

000 001 002 FLAME: 003 REDUCING COMPUTATION IN FEDERATED LEARNING 004 VIA SAMPLE-ADAPTIVE MULTI-EXIT TRAINING 005 006

007 **Anonymous authors**
008 Paper under double-blind review
009
010
011
012

ABSTRACT

013 Federated learning (FL) enables a group of clients to collaboratively train a global
014 machine learning model without sharing raw data. It is particularly suited to
015 Internet-of-Things and similar environments involving small, heterogeneous de-
016 vices. However, these clients often lack the computational resources needed to train
017 the full global model locally, as the FL pipeline conventionally expects. Prior work
018 addresses this challenge by assigning smaller sub-networks to resource-constrained
019 clients, but such approaches have a key limitation: they do not adapt computa-
020 tional effort based on the needs of individual input samples. In this work, we
021 introduce Federated Learning with sample-Adaptive Multi-Exiting (FLAME), the
022 first method to incorporate sample-adaptive early exiting into local training for
023 efficient FL. FLAME allows each training sample to exit at the earliest layer at
024 which the model can confidently predict the sample’s output, which improves effi-
025 ciency without sacrificing accuracy. We show that this use of sample-adaptiveness
026 leads to better AUC than existing solutions because instead of uniformly saving
027 computation across all samples, it strategically saves it on easier samples and
028 preserves it for harder ones. Our empirical results demonstrate FLAME’s ability to
029 reduce per-client computation by up to 50% while maintaining or even improving
030 model accuracy, and to outperform existing solutions in practical settings. We also
031 show how FLAME’s success stems from FL’s collaborative nature and propose
032 two optimizations that further enhance its efficiency and performance. Overall, this
033 work introduces the novel concept of training-time sample-adaptiveness in the FL
034 domain, which opens new avenues for improving the utilization of heterogeneous
035 clients and for enhancing the FL paradigm.
036

1 INTRODUCTION

037 The cost of training deep learning systems is rising rapidly, with recent models like GPT-4 and
038 Gemini Ultra requiring 10B–100B petaFLOPs (Maslej et al., 2024). In federated learning (FL), this
039 cost is distributed across many clients that train local models on their own data, while a central server
040 aggregates updates into a global model. This enables learning from large, diverse datasets without
041 sharing raw data, e.g., in wearable health applications where FL supports collaborative disease
042 detection while preserving privacy. A central challenge is that clients are often resource-constrained
043 yet still expected to train the full architecture. While storage can be a factor, computation is the
044 primary bottleneck. Training FLOPs are growing exponentially (Amodei & Hernandez, 2018; AI
045 Index Steering Committee, 2025). However, memory demands have increased more slowly or even
046 declined in recent models (Hoffmann et al., 2022). For instance, Hoffmann et al. (2022) show that
047 their Chinchilla model outperforms the SoTA Gopher model that is 4x larger than Chinchilla but
048 has 4x less training data. This result demonstrates the fact that scaling training data is often more
049 beneficial than increasing model size, and consequently, that memory is becoming a less dominant
050 constraint than compute.

051 We introduce Federated Learning with sample-Adaptive Multi-Exiting (FLAME), a flexible and
052 efficient scheme that reduces local computation by adapting it to input difficulty. FLAME builds
053 on two insights. First, many samples do not require full network depth for accurate predictions,
motivating multi-exit models (MEMs) that allow early exits during inference (Kaya et al., 2019).

054 While MEMs have been used for inference, applying them to training is underexplored and raises a
 055 key concern: can the global model still converge if many samples exit early and deeper layers receive
 056 fewer updates? Our experiments, supported by theory, show that FLAME maintains convergence in
 057 practice. Second, input-adaptive training has improved performance in other contexts such as robust
 058 optimization and subgroup generalization via reweighting and resampling (Sagawa et al., 2019; Byrd
 059 & Lipton, 2019; Cao et al., 2019; Liu et al., 2021; Nam et al., 2020; Sohoni et al., 2020; Namkoong
 060 & Duchi, 2017), but has not been used to reduce computation.

