PI.
remains evident until reaching accuracy saturation, which varies with network configuration. In particular,
as shown in Figure 3(b), accuracy saturation for StageCh networks of ResNet18, ResNet20, ResNet32, and
ResNet56 models begins at (α, β, γ) = (4, 4, 4), (5, 5, 5), (5, 5, 5), and (6, 6, 6), respectively, suggesting
deeper StageCh network plateau at higher (α, β, γ) values. This observations challenge the assertion made
in Ghodsi et al. (2020), that model capacity per ReLU peaks at (α, β, γ) = (4, 4, 4). Thus, determining the
accuracy saturation point a priori is challenging, raising an open question: To what extent can a network
benefit from increased width for superior ReLU efficiency? Moreover, can employing ReLU optimization on
StageCh networks effectively address accuracy saturation?

Homogeneous channel scaling alters the ReLUs’ distribution distinctively than uniform scaling.
We investigate the effect of uniform and homogeneous channel scaling on the ReLU distribution of networks.
Unlike uniform scaling, which scales all layer ReLUs uniformly, homogeneous scaling leads to a distinct ReLU
distribution, with deeper layers exhibiting more significant changes. As depicted in Figure 3 (c,d), there
is a noticeable decrease in the proportion of Stage1 ReLUs, while Stage4 witnesses a significant increase.
Given the ReLUs’ criticality analysis in Table 8, this implies that the proportion of least-critical ReLUs is
decreasing while the distribution of ReLUs among the other stages does not strictly adhere to their criticality
order. This leads us to the following observation:

Observation 1: Homogeneous channel scaling reduces the percentage of least-critical ReLUs in the network.

Heterogeneous channel scaling is required for optimizing ReLU and FLOPs efficiency simulta-
neously. To answer the question of potential benefits from wider networks, we perform a sensitivity analysis
and evaluate the influence of each stagewise channel multiplication factor on the network’s ReLU and FLOPs
efficiency. We systematically vary one factor at a time, starting from 2, while other factors are held constant
at 2, in ResNet18 with m=16. We observe that augmenting α and β values improves ReLU efficiency;
notably, the latter optimizes the performance marginally better than the former until a saturation point is
reached (see 3(c)). Whereas, FLOPs efficiency is most effectively improved by augmenting α, outperforming
β enhancements while augmenting γ values yields the worst FLOP efficiency (see 3(d)). This suggests that
FLOPs in the deeper layers of StageCh networks can be regulated without impacting ReLU efficiency.

We note that the semi-automated designed networks RegNets Radosavovic et al. (2020) employ heterogeneous
channel scaling. However, they confine 1.5 ≤(α, β, γ) ≤ 3 to optimize FLOPs efficiency, which in turn

5

Under review as submission to TMLR

 0

 20

 40

 60

 80

 100

2,5,3 3,5,3 4,5,3 5,5,3 6,5,3 7,5,3

T
o

ta
l

R
eL

U
 (

%
)

Stem
Stage 1

Stage 2
Stage 3

Stage 4

(a) HRN-5x5x3x (Proposed)

 1024

 2048

 32 64 128

76.4%74.4%71.3%67.5%

76.2%74.1%71.1%67.5%

2x FLOPs
 reduction

#
F

L
O

P
s

(M
)

#ReLUs (K)

5x5x5x(StageCh)

5x5x3x(Proposed)

(b) FLOPs saving w/ SNL

 64

 128

 256

 512

 1024

 2048

 32 64 128

80.1%

77.7%72.3%

66.5%

79.4%

77.0%70.6%

67.2%

2x FLOPs
 reduction

#
F

L
O

P
s

(M
)

#ReLUs (K)

5x5x5x(StageCh)

5x5x3x(Proposed)

(c) FLOPs saving w/ DeepReDuce

Figure 4: (a) Unlike StageCh networks, once the network’s ReLUs are aligned in their criticality order, here at
point (α, β, γ)=(5, 5, 3), increasing α does not alter their relative distribution. (b,c) ReLUs’ criticality-aware
network widening method saves 2× FLOPs by regulating the FLOPs in deeper layers while maintaining
ReLU efficiency over a wide range of ReLU counts.

limits their ReLU efficiency (see Figure 11(c)). Thus, despite a line of seminal work on the network’s width
expansion Zagoruyko & Komodakis (2016); Radosavovic et al. (2019); Lee et al. (2019); Dollár et al. (2021),
the approaches to leverage the potential benefits of increased width for simultaneously optimizing ReLUs and
FLOPs efficiency remains an open challenge. The above analyses lead us to the following observation:

Observation 2: Each network stage heterogeneously impacts both ReLU and FLOPs efficiency, a nuanced
aspect largely overlooked by prior channel scaling methods, rendering them inadequate for the simultaneous
optimizing ReLUs and FLOPs counts for efficient private inference.

Strategically scaling channels by arranging ReLUs in their criticality order can regulate the
FLOPs in deeper layers without compromising ReLU efficiency. Following from the observations 1
and 2, we propose to scale the channels until all ReLUs are aligned in the criticality order. Thus, Stage3
dominates the distribution as it has the most critical ReLUs, followed by Stage2, Stage4, and Stage1 (Table
8). Unlike StageCh networks, widening beyond the point where the ReLUs are aligned in their criticality
order does not alter their relative distribution (Figure 4(a)). This leads to higher α and β values, which boost
ReLU efficiency, with restrictive γ (γ <4) regulating FLOPs in deeper layers, promoting FLOP efficiency.

Consequently, our approach of heterogeneous channel scaling achieves ReLU efficiency on par with StageCh
networks with fewer FLOPs. Figure 4(b,c) demonstrates that the ReLUs’ criticality-aware ResNet18 network
5x5x3x maintains similar ReLU efficiency with a 2× reduction in FLOPs compared to the StageCh network
5x5x5x. This FLOP reduction is consistently attained across the entire spectrum of ReLU counts, employing
both fine-grained and coarse-grained ReLU optimization. These results lead to the following observation:

Observation 3: ReLUs’ criticality-aware network widening method optimizes FLOPs efficiency without
sacrificing the ReLU efficiency, which meets the demands of efficient PI.

3.2 Addressing Fallacies in Network Selection for ReLU Optimization

Selecting the appropriate input network for ReLU optimization methods is far from intuitive.
Table 2 lists input networks used in previous ReLU optimization methods with their relevant characteristics,
while Figure 5 demonstrates how different input networks affect the performance of coarse (DeepReDuce) and
fine-grained (SNL) ReLU optimization methods. For the former, accuracy differences of 12.9% and 11.6%
are observed at higher and lower iso-ReLU counts. These differences cannot be ascribed to the FLOPs or
accuracy of the baseline network alone. For instance, ResNet18 outperforms WideResNet22x8 despite having
4.4× fewer FLOPs and a lower baseline accuracy, and ResNet32 outperforms VGG16 even though the latter
has 4.76× more FLOPs and a higher baseline accuracy.

Likewise, fine-grained ReLU optimization (SNL) exhibits significant accuracy differences when employed on
ResNets and WideResNets, especially at lower ReLU counts, as shown in Figure 5(b). While WideResNet
models outperform beyond 200K ReLUs, there are 3.2% and 4.6% accuracy gaps at 25K and 15K ReLUs
between ResNet18 and WideResNet16x8. The above empirical observation led to the following observation:

6

Under review as submission to TMLR

ReLU optimization method Input networks
Delphi (Mishra et al., 2020) ResNet32
SAFENets (Lou et al., 2021) ResNet32, VGG16
DeepReDuce (Jha et al., 2021) ResNet18

SNL (Cho et al., 2022b) ResNet18, WRN22x8
SENet (Kundu et al., 2023a) ResNet18, WRN22x8

ResNet32 ResNet18 WRN22x8 VGG16
FLOPs 70M 559M 2461M 333M
ReLUs 303K 557K 1393K 285K
Acc 71.67% 79.06% 81.27% 75.08%

Table 2: Baseline networks used for
advancing ReLU-Accuracy Pareto
(CIFAR-100) in prior PI-specific
ReLU optimization methods.

 50

 55

 60

 65

 70

 75

 80

 16 32 64 128 256 512

∆Acc.=12.9%

∆Acc.=11.6%

C
IF

A
R

-1
0
0
 A

cc
u
ra

cy
 (

%
)

#ReLUs (K)

ResNet18

ResNet32

WRN22x8

VGG16

MobileNetV1

MobileNetV2

(a) DeepReDuce at iso-ReLU

 60

 65

 70

 75

 16 32 64 128 256

∆Acc.=3.2%

∆Acc.=4.6%

C
IF

A
R

-1
0
0
 A

cc
u
ra

cy
 (

%
)

#ReLUs (K)

ResNet18

WRN22x4

WRN16x8

(b) SNL at iso-ReLU
Figure 5: ReLU optimization, whether coarse or fine-grained, perfor-
mance exhibits significant disparities based on the input networks.

Observation 4: Performance of ReLU optimization methods, whether coarse or fine-grained, strongly
correlates with the choice of input networks, leading to substantial performance disparities.

Key network attributes for PI efficiency vary across targeted ReLU counts. To identify the key
network attributes for PI efficiency across a wide range of ReLU counts, we examine three ResNet18 variants
with identical ReLU counts but different ReLUs’ distribution and FLOPs counts (Table 3). These are
realized by channel reallocation, and the configurations 2x2x2x(m=32), 4x4x4x(m=16), and 3x7x2x(m=16)
correspond to stagewise channel counts as [32,64,128,256], [16, 64, 256, 1024], and [16, 48, 336, 672] respectively.
We analyze their performance using the DeepReDuce and SNL ReLU optimization, as shown in Figure 6.

A consistent trend emerges from both ReLU optimization methods: Wider models 4x4x4x(m=16) and
3x7x2x(m=16) outperform 2x2x2x(m=32) at higher ReLU counts; however, even with ≈ 4× fewer FLOPs,
2x2x2x(m=32) excel at lower ReLU counts. This superior performance stems from the higher percentage
(58.82%) of least-critical (Stage1) ReLUs in 2x2x2x(m=32). When targeting low ReLU counts, ReLU
optimization methods primarily drop ReLUs from Stage1 Jha et al. (2021); Cho et al. (2022b); Kundu
et al. (2023a). Thus, networks with a higher percentage of Stage1 ReLUs preserve more ReLUs from critical
stages, mitigating accuracy degradation. Furthermore, this emphasizes the importance of strategically
allocating channels, even when aiming for higher ReLU counts: 3x7x2x(m=16) matches the ReLU efficiency
of 4x4x4x(m=16) with 30% fewer FLOPs by allocating more channels to Stage3 and fewer to Stage4.

The above findings offer insight into the network selection for prior ReLU optimization methods. Specifically,
the choice of WRN22x8 (with 48.2% Stage1 ReLUs) for higher ReLU counts while ResNet18 for lower ReLU
counts in fine-grained ReLU optimization Cho et al. (2022b); Kundu et al. (2023a). Moreover, it also explains
the accuracy trends depicted in Figure 5(b), the higher the Stage1 ReLU proportion (58.8% for ResNet18,
47.7% for WRN22x4, and 43.9% for WRN16x8), the higher the accuracy at lower ReLU counts.

Model Acc(%) FLOPs ReLUs Stagewise ReLUs’ distribution
Stage1 Stage2 Stage3 Stage4

2x2x2x(m=32) 75.60 141M 279K 58.82% 23.53% 11.76% 5.88%
4x4x4x(m=16) 78.16 661M 279K 29.41% 23.53% 23.53% 23.53%
3x7x2x(m=16) 78.02 466M 260K 31.50% 18.90% 33.07% 16.54%

Table 3: A case study to investigate the Capacity-
Criticality-Tradeoff: Three Iso-ReLU ResNet18
networks with different ReLUs’ distribution and
FLOPs count, achieved by reallocating channels
per stage. The baseline accuracy is for CIFAR-100
dataset.

 64

 68

 72

 76

 80

 8 16 32 64 128C
IF

A
R

-1
0
0
 A

cc
u
ra

cy
 (

%
)

#ReLUs (K)

2x2x2x(m=32)

4x4x4x(m=16)

3x7x2x(m=16)

(a) DeepReDuce at iso-ReLU

 64

 68

 72

 76

 16 32 64 128

C
IF

A
R

-1
0
0
 A

cc
u
ra

cy
 (

%
)

#ReLUs (K)

2x2x2x(m=32)

4x4x4x(m=16)

3x7x2x(m=16)

(b) SNL at iso-ReLU
Figure 6: Capacity-Criticality-Tradeoff results: Figures
(a) and (b) show the ReLU-Accuracy tradeoff for networks
in Table 3 using DeepReDuce and SNL.

Interestingly, we note that the above networks with a higher percentage of least-critical (Stage1) ReLUs
inherently have fewer overall ReLUs (e.g., 1392.6K for WRN22x8 and 557K ResNet18). This might suggest
that these networks utilize their ReLUs more effectively, especially when there are fewer ReLUs, leading them
to excel at lower ReLU counts. However, a counter-example in Appendix C.3 reaffirms our conclusion for the
key factor driving PI performance at lower ReLU counts. These analyses lead to the following observation:

7

Under review as submission to TMLR

Observation 5: Wider networks are superior only at higher ReLU counts, while networks with higher
percentage of least-critical ReLUs outperform at lower ReLU counts (Capacity-Criticality-Tradeoff).

3.3 Mitigating the Limitations of Fine-grained ReLU Optimization

Fine-grained ReLU optimization is not always the best choice. While fine-grained ReLU optimization
has demonstrated its effectiveness in classical networks such as ResNet18 and WideResNet — especially
when Stage1 dominates the network’s ReLU distribution Cho et al. (2022b); Kundu et al. (2023a) — its
advantages are not universal. To better understand its range of efficacy, we compared it against DeepReDuce
on PI-amenable wider models: 4x4x4x(m=16) and 3x7x2x(m=16) (Table 3).

As shown in Figure 7(a) and 7(b), DeepReDuce outperforms SNL by a significant margin (up to 3%-4%).
This suggests that the benefits of fine-grained ReLU optimization are highly dependent on specific ReLU
distributions, and it reduces when Stage1 does not dominate the network’s ReLU distribution. This trend is
also observed in ReLU criticality-aware networks, where Stage3 dominates the distribution of ReLUs (see
Figure 19). This empirical evidence collectively suggests that fine-grained ReLU optimization might limit the
benefits of increased network complexity introduced through stagewise channel multiplication enhancements.
Nonetheless, the performance gap is less pronounced when the network’s overall ReLU count is reduced by
half by using ReLU-Thinning Jha et al. (2021), which drops the ReLUs from alternate layers.

C100 Baseline 220K 180K 150K 120K 100K 80K 50K

ResNet18
(557.06K)

Vanilla 78.68 77.09 76.9 76.62 76.25 75.78 74.81 72.96
w/ Th. 76.95 77.03 76.92 76.54 76.59 75.85 75.72 74.44

∆ -1.73 -0.06 0.02 -0.08 0.34 0.07 0.91 1.48

ResNet34
(966.66K)

Vanilla 79.67 76.55 76.35 76.26 75.47 74.55 74.17 72.07
w/ Th. 79.03 77.94 77.65 77.67 77.32 76.69 76.32 74.50

∆ -0.64 1.39 1.30 1.41 1.85 2.14 2.15 2.43

WRN22x8
(1392.64K)

Vanilla 80.58 77.58 76.83 76.15 74.98 74.38 73.16 71.13
w/ Th. 79.59 78.91 78.6 78.41 78.05 77.22 75.94 72.74

∆ -0.99 1.33 1.77 2.26 3.07 2.84 2.78 1.61

Table 4: A significant accuracy boost (on CIFAR-
100) is achieved when ReLU-Thinning is employed
prior to SNL, despite the less accurate ReLU-
Thinned models. ∆ = Acc(w/ Th.)-Acc(Vanilla).

 68

 70

 72

 74

 76

 78

 80

 32 64 128

+2.00%+2.94%

+4.06%

+0.77%

C
IF

A
R

-1
0
0
 A

cc
u
ra

cy
 (

%
)

#ReLUs (K)

SNL (vanilla)

DeepReDuce

Thinning+SNL

(a) 4x4x4x(m=16)

 68

 70

 72

 74

 76

 78

 80

 32 64 128

+2.45%
+3.26%

+3.22%

+0.12%

C
IF

A
R

-1
0
0
 A

cc
u
ra

cy
 (

%
)

#ReLUs (K)

SNL (vanilla)

DeepReDuce

Thinning+SNL

(b) 3x7x2x(m=16)
Figure 7: DeepReDuce outperforms SNL by a significant
margin (up to 4%) when altering network’s ReLUs distri-
bution; however, using SNL on ReLU-Thinned networks
reduces the accuracy gap.

Narrowing the search space improves the performance of fine-grained ReLU optimization. To
further examine the efficacy of ReLU-Thinning for classical networks, we adopt a hybrid ReLU optimization
approach, and ReLU-Thinning is employed before SNL optimization. Surprisingly, even when baseline Thinned
models are less accurate, a significant accuracy boost (up to 3% at iso-ReLUs) is observed, which is more
pronounced for networks with higher #ReLUs (ResNet34 and WRN22x8, in Table 4). Since ReLU-Thinning
drops the ReLUs from the alternate layers, irrespective of their criticality, its integration into existing ReLU
optimization methodologies would not impact their overall computational complexity and remains effective
for reducing the search space to identify critical ReLUs. This leads us to the following observation:

Observation 6: While altering the network’s ReLU distribution can lead to suboptimal performance in
fine-grained ReLU optimization, ReLU-Thinning emerges as an effective solution to bridge the performance
gap, also beneficial for classical networks with higher overall ReLU counts.

