Under review as a conference paper at ICLR 2026

FLAME:
REDUCING COMPUTATION IN FEDERATED LEARNING
VIA SAMPLE-ADAPTIVE MULTI-EXIT TRAINING

Anonymous authors
Paper under double-blind review

ABSTRACT

Federated learning (FL) enables a group of clients to collaboratively train a global
machine learning model without sharing raw data. It is particularly suited to
Internet-of-Things and similar environments involving small, heterogeneous de-
vices. However, these clients often lack the computational resources needed to train
the full global model locally, as the FL pipeline conventionally expects. Prior work
addresses this challenge by assigning smaller sub-networks to resource-constrained
clients, but such approaches have a key limitation: they do not adapt computa-
tional effort based on the needs of individual input samples. In this work, we
introduce Federated Learning with sample-Adaptive Multi-Exiting (FLAME), the
first method to incorporate sample-adaptive early exiting into local training for
efficient FL. FLAME allows each training sample to exit at the earliest layer at
which the model can confidently predict the sample’s output, which improves effi-
ciency without sacrificing accuracy. We show that this use of sample-adaptiveness
leads to better AUC than existing solutions because instead of uniformly saving
computation across all samples, it strategically saves it on easier samples and
preserves it for harder ones. Our empirical results demonstrate FLAME’s ability to
reduce per-client computation by up to 50% while maintaining or even improving
model accuracy, and to outperform existing solutions in practical settings. We also
show how FLAME'’s success stems from FL’s collaborative nature and propose
two optimizations that further enhance its efficiency and performance. Overall, this
work introduces the novel concept of training-time sample-adaptiveness in the FL.
domain, which opens new avenues for improving the utilization of heterogeneous
clients and for enhancing the FL paradigm.

1 INTRODUCTION

The cost of training deep learning systems is rising rapidly, with recent models like GPT-4 and
Gemini Ultra requiring 10B—100B petaFLOPs (Maslej et al.||2024). In federated learning (FL), this
cost is distributed across many clients that train local models on their own data, while a central server
aggregates updates into a global model. This enables learning from large, diverse datasets without
sharing raw data, e.g., in wearable health applications where FL supports collaborative disease
detection while preserving privacy. A central challenge is that clients are often resource-constrained
yet still expected to train the full architecture. While storage can be a factor, computation is the
primary bottleneck. Training FLOPs have grown exponentially (Amodei & Hernandez, 2018} |AI
Index Steering Committee, [2025), whereas memory demands have increased more slowly or even
declined in recent models (Hoffmann et al.,|2022).

We introduce Federated Learning with sample-Adaptive Multi-Exiting (FLAME), a flexible and
efficient scheme that reduces local computation by adapting it to input difficulty. FLAME builds
on two insights. First, many samples do not require full network depth for accurate predictions,
motivating multi-exit models (MEMs) that allow early exits during inference (Kaya et al.| 2019).
While MEMs have been used for inference, applying them to training is underexplored and raises a
key concern: can the global model still converge if many samples exit early and deeper layers receive
fewer updates? Our experiments, supported by theory, show that FLAME maintains convergence in
practice. Second, input-adaptive training has improved performance in other contexts such as robust

Under review as a conference paper at ICLR 2026

optimization and subgroup generalization via reweighting and resampling (Sagawa et al.,[2019; Byrd
& Lipton, [2019;|Cao et al.,2019; Liu et al., 20215 Nam et al., [2020; [Sohoni et al., [2020; Namkoong
& Duchil 2017), but has not been used to reduce computation.

Existing FL approaches for resource-limited clients typically assign smaller sub-networks based on
device capacity. These methods suffer from overhead in sub-network generation, limited flexibility,
and a narrow focus on device constraints rather than the data itself. This is problematic in non-IID
settings where sample difficulty varies. Uniform savings can under-compute on harder samples and
over-compute on easier ones. FLAME instead adapts to each sample, allocating more resources to
difficult examples and fewer to easier ones.

We evaluate FLAME on language tasks and show it reduces training costs by up to 50% while
maintaining or improving accuracy and inference efficiency. Appendix [J]also reports minor memory
savings. Through ablation studies, we show that FL’s collaborative setup mitigates under-training
of deeper layers and that sample-adaptive computation improves AUC. We introduce a batching
optimization for further savings and propose three aggregation algorithms tailored to FLAME. Finally,
we demonstrate that FLAME performs especially well under realistic non-IID distributions, outper-
forming prior methods and confirming that its sample-adaptive design is central to its effectiveness.

Our main contributions are:

* Introducing FLAME, the first sample-adaptive, multi-exit training framework for FL, which
reduces client computation while often improving accuracy and inference efficiency.

» Showing that FLAME remains stable and convergent despite sample-adaptive exits, sup-
ported by both empirical results and an O(1/T) convergence proof.

» Conducting ablation studies to show (1) collaboration mitigates under-training of later layers
and (2) sample-level adaptation improves AUC.

* Proposing a grouped backpropagation strategy that further reduces computation, with
experiments guiding its tuning.

* Developing and evaluating three aggregation algorithms tailored to FLAME that improve
efficiency and accuracy.

* Providing evidence that, on non-IID client distributions with diverse sample difficulty,
FLAME achieves higher AUC than state-of-the-art baselines under matched training FLOPs.

2 RELATED WORK

2.1 EXISTING SOLUTIONS AND THEIR DRAWBACKS

FLAME addresses resource constraints in FL clients, a challenge previously approached by assigning
smaller sub-networks for local training (Ilhan et al.| 2023} [Wang et al.| 2024} Niu et al.| 2023} Diao
et al.,[2021; |Mei et al.| 2022; Varma et al.| [2023}; |Bouacida et al.,|2020; Horvath et al., 2022; Huang
et al.| [2023; |Lee et al.|[2024; |Liu et al.| 2022). FLAME’s key distinction is sample-specific adaptation:
it dynamically adjusts computation based on input difficulty, allocating more resources to harder
samples. This leads to higher AUC scores than non-adaptive methods, which often under-train on
difficult samples to save compute.

Other limitations in prior work include high overhead and inflexible sub-network assignment. For
example, FedDSE (Wang et al., |2024) and PriSM (Niu et al., [2023) rely on expensive supernet
training and SVD analysis, respectively, while FjORD (Horvath et al., |2022) uses costly Optimal
Dropping. Several methods also lack strategies for assigning architectures based on client-specific
characteristics. HeteroFL (Diao et al.| 2021) uses fixed downscaling ratios, and ScaleFL (Ilhan et al.,
2023)) selects from a limited set of depth-width variants. InclusiveFL (Liu et al., 2022} optimizes for
participation and utility but does not tailor architectures to client data. Only AFD (Bouacida et al.,
2020) and FLANC (Mei et al.,|2022) support evolving sub-networks during training, through dynamic
pruning and shared basis construction. FLAME offers similar flexibility at lower cost. Clients can
adjust their computation using a simple patience hyperparameter (Section [}, and the sub-portion of
the global model used per sample is selected adaptively during training.

Under review as a conference paper at ICLR 2026

It is important to note that FLAME requires clients to store the full global model, which may
seem a drawback compared to methods assuming clients cannot. However, FLAME saves some
storage by avoiding activations for all parameters (Appendix [J). More importantly, as discussed in
the introduction, memory limitations are often not the primary constraint in practice and it is the
computational cost that presents the more significant challenge.

2.2 MULTI-EXIT MODELS

FLAME is largely inspired by Multi-Exit Models (MEMs). With MEMs, input samples can ’exit
early’ and thereby receive a final prediction at earlier layers than the final output layer (Zhou et al.|
2020; |[Kaya et al., | 2019; Huang et al.l 2018} Xin et al.| 2020; [Liu et al [2020). The early exiting
happens through internal classifiers (ICs), which are attached to various layers within a MEM. During
training, ICs learn to map the layer’s hidden state to a prediction (referred to as an internal prediction).
During inference, samples can exit through an IC once some exiting criteria is met. FLAME is the
first solution to integrate the multi-exit approach into the training process, where computational
demands are significantly higher than in inference.

3 EXPERIMENT SET-UP

FL setup We consider a federated learning (FL) system with multiple clients, each training locally
on its own data. A central server maintains the global model and aggregates client updates using
FedAvg (McMahan et al.,[2023), which computes a weighted average based on client dataset sizes.
Since data is evenly split, this reduces to a simple average. We assume a synchronous setting where
the server waits for all updates before aggregating and then broadcasts the updated global model.
Each client trains using the full architecture.

FL settings When using FLAME, clients are assigned patience values p controlling early exits:
a sample exits once p successive ICs agree (see Section). We denote training-time patience as
p!", where smaller p'” reduces computation. Tablelists 10 settings with different p'" distributions
across 10 clients. Following prior FL work that typically evaluates on 10 clients (e.g. [Diao et al.
(2021); Ilhan et al.| (2023)); Bouacida et al.| (2020)), we focus on this scale, but also report a larger
25-client experiment in Section We restrict p*” € [2,6]. p'" = 1 forces exit at the first IC, while
p'" > 6 makes nearly all samples exit at the final layer, effectively disabling early exiting. Note that
while we report results across all 10 settings, we primarily focus on Setting A because it provides a
representative mix of low- and high-patience clients, which best illustrates FLAME’s collaborative
dynamics.