061 Existing FL approaches for resource-limited clients typically assign smaller sub-networks based on
 062 device capacity. These methods suffer from overhead in sub-network generation, limited flexibility,
 063 and a narrow focus on device constraints rather than the data itself. This is problematic in non-IID
 064 settings where sample difficulty varies. Uniform savings can under-compute on harder samples and
 065 over-compute on easier ones. FLAME instead adapts to each sample, allocating more resources to
 066 difficult examples and fewer to easier ones.

067 We evaluate FLAME on language tasks and show it reduces training costs by up to 50% while
 068 maintaining or improving accuracy and inference efficiency. Through ablation studies, we show
 069 that FL’s collaborative setup mitigates under-training of deeper layers and that sample-adaptive
 070 computation improves AUC. We introduce a batching optimization for further savings and propose
 071 three aggregation algorithms tailored to FLAME. Finally, we demonstrate that FLAME performs
 072 especially well under realistic non-IID distributions, outperforming prior methods and confirming
 073 that its sample-adaptive design is central to its effectiveness.

074 **Our main contributions are:**

- 076 • Introducing FLAME, the first sample-adaptive, multi-exit training framework for FL, which
 077 reduces client computation while often improving accuracy and inference efficiency.
- 078 • Showing that FLAME remains stable and convergent despite sample-adaptive exits, sup-
 079 ported by both empirical results and an $O(1/T)$ convergence proof.
- 080 • Conducting ablation studies to show (1) collaboration mitigates under-training of later layers
 081 and (2) sample-level adaptation improves AUC.
- 082 • Proposing a grouped backpropagation strategy that further reduces computation, with
 083 experiments guiding its tuning.
- 084 • Developing and evaluating three aggregation algorithms tailored to FLAME that improve
 085 efficiency and accuracy.
- 086 • Providing evidence that, on non-IID client distributions with diverse sample difficulty,
 087 FLAME achieves higher AUC than state-of-the-art baselines under matched training FLOPs.

089 2 RELATED WORK

092 2.1 EXISTING SOLUTIONS AND THEIR DRAWBACKS

093 FLAME addresses resource constraints in FL clients, a challenge previously approached by assigning
 094 smaller sub-networks for local training (Ilhan et al., 2023; Wang et al., 2024; Niu et al., 2023; Diao
 095 et al., 2021; Mei et al., 2022; Varma et al., 2023; Bouacida et al., 2020; Horvath et al., 2022; Kim
 096 et al., 2023; Lee et al., 2024; Liu et al., 2022). FLAME’s key distinction is sample-specific adaptation:
 097 it dynamically adjusts computation based on input difficulty, allocating more resources to harder
 098 samples. This leads to higher AUC scores than non-adaptive methods, which often under-train on
 099 difficult samples to save compute.

100 Other limitations in prior work include high overhead and inflexible sub-network assignment. For
 101 example, FedDSE (Wang et al., 2024) and PriSM (Niu et al., 2023) rely on expensive supernet
 102 training and SVD analysis, respectively, while FjORD (Horvath et al., 2022) uses costly Optimal
 103 Dropping. Several methods also lack strategies for assigning architectures based on client-specific
 104 characteristics. HeteroFL (Diao et al., 2021) uses fixed downscaling ratios, and ScaleFL (Ilhan et al.,
 105 2023) selects from a limited set of depth-width variants. InclusiveFL (Liu et al., 2022) optimizes for
 106 participation and utility but does not tailor architectures to client data. Only AFD (Bouacida et al.,
 107 2020) and FLANC (Mei et al., 2022) support evolving sub-networks during training, through dynamic
 pruning and shared basis construction. FLAME offers similar flexibility at lower cost. Clients can

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
adjust their computation using a simple patience hyperparameter (Section 4), and the sub-portion of the global model used per sample is selected adaptively during training.