4 DeepReShape

Drawing inspiration from the above observations and insights, we propose a novel design principle termed
ReLU equalization (Figure 8) and re-design classical networks. This led to the development of a family of
models HybReNet, tailored to the needs of efficient PI (Table 16). Additionally, we propose ReLU-reuse, a
(structured) channel-wise ReLU dropping method, enabling efficient PI at very low ReLU counts.

8

Under review as submission to TMLR

Stage1 Stage2 Stage3 Stage4

ReLU-equalization

R
eL

U
 d

is
tri

bu
tio

n Least-critical

Most-critical

ReLUs' criticality order

(Stage3 > Stage2 > Stage4 > Stage1)

Stage1 Stage2 Stage3 Stage4R
eL

U
 d

is
tri

bu
tio

n

Least-critical

Most-critical

Classical network (Baseline) ReLU-equalized network (Proposed)

(Proposed)

Layer-index Layer-index

Figure 8: Illustration of ReLU-equalization: Unlike classical networks (e.g., ResNet), where ReLUs’ are not
positioned is their criticality order, ReLU-equalization aligns network’s ReLUs in their criticality order.

4.1 ReLU Equalization and Formation of HybReNet

Given a baseline input network, where ReLUs are not necessarily aligned in their criticality order, ReLU
equalization redistributes the network’s ReLUs in their criticality order, meaning the (most) least critical
stage has a (highest) lowest fraction of the network’s total ReLU count (Figure 8). Equalization is achieved by
an iterative process, as outlined in Algorithm 1. In each iteration, the relative distribution of ReLUs in two
stages is aligned in their criticality order by adjusting either their depth or width or both hyperparameters.

Algorithm 1 ReLU equalization
Input: Network Net with stages S1,...,SD; C a sorted list of most to least critical stage; stage-compute ratio
φ1,...,φD; and stagewise channel multiplication factors λ1,..., λ(D−1).
Output: ReLU-equalized versions of network Net.
1: for i = 1 to D-1 do
2: Sk = C[i] . C[1] is most critical stage
3: St = C[i+ 1] . C[2] is second-most critical stage
4: while #ReLUs(Sk) > #ReLUs(St) do . ReLUs in two stages are aligned in their criticality order

5:
φk×
(∏k−1

j=1
λj

)
2k−1 >

φt×
(∏t−1

j=1
λj

)
2t−1 . Rearranging ReLUs by adjusting width and depth parameters

6: end while
7: end for
8: return A set of φ1,...,φD and λ1,...,λ(D−1) that satisfies the compound inequality: #ReLUs(C[1]) >

#ReLUs(C[2]) > ... > #ReLUs(C[D − 1]) > #ReLUs(C[D])

Specifically, for a network of D stages and a predetermined criticality order, given compute ratios φ1, φ2, ...,
φD and stagewise channel multiplication factors λ1, λ2, ..., λ(D−1), the ReLU equalization algorithm outputs
a compound inequality after D-1 iterations. We now employ Algorithm 1 on a standard four-stage ResNet18
model with the given criticality order as (from highest to lowest): Stage3 > Stage2 > Stage4 > Stage1 (refer
to Table 8). During the equalization process, only the model’s width hyper-parameters are adjusted, as wider
models tend to be more ReLU efficient. Consequently, the algorithm yields the following expression:

#ReLUs(S3) > #ReLUs(S2) > #ReLUs(S4) > #ReLUs(S1)

=⇒ φ3

(αβ
16

)
> φ2

(α
4

)
> φ4

(αβγ
64

)
> φ1

ReLU equalization through width (φ1 = φ2 = φ3 = φ4 = 2, and α ≥ 2, β ≥ 2, γ ≥ 2) :

=⇒ αβ

16 >
α

4 >
αβγ

64 > 1 =⇒ αβ > 16, α > 4, αβγ > 64, β > 4, βγ < 16, and γ < 4

Solving the above compound inequalities provides the following (β, γ) pairs and the range of α :
The (β, γ) pairs are: (5, 2) & α ≥ 7; (5, 3) & α ≥ 5; (6, 2) & α ≥ 6; (7, 2) & α ≥ 5

We obtain four pairs of (β, γ), each having a range of α value. We choose the smallest α needed for ReLU
equalization, as increasing α beyond this point does not improve the performance when ReLU optimization is

9

Under review as submission to TMLR

80
400

1200

16Input
network

64
128

256
512

#C
ha

nn
el

s

#C
ha

nn
el

s

32
160

480

16

#C
ha

nn
el

s

R
eL

U
s'

di
st

rib
ut

io
n

R
eL

U
s'

di
st

rib
ut

io
n

R
eL

U
s'

di
st

rib
ut

io
n

23 4 124 312 341

Input network with
inferior ReLU-efficiency

~(2% to 4%)
accuracy

improvement at
iso-ReLUs

FLOPs-balanced & ReLU-
efficient baseline network
for higher ReLU budgets

~(20x to 45x)
FLOPs reduction &

up to ~5x ReLU
reduction

Up to ~64x
ReLU

reduction

Culling,
Thinning, and
(proposed)
ReLU-reuse

ReLU
equalization

Capacity-
Criticality-
Tradeoff

ReLU-
optimization

Networks
with fewer
(critical)
ReLUs

Network with a given
ReLUs' criticality order

Allocating channels to
optimize FLOPs and ReLU
efficiency simultaneously

Allocating channels to
maximize the proportion of

least-critical ReLUs

Coarse-grained ReLU
optimization

FLOPs-balanced & ReLU-
efficient baseline network
for lower ReLU budgets

FLOPs-balanced & ReLU-
optimized networks for
various ReLU budgets

Figure 10: The DeepReShape network redesigning pipeline. ReLU’s criticality-aware strategic allocation of
channels (gray boxes) outputs FLOPs-balanced ReLU-efficient baseline networks for various ReLU counts
(blue boxes). Numbers in green denote criticality order (Stage3 is most critical).
used; also, the relative distribution of ReLUs remains stable (see Appendix A). Thus, we achieve four baseline
HybReNets: HRN-5x5x3x, HRN-5x7x2x, HRN-6x6x2x, and HRN-7x5x2x. The architectural details of these
four HRNs are presented in Table 16.

4.2 ReLU-reuse

We further refine the baseline network’s architecture to increase ReLU nonlinearity utilization by introducing
ReLU-reuse, which selectively applies ReLUs to a contiguous subset of channels while the remaining channels
reuse them. This approach differs from previous channel-wise ReLU optimizations, where channels are either
uniformly scaled down throughout the network Jha et al. (2021) or only a subset of channels utilize ReLUs
without reusing them Cho et al. (2022b). Our ReLU-reuse mechanism allows for efficient PI at extremely low
ReLU counts (e.g., 3.2K ReLUs on CIFAR-100 dataset).

.....

.....Y

ReLU Reduction

Proposed

ReLU Reduction

(loss of information
at higher N)

(#division is
independent of N)

3x3
3x3

3x3

3x3

Conv + BN + ReLU

3x3

1x
1

3x3

Naive

Conv + BN

Figure 9: Proposed ReLU-reuse where ReLUs are selec-
tively reused across channels, reducing #ReLUs up to 16×.

Specifically, feature maps of the layer are divided
into N groups, and ReLUs are employed only in
the last group (Figure 9). However, increasing
the value of N results in a significant accuracy
loss despite 1 × 1 convolution being employed
for cross-channel interaction. This is likely due
to the loss of cross-channel information arising
from more divisions in the feature maps (see our
ablation study in Table 14). To address this
issue, we devise a mechanism that decouples the
number of divisions in feature maps from the ReLU reduction factor N . Precisely, one-fourth of channels are
utilized for feature reuse, while a Nth fraction of feature maps are activated using ReLUs, and the remaining
feature maps are processed solely with convolution operations, resulting in only three groups. It is important
to note that using the ReLUs in the last group of feature maps increases the effective receptive field as these
neurons can consider a larger subset of feature maps using the skip connections Gao et al. (2019).

4.3 Putting it All Together

We developed the DeepReShape framework to re-design the classical networks for efficiency PI across a wide
range of ReLU counts. Figure 10. Given an input network with a specific ReLUs’ criticality order, the ReLU-
equalization step aligns the network’s ReLU in their criticality order by adjusting width hyper-parameters.
This step allows for maximizing ReLU efficiency without incurring superfluous FLOPs by allocating fewer
channels in the initial stages and increasing them in the deeper stages. In the second step, following the

10

Under review as submission to TMLR

Criticality-Capacity-Tradeoff, the width is adjusted such that Stage1 dominates the ReLUs’ distribution.
This is achieved by a straightforward step: setting α=2 in the ReLU-equalized networks since decreasing α
results in an increased percentage of Stage1 ReLUs, and distribution of ReLUs in all but Stage1 follow their
criticality order (see Table 9). This step allows for a substantial FLOP reduction, up to 45×, by allocating
fewer channels in all the stages. We call the networks resulting from step1 and step2 as HybReNets (HRNs).
The baseline HRNs from step2 are: HRN-2x5x3x, HRN-2x7x2x, HRN-2x6x2x, and HRN-2x5x2x (Table 17).

ReLU-optimization steps for HybReNets: We choose to employ coarse-grained ReLU optimization
steps in HRNs, as they outperform fine-grained ReLU optimization when the ReLU distribution undergoes
changes in traditional networks, as shown in Figure 7 and Appendix C.4. In particular, we eliminate all
the ReLUs from Stage1 (ReLU Culling) if it dominates the network’s overall ReLU distribution, e.g., HRNs
with α=2. For subsequent stages, we utilize ReLU-Thinning, which removes ReLUs from alternate layers
without considering their criticality. We further reduce the ReLU count by implementing ReLU-reuse with
an appropriate reduction factor (see Algorithm 2).

Complexity analysis of HybReNet design: For a D stage network with a predefined criticality order
for stagewise ReLUs, the process of ReLU equalization typically involves considering 2D-1 hyperparameters,
including D stage compute ratios and D-1 stagewise channel multiplication factors. However, for HRNs, this
hyperparameter count is reduced to D-1 since ReLU equalization is achieved solely by modifying the network’s
width. Contrasting with SOTA network designing methods Radosavovic et al. (2020); Liu et al. (2022), which
build networks from scratch, the hyperparameters involved in ReLU equalization are determined by solving
a compound inequality and do not require additional network training. Consequently, the complexity of
designing HRNs can be characterized as O(1). A detailed discussion is included in Appendix E.5.

Note that employing coarse-grained ReLU optimization does not exacerbate the complexity of HRNs. This
is attributed to the alignment of ReLUs within HRNs based on their criticality order, which necessitates
only a single iteration (see Algorithm 2). In contrast, when ReLUs in the input network are organized
without regard to their criticality order (e.g., classical networks such as ResNets and WideResNets), a single
iteration produces suboptimal results, requiring D-1 iterations Jha et al. (2021). Thus, the complexity of
ReLU optimization for HRNs is reduced to O(1) from O(D).

5 Experimental Results

Analysis of HybReNets Pareto points: Figure 1 shows that HybReNet advances the ReLU-accuracy
Pareto with a substantial reduction in FLOPs – a factor overlooked in prior PI-specific network optimization.
We present a detailed analysis of network configurations and ReLU optimization steps and quantify their
benefits for ReLUs and FLOP reduction. We use ResNet18-based HRN-5x5x3x for ReLU-accuracy comparison
with SOTA PI methods in Figure 1, as its FLOPs efficiency is superior to other HRNs (Table 16).

Table 5: Network configurations and ReLU optimization steps used for the Pareto points in Figure 1.
Accuracies (CIFAR-100) are separately shown for vanilla KD Hinton et al. (2015) and DKD Zhao et al. (2022),
highlighting the benefits of improved architectural design and distillation method.(Re2 denotes ReLU-reuse)

HybReNet m
ReLU optimization steps #ReLU #FLOPs Accuracy(%) Acc./ReLU

Culled Thinned Re2 KD DKD
5x5x3x 16 NA S1+S2+S3+S4 NA 163.3K 1055.4M 79.34 80.86 0.50
2x5x3x 32 S1 S2+S3+S4 NA 104.4K 714.1M 77.63 79.96 0.77
2x5x3x 16 S1 S2+S3+S4 NA 52.2K 178.5M 74.98 77.14 1.48
2x5x3x 8 S1 S2+S3+S4 NA 26.1K 44.6M 70.36 72.65 2.78
2x5x3x 16 S1 S2+S3+S4 4 13.1K 121.6M 67.30 68.25 5.23
2x5x3x 16 S1 S2+S3+S4 8 6.5K 130.5M 62.68 63.29 9.70
2x5x3x 16 S1 S2+S3+S4 16 3.2K 137.2M 56.24 56.33 17.26

The key takeaway from Table 5 is that tailoring the network features for PI constraint significantly reduces
FLOPs and ReLUs. Specifically, lowering α value and base channel count led to 23.6× fewer FLOPs

11

Under review as submission to TMLR

in HRN-2x5x3x(m=8), compared to HRN-5x5x3x(m=16). Furthermore, we notice a significant accuracy
boost by employing a simple yet efficient logit-based distillation method DKD Zhao et al. (2022), as the
ReLU-reduced models greatly benefit from decoupling the target and non-target class distillation.

HybReNets outperform state-of-the-art in private inference: Table 6 presents competing design
points for SENet Kundu et al. (2023a) and SNL Cho et al. (2022b), and we select HybReNet points (see Table
5 and Table 11 for configuration and optimization details) offering both accuracy and latency benefits for a
fair comparison. The runtime breakdown is presented as homomorphic (HE) latency Brakerski et al. (2014),
arises from linear operations (convolution and fully-connected layers), and Garbled-circuit (GC) latency Ball
et al. (2019), resulting from nonlinear (ReLU) operations. See the experiential setup details in Appendix H.

Table 6: Comparison of HybReNet with state-of-the-art in private inference: SENet Kundu et al. (2023a) and
SNL Cho et al. (2022b). HybReNet exhibits superior ReLU and FLOPs efficiency and achieve a substantial
reduction in latency. #Re and #FL denote ReLU and FLOPs counts; Acc. is top-1 accuracy; Lat. is the
runtime for one private inference, including Homomorphic (HE) and Garbled-circuit(GC) latencies.

SOTA in Private Inference HybReNet(Ours) Improvements
#Re #FL Acc. HE GC Lat. #Re #FL Acc. HE GC Lat. #Re #FL Acc. HE GC Lat.

C
IF
A
R
-1
00

SE
N
et
s

300 2461 80.54 1004 33.7 1037 163 1055 80.86 770 18.4 788 1.8× 2.3× 0.3 1.3× 1.8× 1.3×
240 2461 79.81 1004 27.0 1031 163 1055 80.86 770 18.4 788 1.5× 2.3× 1.1 1.3× 1.5× 1.3×
180 2461 79.12 1004 20.2 1024 163 1055 80.86 770 18.4 788 1.1× 2.3× 1.7 1.3× 1.1× 1.3 ×
50 559 75.28 268 5.6 274 52 179 77.14 123 5.9 129 1.0× 3.1× 1.9 2.2× 0.9× 2.1×
25 559 70.59 268 2.8 271 26 45 72.65 49 2.9 52 0.9× 12.5× 2.1 5.5× 1.0× 5.2×

SN
L 15 559 67.17 268 1.7 270 13 179 68.25 123 1.5 124 1.1× 3.1× 1.1 2.2× 1.1× 2.2×

13 559 66.53 268 1.5 270 13 179 68.25 123 1.5 124 1.0× 3.1× 1.7 2.2× 1.0× 2.2×

T
in
yI
m
ag

eN
et

SE
N
et
s 300 2227 64.96 927 33.7 961 327 1055 64.92 526 36.7 563 0.9× 2.1× 0.0 1.8× 0.9× 1.7×

142 2227 58.90 927 16.0 943 104 179 58.90 97 11.7 108 1.4× 12.4× 0.0 9.6× 1.4× 8.7×

SN
L

489 9830 64.42 3690 55.0 3745 653 4216 67.58 2029 73.4 2102 0.7× 2.3× 3.2 1.8× 0.7× 1.8×
489 9830 64.42 3690 55.0 3745 418 2842 66.10 1307 45.0 1352 1.2× 3.5× 1.7 2.8× 1.2× 2.8×
298 2227 64.04 927 33.5 961 327 1055 64.92 526 36.7 563 0.9× 2.1× 0.9 1.8 × 0.9× 1.7×
100 2227 58.94 927 11.2 939 104 179 58.90 97 11.7 108 1.0× 12.4× 0.0 9.6× 1.0× 8.7×
59 2227 54.40 927 6.6 934 52 712 54.46 329 5.9 335 1.1× 3.1× 0.1 2.8× 1.1× 2.8×

On CIFAR-100, SENet requires 300K ReLUs and 2461M FLOPs to reach 80.54% accuracy, whereas HRN-
5x5x3x achieves 80.86% accuracy with only 163K ReLUs and 1055M FLOPs, providing 1.8× ReLU and 2.3×
FLOPs saving. Similarly, at 25K ReLUs, our approach achieves a 2.1% accuracy gain with 12.5× FLOP
reduction, thereby saving 5.2× runtime. Even at an extremely low ReLU count of 13K, HRN is 1.7% more
accurate and achieves 2.2× runtime saving, compared to the SNL.