Table 1: List of p!" values used by clients while using FLAME in various 10-client FL settings.

Setting Client p!" values

[2,2,3,3,4,4,5,5,6,6]
[2,2,2,2,2,2,22.2 2]
[2,2,2,2,2,2,2,2,2,6]
[2,2,2,2,2,2,2,2,6,6]
[2,2,2,2,2,2,2,6,6,6]
]
]
|
]
]

[2,6,6,6,6,6,6,6,6,6
[3,3,3,3,3,3,3,3,3,3
[3,3,3,3,3,3,3,3,3,6
[3,3,3,3,3,3,3,3,6,6
[2,2,2,2,2,6,6,6,6,6

“—ITraQmmgouawy

Multi-exit model details In all experiments, we use a BERT-based MEM with internal classifiers
(ICs) at each of the 12 hidden layers. Models are initialized with pre-trained weights from Hugging
Face (Wolf et al., [2020), then fine-tuned on downstream tasks (see Section E]) rather than trained
from scratch. This approach is standard for BERT-based models, which are known to generalize well,
and avoids the high cost of pre-training. Further architecture details are in Appendix

Under review as a conference paper at ICLR 2026

Tasks We evaluate on three GLUE benchmark tasks (Wang et al.,[2019): SST-2 (Socher et al., 2013)),
a binary sentiment classification task; MRPC (Dolan & Brockett, |2005)), which predicts semantic
equivalence between sentence pairs; and MNLI (Williams et al., [2018)), a three-way classification
task labeling premise-hypothesis pairs as entailment, contradiction, or neutral. SST-2 and MNLI are
trained for 10 rounds, MRPC for 20, each using 10 clients with evenly split data (see Appendix [A.3).
In Section we also evaluate on Sentiment140 (Sent140) (Caldas et al.,[2019), a non-IID benchmark
where each client holds tweets from a single user. We use 25 clients with at least 100 training samples
each and train for 20 rounds (details in Appendix [A.3).

Evaluation metrics and protocols Unless otherwise noted, we evaluate with evaluation-time
patience p°” = 4 (the full patience mechanism is in Section d)). We report AUC and the average
exit layer, and we state in each table caption whether this average refers to inference-time exits or
training-time exits. We sometimes report AUC stratified by early-exiting vs. late-exiting samples,
defined by the exit layer taken during inference with p®” = 4: a sample is early if it exits strictly
before a task-specific threshold 7,5k, otherwise late. (The Tiasx values are given in Appendix) We
also report “seconds per iteration,” denoting the wall-clock time to complete one full training iteration
over the dataset (forward + backward). Details on learning hyperparameters are in Appendix [A.2]

4 FLAME - USING MULTI-EXIT TRAINING FOR MORE EFFICIENT FL

In this section, we introduce Federated Learning with sample-Adaptive Multi-Exiting (FLAMEﬂ
(Figure[I). FLAME mirrors inference-time execution of MEMs, but is applied during training. We
assume the model includes internal classifiers (ICs) at hidden layers. Their extra parameters add
negligible FLOPs (see Appendix [B|for details). During training, each sample passes through the
network and receives classifications from each IC. The forward pass stops once a patience-based
criterion is met: the sample exits when p'” successive ICs agree. Backpropagation then starts from
that layer, updating only earlier parameters. If no early exit occurs, then full backpropagation
proceeds. At evaluation, the same mechanism can apply with patience p®’. In practice, clients may
also easily adjust their p!” value from round to round to reflect their compute budget (e.g. decreasing
it if resources are tight or increasing it when capacity is available) so they can adapt to fluctuating
resources without requiring any extra work. This initial version of FLAME assumes single-sample
batches during training (SGD), but Section [6.1] introduces a mini-batch adaptation. Appendix [C]
provides pseudocode and Appendix @]proves FLAME converges at rate O(1/7") (similar to FedAvg).

Note that, in practice, clients can easily adjust the p'” value they use at every sound according to their
current compute budget and use. If their use is over budget, they can decrement p'”, and if under, they
can increment p'". This lets clients adapt when resources fluctuate, without requiring extra labels or
added passes.

12 total hidden layers

PRI N JEEN IS
inpui sna inal outpul
P 88 E—>E ¢ ®

i Y T ¥ n ¥ - Y one IC per |
linear| |linear linear| |linear . |
hidden layer |
Y A 4 A A\ 4 internal |
output output output output predictions |

backprop begins afterp
consecutive predictions 7
agree +

Figure 1: Overview of FLAME. Each layer has an internal classifier (IC). When p'" consecutive IC
predictions agree, the sample exits, and backpropagation begins from that layer, skipping later ones.

'A link to the code will be provided in the non-anonymized version of the paper

Under review as a conference paper at ICLR 2026

Table [2] shows AUC scores and average exit layers for global models trained with FLAME across
settings (Table[T). For comparison, we include baselines without early exiting. A consistent pattern
emerges: training with multi-exits leads to earlier inference exits, so training-time savings translate to
inference efficiency. FLAME improves AUC on SST-2 and maintains it on MNLI (a .002 drop is
negligible). On MRPC, FLAME slightly reduces AUC except in Setting F, where it improves. This
likely reflects the task’s difficulty and small size (3069 samples total, only 306 per client), which
makes optimization harder under FLAME.

Table[3|compares per-iteration time for SST-2 with and without using FLAME. These values are from
the final training round, when client differences are most pronounced. As training progresses, the
model increasingly predicts samples earlier, especially for low-patience clients. Appendix Figure f]
shows this trend for MRPC. Cost savings on SST-2 range from 19.34% to 48.32% (Table [3). For
MRPC and MNLI, we report 22.18-46.43% and 1.70-28.06% savings in Appendix Table[T1}

Table 2: Evaluation AUC and average exit taken during inference (with inference-time patience
p®¥ = 4) for FLAME, across the settings in Table[], compared against a no—early-exit baseline.

SST-2 Baseline A B C D E F G H 1
AUC 0.83 098 0.88 0.89 0.88 0.89 092 092 091 091
Avg. exit 11.44 783 7.13 737 728 7.67 997 941 9.64 8.93
MRPC Baseline A B C D F J

AUC 0.84 0.78 0.72 077 077 0.85 0.83

Avg. exit 11.97 6.77 1196 1083 894 11.73 11.97

MNLI Baseline A B C

AUC 0.81 0.81 0.78 0.79

Avg. exit 11.73 997 885 9.02

Table 3: Seconds per iteration on SST-2 for clients using FLAME with various p'” values in Setting A,
compared to a baseline without FLAME (no early exits). MRPC and MNLI results are in Appendix@

ptr Average seconds/iteration % change from baseline
Baseline 199.11 -

2 102.90 -48.32%

3 120.09 -39.28%

4 134.41 -32.50%

5 147.43 -25.96%

6 160.60 -19.34%

5 DIGGING DEEPER: WHY DOES FLAME WORK?

This section uses ablation studies to highlight two key factors behind FLAME’s success: FL’s
collaborative nature and the multi-exit mechanism’s sample-adaptiveness.

5.1 ABLATING THE COLLABORATION

FL’s collaboration shapes global parameters. Table |4| shows that this collaboration is essential for
accurate FLAME training. We trained four centralized models on SST-2 and MRPC with 1/10th of
the data. One model served as a baseline with no early exiting, while the others used multi-exiting
with pt” = 2, 3, or 4. We separately evaluate early- and late-exiting samples, defined by the exit layer
taken during inference with p®” = 4 (see Appendix [A.3]for task-specific thresholds). Baseline models
showed relatively small AUC gaps between early and late samples: 11.39% for SST-2 and 15.49%
for MRPC. In contrast, FLAME-trained models showed much larger gaps, especially with smaller

Under review as a conference paper at ICLR 2026

p'" values. For instance, with p'” = 4, the gap grows to 20.27% (SST-2) and 25.37% (MRPC). With
pt" = 2, it reaches 32.35% and 43.10%. This suggests that centralized FLAME sacrifices AUC for
late-exiting samples. Figure [2 highlights the cause. Unlike in models without early exiting, when
training with early exits (e.g., p'" = 4), early-layer parameters vary much more than later-layer ones.
This is because many samples exit early and backpropagate only through initial layers, leaving deeper
layers under-optimized. As a result, inference suffers due to poorly trained late-layer parameters.
This pattern explains the low AUC in Table 2| Setting B, where all clients use p'” = 2. Without
clients training later layers, the global model performs poorly. However, in Settings A, C, D, E, and F,
where at least some clients use higher p!" values, overall AUC remains higher. These higher-patience
clients help compensate for the under-training by low-patience clients. Thus, FLAME performs best
when not all clients maximize cost savings. Settings C—F show that even one higher-patience client
can significantly offset the learning loss from others.