It is important to note that FLAME requires clients to store the full global model, which may seem a drawback compared to methods assuming clients cannot. However, FLAME does save some storage by avoiding activations for all parameters (Appendix K). More importantly, as discussed in the introduction, memory limitations are often not the primary constraint in practice and it is the computational cost that presents the more significant challenge. Therefore, the focus of this work is on the reduction of computational costs as opposed to saving memory/communication costs.

2.2 MULTI-EXIT MODELS

FLAME is largely inspired by Multi-Exit Models (MEMs). With MEMs, input samples can 'exit early' and thereby receive a final prediction at earlier layers than the final output layer (Zhou et al., 2020; Kaya et al., 2019; Huang et al., 2018; Xin et al., 2020; Liu et al., 2020). The early exiting happens through internal classifiers (ICs), which are attached to various layers within a MEM. During training, ICs learn to map the layer's hidden state to a prediction (referred to as an internal prediction). During inference, samples can exit through an IC once some exiting criteria is met. FLAME is the first solution to integrate the multi-exit approach into the training process, where computational demands are significantly higher than in inference.

3 EXPERIMENT SET-UP

FL setup We consider a federated learning (FL) system with multiple clients, each training locally on its own data. A central server maintains the global model and aggregates client updates using FedAvg (McMahan et al., 2023), which computes a weighted average based on client dataset sizes. Since data is evenly split, this reduces to a simple average. We assume a synchronous setting where the server waits for all updates before aggregating and then broadcasts the updated global model. Each client trains using the full architecture.

FL settings When using FLAME, clients are assigned patience values p controlling early exits: a sample exits once p successive ICs agree (see Section 4). We denote training-time patience as p^{tr} , where smaller p^{tr} reduces computation. Table 1 lists 10 settings with different p^{tr} distributions across 10 clients. We focus mainly on 10-client settings, but also include larger, 25-client experiments in Section 7, which aligns with many FL works (e.g. Blanchard et al. (2017); Lin et al. (2021); Li et al. (2023); Tan et al. (2022); Yu et al. (2022); Xenos & Serpanos (2025)) that focus on 10-20 clients in their empirical evaluations. We restrict $p^{tr} \in [2, 6]$. $p^{tr} = 1$ forces exit at the first IC, while $p^{tr} > 6$ makes nearly all samples exit at the final layer, effectively disabling early exiting. Note that while we report results across all 10 settings, we primarily focus on Setting A because it provides a representative mix of low- and high-patience clients, which best illustrates FLAME's collaborative dynamics.

Table 1: List of p^{tr} values used by clients while using FLAME in various 10-client FL settings.

Setting	Client p^{tr} values
A	[2,2,3,3,4,4,5,5,6,6]
B	[2,2,2,2,2,2,2,2,2,2]
C	[2,2,2,2,2,2,2,2,2,6]
D	[2,2,2,2,2,2,2,6,6]
E	[2,2,2,2,2,2,6,6,6]
F	[2,6,6,6,6,6,6,6,6]
G	[3,3,3,3,3,3,3,3,3]
H	[3,3,3,3,3,3,3,3,6]
I	[3,3,3,3,3,3,3,6,6]
J	[2,2,2,2,6,6,6,6]

162 **Multi-exit model details** In all experiments, we use a BERT-based MEM with internal classifiers
 163 (ICs) at each of the 12 hidden layers. Models are initialized with pre-trained weights from Hugging
 164 Face (Wolf et al., 2020), then fine-tuned on downstream tasks (see Section 3), rather than trained
 165 from scratch. This approach is standard for BERT-based models, which are known to generalize well,
 166 and avoids the high cost of pre-training. Further architecture details are in Appendix A.1.
 167