On TinyImageNet, HybReNets outperform SENet at both 300K and 142K ReLUs, improving runtime by
1.7× and 8.7×, respectively. Compared to SNL at 489K ReLUs, HybReNets are 3.2% (1.7%) more accurate
with a 1.8× (2.8×) reduction in runtime. At lower ReLU counts of 100K and 59K, HybReNets match the
accuracy with SNL and achieve a 12.4× and 3.1× FLOP reduction, which results in 8.7× and 2.8× runtime
improvement, respectively.

Our primary insight from Table 6 is that FLOP reduction does not inherently guarantee a proportional
reduction in HE latency, whereas a direct correlation exists between ReLU reduction and GC latency savings.
In particular, a ∼12.5× FLOP reduction translates to 5.2× and 8.7× latency reduction on CIFAR-100
and TinyImageNet, respectively. This is due to the fact HE latency has an intricate dependency on the
input/output packing Aharoni et al. (2023), rotational complexity Lou et al. (2020b;a); Huang et al. (2022)
and slot utilization Lee et al. (2022). We refer the readers to Juvekar et al. (2018) for details.

Generality case study on ResNet34: We select ResNet34 for the DeepReShape generality study for
two key reasons: (1) its consistent use for the case study in prior PI-specific network optimization studies
Jha et al. (2021); Cho et al. (2022b); Kundu et al. (2023a), and (2) its stage compute ratio (φ1=3, φ2=4,
φ3=6, and φ4=3) distinguishes it from ResNet18, results in different sets of HRN networks, HRN-4x6x3x
and HRN-4x9x2x, upon applying Algorithm 1. We use HRN-4x6x3x for comparison with SOTA in Table 7.
Network configuration and ReLU optimization details are presented in Table 12.

12

Under review as submission to TMLR

 64

 68

 72

 76

 80

 8 16 32 64 128 256

C
IF

A
R

-1
0

0
 A

cc
u

ra
cy

 (
%

)

#ReLUs (K)

SENet(ICLR’23)

SNL(ICML’22)

HybReNet(Ours)

(a) ResNet34 on CIFAR-100

 50

 55

 60

 65

 70

 32 64 128 256 512 1024

T
in

y
Im

ag
eN

et
 A

cc
u

ra
cy

 (
%

)

#ReLUs (K)

SNL(ICML’22)

ConvNeXt-V2(CVPR’23)

HybReNet(Ours)

(b) ResNet34 on TinyImageNet

 78

 79

 80

 81

 82

 83

 256 512 1024 2048 4096 8192 16384C
IF

A
R

-1
0
0
 A

cc
u
ra

cy
(%

)

#ReLUs (K)

RegNet-X

HRN-7x5x2x

HRN-6x6x2x

HRN-5x7x2x

HRN-5x5x3x

(c) HRN vs RegNet on CIFAR-100

Figure 11: HybReNets outperform SOTA ReLU-optimization methods applied to ResNet34 and also surpass
SOTA FLOPs efficient models: RegNetsRadosavovic et al. (2020) and ConvNeXt-V2 Woo et al. (2023).

HybReNet advances the ReLU-accuracy Pareto on both CIFAR-100 and TinyImageNet, shown in Figures 11
(a, b). Table 7 quantifies the FLOPs-ReLU-Accuracy benefits and runtime savings. On CIFAR-100, compared
to SOTA, HybReNet improves runtime by 3.1× with a significant gain in accuracy — 9.8%, 7.2%, 5.9%, and
2.1% at 15K, 25K, 30K and 50K ReLUs (respectively). Further on TinyImageNet, SNL requires 300K ReLUs
and 4646M FLOPs to reach 64% accuracy, whereas HybReNet matches this accuracy with 8.8× fewer FLOPs,
leading to a runtime improvement of 6.3×. Conclusively, it highlights the effectiveness of DeepReShape and
validates its generality for different network configurations and datasets.

Table 7: ResNet34-based HybReNets outperform SOTA PI methods Kundu et al. (2023a); Cho et al. (2022b)
employed on ResNet34, and also surpass the SOTA FLOPs efficient models ConvNeXt-V2Woo et al. (2023) .
#Re and #FL denote ReLU and FLOPs counts; Acc. is top-1 accuracy; Lat. is the runtime for one PI.

SOTA in Private Inference (on ResNet34) HybReNet(Ours) Improvements
#Re #FL Acc. HE GC Lat. #Re #FL Acc. HE GC Lat. #Re #FL Acc. HE GC Lat.

C
IF
A
R
-1
00

SE
N
et 200 1162 78.80 459 22.5 482 134 527 79.56 404 15.1 419 1.5× 2.2 × 0.8 1.1× 1.5× 1.1×

80 1162 76.66 459 9.0 468 67 132 76.91 140 7.5 148 1.2× 8.8× 0.3 3.3× 1.2× 3.2×
50 1162 74.84 459 5.6 465 67 132 76.91 140 7.5 148 0.7× 8.8× 2.1 3.3× 0.7× 3.1×

SN
L 30 1162 71.00 459 3.4 462 67 132 76.91 140 7.5 148 0.4× 8.8× 5.9 3.3× 0.4× 3.1×

25 1162 69.68 459 2.8 462 67 132 76.91 140 7.5 148 0.4× 8.8× 7.2 3.3× 0.4× 3.1×
15 1162 67.08 459 1.7 461 67 132 76.91 140 7.5 148 0.2× 8.8× 9.8 3.3× 0.2× 3.1×

T
in
yI
m
ag

eN
et SN

L

500 4646 65.34 1710 56.2 1766 537 2109 67.48 880 60.3 940 0.9× 2.2× 2.1 1.9× 0.9× 2.3×
400 4646 65.32 1710 45.0 1755 537 2109 67.48 880 60.3 940 0.7× 2.2× 2.2 1.9× 0.7× 2.3×
300 4646 63.99 1710 33.7 1744 268 529 64.02 245 30.2 275 1.1× 8.8× 0.0 7.0× 1.1× 6.3×
200 4646 62.49 1710 22.5 1733 268 529 64.02 245 30.2 275 0.7× 8.8× 1.5 7.0× 0.7× 6.3×

C
on

vN
eX

t 1622 11801 69.85 4067 182.4 4249 1270 8244 70.29 3091 142.8 3233 1.3× 1.4× 0.4 1.3× 1.3× 1.3×
1278 9080 68.75 2368 143.7 2512 952 4638 69.15 1837 107.1 1944 1.3× 2.0× 0.4 1.3× 1.3× 1.3×
721 3436 67.08 1307 81.0 1388 537 2109 67.48 880 60.3 940 1.3× 1.6× 0.4 1.5× 1.3× 1.5×
541 1935 65.72 738 60.8 799 402 1187 65.77 592 45.2 637 1.3× 1.6× 0.0 1.3× 1.3× 1.3×
451 1345 64.07 546 50.7 597 268 529 64.02 245 30.2 275 1.7× 2.5× 0.0 2.2× 1.7× 2.2×

HybReNet outperform SOTA FLOPs efficient vision models: We perform a comparative analysis
of HybReNets with SOTA FLOPs efficient vision models: ConvNeXt-V2 Woo et al. (2023) and RegNet
Radosavovic et al. (2020). These models possess distinct depth and width hyperparameters, providing an
interesting case study, particularly when contrasted with conventional ReNets. See Appendix E.4 for details.

For a fair comparison with baseline RegNet-X models, we do not employ any ReLU-optimization steps on
(ResNet18-based) HybReNets. Results are shown in Figure 11(c) where HRNs are evaluated with m ∈ {16,
32, 64 }. HRNs achieve comparable accuracy with substantially fewer ReLUs compared to RegNets. For
instance, to achieve 78.26% (80.63%) accuracy on CIFAR-100, RegNets require 1460K (6544K) ReLUs, while
HRN-5x5x3x needs only 343K (1372K) ReLUs, leading to a 4.3× (4.7×) ReLU reduction.

Further, we compare the ConvNeXt-V2 models with HybReNets on TinyImageNet while employing ReLU
optimization on them (see Table 12 for optimization details). The ReLU-accuracy Pareto is shown in Figure
11(b), with a detailed comparison outlined in Table 7. The competing HRNs achieve 1.3× to 1.7× ReLU
savings; 1.4× to 2.5× FLOP reduction, which results in 1.3× to 2.3× runtime improvements.

13

Under review as submission to TMLR

ReLU-reuse is more effective for HybReNets and outperforms the SOTA channel-wise ReLU
optimization: We examine the efficacy of ReLU-reuse on networks with various ReLUs’ distributions and
compare their performance with conventional (channel/feature-map)scaling used in DeepReDuce for achieving
very low ReLU counts. Results are shown in Figure 22 and Figure 23 (AppendixG). Interestingly, we observed
that the efficacy of ReLU-reuse is most pronounced in networks where ReLUs are aligned in their criticality
order, whether partially or entirely. In fact, networks with an even distribution of stagewise ReLUs exhibit
more significant accuracy improvements from ReLU-reuse compared to traditional networks like ResNets.

 56

 60

 64

 68

 72

 76

 80

 2 4 8 16 32 64 128C
IF

A
R

-1
0
0
 A

cc
u
ra

cy
(%

)

#ReLUs (K)

SNL(channel)

SNL(vanilla)

Ours(HRN w/o Re2)

Ours(HRN w/ Re2)

(a) HRN-2x5x2x

 56

 60

 64

 68

 72

 76

 80

 4 8 16 32 64 128C
IF

A
R

-1
0
0
 A

cc
u
ra

cy
(%

)

#ReLUs (K)

SNL(channel)

SNL(vanilla)

Ours(HRN w/o Re2)

Ours(HRN w/ Re2)

(b) HRN-2x5x3x

 56

 60

 64

 68

 72

 76

 80

 4 8 16 32 64 128C
IF

A
R

-1
0
0
 A

cc
u
ra

cy
(%

)

#ReLUs (K)

SNL(channel)

SNL(vanilla)

Ours(HRN w/o Re2)

Ours(HRN w/ Re2)

(c) HRN-2x6x2x

 56

 60

 64

 68

 72

 76

 80

 4 8 16 32 64 128C
IF

A
R

-1
0
0
 A

cc
u
ra

cy
(%

)

#ReLUs (K)

SNL(channel)

SNL(vanilla)

Ours(HRN w/o Re2)

Ours(HRN w/ Re2)

(d) HRN-2x7x2x

 56

 60

 64

 68

 72

 76

 80

 4 8 16 32 64 128C
IF

A
R

-1
0
0
 A

cc
u
ra

cy
(%

)

#ReLUs (K)

SNL(channel)

SNL(vanilla)

Ours(HRN w/o Re2)

Ours(HRN w/o Re2)

(e) HRN-2x6x3x

 60

 64

 68

 72

 76

 80

 4 8 16 32 64 128C
IF

A
R

-1
0
0
 A

cc
u
ra

cy
(%

)
#ReLUs (K)

SNL(Channel)

SNL(vanilla)

Ours(HRN w/o Re2)

Ours(HRN w/ Re2)

(f) HRN-2x9x2x
Figure 12: ReLU-reuse (Re2) consistently outperforms SOTA channel-wise ReLU dropping technique (SNL)
by a significant margin across various ReLU counts. Accuracy gain of 1% - 3% is achieved when Re2 is
substituted with the conventional scaling, as used in DeepReDuce (denoted as “w/o Re2”). This gain brings
Re2 to a performance level comparable to pixel-wise SNL, denoted as “SNL(vanilla)”.

Further, we employ ReLU-reuse on HRNs with α=2, as per Algorithm 2, and compare their performance
with SOTA channel-wise ReLU optimization method used in SNL. For a fair comparison, we use standard
knowledge distillation Hinton et al. (2015), as used in SNL5, rather than DKD Zhao et al. (2022). Figure 12
demonstrates that Re2 results in a significant accuracy improvement of up to 3%. This gain in accuracy
enables HRNs to achieve performance on par with pixel-wise SNL.

The baseline HybReNets exhibits superior ReLU efficiency compared to the standard networks
used in private inference:

 70

 72

 74

 76

 78

 80

 82

 128 256 512 1024 2048C
IF

A
R

-1
0
0
 A

cc
u
ra

cy
(%

)

#ReLUs (K)

WideResNet-22xk

WideResNet-28xk

StageCh(ResNet18)

BaseCh(ResNet18)

HRNs (Proposed)

Figure 13: ReLU efficiency comparison
with baseline HybReNets.

We evaluated the ReLU efficiency of baseline HRNs without lever-
aging any coarse or fine-grained ReLU optimization methods,
as well as knowledge distillation. We compared them with two
widely used network architectures in PI: ResNet and WideRes-
Nets. Results are shown in Figure 13. The homogeneous channel
scaling in ResNet18 StageCh networks led to superior ReLU ef-
ficiency than WideResNets variants until accuracy in the former
is saturated. Nonetheless, all the four HRNs — HRN-5x5x3x,
HRN-5x7x2x, HRN-6x6x2x, and HRN-7x5x2x — exceeds the
ReLU efficiency of ResNet18 StageCh variants, demonstrating
the benefits of strategically allocating channels in the subsequent stages of the classical networks for PI.

5It is important to note that SENets Kundu et al. (2023a) uses PRAM (Post-ReLU Activation Mismatch) loss in conjunction
with standard KD Hinton et al. (2015) for an additional boost in the accuracy of ReLU-reduced models. In contrast, both SNL
Cho et al. (2022b) and DeepReDuce Jha et al. (2021) rely solely on standard KD.

14

Under review as submission to TMLR

6 Related Work

PI-specific network optimization: Delphi Mishra et al. (2020) and SAFENet Lou et al. (2021) substitute
the ReLUs with low-degree polynomials, while DeepReDuce Jha et al. (2021) is a coarse-grained ReLU
optimization and drops ReLUs layerwise. SNL Cho et al. (2022b) and SENet Kundu et al. (2023a) are
fine-grained ReLU optimization and drop the pixel-wise ReLUs. CryptoNAS Ghodsi et al. (2020) and Sphynx
Cho et al. (2022a) use neural architecture search and employ a constant number of ReLUs per layer for
designing ReLU-efficient networks, disregarding FLOPs implications. In contrast, our approach achieves
ReLU and FLOPs efficiency simultaneously. We refer the reader to Ng & Chow (2023) for detailed HE and
GC-specific optimizations for private inference.

Benefits of width: The impact of network width on reducing catastrophic forgetting was highlighted by
Mirzadeh et al. (2022). The influence of network width on the smoothness of the loss surface was analyzed by
Li et al. (2018), and it was found that an increase in width could mitigate erratic behavior in the loss landscape.
A study by Golubeva et al. (2021) decoupled the effects of increased width from over-parameterization and
found that the width of a network primarily determines its predictive performance, with the number of
parameters being a secondary factor under mild assumptions. Nguyen et al. (2021) established that wider
networks, when delivering similar levels of accuracy on the ImageNet dataset, show superior performance on
inputs that reflect the scene rather than the objects.

Challenges and implications of nonlinear layers in diverse neural network applications : Non-
linear layers not only present challenges in private inference but also pose significant obstacles in other
domains of neural network application. Optical neural networks increase energy and latency overheads
due to optical-electrical conversion costs, hindering system efficiency Chang et al. (2018); Li et al. (2022).
Adversarial robustness verification becomes complex with ReLU due to unstable neurons Xiao et al. (2019);
Balunović & Vechev (2020); Chen et al. (2022a). Furthermore, the non-distributive nature of ReLU over
rotation operations can break the equivariance property of Steerable CNNs Franzen & Wand (2021), known
for their parameter and computation efficiency Cohen & Welling (2017); Weiler et al. (2018); Weiler & Cesa
(2019); thus, limiting their architectural choices and applicability.

7 Discussion and Conclusion

Privacy-preserving computations demand substantial resources, particularly in terms of storage, communi-
cation bandwidth, and compute power. Using the garbled-circuit technique alone can consume hundreds
of gigabytes of storage, while homomorphic computations might need hours to complete a single private
inference in real-world scenarios Garimella et al. (2023). Earlier research has proposed specialized hardware
accelerators Samardzic et al. (2021; 2022); Mo et al. (2023) and (cryptographic) protocol improvements to
tackle these challenges. Yet, these solutions present challenges of their own: hardware solutions may not
always be sustainable in the long run Gupta et al. (2022), and protocol tweaks could potentially open doors
to security vulnerabilities or raise compatibility concerns.

In this context, our research shifts the focus towards algorithmic innovations and aims to address the unique
challenge of reducing FLOPs without compromising ReLU efficiency. We proposed DeepReShape to optimize
FLOP count while maintaining ReLU efficiency effectively. We achieve this by identifying superfluous FLOPs
in conventional ReLU efficient networks and understanding that wide networks are mainly beneficial for
higher ReLU counts, providing additional opportunities for FLOP reduction when targeting lower ReLU
counts. By leveraging these insights, we achieve FLOP reduction up to 45× without any bells and whistles.