Table 4: Evaluation AUC scores for a centralized SST-2 model trained with MET at various p'"
values. Scores are shown separately for early- and late-exiting samples, defined by the exit layer
taken during inference with p°” = 4 (thresholds are given in Appendix[A.5). A no-MET baseline is
included. MRPC results are in Appendix [H

Method Early-exiting AUC Late-exiting AUC
Baseline 0.88 0.79
MET, p!" = 2 0.90 0.68
MET, p'" =3 0.84 0.79
MET, p'" = 4 0.89 0.74

—+— layer1
layer 2

—— layer3
»- layer 10 f .
o layer11 ¢ o layer11

o layer 12 - layer 12

e
A .
Ny |
v ol W

1 2 3 4 5 6 7 8 5 1011 12 13 14 15 16 17 18 19 1 2 3 4 5 6 7 & 6 1o 11 12 13 14 15 16 17 18 19
Epoch Epoc

—— layer1
layer 2

—— layer3
o layer10

N

Average difference
Average difference

(a) A client using FLAME with p'™ = 2. (b) A client using FLAME with p'” = 6.

Figure 2: Average difference in local model parameters before and after a client trains for one local
round. Clients are using FLAME with different p” values to learn the MRPC task in a FL system
using Setting A. We plot differences by layer and across all rounds of training.

5.2 ABLATING THE SAMPLE ADAPTIVENESS

A key strength of FLAME is its sample-adaptiveness. Table [5| uses the SST-2 task to highlight
the benefit of assigning exit points per training sample rather than using a fixed exit for all. A
centralized FLAME model with p'” = 2 achieves an AUC of .774 and an average exit layer of
6.403. In comparison, models forced to exit at layers 6 and 7 perform significantly worse with
AUC:s of .591 and .491. This shows that while some samples can exit early, others need deeper
layers, which go untrained under fixed exits. As a result, approaches that train clients using smaller,
pre-determined sub-networks lose the chance to improve AUC by blocking sample-specific adaptation.
More broadly, this suggests that models interpret training samples differently, reinforcing the promise
of sample-adaptive strategies across other ML workflows.

6 EXPLORING FLAME EXTENSIONS

6.1 ENABLING LARGER BATCH SIZES

A drawback of FLAME is its reliance on batch size 1, which requires stochastic gradient descent and is
often less efficient than mini-batch approaches. To address this, we propose grouped backpropagation,

Under review as a conference paper at ICLR 2026

Table 5: Evaluation AUC, average exit layer (across all training rounds), and seconds per iteration
(last round) for SST-2 models. Some use patience-based early exiting with various p'” values and
others enforce fixed exit layers for all samples.

Exit strategy AUC Average exit taken during training Seconds/iteration
FLAME, p'" =2 0.774 6.403 115.24
FLAME, p'" =3 0.877 9.984 164.36
FLAME, p'" =4 0.878 11.555 186.27
FLAME, p'" =5 0.870 11.961 191.74
FLAME, p'" =6 0.881 11.999 192.66
Exit layer 6 0.591 6 113.59
Exit layer 7 0.491 7 126.49
Exit layer 8 0.482 8 140.80
Exit layer 9 0.483 9 156.25
Exit layer 10 0.509 10 170.57
Exit layer 11 0.846 11 197.52

which retains FLAME'’s per-sample forward pass while enabling batch-based backpropagation. After
b samples complete forward passes, they are grouped by exit layer. With 12 ICs, this yields up to 12
groups, though most are empty. Figure 3] shows this clustering effect for SST-2. For each non-empty
group, losses are aggregated and a single backpropagation step is performed. Since backpropagation
is the more expensive step, grouping yields substantial savings. Table [6] shows that this reduces
training cost on SST-2 in Setting A. Per-client results are in Appendix Table[I3] While AUC drops
slightly with grouping, it remains above the no-FLAME baseline, so we view this trade-off as minor.
Table [6] also compares grouping strategies. “Full group” places all samples in one group. “Random”
assigns samples to one of 12 groups at random. “Binary” splits samples by exit layers 1-6 vs. 7-12.
“Distant pairing” forms six groups using (1,7), (2,8), ..., (6,12), while “close pairing” uses (1,2),
(3.4), ..., (11,12). Our proposed strategy consistently achieves the highest AUC, especially with
b = 32 and b = 64. We believe this is because our method ensures all samples in a group compute
gradients for the same parameters. Other strategies average gradients across samples that may not
have reached all layers, introducing zeros and distorting updates. Our method avoids this by averaging
either valid gradients or zeros exclusively, ensuring consistent updates or none at all. Pseudocode for
grouped backpropagation is provided in Algorithm 2] of Appendix

Table 6: Evaluation AUC on SST-2 for FLAME with different grouping strategies and b values in
Setting A, compared against (1) no FLAME and (2) FLAME without grouping. We also report
average seconds per iteration across 10 clients (per-client results in Table |13} Appendix [H).

Grouping strategy b AUC Average seconds/iteration % change in seconds/iteration
No FLAME 1 0.830 199.11 -
Standard FLAME 1 0981 132.98 -33.21%
Proposed grouping 16 0.891 92.84 -53.37%
Proposed grouping 32 0.913 115.75 -41.87%
Proposed grouping 64 0.912 99.71 -49.92%
Proposed grouping 128 0.899 107.49 -46.01%
Full group 8 0.896 97.56 -51.00%
Full group 32 0.893 101.93 -48.81%
Binary grouping 32 0.865 87.48 -56.06%
Random grouping 32 0.874 90.74 -54.43%
Distant pairing 32 0.890 100.57 -49.49%
Close pairing 32 0.843 99.39 -50.08%

Under review as a conference paper at ICLR 2026

- Layer 0 0 - Layer 0 - Layer 0
Layer 1 Layer 1 Layer 1
Layer 2 Layer 2 a0 Layer 2

& Layer3 & Layer3 & Layer3

Layer 4 Layer 4

- Layers o -»- Layer5

- Layer6 - Layer6

Layer 7 Layer 7 Layer 7

Layer 8 o] T ———— Layer 8 Layer 8

Layer 9 Layer 9 2 Layer 9
* —— Layer 10 0 %o e —— layer10 —— Layer 10
Layer 11 e Layer 11 Layer 11

Layer 4
-»- Layer5
-+~ Layer 6

[
by

% of samples exiting

% of samples exiting
% of samples exiting

Y

e

i

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 71 8 9 10 1 2 3 4

5 6 7 8 9 10
Epochs Epochs Epochs

(a) Client using p*” = 2. (b) Client using p'" = 4. (c) Client using p'” = 6.

Figure 3: For clients that train with FLAME using different p!” values, we plot the percentage of
training samples (out of 4,000 total) that exit at each of the 12 total local model layers. Clients were
learning the SST-2 task in Setting A.

6.2 ADAPTING AGGREGATION TO FLAME

We explore three aggregation methods tailored to FLAME, each modifying how client models are
weighted. The first, patience-conscious aggregation, weights each client m’s model W, by its
training-time patience value p'’, based on the idea that higher p'* leads to more optimized parameters.
Zme M p:; Wi
ZmeM 258
shows, this assumption does not always hold: lower-patience clients may exit later. To address this,

exit-conscious aggregation uses each client’s average exit layer e, instead, so the aggregated model is

The aggregated model is computed as W, = . However, as Figure (Appendix

Wy = % This approach better reflects how deeply each client actually trains its model.

Finally, exit-based aggregation, inspired by HeteroFL (Diao et al.,[2021), aggregates each layer
using only the clients that trained it. Let Wy, , and W, , denote the parameters of layer ¢ in the client
Lem > W,

gt 2l Tt for (=1, L,
where 1[e,, > ¢] is an indicator that client m reached layer ¢. This isolates meaningful updates and
avoids penalizing early-layer parameters just because a client did not train deeper layers. Unlike the
previous two, which downweight under-trained parameters, exit-based aggregation fully excludes
them. While more fine-grained, it still relies on average exits, making it approximate. As shown in
Table[7] exit-conscious aggregation generally outperforms patience-conscious, offering slightly better
AUC:s and shallower exits. Comparing exit-conscious and exit-based, results are mixed. Despite
being more targeted, exit-based may be limited by its reliance on average exit layers. In contrast, the
mild noise in exit-conscious may help generalization through implicit regularization.

and global models, respectively. Then the update is W, , =

Table 7: Comparing evaluation AUC scores and average exit layers (associated with exits taken
during inference with p®¥ = 4) from training with FLAME in Setting A using different aggregation
algorithms.