168 **Tasks** We evaluate on three GLUE benchmark tasks (Wang et al., 2019): SST-2 (Socher et al., 2013),
 169 a binary sentiment classification task; MRPC (Dolan & Brockett, 2005), which predicts semantic
 170 equivalence between sentence pairs; and MNLI (Williams et al., 2018), a three-way classification
 171 task labeling premise-hypothesis pairs as entailment, contradiction, or neutral. SST-2 and MNLI are
 172 trained for 10 rounds, MRPC for 20, each using 10 clients with evenly split data (see Appendix A.3).
 173 In Section 7, we also evaluate on Sentiment140 (Sent140) (Caldas et al., 2019), a non-IID benchmark
 174 where each client holds tweets from a single user. We use 25 clients with at least 100 training samples
 175 each and train for 20 rounds (details in Appendix A.3).
 176

177 **Evaluation metrics and protocols** Unless otherwise noted, we evaluate with evaluation-time
 178 patience $p^{ev} = 4$ (the full patience mechanism is in Section 4). We report AUC and the average
 179 exit layer, and we state in each table caption whether this average refers to inference-time exits or
 180 training-time exits. We sometimes report AUC stratified by early-exiting vs. late-exiting samples,
 181 defined by the exit layer taken during inference with $p^{ev} = 4$: a sample is early if it exits strictly
 182 before a task-specific threshold τ_{task} , otherwise late. (The τ_{task} values are given in Appendix A.5.) We
 183 also report “seconds per iteration,” denoting the wall-clock time to complete one full training iteration
 184 over the dataset (forward + backward). Details on learning hyperparameters are in Appendix A.2.
 185

4 FLAME - USING MULTI-EXIT TRAINING FOR MORE EFFICIENT FL

187 In this section, we introduce Federated Learning with sample-Adaptive Multi-Exiting (FLAME)¹
 188 (Figure 1). FLAME mirrors inference-time execution of MEMs, but is applied during training. We
 189 assume the model includes internal classifiers (ICs) at hidden layers. The ICs amount to a negligible
 190 increase in parameter count (a 0.017-0.025% increase, as detailed in Appendix A.1) and hence in
 191 storage and communication costs, as well as a negligible increase in FLOPs (see Appendix B for
 192 details). During training, each sample passes through the network and receives classifications from
 193 each IC. The forward pass stops once a patience-based criterion is met: the sample exits when p^{tr}
 194 successive ICs agree. Backpropagation then starts from that layer, updating only earlier parameters.
 195 If no early exit occurs, then full backpropagation proceeds. At evaluation, the same mechanism
 196 can apply with patience p^{ev} . In practice, clients may also easily adjust their p^{tr} value from round
 197 to round to reflect their compute budget (e.g. decreasing it if resources are tight or increasing it
 198 when capacity is available) so they can adapt to fluctuating resources without requiring any extra
 199 work. This initial version of FLAME assumes single-sample batches during training (SGD), but
 200 Section 6.1 introduces a mini-batch adaptation. Appendix C provides pseudocode and Appendix D
 201 proves FLAME converges at rate $O(1/T)$ (similar to FedAvg).
 202

203 Note that, in practice, clients can easily adjust the p^{tr} value they use at every sound according to
 204 their current compute budget and use. If their use is over budget, they can decrement p^{tr} , and if
 205 under, they can increment p^{tr} . This lets clients adapt when resources fluctuate, without requiring
 206 extra labels or added passes. Therefore, even though we do not have any concrete instructions or
 207 heuristics that clients can use for choosing patience values, they can simply start with some modest
 208 guess at a patience value and make adjustments during training as they see fit.
 209

210 Table 2 shows AUC scores and average exit layers for global models trained with FLAME across
 211 settings (Table 1). For comparison, we include baselines that do not allow early exiting during
 212 training (although, like all other settings, they do allow inference-time early exiting). A consistent
 213 pattern emerges: training with multi-exits leads to earlier inference exits, so training-time savings
 214 translate to inference efficiency. With SST-2, we see that FLAME improves AUC compared to the
 215 baseline. We suspect that this could be due to two reasons. First, with a relatively easy task like
 216 SST-2, constantly training the full network may be causing overfitting and consequently subpar
 217 generalization to new data. Second, Kaya et al. (2019) introduced early exiting to inference in order