One significant advantage of algorithmic improvement lies in their adaptability across diverse hardware con-
figurations and cryptographic protocols, thus broadening the potential impact of our algorithmic innovations.
We have demonstrated that a substantial reduction in runtime, ∼(5× to 10×), can be achieved simply by
strategically allocating channels in the existing networks and employing straightforward ReLU optimization
steps. It is important to note that further reductions in FLOP can be achieved by employing off-the-shelf
FLOP reduction techniques. For example, techniques such as layer merging, as demonstrated in Jha et al.
(2021); Dror et al. (2021); Kundu et al. (2023b) or channel pruning, as employed in SENet++ Kundu et al.
(2023a). However, these approaches often sacrifice ReLU efficiency, a critical aspect of private inference.

15

Under review as submission to TMLR

References
Ehud Aharoni, Allon Adir, Moran Baruch, Nir Drucker, Gilad Ezov, Ariel Farkash, Lev Greenberg, Ramy

Masalha, Guy Moshkowich, Dov Murik, et al. Helayers: A tile tensors framework for large neural networks
on encrypted data. Proceedings on privacy enhancing technologies, 2023.

Yoshimasa Akimoto, Kazuto Fukuchi, Youhei Akimoto, and Jun Sakuma. Privformer: Privacy-preserving
transformer with mpc. In IEEE 8th European Symposium on Security and Privacy (EuroS&P), 2023.

Marshall Ball, Brent Carmer, Tal Malkin, Mike Rosulek, and Nichole Schimanski. Garbled neural networks
are practical. Cryptology ePrint Archive, 2019.

Mislav Balunović and Martin Vechev. Adversarial training and provable defenses: Bridging the gap. In
International Conference on Learning Representations, 2020.

Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling modern machine-learning practice
and the classical bias–variance trade-off. Proceedings of the National Academy of Sciences, 2019.

Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully homomorphic encryption without
bootstrapping. ACM Transactions on Computation Theory, 2014.

Julie Chang, Vincent Sitzmann, Xiong Dun, Wolfgang Heidrich, and Gordon Wetzstein. Hybrid optical-
electronic convolutional neural networks with optimized diffractive optics for image classification. Scientific
reports, 2018.

Tianlong Chen, Huan Zhang, Zhenyu Zhang, Shiyu Chang, Sijia Liu, Pin-Yu Chen, and Zhangyang Wang.
Linearity grafting: Relaxed neuron pruning helps certifiable robustness. In International Conference on
Machine Learning, 2022a.

Tianyu Chen, Hangbo Bao, Shaohan Huang, Li Dong, Binxing Jiao, Daxin Jiang, Haoyi Zhou, Jianxin Li, and
Furu Wei. THE-X: Privacy-preserving transformer inference with homomorphic encryption. In Findings of
the Association for Computational Linguistics(ACL), 2022b.

Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. Homomorphic encryption for arithmetic
of approximate numbers. In International conference on the theory and application of cryptology and
information security, 2017.

Minsu Cho, Zahra Ghodsi, Brandon Reagen, Siddharth Garg, and Chinmay Hegde. Sphynx: Relu-efficient
network design for private inference. IEEE Security & Privacy, 2022a.

Minsu Cho, Ameya Joshi, Siddharth Garg, Brandon Reagen, and Chinmay Hegde. Selective network
linearization for efficient private inference. In International Conference on Machine Learning, 2022b.

Taco S. Cohen and Max Welling. Steerable CNNs. In International Conference on Learning Representations,
2017.

Daniel Demmler, Thomas Schneider, and Michael Zohner. Aby-a framework for efficient mixed-protocol
secure two-party computation. In The Network and Distributed System Security Symposium, 2015.

Piotr Dollár, Mannat Singh, and Ross Girshick. Fast and accurate model scaling. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021.

Amir Ben Dror, Niv Zehngut, Avraham Raviv, Evgeny Artyomov, Ran Vitek, and Roy Josef Jevnisek.
Layer folding: Neural network depth reduction using activation linearization. In British Machine Vision
Conference, 2021.

Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homomorphic encryption. Cryptology ePrint
Archive, 2012.

16

Under review as submission to TMLR

Xiaoyu Fan, Kun Chen, Guosai Wang, Mingchun Zhuang, Yi Li, and Wei Xu. Nfgen: Automatic non-linear
function evaluation code generator for general-purpose mpc platforms. In Proceedings of the 2022 ACM
SIGSAC Conference on Computer and Communications Security, 2022.

Daniel Franzen and Michael Wand. General nonlinearities in so(2)-equivariant cnns. In Advances in Neural
Information Processing Systems, 2021.

Shanghua Gao, Ming-Ming Cheng, Kai Zhao, Xin-Yu Zhang, Ming-Hsuan Yang, and Philip HS Torr. Res2net:
A new multi-scale backbone architecture. In IEEE transactions on pattern analysis and machine intelligence,
2019.

Karthik Garimella, Nandan Kumar Jha, and Brandon Reagen. Sisyphus: A cautionary tale of using low-degree
polynomial activations in privacy-preserving deep learning. In ACM CCS Workshop on Private-preserving
Machine Learning, 2021.

Karthik Garimella, Zahra Ghodsi, Nandan Kumar Jha, Siddharth Garg, and Brandon Reagen. Characterizing
and optimizing end-to-end systems for private inference. In Proceedings of the 28th ACM International
Conference on Architectural Support for Programming Languages and Operating Systems, 2023.

Craig Gentry et al. A fully homomorphic encryption scheme. 2009.

Zahra Ghodsi, Akshaj Kumar Veldanda, Brandon Reagen, and Siddharth Garg. CryptoNAS: Private inference
on a relu budget. In Advances in Neural Information Processing Systems, 2020.

Zahra Ghodsi, Nandan Kumar Jha, Brandon Reagen, and Siddharth Garg. Circa: Stochastic relus for private
deep learning. In Advances in Neural Information Processing Systems, 2021.

Anna Golubeva, Guy Gur-Ari, and Behnam Neyshabur. Are wider nets better given the same number of
parameters? In International Conference on Learning Representations, 2021.

Kanav Gupta, Neha Jawalkar, Ananta Mukherjee, Nishanth Chandran, Divya Gupta, Ashish Panwar, and
Rahul Sharma. Sigma: Secure gpt inference with function secret sharing. Cryptology ePrint Archive, 2023.

Udit Gupta, Mariam Elgamal, Gage Hills, Gu-Yeon Wei, Hsien-Hsin S Lee, David Brooks, and Carole-Jean Wu.
Act: Designing sustainable computer systems with an architectural carbon modeling tool. In Proceedings
of the 49th Annual International Symposium on Computer Architecture, pp. 784–799, 2022.

Meng Hao, Hongwei Li, Hanxiao Chen, Pengzhi Xing, Guowen Xu, and Tianwei Zhang. Iron: Private
inference on transformers. In Advances in Neural Information Processing Systems, 2022.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, 2016.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015.

Xiaoyang Hou, Jian Liu, Jingyu Li, Yuhan Li, Wen-jie Lu, Cheng Hong, and Kui Ren. Ciphergpt: Secure
two-party gpt inference. Cryptology ePrint Archive, 2023.

Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan, Weijun Wang,
Yukun Zhu, Ruoming Pang, Vijay Vasudevan, et al. Searching for mobilenetv3. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, 2019.

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco
Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for mobile vision
applications. arXiv preprint, 2017.

Zhicong Huang, Wen jie Lu, Cheng Hong, and Jiansheng Ding. Cheetah: Lean and fast secure Two-Party
deep neural network inference. In 31st USENIX Security Symposium, 2022.

17

Under review as submission to TMLR

Nandan Kumar Jha, Zahra Ghodsi, Siddharth Garg, and Brandon Reagen. DeepReDuce: Relu reduction for
fast private inference. In International Conference on Machine Learning, 2021.

Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan. Gazelle: A low latency framework for
secure neural network inference. In 27th USENIX Security Symposium, 2018.

Brian Knott, Shobha Venkataraman, Awni Hannun, Shubho Sengupta, Mark Ibrahim, and Laurens van der
Maaten. Crypten: Secure multi-party computation meets machine learning. Advances in Neural Information
Processing Systems, 2021.

Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-10 (canadian institute for advanced research). URL
http://www. cs. toronto. edu/kriz/cifar. html, 2010.

Souvik Kundu, Shunlin Lu, Yuke Zhang, Jacqueline Liu, and Peter A Beerel. Learning to linearize deep
neural networks for secure and efficient private inference. In The Eleventh International Conference on
Learning Representations, 2023a.

Souvik Kundu, Yuke Zhang, Dake Chen, and Peter A. Beerel. Making models shallow again: Jointly learning
to reduce non-linearity and depth for latency-efficient private inference. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, 2023b.

Ya Le and Xuan Yang. Tiny imagenet visual recognition challenge. CS 231N, 7, 2015.

Eunsang Lee, Joon-Woo Lee, Junghyun Lee, Young-Sik Kim, Yongjune Kim, Jong-Seon No, and Woosuk Choi.
Low-complexity deep convolutional neural networks on fully homomorphic encryption using multiplexed
parallel convolutions. In International Conference on Machine Learning, 2022.

Jaehoon Lee, Lechao Xiao, Samuel Schoenholz, Yasaman Bahri, Roman Novak, Jascha Sohl-Dickstein, and
Jeffrey Pennington. Wide neural networks of any depth evolve as linear models under gradient descent.
Advances in neural information processing systems, 32, 2019.

Dacheng Li, Hongyi Wang, Rulin Shao, Han Guo, Eric Xing, and Hao Zhang. MPCFORMER: FAST, PER-
FORMANT AND PRIVATE TRANSFORMER INFERENCE WITH MPC. In The Eleventh International
Conference on Learning Representations, 2023.

Gordon HY Li, Ryoto Sekine, Rajveer Nehra, Robert M Gray, Luis Ledezma, Qiushi Guo, and Alireza
Marandi. All-optical ultrafast relu function for energy-efficient nanophotonic deep learning. Nanophotonics,
2022.

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the loss landscape of
neural nets. Advances in neural information processing systems, 2018.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. arXiv preprint,
2018.

Jian Liu, Mika Juuti, Yao Lu, and N Asokan. Oblivious neural network predictions via minionn transformations.
In Proceedings of the ACM SIGSAC Conference on Computer and Communications Security, 2017.

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie. A convnet
for the 2020s. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2022.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv preprint
arXiv:1608.03983, 2016.

Qian Lou, Song Bian, and Lei Jiang. Autoprivacy: Automated layer-wise parameter selection for secure
neural network inference. In Advances in Neural Information Processing Systems, pp. 8638–8647, 2020a.

Qian Lou, Wen-jie Lu, Cheng Hong, and Lei Jiang. Falcon: fast spectral inference on encrypted data.
Advances in Neural Information Processing Systems, 2020b.

18

Under review as submission to TMLR

Qian Lou, Yilin Shen, Hongxia Jin, and Lei Jiang. SAFENet: Asecure, accurate and fast neu-ral network
inference. International Conference on Learning Representations, 2021.

Seyed Iman Mirzadeh, Arslan Chaudhry, Dong Yin, Huiyi Hu, Razvan Pascanu, Dilan Gorur, and Mehrdad
Farajtabar. Wide neural networks forget less catastrophically. In International Conference on Machine
Learning, 2022.

Pratyush Mishra, Ryan Lehmkuhl, Akshayaram Srinivasan, Wenting Zheng, and Raluca Ada Popa. Delphi:
A cryptographic inference service for neural networks. In 29th USENIX Security Symposium, 2020.

Jianqiao Mo, Jayanth Gopinath, and Brandon Reagen. Haac: A hardware-software co-design to accelerate
garbled circuits. In Proceedings of the 50th Annual International Symposium on Computer Architecture,
2023.

Payman Mohassel and Peter Rindal. Aby3: A mixed protocol framework for machine learning. In Proceedings
of the ACM SIGSAC Conference on Computer and Communications Security, 2018.

Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz Barak, and Ilya Sutskever. Deep
double descent: Where bigger models and more data hurt. Journal of Statistical Mechanics: Theory and
Experiment, 2021.

Lucien KL Ng and Sherman SM Chow. Sok: Cryptographic neural-network computation. In 2023 IEEE
Symposium on Security and Privacy (SP), 2023.

Thao Nguyen, Maithra Raghu, and Simon Kornblith. Do wide and deep networks learn the same things?
uncovering how neural network representations vary with width and depth. In International Conference on
Learning Representations, 2021.

Arpita Patra, Thomas Schneider, Ajith Suresh, and Hossein Yalame. Aby2.0: Improved mixed-protocol
secure two-party computation. In 30th USENIX Security Symposium, 2021.

Hongwu Peng, Shaoyi Huang, Tong Zhou, Yukui Luo, Chenghong Wang, Zigeng Wang, Jiahui Zhao, Xi Xie,
Ang Li, Tony Geng, et al. Autorep: Automatic relu replacement for fast private network inference. In
Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2023.

Ilija Radosavovic, Justin Johnson, Saining Xie, Wan-Yen Lo, and Piotr Dollár. On network design spaces for
visual recognition. In Proceedings of the IEEE/CVF international conference on computer vision, 2019.

Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, and Piotr Dollár. Designing network
design spaces. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2020.

Deevashwer Rathee, Mayank Rathee, Nishant Kumar, Nishanth Chandran, Divya Gupta, Aseem Rastogi,
and Rahul Sharma. Cryptflow2: Practical 2-party secure inference. In Proceedings of the ACM SIGSAC
Conference on Computer and Communications Security, 2020.

Nikola Samardzic, Axel Feldmann, Aleksandar Krastev, Srinivas Devadas, Ronald Dreslinski, Christopher
Peikert, and Daniel Sanchez. F1: A fast and programmable accelerator for fully homomorphic encryption.
In 54th Annual IEEE/ACM International Symposium on Microarchitecture, 2021.

Nikola Samardzic, Axel Feldmann, Aleksandar Krastev, Nathan Manohar, Nicholas Genise, Srinivas Devadas,
Karim Eldefrawy, Chris Peikert, and Daniel Sanchez. Craterlake: a hardware accelerator for efficient
unbounded computation on encrypted data. In ISCA, 2022.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mobilenetv2:
Inverted residuals and linear bottlenecks. In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2018.

SEAL. Microsoft SEAL (release 4.0). https://github.com/Microsoft/SEAL, March 2022. Microsoft
Research, Redmond, WA.

19

https://github.com/Microsoft/SEAL

Under review as submission to TMLR

Adi Shamir. How to share a secret. Communications of the ACM, 1979.

Gowthami Somepalli, Liam Fowl, Arpit Bansal, Ping Yeh-Chiang, Yehuda Dar, Richard Baraniuk, Micah
Goldblum, and Tom Goldstein. Can neural nets learn the same model twice? investigating reproducibility
and double descent from the decision boundary perspective. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2022.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethinking the
inception architecture for computer vision. In Proceedings of the IEEE conference on computer vision and
pattern recognition, 2016.

Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural networks. In
International Conference on Machine Learning, 2019.

Mingxing Tan and Quoc Le. Efficientnetv2: Smaller models and faster training. In International conference
on machine learning, 2021.

Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew Howard, and Quoc V Le.
Mnasnet: Platform-aware neural architecture search for mobile. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2019.

Sijun Tan, Brian Knott, Yuan Tian, and David J Wu. Cryptgpu: Fast privacy-preserving machine learning
on the gpu. In IEEE Symposium on Security and Privacy, 2021.

Yongqin Wang, G Edward Suh, Wenjie Xiong, Benjamin Lefaudeux, Brian Knott, Murali Annavaram, and
Hsien-Hsin S Lee. Characterization of mpc-based private inference for transformer-based models. In IEEE
International Symposium on Performance Analysis of Systems and Software (ISPASS), 2022.

Maurice Weiler and Gabriele Cesa. General e(2)-equivariant steerable cnns. Advances in Neural Information
Processing Systems, 2019.

Maurice Weiler, Mario Geiger, Max Welling, Wouter Boomsma, and Taco S Cohen. 3d steerable cnns:
Learning rotationally equivariant features in volumetric data. Advances in Neural Information Processing
Systems, 2018.

Sanghyun Woo, Shoubhik Debnath, Ronghang Hu, Xinlei Chen, Zhuang Liu, In So Kweon, and Saining
Xie. Convnext v2: Co-designing and scaling convnets with masked autoencoders. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023.

Kai Y. Xiao, Vincent Tjeng, Nur Muhammad (Mahi) Shafiullah, and Aleksander Madry. Training for faster
adversarial robustness verification via inducing reLU stability. In International Conference on Learning
Representations, 2019.

Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated residual transformations
for deep neural networks. In Proceedings of the IEEE conference on computer vision and pattern recognition,
2017.

Andrew Chi-Chih Yao. How to generate and exchange secrets. In 27th Annual Symposium on Foundations of
Computer Science, 1986.

Leon Yao and John Miller. Tiny imagenet classification with convolutional neural networks. CS 231N, 2015.

Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are features in deep neural
networks? Advances in neural information processing systems, 27, 2014.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv preprint, 2016.

Wenxuan Zeng, Meng Li, Wenjie Xiong, Wenjie Lu, Jin Tan, Runsheng Wang, and Ru Huang. Mpcvit:
Searching for mpc-friendly vision transformer with heterogeneous attention. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), 2023.

20

Under review as submission to TMLR

Yuke Zhang, Dake Chen, Souvik Kundu, Chenghao Li, and Peter A. Beerel. Sal-vit: Towards latency
efficient private inference on vit using selective attention search with a learnable softmax approximation.
In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2023.