Task Aggregation algorithm AUC Average exit layer taken during inference

Baseline (FedAvg) 0.891 7.828

SST-2 Patience-conscious 0.890 8.083
Exit-conscious 0.893 7.966

Exit-based 0.894 7.864

Baseline (FedAvg) 0.780 6.765
Patience-conscious 0.793 8.122

MRPC " pit-conscious 0.801 8.042
Exit-based 0.804 8.167

Baseline (FedAvg) 0.806 9.971
Patience-conscious 0.811 10.396
MNLI Exit-conscious 0.813 10.163
Exit-based 0.805 9.784

Under review as a conference paper at ICLR 2026

7 DEMONSTRATING FLAME’S ADVANTAGE OVER PRIOR WORKS

We conduct a larger, real-world experiment to compare FLAME against three representative methods:
HeteroFL, ScaleFL, and AFD. These baselines capture the main strategies for reducing client-side
computation in FL. HeteroFL reduces channel width with a fixed ratio 7 per client (Diao et al., 2021)).
ScaleFL generalizes this idea by selecting from width—depth variants (Ilhan et al., 2023)), while AFD
dynamically prunes channels during training to construct client-specific subnetworks (Bouacida et al.|
2020). Together, these methods represent static (HeteroFL, ScaleFL) and dynamic (AFD) strategies
for subnetwork selection. However, all allocate computation uniformly across a client’s data, without
adapting to sample difficulty. FLAME instead allows easier samples to exit early while allocating
more computation to harder ones. With equal computation, we therefore expect FLAME to use
resources more strategically.

All methods are trained on Sent140 with 25 clients over 20 rounds and evaluated on SST-2 (setup
details in Appendix . We use p!” = 3 for FLAME, yielding a 9.8 average exit layer, which
equates to 118.44 GFLOPs per client per training sample. Baseline hyperparameters are tuned for a
similar compute budget (see Appendix []E]): r = 0.9 for HeteroFL, (d = 11,7 = 0.9) for ScaleFL, and
0 = 0.2 for AFD. Table [§|shows that FLAME achieves the highest overall AUC and outperforms all
baselines on both early- and late-exiting samples. HeteroFL performs well on early samples but drops
on late ones, likely because uniform width scaling under-computes harder examples. ScaleFL also
struggles on late samples despite a competitive early-sample AUC, suggesting that joint width—depth
scaling still fails to adapt to per-sample difficulty. AFD, while conceptually dynamic, lags in overall
performance under our setup. This could be because fixed-ratio structured pruning from round 1
removes capacity needed for difficult examples and, by reducing parameter overlap across clients,
weakens FedAvg aggregation. Overall, FLAME delivers the best AUC under a controlled compute
budget, with adaptive allocation leading to clear advantages on both easy and hard examples.

Table 8: Comparing FLAME, HeteroFL, ScaleFL, and AFD final global model evaluation AUC
scores on the Sent140 task. AUC scores are shown separately for early- and late-exiting samples,
defined by the exit layer taken during inference with p*” = 4 (thresholds provided in Appendix [A.3).
We use 25 clients and train for 20 rounds, with all clients using the same values for p!”/r/5. Methods
are compute-matched to similar FLOPs (see Appendix @)

Method Parameter AUC Average GFLOPs/client
Early samples Late samples

FLAME pi" =3 0.8739 0.7258 118.44

HeteroFL r=.9 0.7680 0.7207 117.41

ScaleFL d=11,7=.9 0.7859 0.6393 107.63

AFD 0=.2 0.5311 0.5573 115.96

8 CONCLUSION

FLAME demonstrates that sample-adaptive multi-exit training can substantially reduce client compu-
tation in FL while preserving accuracy, achieving up to a 50% reduction in training time and 200 MB
lower RAM usage with AUC maintained or improved. FLAME also opens several promising avenues
for future research, for instance in security and privacy. Early exits could enable slowdown-style
attacks that delay exits (Hong et al., 2021} |[Varma et al.| 2024} Zhang et al.,|2023}; |Chen et al.| |2023;
Coalson et al,2023) or leakage from exit-layer signals (Shokri et al.|[2017), but these risks may be
mitigated with adversarial training (e.g.,|Varma et al.|(2024]) for slowdown robustness) and differential
privacy (Abadi et al.,[2016). In a wider sense, FLAME highlights sample-adaptiveness as a new
paradigm for FL, one that could inspire approaches not only for efficiency but also for fairness,
robustness, personalization, and other objectives.

Under review as a conference paper at ICLR 2026

REFERENCES

Martin Abadi, Andy Chu, Ian Goodfellow, H. Brendan McMahan, Ilya Mironov, Kunal Talwar, and
Li Zhang. Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, CCS’16. ACM, October 2016. doi:
10.1145/2976749.2978318. URL http://dx.doi.org/10.1145/2976749.2978318.

Al Index Steering Committee. Artificial intelligence index report 2025: Chapter 1 —
research and development, 2025. URL lhttps://hai.stanford.edu/ai-index/
2025-ai-index—-report. Accessed: 2025-05-15.

Dario Amodei and Danny Hernandez. Ai and compute. https://openai.com/research/
ai-and-compute, 2018. Accessed: 2025-05-15.

Hankyul Baek, Won Joon Yun, Yunseok Kwak, Soyi Jung, Mingyue Ji, Mehdi Bennis, Jihong
Park, and Joongheon Kim. Joint superposition coding and training for federated learning over
multi-width neural networks, 2021. URL https://arxiv.org/abs/2112.02543.

Nader Bouacida, Jiahui Hou, Hui Zang, and Xin Liu. Adaptive federated dropout: Improving
communication efficiency and generalization for federated learning, 2020. URL https://
arxiv.org/abs/2011.04050!

Jonathon Byrd and Zachary Lipton. What is the effect of importance weighting in deep learning? In
International Conference on Machine Learning, pp. 872-881. PMLR, 2019.

Sebastian Caldas, Sai Meher Karthik Duddu, Peter Wu, Tian Li, Jakub Kone¢ny, H. Brendan
McMabhan, Virginia Smith, and Ameet Talwalkar. Leaf: A benchmark for federated settings, 2019.
URL https://arxiv.org/abs/1812.01097.

Kaidi Cao, Colin Wei, Adrien Gaidon, Nikos Arechiga, and Tengyu Ma. Learning imbalanced
datasets with label-distribution-aware margin loss. Advances in neural information processing
systems, 32, 2019.

Yiming Chen, Simin Chen, Zexin Li, Wei Yang, Cong Liu, Robby T. Tan, and Haizhou Li. Dynamic
transformers provide a false sense of efficiency, 2023. URL https://arxiv.org/abs/
2305.12228.

Zachary Coalson, Gabriel Ritter, Rakesh Bobba, and Sanghyun Hong. Bert lost patience won’t be
robust to adversarial slowdown, 2023. URL https://arxiv.org/abs/2310.19152.

Enmao Diao, Jie Ding, and Vahid Tarokh. Heterofl: Computation and communication efficient
federated learning for heterogeneous clients, 2021. URL https://arxiv.org/abs/2010,
01264.

William B. Dolan and Chris Brockett. Automatically constructing a corpus of sentential paraphrases.
In Proceedings of the Third International Workshop on Paraphrasing (IWP2005), 2005.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom
Hennigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia Guy,
Simon Osindero, Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, and Laurent Sifre.
Training compute-optimal large language models, 2022. URL |https://arxiv.org/abs/
2203.155506.

Sanghyun Hong, Yigitcan Kaya, Ionut-Vlad Modoranu, and Tudor Dumitras. A panda? no, it’s
a sloth: Slowdown attacks on adaptive multi-exit neural network inference. In International
Conference on Learning Representations, 2021.

Samuel Horvath, Stefanos Laskaridis, Mario Almeida, Ilias Leontiadis, Stylianos I. Venieris, and

Nicholas D. Lane. Fjord: Fair and accurate federated learning under heterogeneous targets with
ordered dropout, 2022. URL https://arxiv.org/abs/2102.13451}

10

http://dx.doi.org/10.1145/2976749.2978318
https://hai.stanford.edu/ai-index/2025-ai-index-report
https://hai.stanford.edu/ai-index/2025-ai-index-report
https://openai.com/research/ai-and-compute
https://openai.com/research/ai-and-compute
https://arxiv.org/abs/2112.02543
https://arxiv.org/abs/2011.04050
https://arxiv.org/abs/2011.04050
https://arxiv.org/abs/1812.01097
https://arxiv.org/abs/2305.12228
https://arxiv.org/abs/2305.12228
https://arxiv.org/abs/2310.19152
https://arxiv.org/abs/2010.01264
https://arxiv.org/abs/2010.01264
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2102.13451

Under review as a conference paper at ICLR 2026

Gao Huang, Danlu Chen, Tianhong Li, Felix Wu, Laurens van der Maaten, and Kilian Weinberger.
Multi-scale dense networks for resource efficient image classification. In International Confer-
ence on Learning Representations, 2018. URL |https://openreview.net/forum?id=
Hk2aImxADb.