¹A link to the code will be provided in the non-anonymized version of the paper

Figure 1: Overview of FLAME. Each layer has an internal classifier (IC). When p^{tr} consecutive IC predictions agree, the sample exits, and backpropagation begins from that layer, skipping later ones.

to evade an overthinking problem that causes a model to incorrectly predict samples if it performs excessive computation on them. Therefore, it's possible that FLAME-trained models, in their ability to cause earlier exiting during inference (compared to the baseline), lead to even less overthinking and hence better evaluation AUC. FLAME maintains baseline AUC on MNLI (a .002 drop is negligible). On MRPC, FLAME slightly reduces AUC except in Setting F, where it improves. This likely reflects the task's difficulty and small size (3069 samples total, only 306 per client), which makes optimization harder under FLAME.

Table 3 compares per-iteration time for SST-2 with and without using FLAME. These values are from the final training round, when client differences are most pronounced. As training progresses, the model increasingly predicts samples earlier, especially for low-patience clients. Appendix Figure 4 shows this trend for MRPC. Cost savings on SST-2 range from 19.34% to 48.32% (Table 3). For MRPC and MNLI, we report 22.18–46.43% and 1.70–28.06% savings in Appendix Table 12.

Table 2: Evaluation AUC score and average exit taken during inference for FLAME, across the settings in Table 1, compared against a baseline that does not allow any early exiting during training. All settings, including the baseline, allow early inference-time early exiting with patience $p^{ev} = 4$.

SST-2	Baseline	A	B	C	D	E	F	G	H	I
AUC	0.83	0.98	0.88	0.89	0.88	0.89	0.92	0.92	0.91	0.91
Avg. exit	11.44	7.83	7.13	7.37	7.28	7.67	9.97	9.41	9.64	8.93
MRPC	Baseline	A	B	C	D	F	J			
AUC	0.84	0.78	0.72	0.77	0.77	0.85	0.83			
Avg. exit	11.97	6.77	11.96	10.83	8.94	11.73	11.97			
MNLI	Baseline	A	B	C						
AUC	0.81	0.81	0.78	0.79						
Avg. exit	11.73	9.97	8.85	9.02						

5 DIGGING DEEPER: WHY DOES FLAME WORK?

This section uses ablation studies to highlight two key factors behind FLAME's success: FL's collaborative nature and the multi-exit mechanism's sample-adaptiveness.

5.1 ABLATING THE COLLABORATION

FL's collaboration shapes global parameters. Table 4 shows that this collaboration is essential for accurate FLAME training. We trained four centralized models on SST-2 and MRPC with 1/10th of

270 Table 3: Seconds per iteration on SST-2 for clients using FLAME with various p^{tr} values in Setting A,
 271 compared to a baseline without FLAME (no early exits). MRPC and MNLI results are in Appendix E.
 272

p^{tr}	Average seconds/iteration	% change from baseline
Baseline	199.11	–
2	102.90	-48.32%
3	120.09	-39.28%
4	134.41	-32.50%
5	147.43	-25.96%
6	160.60	-19.34%