Borui Zhao, Quan Cui, Renjie Song, Yiyu Qiu, and Jiajun Liang. Decoupled knowledge distillation. In
Proceedings of the IEEE/CVF Conference on computer vision and pattern recognition, 2022.

Mengxin Zheng, Qian Lou, and Lei Jiang. Primer: Fast private transformer inference on encrypted data.
arXiv preprint arXiv:2303.13679, 2023.

21

Under review as submission to TMLR

A Rationale Behind Choosing Specific α, β, and γ Values in HybReNet Networks

 0

 20

 40

 60

 80

 100

2,7,2 3,7,2 4,7,2 5,7,2 6,7,2 7,7,2

T
o

ta
l

R
eL

U
 (

%
)

Stem
Stage 1

Stage 2
Stage 3

Stage 4

(a) HRN-5x7x2x (Proposed)

 0

 20

 40

 60

 80

 100

2,6,2 3,6,2 4,6,2 5,6,2 6,6,2 7,6,2 8,6,2

T
o

ta
l

R
e
L

U
 (

%
)

(b) HRN-6x6x2x(Proposed)

 0

 20

 40

 60

 80

 100

2,5,2 3,5,2 4,5,2 5,5,2 6,5,2 7,5,2 8,5,2 9,5,2

T
o

ta
l

R
e
L

U
 (

%
)

(c) HRN-7x5x2x(Proposed)

Figure 14: ReLU distribution analysis in HRN networks by progressively increasing the α values from
α=2, enabling a comprehensive characterization of ReLU distribution. Once the network achieves ReLU
equalization – (5, 7, 2) for HRN-5x7x2x, (6, 6, 2) for HRN-6x6x2x, and (7, 5, 2) for HRN-7x5x2x – the
(relative) ReLU distribution remains stable with increasing α value.

We chose the smallest α values within a specified range for the given four pairs of (β, γ) based on two primary
considerations. Firstly, when the network attains ReLU equalization, the ReLU distribution becomes stable
and stays constant as α grows. This stability stems from the fact that altering α has the least impact on
the relative distribution of stage-wise ReLUs compared to increasing β and γ. Specifically, increasing α
results in a slight decrease in the proportion of Stage1 and a slight increase in the remaining stages. Secondly,
when ReLU optimization (DeepReDuce) is employed, increasing alpha in HRNs does not improve the ReLU
efficiency. Instead, it results in an inferior ReLU-accuracy tradeoff at lower ReLU counts (see Figure 15).

 68

 72

 76

 80

 32 64 128 256

C
IF

A
R

-1
0

0
 A

cc
u

ra
cy

 (
%

)

#ReLUs (K)

5x5x3x

6x5x3x

7x5x3x

DeepReDuce

SNL

(a) HRN-5x5x3x

 68

 72

 76

 80

 32 64 128 256

C
IF

A
R

-1
0

0
 A

cc
u

ra
cy

 (
%

)

#ReLUs (K)

5x7x2x

6x7x2x

7x7x2x

DeepReDuce

SNL

(b) HRN-5x7x2x

 68

 72

 76

 80

 32 64 128 256

C
IF

A
R

-1
0

0
 A

cc
u

ra
cy

 (
%

)

#ReLUs (K)

7x5x2x

8x5x2x

9x5x2x

DeepReDuce

SNL

(c) HRN-7x5x2x

 68

 72

 76

 80

 32 64 128 256

C
IF

A
R

-1
0

0
 A

cc
u

ra
cy

 (
%

)

#ReLUs (K)

6x6x2x

7x6x2x

8x6x2x

DeepReDuce

SNL

(d) HRN-6x6x2x

Figure 15: Effect of increasing α in HybeReNets: The ReLU-efficiency of networks with higher α does not
improve, in fact it significantly reduces at lower ReLU counts.

22

Under review as submission to TMLR

B Impact of Network Width and Distribution of ReLUs on Their Criticality Order

Table 8: Evaluating Stagewise ReLU Criticality in ResNet18 (R18) BaseCh and StageCh Networks, on
CIFAR-100. The criticality metric values (Ck) for each stage are determined using the Jha et al. (2021)
method. Notably, the criticality order for both BaseCh and StageCh networks remains identical to the
original ResNet18 sequence: S3 > S2 > S4 > S1(Higher Ck implies more critical ReLUs)

Networks Stage1 Stage2 Stage3 Stage4
#ReLUs Acc(%) +KD(%) Ck #ReLUs Acc(%) +KD(%) Ck #ReLUs Acc(%) +KD(%) Ck #ReLUs Acc(%) +KD(%) Ck

R18(m=16)-2x2x2x 81.92K 52.08 52.67 0.00 32.77K 61.24 62.10 7.39 16.38K 63.00 64.64 9.84 8.19K 58.09 59.70 6.07
R18(m=32)-2x2x2x 163.84K 59.19 60.19 0.00 65.54K 65.91 66.47 4.69 32.77K 65.7 67.28 5.55 16.38K 60.48 62.22 1.67
R18(m=64)-2x2x2x 327.68K 62.65 63.13 0.00 131.07K 67.18 68.32 3.69 65.54K 68.75 70.29 5.34 32.77K 62.63 63.47 0.27
R18(m=128)-2x2x2x 655.36K 62.34 64.15 0.00 262.14K 69.28 70.56 4.34 131.07K 71.25 72.04 5.61 65.54K 63.59 64.58 0.32
R18(m=256)-2x2x2x 1310.72K 64.81 65.22 0.00 524.29K 71.95 72.43 4.65 262.14K 72.69 73.77 5.79 131.07K 64.79 65.77 0.39
R18(m=16)-3x3x3x 81.92K 52.77 53.07 0.00 49.15K 64.93 65.67 9.59 36.86K 66.23 67.96 11.57 27.65K 61.74 63.43 8.21
R18(m=16)-4x4x4x 81.92K 52.19 52.20 0.00 65.54K 65.62 66.22 10.46 65.54K 67.82 69.16 12.66 65.54K 63.52 65.46 9.89
R18(m=16)-5x5x5x 81.92K 50.38 50.65 0.00 81.92K 66.10 66.63 11.74 102.40K 70.17 70.64 14.46 128.00K 64.86 65.43 10.52
R18(m=16)-6x6x6x 81.92K 50.60 51.53 0.00 98.30K 66.74 67.11 11.30 147.46K 70.67 72.09 14.49 221.18K 65.22 66.43 10.21
R18(m=16)-7x7x7x 81.92K 50.93 49.07 0.00 114.69K 66.59 67.89 13.50 200.70K 72.08 73.33 16.74 351.23K 65.95 67.88 12.48

It remains intriguing to examine if the ReLUs’ criticality order in baseline networks, such as ResNet18,
remains consistent when the network width is modified, specifically in the BaseCh, StageCh, and HRN
variations. To this end, we compute the stagewise criticality metric for ResNet18 BaseCh and StageCh
networks (Table 8), and HRN networks with α values between 2 and 7 (Table 9. Interestingly, the criticality
order of the standard ResNet18 is preserved in BaseCh and StageCh models, and all HRNs, except for those
with α=2 (HRN-2x5x3x, HRN-2x5x2x, HRN-2x6x2x, and HRN-2x7x2x). Specifically, the criticality order of
Stage2 and Stage3 is shuffled in HRNs with α=2, while the most and least critical stages remain unchanged
(i.e., S3 > S2 > S4 > S1). To account for this altered criticality order, we recompute α, β, and γ using
Algorithm 1, and obtain two HRNs, HRN-2x6x3x and HRN-2x9x2x; however, the criticality order in these
two HRNs does not adapt to the altered criticality order (highlighted as green in Table 9).

Table 9: Evaluating Stagewise ReLU criticality in (ResNet18-based) HRN networks with α values spanning 2
to 7, on the CIFAR-100 dataset. Criticality metrics (Ck) for each stage are determined using the method
in Jha et al. (2021). Notably, the criticality order of all HRN networks, except the smallest one with α=2,
aligns with the original ResNet18 order (S3 > S2 > S4 > S1). HRNs with the minimum α, β, and γ required
for (full) ReLU equalization are emphasized in gray.

Networks Stage1 Stage2 Stage3 Stage4
#ReLUs Acc(%) +KD(%) Ck #ReLUs Acc(%) +KD(%) Ck #ReLUs Acc(%) +KD(%) Ck #ReLUs Acc(%) +KD(%) Ck

HRN-2x7x2x 81.92K 52.14 53.39 0.00 32.77K 61.63 61.59 6.42 57.34K 68.44 69.82 12.37 28.67K 62.15 63.40 7.91
HRN-3x7x2x 81.92K 51.61 53.29 0.00 49.15K 64.46 65.26 9.11 86.02K 69.88 70.77 12.80 43.01K 63.10 64.17 8.36
HRN-4x7x2x 81.92K 51.28 49.42 0.00 65.54k 65.93 66.47 12.72 114.69K 70.94 72.16 16.32 57.34K 63.70 64.77 11.56
HRN-5x7x2x 81.92K 49.82 48.36 0.00 81.92K 66.17 67.59 14.13 143.36K 71.40 72.18 16.83 71.68K 64.10 65.35 12.60
HRN-6x7x2x 81.92K 51.23 48.48 0.00 98.30K 66.88 68.06 14.20 172.03K 71.86 72.73 16.91 86.02K 64.15 65.75 12.64
HRN-7x7x2x 81.92K 50.11 52.40 0.00 114.69K 66.92 68.29 11.40 200.70K 71.69 73.16 14.32 100.35K 63.82 65.53 9.51
HRN-2x6x2x 81.92K 52.29 53.19 0.00 32.77K 61.62 62.00 6.90 49.15K 67.36 69.51 12.43 24.58K 61.64 63.25 8.04
HRN-3x6x2x 81.92K 52.50 52.80 0.00 49.15K 64.50 65.64 9.78 73.73K 68.61 70.96 13.44 36.86K 62.77 64.09 8.77
HRN-4x6x2x 81.92K 53.23 53.32 0.00 65.54K 65.74 66.03 9.48 98.30K 70.47 71.54 13.22 49.15K 63.59 64.82 8.76
HRN-5x6x2x 81.92K 50.79 51.64 0.00 81.92K 66.89 67.27 11.48 122.88K 70.33 71.50 14.18 61.44K 63.97 64.94 9.97
HRN-6x6x2x 81.92K 50.01 50.59 0.00 98.30K 66.57 67.94 12.58 147.46K 71.18 72.59 15.51 73.73K 64.13 65.39 10.95
HRN-7x6x2x 81.92K 51.01 49.64 0.00 114.69K 66.74 68.57 13.58 172.03K 71.84 72.84 16.18 86.02K 64.54 65.16 11.36
HRN-2x5x2x 81.92K 52.03 53.05 0.00 32.77K 61.60 61.76 6.82 40.96K 66.64 68.29 11.75 20.48K 61.02 62.58 7.71
HRN-3x5x2x 81.92K 53.43 52.61 0.00 49.15K 64.57 65.71 9.97 61.44K 68.40 69.93 12.98 30.72K 62.32 63.42 8.51
HRN-4x5x2x 81.92K 52.65 52.33 0.00 65.54K 65.60 66.89 10.86 81.92K 69.81 70.85 13.61 40.96K 63.14 63.94 8.95
HRN-5x5x2x 81.92K 49.15 51.16 0.00 81.92K 66.26 67.47 11.98 102.40K 70.15 71.69 14.85 51.20K 63.55 64.67 10.26
HRN-6x5x2x 81.92K 49.06 52.10 0.00 98.30K 66.56 68.08 11.59 122.88K 71.33 71.85 14.10 61.44K 63.59 64.89 9.59
HRN-7x5x2x 81.92K 51.58 51.93 0.00 114.69K 66.94 67.89 11.45 143.36K 70.79 72.87 14.79 71.68K 64.02 65.23 9.86
HRN-2x5x3x 81.92K 52.36 53.68 0.00 32.77K 61.39 61.30 5.97 40.96K 66.78 68.17 11.17 30.72K 62.01 63.83 7.99
HRN-3x5x3x 81.92K 51.05 52.89 0.00 49.15K 64.64 65.10 9.30 61.44K 68.87 70.14 12.93 46.08K 63.66 64.32 8.74
HRN-4x5x3x 81.92K 51.57 50.62 0.00 65.54K 65.66 66.06 11.52 81.92K 69.12 70.13 14.33 61.44K 63.64 65.58 11.21
HRN-5x5x3x 81.92K 50.22 52.41 0.00 81.92K 66.42 67.55 11.12 102.40K 70.15 70.97 13.42 76.80K 64.21 65.59 9.73
HRN-6x5x3x 81.92K 50.28 50.45 0.00 98.30K 65.95 67.61 12.45 122.88K 70.68 71.29 14.88 92.16K 64.37 65.87 11.23
HRN-7x5x3x 81.92K 50.12 50.31 0.00 114.69K 66.85 67.95 12.66 143.36K 71.20 71.87 15.23 107.52K 64.72 65.58 11.01

HRN-2x9x2x 81.92K 51.86 53.22 0.00 32.77K 61.13 61.65 6.60 73.73K 69.46 70.28 12.63 36.86K 62.53 64.25 8.57
HRN-2x6x3x 81.92K 52.75 52.85 0.00 32.77K 61.33 61.44 6.73 49.15K 67.36 68.76 12.11 36.86K 62.69 64.59 9.12

23

Under review as submission to TMLR

C Additional Experimental Results

C.1 ReLU Equalization through Network’s Depth in BaseCh Networks

ReLU equalization through width in HybReNets results in two simultaneous effects. Firstly, it increases
the network’s complexity per unit of nonlinearity, measured as parameters and FLOPs per unit of ReLU.
Secondly, it aligns the distribution of ReLUs in their criticality order. However, to analyze the significance of
these effects independently, we apply ReLU equalization through depth and augment the base channel counts
to increase the parameters and FLOPs per unit of ReLU.

 70

 72

 74

 76

 78

 80

 82

 128 256 512 1024 2048

C
IF

A
R

-1
0
0
 A

cc
u
ra

cy
 (

%
)

#ReLUs (K)

HRN[1,7,5,2]

HRN[1,6,6,2]

HRN[1,5,7,2]

HRN[1,5,5,3]

ResNet18(StageCh)

ResNet18(BaseCh)

(a) ReLU-efficiency comparison

 70

 72

 74

 76

 78

 80

 82

 32 64 128 256 512 1024 2048 4096 8192 16384

C
IF

A
R

-1
0
0
 A

cc
u
ra

cy
 (

%
)

#FLOPs (M)

HRN[1,7,5,2]

HRN[1,6,6,2]

HRN[1,5,7,2]

HRN[1,5,5,3]

ResNet18(StageCh)

ResNet18(BaseCh)

(b) FLOPs-efficiency comparison
Figure 16: ReLU and FLOPs efficiency when network’s ReLU is equalized, in their criticality order, through
depth, by altering the stage compute ratios (their modified values are shown in bracket []). The network’s
complexity per units of nonlinearity (ReLUs) is increased by augmenting m ∈ {16, 32, 64, 128, 256}. ReLU
and FLOPs efficiency of these HRNs are either similar or worse compared to BaseCh networks, suggesting
the effectiveness of ReLU equalization through width (by altering α, β, and γ)

In this study, we use the classical ResNet18 with m=16 and fixed α=β=γ=2; however, set the stage compute
ratios (φ1, φ2, φ3, and φ4) as design hyperparameters. Now, we employ Algorithm 1 for ReLU equalization
and solve compound inequalities to obtain the depth hyperparameters. Specifically, we determine the depth
hyperparameters (φ1, φ2, φ3, φ4) ∈ {(1,5,5,3); (1,5,7,2); (1,6,6,2); and (1,7,5,2)} that correspond to the
minimum values enabling ReLU equalization. It is worth noting that the sum of all the stage compute ratios
results in a network’s global depth of 14. Next, we increase the parameters and FLOPs per unit of ReLU by
varying m ∈ {16, 32, 64, 128, and 256}. The experimental results are shown in Figure 16, where we compare
the ReLU and FLOPs efficiency with BaseCh and StageCh networks. Interestingly, we observe that the
ReLU and FLOPs efficiency of the networks derived above are either similar or worse compared to BaseCh
networks. For instance, HRN[1,5,5,3] exhibits inferior ReLU/FLOPs efficiency at higher ReLU/FLOPs count
compared with BaseCh networks. Consequently, this underscores the significance of ReLU equalization
through width adjustment by altering α, β, and γ, and demonstrates that ReLU equalization alone does not
yield the desired benefits in HybReNets.

C.2 Additional Results for Capacity-Criticality-Tradeoff

We conducted additional experiments on different HybReNets to investigate further the “Capacity-Criticality
Tradeoff” phenomenon shown in Figure 6. In particular, for each set of experiments, we chose three HRN
networks with reduced values of α and a fixed (β,γ) and employed DeepReDuce and SNL ReLU optimization
techniques. The results are presented in Figure 17. Notably, lowering α results in a higher fraction of the
network’s ReLUs in Stage1, as shown in Table 9. For instance, HRN-6x6x2x, HRN-4x6x2x, and HRN-2x6x2x
have the Stage1 fraction of the network’s total ReLU count as 20.4%, 27.8%, and 43.5%, respectively. Our
observations on DeepReDuce and SNL are consistent with those in Figure 6. Precisely, HRN-6x6x2x and
HRN-4x6x2x outperform HRN-2x6x2x at higher ReLU counts, whereas HRN-2x6x2x is superior at lower
ReLU counts (Figure 17(b,e)).