Tianyu Huang, Anran Chen, Bingzhe Li, Yujun Zhang, Yue Yu, and Qiang Yang. Depthfl: Model depth
customization for resource-efficient federated learning. In Proceedings of the 40th International
Conference on Machine Learning (ICML), volume 202 of Proceedings of Machine Learning
Research, pp. 13710-13735. PMLR, 2023. URL https://proceedings.mlr.press/
v202/huang23z.html.

Fatih Ilhan, Gong Su, and Ling Liu. Scalefl: Resource-adaptive federated learning with heterogeneous
clients. In 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.
24532-24541, 2023. doi: 10.1109/CVPR52729.2023.02350.

Yigitcan Kaya, Sanghyun Hong, and Tudor Dumitrag. Shallow-Deep Networks: Understanding and
mitigating network overthinking. In Proceedings of the 2019 International Conference on Machine
Learning (ICML), Long Beach, CA, Jun 2019.

Royson Lee, Javier Fernandez-Marques, Shell Xu Hu, Da Li, Stefanos Laskaridis, Lukasz Dudziak,
Timothy Hospedales, Ferenc Huszér, and Nicholas D. Lane. Recurrent early exits for federated
learning with heterogeneous clients, 2024. URL https://arxiv.org/abs/2405.14791.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith.
Federated optimization in heterogeneous networks, 2020a. URL https://arxiv.org/abs/
1812.06127.

Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang. On the convergence of
fedavg on non-iid data, 2020b. URL https://arxiv.org/abs/1907.02189.

Evan Z Liu, Behzad Haghgoo, Annie S Chen, Aditi Raghunathan, Pang Wei Koh, Shiori Sagawa,
Percy Liang, and Chelsea Finn. Just train twice: Improving group robustness without training
group information. In International Conference on Machine Learning, pp. 6781-6792. PMLR,

2021.

Ruixuan Liu, Fangzhao Wu, Chuhan Wu, Yanlin Wang, Lingjuan Lyu, Hong Chen, and Xing Xie.
No one left behind: Inclusive federated learning over heterogeneous devices. In Proceedings
of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD ’22,
pp- 3398-3406. ACM, August 2022. doi: 10.1145/3534678.3539086. URL |http://dx.do1i |
org/10.1145/3534678.3539086.

Weijie Liu, Peng Zhou, Zhe Zhao, Zhiruo Wang, Haotang Deng, and Qi Ju. Fastbert: a self-distilling
bert with adaptive inference time, 2020.

Nestor Maslej, Loredana Fattorini, Raymond Perrault, Vanessa Parli, Anka Reuel, Erik Brynjolfsson,
John Etchemendy, Katrina Ligett, Terah Lyons, James Manyika, Juan Carlos Niebles, Yoav Shoham,
Russell Wald, and Jack Clark. Artificial intelligence index report 2024. Technical report, Stanford
University, 2024. URL https://aiindex.stanford.edu/report/.

H. Brendan McMabhan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Agiiera y Arcas.
Communication-efficient learning of deep networks from decentralized data, 2023. URL https:
//arxiv.org/abs/1602.056209.

Yiqun Mei, Pengfei Guo, Mo Zhou, and Vishal Patel. Resource-adaptive federated learning with
all-in-one neural composition. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and
A. Oh (eds.), Advances in Neural Information Processing Systems, volume 35, pp. 4270-4284.
Curran Associates, Inc., 2022.

Junhyun Nam, Hyuntak Cha, Sungsoo Ahn, Jacho Lee, and Jinwoo Shin. Learning from failure:
De-biasing classifier from biased classifier. Advances in Neural Information Processing Systems,
33:20673-20684, 2020.

Hongseok Namkoong and John C Duchi. Variance-based regularization with convex objectives.
Advances in neural information processing systems, 30, 2017.

11

https://openreview.net/forum?id=Hk2aImxAb
https://openreview.net/forum?id=Hk2aImxAb
https://proceedings.mlr.press/v202/huang23z.html
https://proceedings.mlr.press/v202/huang23z.html
https://arxiv.org/abs/2405.14791
https://arxiv.org/abs/1812.06127
https://arxiv.org/abs/1812.06127
https://arxiv.org/abs/1907.02189
http://dx.doi.org/10.1145/3534678.3539086
http://dx.doi.org/10.1145/3534678.3539086
https://aiindex.stanford.edu/report/
https://arxiv.org/abs/1602.05629
https://arxiv.org/abs/1602.05629

Under review as a conference paper at ICLR 2026

Yue Niu, Saurav Prakash, Souvik Kundu, Sunwoo Lee, and Salman Avestimehr. Federated learning
of large models at the edge via principal sub-model training, 2023. URL https://arxiv.
org/abs/2208.13141.

Shiori Sagawa, Pang Wei Koh, Tatsunori B Hashimoto, and Percy Liang. Distributionally robust
neural networks for group shifts: On the importance of regularization for worst-case generalization.
arXiv preprint arXiv:1911.08731, 2019.

Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership inference attacks
against machine learning models, 2017. URL https://arxiv.org/abs/1610.05820.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. Recursive deep models for semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pp.
1631-1642, Seattle, Washington, USA, October 2013. Association for Computational Linguistics.

Nimit Sohoni, Jared Dunnmon, Geoffrey Angus, Albert Gu, and Christopher Ré. No subclass left
behind: Fine-grained robustness in coarse-grained classification problems. Advances in Neural
Information Processing Systems, 33:19339-19352, 2020.

Sebastian U. Stich. Local sgd converges fast and communicates little, 2019. URL https://
arxiv.org/abs/1805.09767.

Sebastian U. Stich, Jean-Baptiste Cordonnier, and Martin Jaggi. Sparsified sgd with memory, 2018.
URLhttps://arxiv.org/abs/1809.075909.

Kamala Varma, Enmao Diao, Tanya Roosta, Jie Ding, and Tao Zhang. Once-for-all federated learning:
Learning from and deploying to heterogeneous clients, 2023.

Kamala Varma, Arda Numanoglu, Yigitcan Kaya, and Tudor Dumitras. Understanding, uncovering,
and mitigating the causes of inference slowdown for language models. In 2nd IEEE Conference
on Secure and Trustworthy Machine Learning, 2024. URL https://openreview.net/
forum?id=homi480tHul

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman. Glue:
A multi-task benchmark and analysis platform for natural language understanding, 2019.

Haozhao Wang, Yabo Jia, Meng Zhang, Qinghao Hu, Hao Ren, Peng Sun, Yonggang Wen, and Tian-
wei Zhang. Feddse: Distribution-aware sub-model extraction for federated learning over resource-
constrained devices, 2024. URL https://doi.orqg/10.1145/3589334.3645416.

Adina Williams, Nikita Nangia, and Samuel Bowman. A broad-coverage challenge corpus for
sentence understanding through inference. In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long Papers), pp. 1112-1122. Association for Computational Linguistics,
2018.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von
Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama
Drame, Quentin Lhoest, and Alexander M. Rush. Huggingface’s transformers: State-of-the-art
natural language processing, 2020.

Hongda Wu, Ping Wang, and C V Aswartha Narayana. Straggler-resilient federated learning: Tackling
computation heterogeneity with layer-wise partial model training in mobile edge network, 2023.
URLhttps://arxiv.org/abs/2311.10002.

Ji Xin, Raphael Tang, Jaejun Lee, Yaoliang Yu, and Jimmy Lin. Deebert: Dynamic early exiting for
accelerating bert inference, 2020.

Hao Yu, Sen Yang, and Shenghuo Zhu. Parallel restarted sgd with faster convergence and less
communication: Demystifying why model averaging works for deep learning, 2018. URL https:
//arxiv.org/abs/1807.066209.

12

https://arxiv.org/abs/2208.13141
https://arxiv.org/abs/2208.13141
https://arxiv.org/abs/1610.05820
https://arxiv.org/abs/1805.09767
https://arxiv.org/abs/1805.09767
https://arxiv.org/abs/1809.07599
https://openreview.net/forum?id=homi48OtHu
https://openreview.net/forum?id=homi48OtHu
https://doi.org/10.1145/3589334.3645416
https://arxiv.org/abs/2311.10002
https://arxiv.org/abs/1807.06629
https://arxiv.org/abs/1807.06629

Under review as a conference paper at ICLR 2026

Shengyao Zhang, Xudong Pan, Mi Zhang, and Min Yang. SlowBERT: Slow-down attacks on input-
adaptive multi-exit BERT. In Findings of the Association for Computational Linguistics: ACL
2023, pp. 9992-10007, Toronto, Canada, July 2023. Association for Computational Linguistics.
doi: 10.18653/v1/2023.findings-acl.634.

Yuchen Zhang, John C. Duchi, and Martin Wainwright. Comunication-efficient algorithms for
statistical optimization, 2013. URL https://arxiv.org/abs/1209.4129,

Wangchunshu Zhou, Canwen Xu, Tao Ge, Julian McAuley, Ke Xu, and Furu Wei. Bert loses patience:
Fast and robust inference with early exit, 2020.