24

Under review as submission to TMLR

 60

 64

 68

 72

 76

 80

 8 16 32 64 128C
IF

A
R

-1
0
0
 A

cc
u
ra

cy
 (

%
)

#ReLUs (K)

HRN-2x5x3x

HRN-4x5x3x

HRN-5x5x3x

(a) DeepReDuce on HRN-5x5x3x

 60

 64

 68

 72

 76

 80

 8 16 32 64 128C
IF

A
R

-1
0
0
 A

cc
u
ra

cy
 (

%
)

#ReLUs (K)

HRN-2x6x2x

HRN-4x6x2x

HRN-6x6x2x

(b) DeepReDuce on HRN-6x6x2x

 60

 64

 68

 72

 76

 80

 8 16 32 64 128C
IF

A
R

-1
0
0
 A

cc
u
ra

cy
 (

%
)

#ReLUs (K)

HRN-2x7x2x

HRN-4x7x2x

HRN-5x7x2x

(c) DeepReDuce on HRN-5x7x2x

 64

 68

 72

 76

 16 32 64 128C
IF

A
R

-1
0
0
 A

cc
u
ra

cy
 (

%
)

#ReLUs (K)

HRN-2x5x3x

HRN-4x5x3x

HRN-5x5x3x

(d) SNL on HRN-5x5x3x

 64

 68

 72

 76

 16 32 64 128C
IF

A
R

-1
0
0
 A

cc
u
ra

cy
 (

%
)

#ReLUs (K)

HRN-2x6x2x

HRN-4x6x2x

HRN-6x6x2x

(e) SNL on HRN-6x6x2x

 64

 68

 72

 76

 16 32 64 128C
IF

A
R

-1
0
0
 A

cc
u
ra

cy
 (

%
)

#ReLUs (K)

HRN-2x7x2x

HRN-4x7x2x

HRN-5x7x2x

(f) SNL on HRN-5x7x2x

Figure 17: Capacity-Criticality Tradeoff in HRN networks for coarse/fine-grained ReLU optimization DeepRe-
Duce/SNL. HRN networks with decreasing value of α has higher proportion of Stage1 (least-critical) ReLUs,
and exhibit superior performance at lower ReLU counts.

C.3 Explanation and Intuition for Capacity-Criticality Tradeoff

We have observed that networks with a higher percentage of least-critical (Stage1) ReLUs tend to have lower
overall ReLU counts. This pattern is consistent across traditional networks like ResNet18 and WRN22x8, as
well as HRN networks. For example, WRN22x8 and ResNet18, used in SNL Cho et al. (2022b) and SENet
Kundu et al. (2023a) for advancing the ReLU-accuracy Pareto frontier at different ReLU counts, contain
1392.6K and 557K ReLUs, respectively. Also, in HybReNet, when we decrease the value of α while keeping β
and γ, the total ReLU count in the network decreases, and the percentage of Stage1 ReLUs increases. For
instance, HRN-6x6x2x, HRN-4x6x2x, and HRN-2x6x2x have ReLU counts of 401.4K, 294.9K, and 188.4K,
respectively. This raises the fundamental question of what drives the better performance at lower ReLU counts
— the proportion of ReLUs in Stage1 or the total number of ReLUs in the network? Further investigation is
required to shed light on this issue.

To pinpoint the primary factor influencing PI performance at lower ReLU counts, we conducted an experiment
with ResNet34 and a ResNet18 variant (ResNet18(m = 16)-4x4x4x), having a uniform ReLU distribution, as
employed in Ghodsi et al. (2020) and Sphynx Cho et al. (2022a). Results are shown in Table 10. Despite
having 3.5× fewer ReLUs, the performance of ResNet18(m=16)-4x4x4x is inferior to that of ResNet34 when
ReLU counts are below 50K. This is due to a lower percentage (29.41%) of Stage1 ReLUs in comparison
to ResNet34 (47.46%). Likewise, the improved performance of ResNet18 over WRN22x8 at lower ReLU
counts, as seen in previous studies Kundu et al. (2023a); Cho et al. (2022b), cannot be ascribed to the total
ReLU count. Instead, it is attributed to the proportion of Stage1 ReLUs, with ResNet18 having 58.8% and
WRN22x8 having 48.2%.

To better understand why having a higher fraction of Stage1 ReLUs is preferable for achieving superior
performance at lower ReLU counts, we examined the ReLU dropping strategies employed in the prevalent
ReLU optimization techniques. Specifically, we discussed the strategies used by DeepReDuce Jha et al. (2021),
SNL Cho et al. (2022b), and SENet Kundu et al. (2023a), and found that they consistently demonstrate
that Stage1 ReLUs are the least critical, and as such, all Stage1 ReLUs are dropped first to achieve very low
ReLU counts. Consequently, networks with a greater proportion of least-critical ReLUs will drop a lower
fraction of their critical ReLUs when aiming for very low ReLU counts, as opposed to networks with a lower
proportion of least-critical ReLUs. This can be observed in Figure 18. In particular, regardless of the total

25

Under review as submission to TMLR

Network #ReLUs Stage1(%) 180K 100K 50K 15K
ResNet34 966.7K 47.46 76.35% 74.55% 72.07% 66.46%
4x4x4x 278.5K 29.41 77.08% 75.03% 71.38% 64.77%

Table 10: Performance comparison (using SNL ReLU
optimization) of ResNet34 and ResNet18 variant
(ResNet18(m=16)-4x4x4x), having a uniform distri-
bution of ReLUs. Stage1(%) is the fraction of net-
work’s ReLU in Stage1. Despite having 3.5× fewer
ReLUs, the performance of 4x4x4x remains inferior to
ResNet34 when the ReLU count falls below 50K. Thus,
the key determinant for the superior performance at
very low ReLU count is the fraction of least-critical
ReLUs, rather than the network’s total ReLU count.

 0

 20

 40

 60

 80

 100

WRN-22x8 ResNet18 ResNet34 4x4x4xD
ro

p
p
ed

 R
eL

U
 f

ra
ct

io
n
(%

) Non-critical ReLUs Critical ReLUs

Figure 18: Networks with higher fraction of least-
critical (Stage1) ReLUs, ResNet18 (ResNet34) drops
lesser fraction of their (remaining stages) critical Re-
LUs, compared to WRN22x8 (4x4x4x), to achieve a
ReLU count of 25K, regardless of the their absolute
ReLU counts.

ReLU count of the network, WRN22x8 (ResNet18(m=16)-4x4x4x) drops a higher fraction of their critical
ReLUs compared to ResNet18 (ResNet34) to attain a ReLU count of 25K. Thus, dropping a higher fraction
of critical ReLUs leads to a significant loss in accuracy and results in inferior performance.

Further, we note that the observation as mentioned above resonates with the findings made in Yosinski et al.
(2014) — neurons in the middle layers of a network (i.e., Stage2 and Stage3) exhibit fragile co-adaption,
which is challenging to re-learn. Consequently, dropping more ReLUs from these stages in a network with a
lower fraction of least-critical (Stage1) ReLUs would disrupt the fragile co-adaption and significantly reduce
performance.

C.4 SNL ReLU Optimization on HybReNet Networks

We employ SNL ReLU optimization Cho et al. (2022b) on the four distinct HRN configurations – HRN-5x5x3x,
HRN-5x7x2x, HRN-6x6x2x, and HRN-7x5x2x – to assess the efficacy of fine-grained ReLU optimization in
the context of HRNs. Results are presented in Figure 19. Evidently, the HRNs with SNL ReLU optimization
are inferior to the vanilla SNL, employed on WRN22x8 (for #ReLUs > 100K) and ResNet18 (for #ReLUs ≤
100K). However, employing SNL on ReLU-Thinned HRNs results in an accuracy boost, up to 3%, across all
the ReLU counts. This leads to at-par performance with vanilla SNL, thereby emphasizing the significance of
ReLU Thinning even for the fine-grained ReLU optimization.

Notice that the aforementioned findings are consistent with the observations made in Figure 7 and Table 4,
demonstrating the limitations of SNL when the distribution of ReLU altered. Specifically, when the proportion
of the network’s ReLU belonging to Stage1 decreases and those in the other stages increase. This implies
that the benefits of fine-grained ReLU optimization may be contingent on a higher proportion of least-critical
(Stage1) ReLUs. Further, to assess the efficacy of ReLU Thinning in the context of fine-grained ReLU
optimization, we compare the total number of ReLUs within a network before and after the implementation
of the technique. For instance, in the case of a 50K ReLU budget allocated to the HRN-5x7x2x model, the
SNL algorithm identifies 50K essential ReLUs from an initial pool of 363.5K ReLUs, subsequently eliminating
312.5K ReLUs. Conversely, when employing the Thinned HRN network, the SNL algorithm detects the 50K
critical ReLUs from a diminished pool of 181.25K ReLUs and drops 131.25K ReLUs, given that Thinning
eliminates half of the network’s ReLUs from alternating layers, irrespective of their criticality. This results
into an accuracy boost of 2.44% (on CIFAR-100). Thus, ReLU Thinning effectively reduces the search space
required to identify critical ReLUs.

D Detailed Analysis of ReLU-Accuracy Pareto Points

In this section, we detailed the ReLU optimization steps used in the ReLU-Accuracy Pareto frontier,
transitioning from higher to lower accuracy points, as shown in Figure 11 (a,b) and the Table 6. When
employing ReLU-reuse, we fixed m=16; however, the network’s FLOPs count reduces due to the group-wise

26

Under review as submission to TMLR

 66

 69

 72

 75

 78

 16 32 64 128 256

C
IF

A
R

-1
0

0
 A

cc
u

ra
cy

 (
%

)

#ReLUs (K)

HRN(w/o Th.)+SNL

HRN(w/ Th.)+SNL

SNL(vanilla)

(a) HRN-5x5x3x

 66

 69

 72

 75

 78

 16 32 64 128 256

C
IF

A
R

-1
0

0
 A

cc
u

ra
cy

 (
%

)

#ReLUs (K)

HRN(w/o Th.)+SNL

HRN(w/ Th.)+SNL

SNL(vanilla)

(b) HRN-5x7x2x

 66

 69

 72

 75

 78

 16 32 64 128 256

C
IF

A
R

-1
0

0
 A

cc
u

ra
cy

 (
%

)

#ReLUs (K)

HRN(w/o Th.)+SNL

HRN(w/ Th.)+SNL

SNL(vanilla)

(c) HRN-6x6x2x

 66

 69

 72

 75

 78

 16 32 64 128 256

C
IF

A
R

-1
0

0
 A

cc
u

ra
cy

 (
%

)

#ReLUs (K)

HRN(w/o Th.)+SNL

HRN(w/ Th.)+SNL

SNL(vanilla)

(d) HRN-7x5x2x

Figure 19: HybReNets with fine-grained ReLU optimization: HRNs with SNL (fine-grained) ReLU optimiza-
tion exhibit a suboptimal ReLU-Accuracy tradeoff compared to the vanilla SNL approach used in traditional
networks such as ResNet18 and WRN22x8. However, employing ReLU-Thinning (a coarse-grained ReLU
optimization step used in DeepReDuce), prior to SNL optimization yields performance on par with the vanilla
SNL method, thus highlighting the significance of ReLU Thinning in ReLU optimization, even in the context
of fine-grained ReLU optimization.

27

Under review as submission to TMLR

convolution. For instance, the HRN-2x6x3x model with a ReLU-reuse factor of four has 370.1M FLOPs,
compared to the original HRN-2x6x3x model (m=16) with 527.4M FLOPs, when used on CIFAR-100 (see
Table 12). Nonetheless, because of specific implementation constraints of group convolution in Microsoft
SEAL SEAL, we calculated the HE latency without considering the FLOP reduction resulting from group
convolution in ReLU-reuse.

Table 11: Network configurations and ReLU optimization steps employed for the HybReNet points in Table
6. Accuracies (TinyImageNet) are separately shown for vanilla KD Hinton et al. (2015) and DKD Zhao
et al. (2022), highlighting the benefits of improved architectural design and distillation method.Re2 denotes
ReLU-reuse, and used for efficient PI at very low ReLU counts.

HybReNet m
ReLU optimization steps #ReLU #FLOPs Accuracy(%) Acc./ReLU

Culled Thinned Re2 KD DKD
5x5x3x 16 NA S1+S2+S3+S4 NA 653.3K 4216.4M 65.76 67.58 0.10
2x5x3x 32 S1 S2+S3+S4 NA 417.8K 2841.7M 64.11 66.10 0.16
5x5x3x 8 NA S1+S2+S3+S4 NA 326.6K 1055.4M 61.92 64.92 0.20
2x5x3x 8 S1 S2+S3+S4 NA 104.4K 178.9M 56.37 58.90 0.56
2x5x3x 16 S1 S2+S3+S4 4 52.2K 486.3M 53.13 54.46 1.04

Table 12: Network configurations and ReLU optimization steps employed for the Pareto points in Figure 11
(a,b), along with and the HybReNet points used for the comparison with SOTA PI methods and ConvNeXt-V2
Woo et al. (2023) as illustrated in Table 12. Re2 denotes ReLU-reuse, a key method in achieving significantly
reduced ReLU-counts.

Nets m ReLU optimization steps #ReLU #FLOPs Accuracy(%) Acc./ReLU
Culled Thinned Re2 KD DKD

C
IF
A
R
-1
00

H
yb

R
eN

et

4x6x3x 16 NA S1+S2+S3+S4 NA 317.4K 2061.1M 80.14 81.36 0.26
2x6x3x 16 S1 S2+S3+S4 NA 134.1K 527.4M 78.80 79.56 0.59
2x6x3x 8 S1 S2+S3+S4 NA 67.1K 132.2M 74.84 76.91 1.15
2x6x3x 16 S1 S2+S3+S4 4 33.5K 370.1M 70.93 73.89 2.21
2x6x3x 16 S1 S2+S3+S4 8 16.6K 394.8M 68.17 69.70 4.19
2x6x3x 16 S1 S2+S3+S4 16 8.3K 413.4M 62.44 64.65 7.78

T
in
yI
m
ag

eN
et

H
yb

R
eN

et

4x6x3x 16 NA S1+S2+S3+S4 NA 1269.8K 8244.2M 68.90 70.29 0.06
4x6x3x 12 NA S1+S2+S3+S4 NA 952K 4638.8M 68.16 69.15 0.07
2x6x3x 16 S1 S2+S3+S4 NA 536.6K 2109.4M 66.29 67.48 0.13
2x6x3x 12 S1 S2+S3+S4 NA 402K 1187.5M 64.51 65.77 0.16
2x6x3x 8 S1 S2+S3+S4 NA 268.3K 528.6M 60.97 64.02 0.24
2x6x3x 16 S1 S2+S3+S4 4 134.1K 1480.1M 57.84 61.52 0.46
2x6x3x 16 S1 S2+S3+S4 8 67.1K 1579.2M 54.47 56.24 0.84
2x6x3x 16 S1 S2+S3+S4 16 33.5K 1653.5M 49.13 49.96 1.49

C
on

vN
eX

t T 96 S1 S2+S3+S4 NA 1622K 11801M 68.32 69.85 0.04
N 80 S1 S2+S3+S4 NA 1278K 9080.2M 66.73 68.75 0.05
P 64 S1 S2+S3+S4 NA 720.9K 3435.7M 65.42 67.08 0.09
F 48 S1 S2+S3+S4 NA 540.7K 1935M 64.23 65.72 0.12
A 40 S1 S2+S3+S4 NA 450.6K 1345.1M 63.23 64.08 0.14

E Discussion

E.1 FLOP efficiency Restricts the Flexibility for Widening Classical Neural Networks

Classical networks follow a convention of doubling the filter count when downsampling feature maps by a
factor of two to avoid representational bottlenecks Szegedy et al. (2016). This results in a fixed stagewise
channel multiplication factor (shown in Figure 2) of α = β = γ = 2 for most classical networks. Even for

28

Under review as submission to TMLR

Table 13: Depiction of stagewise FLOPs and ReLU trend variation, with α,β, and γ, in StageCh and HRN
networks. The least and most critical ReLUs are colored in red and blue, respectively. Evidently, in constrast
with StageCh network, ReLU-equalization in HRNs restrict the growth of FLOPs in deeper layers
and networks achieve ReLU efficiency at par with StageCh network; however, with fewer FLOPs. This way
HRN networks achieve ReLU-FLOP-Accuracy balance.

Stage1 Stage2 Stage3 Stage4 (α, β, γ)=2 2<(α, β, γ)<4 (α, β, γ)=4 (α, β, γ)>4

FLOPs 1 α2

4
α2β2

16
α2β2γ2

64 Layerwise FLOPs constant increasing (↑) increasing (↑↑) increasing (↑↑↑)

ReLUs 1 α
4

αβ
16

αβγ
64 Layerwise ReLUs decreasing (↓↓) decreasing (↓) constant increasing (↑)

(α, β, γ) = (2, 2, 2) (α, β, γ) = (3, 3, 3) (α, β, γ) = (4, 4, 4) (α, β, γ) = (6, 6, 6)
Stage1 Stage2 Stage3 Stage4 Stage1 Stage2 Stage3 Stage4 Stage1 Stage2 Stage3 Stage4 Stage1 Stage2 Stage3 Stage4

FLOPs 64 64 64 64 64 144 324 729 64 256 1024 4096 64 576 5184 46656
ReLUs 64 32 16 8 64 48 36 27 64 64 64 64 64 96 144 216

HRN-5x7x2x HRN-7x5x2x HRN-6x6x2x HRN-5x5x3x
Stage1 Stage2 Stage3 Stage4 Stage1 Stage2 Stage3 Stage4 Stage1 Stage2 Stage3 Stage4 Stage1 Stage2 Stage3 Stage4

FLOPs 64 400 4900 4900 64 784 4900 4900 64 576 5184 5184 64 400 2500 5625
ReLUs 64 80 140 70 64 112 140 70 64 96 144 72 64 80 100 75

designing sate-of-the-art FLOPs-efficient vision models, RegNet Radosavovic et al. (2020), stagewise channel
multiplication factor are restricted as 1.5 ≤(α, β, γ) ≤ 3. Conventional network design paradigms prioritize
FLOP efficiency, so the stagewise multiplication factor is typically conservative. The quadratic dependency of
FLOPs on the channel counts (see Figure 2), along with the multiplicative effect of stagewise multiplication
factors, means that even a small increase in these factors can lead to a significant increase in FLOPs count,
thus hampering FLOPs efficiency.

In contrast, we observed that networks having a higher value of β, along with lower values of α and γ, provide
a better ReLU-FLOP-Accuracy tradeoff compared to the classical networks with α = β = γ = 2. Notably,
HRN-2x5x2x, HRN-2x5x2x, HRN-2x6x2x, and HRN-2x7x2x outperform ResNet18 baseline networks, with
both m=64 and m=32, and exhibit a better ReLU-FLOP-Accuracy balance.

E.2 Regulating FLOPs in Deeper Layers of HybReNets

The derivation steps for ReLU equalization on a four-stage network show that β and γ values are bounded by
βγ < 16 and γ < 4. These constraints effectively limit the growth of FLOPs in deeper layers, making HRN
networks more efficient in terms of computation than their StageCh counterparts, which exhibit homogeneous
sets of α, β, and γ, leading to an undesirably rapid growth of FLOPs in deeper layers. To visualize this, we
compute the normalized FLOPs in ResNet18-based StageCh networks, contrasting with HRNs. We observed
that the normalized FLOPs in Stage3 and Stage4 of ResNet18 are expressed as α2β2

16 and α2β2γ2

64 (respectively);
thus, network with γ=2 would have equal FLOPs in Stage3 and Stage4. This is evident from the (normalized)
stagewise FLOPs ratio for HRN-5x7x2x, HRN-7x5x2x, and HRN-6x6x2x networks in Table 13.

In conclusion, constraints on γ, which must be less than 4, keep the ReLU count of Stage4 lower than that of
Stage3 (most critical stage), which in turn restricts the FLOPs count of Stage4. While further limiting α
and β values can reduce the network’s FLOPs, this would also reduce the proportion of the most significant
(Stage3) ReLUs. As a result, a criticality-aware network design streamlines both the ReLU and FLOPs in
networks, prevents superfluous FLOPs (in contrast with StageCh networks), and maximizes the utilization of
the network’s FLOPs for a given ReLU count.

E.3 Understanding Accuracy Plateau in Homogeneous Channel Scaling through the Deep Double
Descent Phenomenon

A distinct trend in the ReLU-Accuracy tradeoff has been observed (see Figure 3(a,b))as the width of models
is increased by augmenting α, β, and γ. Specifically, accuracy initially increases with increasing values of α, β,
and γ, reaches a saturation point, then increases again at higher ReLU counts. This trend is more prominent
in models with smaller depth, such as ResNet18, and disappears in deeper models, like ResNet56, where
performance does not improve after saturation. The observed saturation trend in ReLU-accuracy tradeoff

29

Under review as submission to TMLR

can be explained by the “model-wise deep double descent” phenomenon, which becomes more pronounced
with higher label noise Belkin et al. (2019); Nakkiran et al. (2021); Somepalli et al. (2022). In the presence of
label noise, a U-shaped curve appears in the classical (under-parameterized) regime due to a bias-variance
tradeoff. In the over-parameterized regime, accuracy improves due to the regularization enabled by the strong
inductive bias of the network. However, with zero label noise, the test error plateaus around the interpolation
threshold, resulting in a flat trend similar to the one shown in Figure 3(a,b) instead of a U-shaped curve.

E.4 Why RegNet and ConvNeXt Models are Selected for Our Case Study?

RegNets are models that have been designed using a semi-automated network design method, which is
parameterized by the stage compute ratio (φ1, φ2, φ3, φ4), base channel count (m), and stagewise channel
multiplication factors as 1.5 ≤(α, β, γ)≤ 3. On the other hand, ConvNeXts are redesigned ResNets with
modified values of m and φ1, φ2, φ3, φ4. For example, the ConvNeXt-T model has a stage compute ratio of
[3, 3, 9, 3], which is different from the [3, 4, 6, 3] ratio used in ResNet34, and a base channel count of m=96,
which is higher than the m=64 used in ResNet34. As a result, the unconstrained design choices in RegNets
and the modified depth and width in ConvNeXt models make them suitable for our case study, where we
investigate their impact on ReLUs’ distribution and the ReLU-FLOP-Accuracy balance.

E.5 Potential of ReLU Equalization as a Unified Network Design Principle

The field of deep learning has witnessed remarkable progress in recent years, primarily due to the development
of increasingly sophisticated neural network architectures. Traditionally, researchers have relied on manual
network design techniques such as ResNet He et al. (2016), ResNeXt Xie et al. (2017), ConvNeXt Liu et al.
(2022), etc., or neural architecture search methods Liu et al. (2018); Tan & Le (2019); Howard et al. (2019); Tan
et al. (2019). However, these approaches have their limitations. Manual techniques often lead to suboptimal
models as design choices increase, while neural architecture search needs to be more interpretable and may not
generalize beyond restricted settings. Additionally, both methods require significant computational resources
to find optimal design hyper-parameters when networks are designed from scratch.

 0

 20

 40

 60

 80

 100

0.2 0.4 0.6 0.8 1.6 3.2 4.0 6.4 8.0 12 16 32

T
o
ta

l
R

eL
U

 (
%

)

Stem
Stage 1

Stage 2
Stage 3

Stage 4

(a) RegNet-X

 0

 20

 40

 60

 80

 100

R34 C-T C-A C-F C-P C-N HRN

T
o
ta

l
R

eL
U

 (
%

)

Stem
Stage 1

Stage 2
Stage 3

Stage 4

(b) ResNet34 and ConvNeXt-V2

Figure 20: Analyzing the distribution of ReLU in RegNet-X Radosavovic et al. (2020) and ConvNeXt-V2
Woo et al. (2023) architectures reveals interesting patterns. In all RegNet-X models, ReLUs are arranged
precisely according to their criticality order. In contrast, the ConvNeXt models, including their T, A, F, P,
and N variations, have a higher proportion of network’s ReLU in the most-critical stage (Stage3), while that
of the less crucial ReLUs (Stage1) is reduced due to the modification of depth and width design parameters.
In contrast, the distribution of ReLUs in the HRN-4x6x3x model strictly adheres to their criticality order.

A semi-automated design technique like RegNets Radosavovic et al. (2020) offers interpretable network design
and automates the process of finding the optimal population of networks that can generalize across a wide
range of settings. However, it requires training thousands of models in each iteration to narrow down the
search space and assess the quality of the design space, making it expensive when models are designed

30

Under review as submission to TMLR

from scratch. Here, we emphasize that RegNet networks’ width and depth are explained by a sophisticated
quantized linear function that equalizes the networks’ ReLU in their order of criticality (see Figure 20(a)).

Likewise, ReLUs’ distribution in all but Stage1 of ConvNeXt models follows their criticality order. Precisely,
the ConvNeXt-T (ConvNext-N) model increases the proportion of most-critical (Stage3) ReLUs from 20.3%
to 30.2%(34.8%) in ResNet34 while reducing the proportion of less critical ReLUs (see Figure 20(b)).
Furthermore, as evident from the comparative summary of stagewise channel allocation in ConvNeXt models
and HRNs (with α=2), the channel counts in the deeper stages of both models (ConvNeXt and HRNs) are
an exact match, where HRNs tend to allocate fewer channels during the initial stages. This demonstrates the
generality of ReLU equalization as a design principle, even for designing FLOPs-efficient models.
• ConvNext V2-T m=96 [96, 192, 384, 768]
• ConvNext V2-N m=80 [80, 160, 320, 640]
• ConvNext V2-P m=64 [64, 128, 256, 512]
• ConvNext V2-F m=48 [48, 96, 192, 384]
• ConvNext V2-A m=40 [40, 80, 160, 320]

• HRN-2x6x2x m=32 [32, 64, 384, 768]
• HRN-2x5x2x m=32 [32, 64, 320, 640]
• HRN-2x5x3x m=16 [16, 32, 160, 480]
• HRN-2x6x2x m=16 [16, 32, 192, 384]
• HRN-2x5x2x m=16 [16, 32, 160, 320]

Conclusively, ReLU-equalization only needs prior knowledge of the stagewise criticality of the baseline
network, which is often the same for a specific model family and, therefore, requires training very few models.
Furthermore, ReLU-equalization can be used to design both FLOPs and ReLU efficient neural networks.
Thus, going forward, ReLU equalization may offer a new perspective to simplify network design for both
FLOPs and ReLU efficient networks and improve interpretability.

F HybReNet with Different Criticality Order

In this paper, we perform an exhaustive characterization of HRN networks designed for the prevalent criticality
order: Stage3 > Stage2 > Stage4 > Stage1. However, we have observed that the criticality order of Stage2
and Stage4 can change in some instances, such as when using HRNs with α=2 designed for Stage3 > Stage2
> Stage4 > Stage1 criticality order, or when using ResNet18/ResNet34 on TinyImageNet Jha et al. (2021).
In these cases, the criticality order changes to Stage3 > Stage4 > Stage2 > Stage1. This leads to the question
of whether it is necessary to run the criticality test for every baseline network on different datasets. To
answer this, we need to compare the ReLU-accuracy performance of HRN networks designed with the two
different criticality orders. To accomplish this, we use the DeepReShape algorithm 1 to design HybReNets
for the given criticality order of Stage3 > Stage4 > Stage2 > Stage1.

#ReLUs(S3) > #ReLUs(S4) > #ReLUs(S2) > #ReLUs(S1)

=⇒ φ3

(αβ
16

)
> φ4

(αβγ
64

)
> φ2

(α
4

)
> φ1

ReLU equalization through width (φ1 = φ2 = φ3 = φ4 = 2, and α ≥ 2, β ≥ 2, γ ≥ 2) :

=⇒ αβ

16 >
αβγ

64 >
α

4 > 1 =⇒ αβ > 16, α > 4, αβγ > 64, β > 4, βγ > 16, and γ < 4

Solving the above compound inequalities provides the following range of β and γ at two different γ
At γ = 2, β > 8 & α > 4; and at γ = 3, β > 5 & α > 4

HRNs with minimum values of α, β, and γ satisfying the above ReLU equalization for the altered criticality
order: Stage3 > Stage4 > Stage2 > Stage1 are HRN-5x6x3x and HRN-5x9x2x. Further, for lower ReLU
counts, HRN networks with α=2, specifically HRN-2x6x3x and HRN-2x9x2x, are chosen. Now, we compare
the ReLU-accuracy tradeoffs of these HRNs with those of HRNs designed for the prevalent criticality order,
and we used both coarse-grained ReLU optimization (DeepReDuce) and fine-grained ReLU optimization
(SNL). The results, depicted in Figure 21, demonstrate that the performance of HRNs for both criticality
orders is similar to the coarse-grained optimization on CIFAR-100. However, with fine-grained optimization,
we observed a noticeable accuracy gap. Specifically, HRN-2x5x3x and HRN-2x7x2x outperform HRN-2x6x3x

31

Under review as submission to TMLR

and HRN-2x9x2x by a small but discernible margin. Additionally, we compared the performance of HRN-
5x6x3x and HRN-5x9x2x on TinyImageNet and found that they performed similarly, except that HRN-5x5x3x
outperformed them by a noticeable margin at some intermediate ReLU counts.

 56

 60

 64

 68

 72

 76

 4 8 16 32 64 128

C
IF

A
R

-1
0

0
 A

cc
u

ra
cy

 (
%

)

#ReLUs (K)

HRN-2x6x3x

HRN-2x9x2x

HRN-2x5x3x

HRN-2x7x2x

(a) DeepReDuce on CIFAR-100

 66

 68

 70

 72

 74

 76

 16 32 64 128

C
IF

A
R

-1
0

0
 A

cc
u

ra
cy

 (
%

)
#ReLUs (K)

HRN-2x6x3x

HRN-2x9x2x

HRN-2x5x3x

HRN-2x7x2x

(b) SNL on CIFAR-100

 54

 56

 58

 60

 62

 64

 66

 128 256 512

T
in

y
Im

ag
eN

et
 A

cc
u

ra
cy

 (
%

)

#ReLUs (K)

HRN-5x6x3x

HRN-5x9x2x

HRN-5x5x3x

HRN-5x7x2x

(c) DeepReDuce on TinyImageNet

Figure 21: Performance comparison of HRN networks designed for altered criticality order (Stage3 > Stage4
> Stage2 > Stage1), HRNs with β=6 and 9, with the HRNs designed for prevalent criticality order (Stage3 >
Stage2 > Stage4 > Stage1), HRNs with β=5 and 7. Overall, the latter exhibit a slightly better performance
than the former.

G Experimental Results and Discussion for ReLU-reuse

G.1 Ablation Study on ResNet18

We conducted an ablation study on ResNet18 (CIFAR-100) to investigate the benefits of two techniques:
(1) using a shortcut connection between the output of one feature-subspace and the input of the next
feature-subspace (shown in Figure 9), and (2) utilizing a fixed number of divisions, independent of the ReLU
reduction factor. To evaluate the impact of these techniques, we applied ReLU-reuse on alternate convolution
layers of ResNet18 and measured the resulting accuracy, which is reported in Table 14. Our findings suggest
shortcut connections (i.e., with Reuse) improve accuracy, particularly at lower ReLU reduction factors.
However, as the ReLU reduction factor increases, the accuracy gain diminishes. For instance, both with
and without shortcut connections, we observed a drop of ≈1.5% in accuracy when moving from 2× to 4×
reduction.

Table 14: We conduct an ablation analysis for ReLU-reuse by integrating it into alternating convolutional
layers in ResNet18(CIFAR-100 dataset). For N partitions, “reuse" signifies a shortcut connection between
the output of one feature-subspace and the input of the subsequent one. In our proposed ReLU-reuse, the
number of divisions remains constant regardless of the ReLU reduction factor, offering scalability for greater
ReLU reduction factors.

ReLU reduction factor ReLU count N divisions Proposed
w/o Reuse w/ Reuse (3 divisions)

2x reduction (Scale=2) 434.18K 77.61% 78.19% 77.83%
4x reduction (Scale=4) 372.74K 75.84% 76.87% 77.60%
8x reduction (Scale=8) 342.02K 75.43% 75.66% 76.93%
16x reduction (Scale=16) 326.66K 75.33% 75.47% 76.38%

On the other hand, when using a fixed number of divisions in the proposed ReLU-reuse, accuracy drops
remain (relatively) stable at higher reduction factors, underscoring the significance of a fixed number of
divisions and also highlight their scalability for achieving higher ReLU reduction. Nonetheless, the proposed
ReLU-reuse technique has lower accuracy at scale=2 than the N division with shortcut connections. This is
because the latter consists of only two groups of feature maps, while the former has three, which resulted in
more information loss.

32

Under review as submission to TMLR

G.2 Performance Comparison of HRN vs. Classical Networks for ReLU-reuse

We compare ReLU-reuse against the conventional scaling method (channel/feature-map scaling) used in
DeepReduce Jha et al. (2021) on both classical networks and HRNs. To begin with, we employ ReLU-reuse
to all the convolutional layers of the networks and reduce the ReLUs by a factor of N ∈ {2, 4, 8, 16}. For
N = 2, we use the naive ReLU reduction method, as it outperforms the proposed ReLU-reuse (see Figure
9). Our findings reveal that for ResNet18 BaseCh networks, the performance of ReLU-reuse is suboptimal
compared to conventional scaling methods, and this performance gap increases for the networks with higher
m. In contrast, on the HRN networks, ReLU-reuse surpasses conventional scaling at higher ReLU reduction
factors (at very low ReLU counts). However, at higher ReLUs, particularly for the ReLU reduction factor
of two, the information loss resulting from the division of feature maps outweighs the ReLU-reuse benefits,
leading to inferior ReLU-reuse performance. We emphasize that this observation holds even for networks
with partial ReLU-equalization, such as ResNet18(m=16)-4x4x4x.