A ADDITIONAL EXPERIMENTAL SETUP DETAILS

A.1 MODEL ARCHITECTURE AND INTERNAL CLASSIFIER DETAILS

Our architecture is based on the PABEE model (Zhou et al., 2020), which modifies BERT-base by
attaching an internal classifier (IC) at the output of each of its 12 hidden layers. Each IC consists of
a linear projection from the hidden state to a softmax layer that outputs class probabilities. All IC
parameters are updated during training along with the rest of the model parameters. All models are
initialized with pre-trained weights from Hugging Face (Wolf et al., 2020) and then fine-tuned on
downstream tasks.

A.2 OPTIMIZATION AND LEARNING RATE SCHEDULE

All models are fine-tuned using the AdamW optimizer with 3 values set to (0.9, 0.999) and e = 1e—8.
We use a linearly decaying learning rate schedule across training rounds. Training always begins with
a learning rate of 2e—5 and decays uniformly. Specifically, we use the following learning rates.

For 10 rounds of training: [2e—5, 1.8e—5,1.6e—5, ..., 4e—6, 2e—6]
For 20 rounds: [2e—5,1.9e—5,1.8e—5,...,2e—6, le—0]

This schedule is applied consistently across all clients and tasks.

A.3 SPLITTING TRAINING DATA ACROSS CLIENTS

For our FL experiments, we split a task’s training data such that each client has an equal number
of samples associated with each label. In Table[9] we provide the cardinality of the resulting local
training datasets. Note that we usually do not allow any clients to share the same sample, but we
do allow some overlap with MRPC in Table|[/|of Section|6.2since MRPC has such a small training
dataset.

A.4 ADDITIONAL SENT140 DETAILS

For our experiments in Section[7] we select 25 clients from the Sentiment140 benchmark that have at
least 100 training samples. This yields the following per-client training set sizes: 549, 246, 281, 192,
227,248, 213, 195, 202, 179, 207, 216, 171, 107, 103, 118, 113, 101, 112, 106, 189, 212, 114, 117,
and 102.

A.5 DISTINGUISHING TEST SAMPLES AS EARLY- OR LATE-EXITING

In Table] of Section [5.1] Table[8]of Section[7} and Table [I2]of Appendix [G} we report separate AUC
scores for early- and late-exiting test samples, defined by the exit layer taken during inference with
p®¥ = 4. We determined this early/late distinction by training centralized multi-exit models on each
task’s full training dataset, using these models to run inference on all test samples while allowing
patience-based early exiting with p®” = 4, and noting the exit layer taken by each sample. For SST-2,
if the sample exited before layer 9, it was considered early-exiting, and it was otherwise considered
late-exiting. Out of 872 total test samples, this splitting process resulted in 340 early-exiting samples
and 532 late-exiting samples. For MRPC, we similarly split samples on exit layer 8 and end up with

13

https://arxiv.org/abs/1209.4129

Under review as a conference paper at ICLR 2026

Table 9: Cardinalities of the local training datasets used by each of 10 FL clients.

Task Total # training # samples # per class
samples per client breakdown
3 positive: 2000
SST-2 67349 4000 negative: 2000
equivalent: 101
MRPC (no overlap) 3069 306 not equivalent: 205
MRPC (with overlap) 3069 1000 equivalent: 500

not equivalent: 500

neutral: 5000
MNLI 392702 1500 entailment: 5000
contradiction: 5000

363 early-exiting and 236 late-exiting samples from the 599-sample test dataset. We experimented
with various p®¥ values for inference and different ranges of exit layers to define the early and late
split and ultimately selected the values that produced the most balanced divisions.

B FLOPS COMPUTATIONS AND COMPARISONS

To compare the computational cost across FLAME, HeteroFL, ScaleFL, and AFD, we compute
FLOPs for a single training iteration on one sample for one client under various hyperparameters.
Table[I0]reports total training MFLOPs (forward + backward pass). Each individual row corresponds
to using FLAME with average exit depth d to define a target compute budget. Other columns
correspond to other methods, and we select hyperparameters for those methods that lead to an amount
of FLOPs closest to the row’s target compute budget.

We use the following forward-pass formulas, then multiply by 3 to obtain training MFLOPs (backward
=~ 2x forward). A full 12-layer BERT forward costs 48,318.4 MFLOPs, so a full training pass costs
144,955.2 MFLOPs.

FLAME (forward): (é) -48,318.4 + (1.5711-d) 1)
HeteroFL (forward): 72 - 48,318.4 2)

ScaleFL (forward): (f;) . (r? ~48,318.4) 3)
AFD (forward): (1 —) - 48,318.4 (@)

Here, d is the average exit depth (FLAME), r is the width ratio (HeteroFL), (d,) are ScaleFL’s
depth/width settings, and ¢ is the dropout ratio for AFD. Note that we implement AFD by selecting a
fixed fraction of attention heads and feed-forward neurons per layer. In the formula we use for AFD
MFLOPs, we approximate forward MFLOPs as linear in the keep probability (1 — §), which slightly
overcounts constant terms (e.g., LayerNorm, residual, classifier) that do not scale with ¢. In the table,
hyperparameters are chosen from a one-decimal grid to be closest to the FLAME budget and shown
in parentheses.

14

Under review as a conference paper at ICLR 2026

Table 10: Total training MFLOPs (forward + backward per sample) for FLAME, HeteroFL, ScaleFL,
and AFD. Each row uses FLAME at depth d to define a target compute budget. Parentheses indicate
the parameter settings: HeteroFL (r), ScaleFL (d, r5), and AFD (9).

FLAME | HeteroFL (r) | ScaleFL (ds,7s) | AFD (9)

d

1 12,08431 | 13,045.97(0.3) | 12,079.60 (4,0.5) | 14,495.52 (0.9)
2 24,168.63 | 23,192.83(0.4) | 23,676.02(4,0.7) | 28,991.04 (0.8)
3 36,252.94 | 36,238.80(0.5) | 35,514.02(6,0.7) | 43,486.56(0.7)
4 4833726 | 52,183.87(0.6) | 47,352.03(8,0.7) | 43,486.56(0.7)
5 60421.57 | 52,183.87(0.6) | 61,847.55(8,0.8) | 57,982.08 (0.6)
6 72,505.88 | 71,028.05(0.7) | 69,578.50(9,0.8) | 72,477.60 (0.5)
7 84,590.19 | 92,771.33(0.8) | 88,060.28 (9,0.9) | 86,973.12 (0.4)
8

9

10

11

12

96,674.51 | 92,771.33(0.8) | 97,844.76 (10,0.9) | 101,468.64 (0.3)
108,758.82 | 117,413.71 (0.9) | 107,629.24 (11,0.9) | 115,964.16 (0.2)
120,843.14 | 117,413.71 (0.9) | 107,629.24 (11,0.9) | 115,964.16 (0.2)
132,927.45 | 144,955.20 (1.0) | 132,875.60 (11,1.0) | 130,459.68 (0.1)
145,011.76 | 144,955.20 (1.0) | 144,955.20 (12,1.0) | 144,955.20 (0.0)

C PSEUDOCODE FOR THE FLAME PIPELINE

D THEORETICAL CONVERGENCE GUARANTEE

We very closely model our proof of FLAME'’s convergence off of that of Federated Partial Model
Training (FedPMT) (Wu et al., |[2023)). With FedPMT, all clients compute the forward pass through
the entire model as usual. Backpropagation also starts from the output layer as usual, but it can finish
before reaching the shallowest layers. Each client is assigned a parameter value that indicates how
many layers are updated during backpropagation. Thus, with FedPMT, like with FLAME, not all
layers are consistently updated during training.

The two methods differ in two key aspects. First, with FedPMT, the depth of the network that receives
updates is client-specific and fixed throughout training. With FLAME, the utilized network depth
is sample-specific and may change across rounds. Second, with FedPMT, the deeper layers are
prioritized and the early layers may be skipped due to backpropagation stopping early. With FLAME,
the early layers are always updated and the later layers may be skipped due to forward propagation
stopping early.

D.1 PRELIMINARIES

D.1.1 SURROGATE LOSS FUNCTION

Before proceeding, we first define fk, which is the local surrogate loss for a client & that uses FLAME.
Since FLAME allows clients to use early exits, not every sample produces gradients for all layers.
Therefore, this objective is just the usual training loss, but averaged not only over data samples but
also over the randomness of exits. Formally, for a model parameter vector w and a client k£ with data
distribution Dy, B
fk (’LU) = E(l‘,y)ka E_/Nq(|1) [gj (w; €, y)} P

where £; (w; z,y) denotes the loss computed at exit j and ¢(j | «) is the exit distribution for input
. We can then define the global surrogate objective as the average of this surrogate loss across all
clients:

K
~ 1 ~
Fw) = 2> Fulw).
k=1
D.1.2 ASSUMPTIONS
To aid in our proof, we list the following standard assumptions, which are also used in the convergence

analyses of FedAvg (Li et al., [2020b) and FedPMT (Wu et al., [2023)). The first two assumptions are

15

Under review as a conference paper at ICLR 2026

standard (for example, used in [Stich|(2019); [Li et al.|(2020a;b); Wu et al.| (2023))). Assumptions 3
and 4 have been used in similar convergence analyses, such as |Stich| (2019); |Li et al.| (2020b); [Wu
et al.| (2023)); Baek et al.| (2021)); Zhang et al.| (2013); |Yu et al.| (2018); Stich et al.| (2018). We also
define a new fifth assumption, which is necessary to ensure that no layer is completely deprived of
updates.