 50

 55

 60

 65

 70

 8 16 32 64

A
cc

u
ra

cy
 (

%
)

#ReLUs (K)

ReLU-reuse

Scaling

(a) ResNet18(m=16)

 55

 60

 65

 70

 16 32 64 128

A
cc

u
ra

cy
 (

%
)

#ReLUs (K)

ReLU-reuse

Scaling

(b) ResNet18(m=32)

 60

 65

 70

 75

 80

 32 64 128 256

A
cc

u
ra

cy
 (

%
)

#ReLUs (K)

ReLU-reuse

Scaling

(c) ResNet18(m=64)

 60

 65

 70

 75

 80

 64 128 256 512

A
cc

u
ra

cy
 (

%
)

#ReLUs (K)

ReLU-reuse

Scaling

(d) ResNet18(m=128)

 55

 60

 65

 70

 75

 16 32 64 128

A
cc

u
ra

cy
 (

%
)

#ReLUs (K)

ReLU-reuse

Scaling

(e) 4x4x4x

 50

 55

 60

 65

 70

 75

 8 16 32 64 128

A
cc

u
ra

cy
 (

%
)

#ReLUs (K)

ReLU-reuse

Scaling

(f) HRN-2x6x2x

 55

 60

 65

 70

 75

 16 32 64 128

A
cc

u
ra

cy
 (

%
)

#ReLUs (K)

ReLU-reuse

Scaling

(g) HRN-5x5x3x

 55

 60

 65

 70

 75

 80

 16 32 64 128 256

A
cc

u
ra

cy
 (

%
)

#ReLUs (K)

ReLU-reuse

Scaling

(h) HRN-6x6x2x

Figure 22: Performance comparison (CIFAR-100) of ReLU-reuse vs conventional scaling (used as reshaping
steps in DeepReDuce Jha et al. (2021)) when ReLU-reuse is employed after every convolution layer.

 45

 50

 55

 60

 65

 4 8 16 32

A
cc

u
ra

cy
 (

%
)

#ReLUs (K)

ReLU-reuse

Scaling

(a) ResNet18(m=16)

 55

 60

 65

 70

 8 16 32 64

A
cc

u
ra

cy
 (

%
)

#ReLUs (K)

ReLU-reuse

Scaling

(b) ResNet18(m=32)

 60

 65

 70

 75

 16 32 64 128

A
cc

u
ra

cy
 (

%
)

#ReLUs (K)

ReLU-reuse

Scaling

(c) ResNet18(m=64)

 60

 65

 70

 75

 32 64 128 256

A
cc

u
ra

cy
 (

%
)

#ReLUs (K)

ReLU-reuse

Scaling

(d) ResNet18(m=128)

 50

 55

 60

 65

 70

 75

 8 16 32 64

A
cc

u
ra

cy
 (

%
)

#ReLUs (K)

ReLU-reuse

Scaling

(e) 4x4x4x

 50

 55

 60

 65

 70

 8 16 32

A
cc

u
ra

cy
 (

%
)

#ReLUs (K)

ReLU-reuse

Scaling

(f) HRN-2x6x2x

 55

 60

 65

 70

 75

 8 16 32 64

A
cc

u
ra

cy
 (

%
)

#ReLUs (K)

ReLU-reuse

Scaling

(g) HRN-5x5x3x

 55

 60

 65

 70

 75

 16 32 64

A
cc

u
ra

cy
 (

%
)

#ReLUs (K)

ReLU-reuse

Scaling

(h) HRN-6x6x2x

Figure 23: Performance comparison (CIFAR-100) of ReLU-reuse vs conventional scaling (used as reshaping
steps in DeepReDuce Jha et al. (2021)) when ReLU-reuse is employed in Thinned networks. That is, first
ReLU is dropped from every-alternate layers, and then ReLU-reuse is applied in remaining layers.

33

Under review as submission to TMLR

Furthermore, we conduct the same experiments on Thinned networks, as (channel/feature-map) scaling
is performed on Thinned networks in DeepReDuce Jha et al. (2021). We dropped ReLUs from alternate
convolutional layers and applied ReLU-reuse in the remaining layers. The results are shown in Figure 23. Since
ReLU-reuse is now only employed in half of the total number of layers, the cumulative information loss caused
by the loss of cross-channel information in feature-map divisions is reduced. As a result, the performance
of ReLU-reuse is further enhanced. This improvement is evident from the change in the performance gap
between ReLU-reuse and conventional scaling for all the networks, as shown in Figure 23.

To summarize, the effectiveness of ReLU-reuse depends on the network architecture and the ReLU reduction
factor used. Specifically, ReLU-reuse is effective for the networks with (partial/full) ReLU equalization,
in contrast with the classical networks, and scales well with higher ReLU reduction factors. Conclusively,
ReLU-Thinned HRN networks combined with ReLU-reuse significantly improve the performance at very low
ReLU counts, and should be further explored in future research.

Algorithm 2 ReLU optimization steps employed in HybReNets(HRNs)
Input: A network Net with D stages S1, S2, ..., SD and C, a sorted list of stages from least to most critical
Output: ReLU optimized versions of Net
1: if the least critical stage C[1] dominates the distribution of ReLUs then
2: Sk = C[1] . Get the least critical stage
3: Net = Net - Sk . Cull the least critical Stage Sk
4: end if
5: NetTi = Thin(Net) . Thin the remaining stages
6: NetCi = ScaleCh(NetTi , α=0.5) . Channel scaled by 0.5x
7: NetR4

i = ReuseReLU (NetTi , Sc=4) . ReLU-reuse with scaling factor 4
8: NetR8

i = ReuseReLU (NetTi , Sc=8) . ReLU-reuse with scaling factor 8
9: NetR16

i = ReuseReLU (NetTi , Sc=16) . ReLU-reuse with scaling factor 16
10: Nets += Net, NetTi , NetCi , NetR4

i , NetR8
i , NetR16

i . Apply KD to each Net
11: return Nets

H Design of Experiments and Training Procedure

Sweeping the width hyperparameters for ReLU efficiency experiments: For the network width-
based experiments conducted on ResNet models, as illustrated in Figure 3 (a,b), we reduced the base channel
count in ResNet18 to m=16 (from m=64). This adjustment is required to enable a fair comparison for
ResNet models, as the vanilla ResNet20, ResNet32, and ResNet56 have {16, 32, 64} #channels in their
successive stages while that in (original) ResNet18 is {64, 128, 256, 512}. For BaseCh networks, we sweep
m ∈{16,32,64,128,256} and for StageCh networks, we sweep (α, β, γ) = (2, 2, 2) to (8, 8, 8), homogeneously.
In Figure 13 for WideResNets WRN-22xk and WRN-28xk, we vary width k from 2, 4, 6, 8, 10, 12 with
constant depth.

Training methodology and datasets: We perform our experiments on CIFAR-100 Krizhevsky et al.
(2010) and TinyImageNet Le & Yang (2015); Yao & Miller (2015) as the prior PI-specific network optimization
Jha et al. (2021); Cho et al. (2022b); Kundu et al. (2023a) used these datasets to evaluate their techniques.
CIFAR-100 has 100 output classes, each having 500 training and 100 test images of resolution 32×32.
TinyImageNet, on the other hand, has 200 output classes, each containing 500 training and 50 validation
images, each of resolution 64×64.

In training, on both the CIFAR-100 and TinyImageNet datasets, we use cosine annealing learning rate scheduler
Loshchilov & Hutter (2016) with an initial learning rate of 0.1, mini-batch size of 128, momentum of 0.9, and
0.0004 weight decay factor. We train networks for 200 epochs on CIFAR-100 and TinyImageNet; however,
we perform 20 additional epochs for warmup using Decoupled KD (Zhao et al., 2022). For DeepReDuce
experiments and KD experiments in Tables 5, 11, and 12, we employ Hinton’s knowledge distillation Hinton
et al. (2015) and set the temperature, and relative weight to cross-entropy loss on challenging targets as 4 and
0.9, respectively. For SNL, we train the baseline networks using the aforementioned methodology; however,

34

Under review as submission to TMLR

we used their default implementation for mask generation, fine-tuning, and knowledge distillation. When
employing Decoupled knowledge distillation (Tables 5, 11, and 12), we set the relative weight of target class
KD as one and vary the weight of non-target class KD as {0.8, 1, 2, 6}. For every experiment involving
knowledge distillation, we consistently employed ResNet18 as the teacher model for a fair comparison across
the studies.

Runtime measurement: We adopt the methodology described in Garimella et al. (2023) for computing the
runtime of a single (private) inference. In particular, we use Microsoft-SEAL for computing the homomorphic
encryption (HE) latency, stemming from convolution and fully-connected operations, and DELPHI Mishra
et al. (2020) implementation of Garbled-circuit for computing the garbled-circuit (GC) latency, stemming
from ReLU operators. Our experimental setup involves an AMD EPYC 7502 server with specifications of
2.5 GHz, 32 cores, and 256 GB RAM. The client and server are simulated for these experiments as two
separate processes operating on the same machine. We set the number of threads to four to compute the
GC latency. Note that, for HRNs with ReLU-reuse, we calculated the HE latency without accounting for
the FLOP reduction, stemming from the group convolution in ReLU-reuse due to specific implementation
constraints of group convolution in Microsoft SEAL.

I Network Architecture of HybReNets

Table 15 shows a comparative analysis of the design hyper-parameters in the conventional WideResNet and
ResNet models without proposed HybReNets. Table 16 presents a comparison of ResNet18 and WRN22x8,
with four HRNs: HRN-5x5x3x, HRN-5x7x2x, HRN-6x6x2x, and HRN-7x5x2x. Compared to ResNet18, the
HRNs allocate fewer channels in the initial stages and more in the deeper stages, resulting in a balanced
ReLU-FLOP-Accuracy tradeoff. We observed that HRN-5x5x3x offers a slightly better ReLU-FLOP-Accuracy
balance than other HRNs.

Table 15: Comparison of channel scaling techniques in different network architectures. WideResNets use
uniform scaling with every layer scaled by a factor of k. CryptoNAS Ghodsi et al. (2020), a family of ReLU
efficient baseline networks, scale homogeneously, increasing channels in subsequent stages by a factor of 4.
HybReNet (proposed), on the other hand, applies heterogeneous scaling: Stage2 by α, Stage3 by β, and
Stage4 by γ, aiming to optimize both ReLU and FLOP efficiency.

Stages output size ResNet WideResNet CryptoNAS HybReNet(Proposed)
Stem din × din [3×3, m] [3×3, m] [3×3, m] [3×3, m]

Stage1 din×din
[

3×3, m
3×3, m

]
×φ1

[
3×3, m×k
3×3, m×k

]
×φ1

[
3×3, m
3×3, m

]
×φ1

[
3×3, m
3×3, m

]
×φ1

Stage2 din

2 ×
din

2

[
3×3, 2m
3×3, 2m

]
×φ2

[
3×3, 2m×k
3×3, 2m×k

]
×φ2

[
3×3, 4m
3×3, 4m

]
×φ2

[
3×3, αm
3×3, αm

]
×φ2

Stage3 din

4 ×
din

4

[
3×3, 4m
3×3, 4m

]
×φ3

[
3×3, 4m×k
3×3, 4m×k

]
×φ3

[
3×3, 16m
3×3, 16m

]
×φ3

[
3×3, β(αm)
3×3, β(αm)

]
×φ3

Stage4 din

8 ×
din

8

[
3×3, 8m
3×3, 8m

]
×φ4

[
3×3, γ(αβm)
3×3, γ(αβm)

]
×φ4

FC 1× 1 [din

8 ×
din

8 , 8m] [din

4 ×
din

4 , 4m× k] [din

4 ×
din

4 , 16m] [din

8 ×
din

8 , γ(αβm)]
WideResNet and CryptoNAS differ from ResNet in their skip-connection styles, the positioning of ReLU layers (pre-activation or post-activation).

35

Under review as submission to TMLR

Table 16: Comparison of WideResNet22x8 and ResNet18 architecture — predominantly used as input baseline
networks in PI-specific ReLU optimization techniques Kundu et al. (2023a); Cho et al. (2022b); Jha et al.
(2021) — with our proposed HybReNets (highlighted in bold). Unlike the conventional WideResNets and
ResNets, the strategic channel allocation in subsequent stages of HybReNets streamline the network’s ReLUs
and FLOPs, and simultaneously optimized both the ReLU and FLOPs efficiency. Last rows compare their
FLOPs and ReLU counts, along with baseline accuracy (on CIFAR-100).

Stages output size WRN22x8 ResNet18 HRN-5x5x3x HRN-5x7x2x HRN-6x6x2x HRN-7x5x2x
Stem 32× 32 [3×3, 16] [3×3, 64] [3×3, 16] [3×3, 16] [3×3, 16] [3×3, 16]

Stage1 32×32
[

3×3, 128
3×3, 128

]
×3

[
3×3, 64
3×3, 64

]
×2

[
3×3, 16
3×3, 16

]
×2

[
3×3, 16
3×3, 16

]
×2

[
3×3, 16
3×3, 16

]
×2

[
3×3, 16
3×3, 16

]
×2

Stage2 16×16
[

3×3, 256
3×3, 256

]
×3

[
3×3, 128
3×3, 128

]
×2

[
3×3, 80
3×3, 80

]
×2

[
3×3, 80
3×3, 80

]
×2

[
3×3, 96
3×3, 96

]
×2

[
3×3, 112
3×3, 112

]
×2

Stage3 8×8
[

3×3, 512
3×3, 512

]
×3

[
3×3, 256
3×3, 256

]
×2

[
3×3, 400
3×3, 400

]
×2

[
3×3, 560
3×3, 560

]
×2

[
3×3, 576
3×3, 576

]
×2

[
3×3, 560
3×3, 560

]
×2

Stage4 4×4
[

3×3, 512
3×3, 512

]
×2

[
3×3, 1200
3×3, 1200

]
×2

[
3×3, 1120
3×3, 1120

]
×2

[
3×3, 1152
3×3, 1152

]
×2

[
3×3, 1120
3×3, 1120

]
×2

FC 1× 1 [8× 8, 512] [4× 4, 512] [4× 4, 1200] [4× 4, 1120] [4× 4, 1152] [4× 4, 1120]

#FLOPs 2461M 559M 1055M 1273M 1368M 1328M
#ReLUs 1393K 557K 343K 379K 401K 412K
Accuracy 81.27% 79.01% 78.40% 78.28% 78.52% 78.81%

Table 17: Baseline HybReNets (built on ResNet18 architecture) aim for efficient PI with lower ReLU counts.
The final rows show a comparison of their FLOPs, ReLU counts, and baseline accuracy on CIFAR-100 dataset.

Stages output size HRN-2x5x3x HRN-2x7x2x HRN-2x6x2x HRN-2x5x2x
Stem 32× 32 [3×3, 16] [3×3, 16] [3×3, 16] [3×3, 16]

Stage1 32×32
[

3×3, 16
3×3, 16

]
×2

[
3×3, 16
3×3, 16

]
×2

[
3×3, 16
3×3, 16

]
×2

[
3×3, 16
3×3, 16

]
×2

Stage2 16×16
[

3×3, 32
3×3, 32

]
×2

[
3×3, 32
3×3, 32

]
×2

[
3×3, 32
3×3, 32

]
×2

[
3×3, 32
3×3, 32

]
×2

Stage3 8×8
[

3×3, 160
3×3, 160

]
×2

[
3×3, 224
3×3, 224

]
×2

[
3×3, 192
3×3, 192

]
×2

[
3×3, 160
3×3, 160

]
×2

Stage4 4×4
[

3×3, 480
3×3, 480

]
×2

[
3×3, 448
3×3, 448

]
×2

[
3×3, 384
3×3, 384

]
×2

[
3×3, 320
3×3, 320

]
×2

FC 1× 1 [8× 8, 480] [4× 4, 448] [4× 4, 384] [4× 4, 320]

#FLOPs 179M 213M 163M 119M
#ReLUs 186K 201K 188K 176K
Accuracy 75.34% 75.73% 75.70% 75.03%

36

	Introduction
	Preliminary
	Network Design and Optimization for Efficient Private Inference
	Addressing Pitfalls of Baseline Network Design for Efficient Private Inference
	Addressing Fallacies in Network Selection for ReLU Optimization
	Mitigating the Limitations of Fine-grained ReLU Optimization

	DeepReShape
	ReLU Equalization and Formation of HybReNet
	ReLU-reuse
	Putting it All Together

	Experimental Results
	Related Work
	Discussion and Conclusion
	Rationale Behind Choosing Specific , , and Values in HybReNet Networks
	Impact of Network Width and Distribution of ReLUs on Their Criticality Order
	Additional Experimental Results
	ReLU Equalization through Network's Depth in BaseCh Networks
	Additional Results for Capacity-Criticality-Tradeoff
	Explanation and Intuition for Capacity-Criticality Tradeoff
	SNL ReLU Optimization on HybReNet Networks

	Detailed Analysis of ReLU-Accuracy Pareto Points
	Discussion
	FLOP efficiency Restricts the Flexibility for Widening Classical Neural Networks
	Regulating FLOPs in Deeper Layers of HybReNets
	Understanding Accuracy Plateau in Homogeneous Channel Scaling through the Deep Double Descent Phenomenon
	Why RegNet and ConvNeXt Models are Selected for Our Case Study?
	Potential of ReLU Equalization as a Unified Network Design Principle

	HybReNet with Different Criticality Order
	Experimental Results and Discussion for ReLU-reuse
	Ablation Study on ResNet18
	Performance Comparison of HRN vs. Classical Networks for ReLU-reuse

	Design of Experiments and Training Procedure
	Network Architecture of HybReNets