Assumption 1 (smoothness). Each client’s surrogate loss is L-smooth: for all w and w', fr(w) <
Fulw!) + (w —)TV f(w') + £ fJw —w'|

Assumption 2 (strong convexity). Each client’s surrogate loss is ji-strongly convex: for all w and
W', fr(w) > fr() + (w =)V fo(w') + 4w — o'

Assumption 3 (bounded variance). Stochastic gradients have bounded variance o*: for all w,
E (o g~y | Vew; 2, y) = Vi(w)||* < o2

Assumption 4 (heterogeneity bound). The variance across client gradients is bounded by ¢%: for
allw, 5 ||V fe(w) = VEw)||* < ¢2

Assumption 5 (update probability). Each model parameter has a nonzero probability of being

updated: p > 0, where p is the minimum probability (taken across all layers) that a layer contributes
a gradient update (i.e. a sample doesn’t exit before the layer).

D.2 PROOF

Proposition 1 (Downhill gradients). For each client’s surrogate loss, fk the assumption of strong
convexity (Assumption 2) implies that the stochastic gradient step is a valid descent step (is directed

downhill).
Formally, for any parameter vector w and optimal parameters w*,

(w—w", Ve(w)) = filw) = fulw®) + § v —w*|*.

Note that, unlike FedPMT’s Proposition 1, we do not introduce an € term to capture the information
loss that results from not consistently updating the full network. In FLAME, the effect of early exits
is already accounted for in the surrogate loss, which averages over all possible exits. The impact of
reduced gradient information instead appears later, in Lemmas 1 and 2 and Theorem 1, through a 1/p
factor that reflects the minimum probability that an arbitrary network layer is updated.

Lemma 1 (Variance under exits.). Here, we adapt Lemma 1 of FedPMT (Wu et al.| |20235). Formally,
using Assumption 3 and Assumption 5, for global round t, the variance of the global surrogate
gradient is bounded as
202

p
VF(w') denotes the expected global surrogate gradient, defined as the average of the client-level

E[|VF(w') — VF(w")[?] <

surrogate gradients ka(wfk) (which is itself defined as an expectation over minibatches and exits).
V F(w') is the empirical global surrogate gradient, defined as the average of the sampled client-level

surrogate gradients V]Tk (Wt &, J), where & is a minibatch sampled from Dy, and j is an exit
sampled from q(- | x).

The key difference from this lemma and the corresponding one from FedPMT is the noise term that is
multiplied by 202 to define the variance bound. In FedPMT, the noise term, |/ |, reflects client-level
masking. In FLAME, masking occurs at the sample level so the noise term becomes 1/p, where p
denotes the minimum probability that any layer is updated. This 1/p term represents the fact that
layers that update less frequently receive fewer gradient contributions, which increases the variance
of their estimates relative to layers that are updated more often. When p is small, the stochastic
gradient for that block is based on less information so the noise must be inversely proportional to p.

Apart from the modified noise term, the proof for this lemma exactly mirrors that of FedPMT.

Lemma 2 (Single-round improvement). Under Assumptions 1-5, in the (t + 1)-th global round,
the expected distance between the current global model w'™! and the optimal solution w* satisfies

N N 202
Bt = P < (L=) Bt - | 4 22 (80 - 10767 + 226 4+ 2.

16

Under review as a conference paper at ICLR 2026

where 1, is the learning rate in round t and T is the number of local steps.

Note that FedPMT used a different term to represent client heterogeneity: 2L n7 (|I]y + S| +) A.
This was designed to accommodate FedPMT’s client-wise masking design. For FLAME, we harness
Assumption 4 and replace this heterogeneity term with the standard 2L ¢2 bound (as is used in the
FedAvg proof of convergence). The other differences are that FLAME does not require € and that it
uses 1/p in place of ||y (as justified earlier in the proof).

Theorem 1 (Convergence of FLAME). Under Assumptions 1-5, using step size n; = , the

convergence of FLAME satisfies
A+ 1 2A
277 2=
(i 2 1+ [Lz :))

2and A = 8(r—17G* + 2L + 2

2
w(t+A)

T - * 1
E|F(wT) - F(w)} < 7

where A > 0,T7 = E |lw! — w*

This result shows that FLAME has the same O(1/T") convergence rate as FedAvg and FedPMT. The
differences lie in the constants. Specifically, FLAME replaces FedPMT’s client-wise masking factors
(/1Y) + | S| + €)A with the heterogeneity bound (?, eliminates the ¢ term, and incorporates a 1/p
factor to account for sample-specific exits. Apart from these modifications, the proof follows the
same telescoping argument as supported in FedPMT (Wu et al., 2023)).

E SECONDS PER ITERATION FOR MRPC AND MNLI CLIENTS

Here, we include additional results associated with SectionE} In Table[TT] we list the seconds per
training iteration for clients using FLAME with different p*” values and learning the MRPC and
MNLI tasks in Setting A. Compared to a baseline where FLAME is not used, we see 22.18-46.43%
and 1.70-28.06% savings with MRPC and MNLI.

F PLOTTING COST ACROSS ROUNDS OF TRAINING WITH FLAME

Figure [] plots the seconds per iteration associated with each of 10 clients that are training using
FLAME in a FL system that is learning the MRPC task using Setting A. Clients are using different
p'" values with FLAME. This plot illustrates the pattern that we have also noticed with SST-2 and
MNLLI, and suspect to be a general pattern: clients’ time per iteration decreases as training progresses.
This observation justifies our decision to focus on analyzing the seconds per iteration from the last

round of training (e.g. in Tables 3] 5] [6] [T T} and[T3).

w
o

R v p=2
R _3
50 1 p=
§ | TALN p=4
2 N -4+- p=
S s 3 p=>
2 3 \ *- p=6
[B \
[} v) S
a ; o
w0 B Y ey Ve
c
o
9 Y
35 3
w ¥..
v V..,
30 Vg v Fong oy v ¥ ¥ ¥

123 456 7 8 9 1011121314 15 16 17 18 19 20
Epoch

Figure 4: Seconds per iteration associated with clients using various p’" values with FLAME to learn
the MRPC task in a FL system using Setting A. We plot these values across each of the 20 total
training rounds.

17

Under review as a conference paper at ICLR 2026

G MRPC RESULTS FROM ABLATING THE COLLABORATION OF FLAME

In Table|12} we include results for MRPC associated with the ablation study from Section These
results support the observation that training a single, centralized model using FLAME leads to
compromised AUC score, particularly with late-exiting samples.

H SECONDS PER ITERATION PER CLIENT FOR GROUPED BACKPROPAGATION

In Table[6]of Section[6.1] when discussing the grouped backpropagation extension for FLAME, we
reported the average seconds per training iteration across clients that used different p” values. Now,
in Table[T3] we list the full set of seconds per iteration values that were used to compute the averages.

I CLIENT-WISE EXIT LAYER OVER TIME

The design of patience-conscious aggregation is based on the assumption that clients using higher p'”
will have training samples exiting later. However, as we mentioned in Section[6.2] we find that this is
not always the case. The plots in Figure [5] support this observation. For instance, with SST-2 and
MRPC, in early rounds of training, a client with p!” = 2 has higher average exit layer than clients
with higher p'".

) \\\\,__‘
n

Average exit layer
Average exit layer
Average exit layer

81 —h—

TTT T
e
wl ous wn

v
v
T R ————

SIS T S oy

T2 3 4 5 & 7 8 8 10 12345675 91011121314151617181920 T2
Epoch Epoch Epoch

(a) Learning SST-2. (b) Learning MRPC. (c) Learning MNLI.

Figure 5: Plotting the average exit layer of local training samples for each of 10 clients across 10
rounds of training in a FL system. Each subplot is associated with learning a different task. Clients
are using FLAME with various p*” values (using Setting A).

J FLAME’S MEMORY SAVINGS

Although FLAME’s primary intention is to reduce the computational costs associated with training,
we find that the method also leads to memory savings. As FLAME allows samples to only pass
through subsets of a model’s total parameters, activations will only be computed and stored for subsets
of the total parameters. Activations typically need to be stored in RAM as samples forward-pass
through a network so that they can be used to update parameters during backpropagation, and this can
amount to burdensome memory overhead. Therefore, as we see in Table using FLAME can save
up to approximately 200 MB of RAM. In this table, we report the total amount of GPU RAM that
was used in training 10-client FL systems where all clients use FLAME with the same p'” value. We
compare these values to baseline values clients do not use FLAME and therefore do not allow any
early exiting. The minimal logical p'” value to use is 2, which is where we see 100 (with MNLI) to
200 (with SST-2 and MRPC) MB in savings. Using the maximum p’” value considered in our paper
(6) results in no memory savings, which makes sense since the average exit layer in these experiments
is nearly 12 (the same as in the baseline).

18

Under review as a conference paper at ICLR 2026

Algorithm 1: FLAME: FEDERATED LEARNING WITH SAMPLE-ADAPTIVE MULTI-EXIT
TRAINING. Each client m € M has local data D,,, and a training-time patience value pt”. Clients
train for E local epochs across T' global rounds with learning rate n. Models have L hidden
layers, each followed by an internal classifier (IC), which is a linear projection WCh, of the
hidden state into a softmax over classes. We write Layer,(h,_1; W) for the mapping of hidden
state hy_; through the /-th hidden layer (with hy = x). For now, we assume batch size = 1. See
Algorithm 2| for the grouped backpropagation extension that enables larger minibatch sizes. Note
that we use FedAvg for aggregation by default, but line [8|can be replaced with the aggregation
formulas we introduce in Section[6.2]

1 Server executes:

B OWON

—

0

12
13
14

15

16
17

18

19
20
21
22
23
24
25
26
27
28
29
30
31
32

33
34
35

36
37

Initialize W;
fort =1to 7T do
for each client m € M do
// send current global parameters
Wi ¢ Wy
// client trains locally
W, <+ ClientUpdate(m, W,,, pi*, E, n);
end

// aggregate local models (using FedAvg by default)

Wy = 550 Y e Dol Wins
end

Client executes:

ClientUpdate(m, W, p%* E, n):
fore =1to E do
for each (x, Yiye) € Dy, do

c <+ 0;

// consecutive-IC-agreement counter
chrr — J—;

// sentinel (no label yet)

h() — I,

for / = 1to L do
// forward through layer /
he < Layer,(h¢—1; W);

2y Wgchg;
¢ < softmax(zy);
Yo < arg max 7my;
if ZQZ = /gcurr then
\ c+—c+1;
else
‘ c+1;
ycurr — Z?é;
end
ifc > p' or ¢ = L then
‘ Lexit <+ €
break;
end
end

layers 1:ley;+ and that IC
L «+ CrossEntropyLoss (2, Yirue)s
Update W<,
end
end
return W

exit

19

// IC (linear projection then softmax)

// compute loss at the chosen exit and update only

and W€ via SGD with learning rate) and gradient V.£;

Under review as a conference paper at ICLR 2026

Algorithm 2: GROUPED BACKPROPAGATION. A modification of the client-side local training
that happens with FLAME, which allows the use of minibatches with a size b > 1. This function,
GroupedClientUpdate, replaces ClientUpdate in the standard FLAME pipeline in Algorithm 1]
(where b = 1). Note that lines lines[T0H26]in GroupedClientUpdate are essentially identical to
lines lines in ClientUpdate.

1 GroupedClientUpdate(m, W, ptZ E, n, b):

2
3
4
5
6

10
11

12

14
15

17
18

20
21
22
23
24
25
26
27
28
29

30
31
32

33
34
35
36
37

fore =1to E do

end
end

for each minibatch B C D, of size b do

for / =1to L do
Initialize exit-layer loss list £y < ||

end

// individually forward-pass samples with patience-based

early exits

for each (x, yyu.) € B do
c+0;

// consecutive-IC-agreement counter

gcurr — L 5

// sentinel (no label yet)
ho(—l‘;

for / = 1to L do

end

// forward through layer /
he < Layer,(h¢—1; W);
// IC (linear projection then softmax)
2y Wgchg;
e <— softmax(zy);
Yo < arg max 7my;
if Yo = Yeurr then
c+c+1;
else
c+1;
gcurr — Qe;
end
if c > p or ¢ = L then
Lexit £
Leurr <— CrossEntropyLoss (2., , Yirue);
store Ly in Ly
break;
end

exit ?

end

// perform one backpropagation per non-empty exit-layer

group

for / = 1to L do
if £, # [] then

end

return W;

avg 1)
L 0 Zd Z AEL, A
Update W<, and W€ via SGD with learning rate 1 and gradient V.£}"¢;

end

20

Under review as a conference paper at ICLR 2026

Table 11: Seconds per iteration from the last iteration of training for clients using various p*” values
with FLAME in Setting A. We compare these values against a baseline where FLAME is not used
(no early exiting occurs during training).

Task # samples ptr Avg. % change
per client secs/it from baseline
Baseline 55.31 -

2 29.63 -46.43%

MRPC 1000 3 3337 -39.67%
4 36.59 -33.85%

5 39.79 -28.06%

6 43.04 -22.18%

Baseline 854.75 -
2 614.93 -28.06%

MNLI 15000

3 673.37 -21.22%
4 776.67 -9.13%
5 814.41 -4.72%
6 840.26 -1.70%

Table 12: Evaluation AUC scores resulting from training a single, centralized model on the MRPC
task using MET with various p®” values. We report scores separately for early- and late-exiting
evaluation samples, defined by the exit layer taken during inference with p®* = 4 (thresholds are
detailed in Appendix[A.3). We also include results from a baseline model that did not use MET (no
early exiting allowed).

Method Samples AUC

Early-exiting 0.82

Baseline Late-exiting ~ 0.71

Early-exiting 0.83

tr __
MET, p™ =2 Late-exiting ~ 0.58
. Early-exiting 0.83

tr __
MET, p =3 Late-exiting ~ 0.65
MET, p!" = 4 Early-exiting 0.84

Late-exiting 0.67

21

Under review as a conference paper at ICLR 2026

Table 13: Seconds per training iteration for clients using different p*” values with FLAME to learn the
SST-2 task in a FL system that uses Setting A. The clients are using backpropagation with FLAME
and we report results associated with different grouping strategies and b values. We compare these
results to those from a baseline where FLAME is used without grouped backpropagation.

Grouping strategy b Seconds/iteration
ptr =92 ptr =3 ptr =4 ptr =5 ptr —

Standard FLAME 1 10290 120.09 13441 147.43 160.06
Proposed grouping 16 70.09 82.99 93.72 103.68 113.73
Proposed grouping 32 90.23 107.73 12026 127.80 132.73
Proposed grouping 64 62.30 78.61 112.01 12042 125.22
Proposed grouping 128 65.58 78.11 12595 131.70 136.09
Full group 8 72.69 86.35 99.54 11045 118.79
Full group 32 81.24 92.48 102.88 11295 120.12
Binary grouping 32 61.65 78.32 89.55 99.63 108.23
Random grouping 32 67.39 80.08 92.57 102.73 110.92
Distant pairing 32 83.91 87.03 101.89 111.61 118.43
Close pairing 32 78.07 86.51 101.93 111.66 118.78

Table 14: Average exit layer and total GPU RAM used in training FL systems where are clients
are using FLAME with the same p'" value. We compare these values to baseline where none of
the clients use FLAME (no early exiting allowed during training). Note that we used an NVIDIA
A100-SXM4-40 GB GPU and we only had access to RAM usage metrics that are rounded to the
nearest 0.1 GB.

Task # samples ptr Avg. exit GPU

per client layer RAM (GB)

Baseline 12 16.0

SST2 4000 2 7712 15.8
6 11914 16.0

Baseline 12 16.0

MRPC 1000 2 9.987 15.8
6 11.998 16.0

Baseline 12 16.0

MNLL 1500 2 9.564 15.9
6 11.999 16.0

22

	Introduction
	Related work
	Existing solutions and their drawbacks
	Multi-exit models

	Experiment set-up
	FLAME - using multi-exit training for more efficient FL
	Digging deeper: why does FLAME work?
	Ablating the collaboration
	Ablating the sample adaptiveness

	Exploring FLAME extensions
	Enabling larger batch sizes
	Adapting aggregation to FLAME

	Demonstrating FLAME's advantage over prior works
	Conclusion
	Additional experimental setup details
	Model architecture and internal classifier details
	Optimization and learning rate schedule
	Splitting training data across clients
	Additional Sent140 details
	Distinguishing test samples as early- or late-exiting

	FLOPs computations and comparisons
	Pseudocode for the FLAME pipeline
	Theoretical convergence guarantee
	Preliminaries
	Surrogate loss function
	Assumptions

	Proof

	Seconds per iteration for MRPC and MNLI clients
	Plotting cost across rounds of training with FLAME
	MRPC results from ablating the collaboration of FLAME
	Seconds per iteration per client for grouped backpropagation
	Client-wise exit layer over time
	FLAME's memory savings