280
 281
 282 the data. One model served as a baseline with no early exiting, while the others used multi-exiting
 283 with $p^{tr} = 2, 3$, or 4 . We separately evaluate early- and late-exiting samples, defined by the exit layer
 284 taken during inference with $p^{ev} = 4$ (see Appendix A.5 for task-specific thresholds). Baseline models
 285 showed relatively small AUC gaps between early and late samples: 11.39% for SST-2 and 15.49%
 286 for MRPC. In contrast, FLAME-trained models showed much larger gaps, especially with smaller
 287 p^{tr} values. For instance, with $p^{tr} = 4$, the gap grows to 20.27% (SST-2) and 25.37% (MRPC). With
 288 $p^{tr} = 2$, it reaches 32.35% and 43.10%. This suggests that centralized FLAME sacrifices AUC for
 289 late-exiting samples. Figure 2 highlights the cause. Unlike in models without early exiting, when
 290 training with early exits (e.g., $p^{tr} = 4$), early-layer parameters vary much more than later-layer ones.
 291 This is because many samples exit early and backpropagate only through initial layers, leaving deeper
 292 layers under-optimized. As a result, inference suffers due to poorly trained late-layer parameters.
 293 This pattern explains the low AUC in Table 2, Setting B, where all clients use $p^{tr} = 2$. Without
 294 clients training later layers, the global model performs poorly. However, in Settings A, C, D, E, and F,
 295 where at least some clients use higher p^{tr} values, overall AUC remains higher. These higher-patience
 296 clients help compensate for the under-training by low-patience clients. Thus, FLAME performs best
 297 when not all clients maximize cost savings. Settings C–F show that even one higher-patience client
 298 can significantly offset the learning loss from others.

299 Table 4: Evaluation AUC scores for a centralized SST-2 model trained with MET at various p^{tr}
 300 values. Scores are shown separately for early- and late-exiting samples, defined by the exit layer
 301 taken during inference with $p^{ev} = 4$ (thresholds are given in Appendix A.5). A no-MET baseline is
 302 included. MRPC results are in Appendix F.

Method	Early-exiting AUC	Late-exiting AUC
Baseline	0.88	0.79
MET, $p^{tr} = 2$	0.90	0.68
MET, $p^{tr} = 3$	0.84	0.79
MET, $p^{tr} = 4$	0.89	0.74

311 5.2 ABLATING THE SAMPLE ADAPTIVENESS

312 A key strength of FLAME is its sample-adaptiveness. Table ?? uses the SST-2 task to highlight
 313 the benefit of assigning exit points per training sample rather than using a fixed exit for all samples.
 314 (Note that both FLAME and fixed-exit models are evaluated using our standard patience-based early
 315 exiting with $p^{ev} = 4$.) For instance, a centralized FLAME model with $p^{tr} = 2$ achieves an AUC
 316 of .774 and an average exit layer of 6.403. In comparison, models forced to exit at layers 6 and 7
 317 (mimicking the average 6.403 exit) perform significantly worse with AUCs of .591 and .491. This
 318 shows that some samples, presumably the more difficult ones, need to pass through many (if not all)
 319 network layers. If we force these samples to exit too early, the model is prevented from learning
 320 effective representations. FLAME avoids this limitation by letting easy samples exit early while
 321 allowing harder samples to traverse more layers. As a result, FLAME can achieve a similar average
 322 computational cost while producing better-optimized models than approaches that enforce the same
 323 exit for every sample. More broadly, this suggests that models interpret training samples differently,
 reinforcing the promise of sample-adaptive strategies across other ML workflows. One limitation of

Figure 2: Average difference in local model parameters before and after a client trains for one local round. Clients are using FLAME with different p^{tr} values to learn the MRPC task in a FL system using Setting A. We plot differences by layer and across all rounds of training.

this setup is the fact that the FLAME models and fixed-exit models, though trained differently, use the same exact evaluation scheme. Therefore, we also include additional results for a similar experiment, but now using MRPC instead of SST-2. Here, we still use $p^{ev} = 4$, but for the fixed-exit-trained models, during evaluation, we do not allow samples to exit any later than last layer that samples could reach during training. These new results are in Table 6 and they again demonstrate the advantage of samples-specific exiting. Across comparable compute budgets, FLAME models achieve higher AUC scores than fixed-exit baselines.

Table 5: Evaluation AUC, average exit layer (across all training rounds), and seconds per iteration (last round) for SST-2 models. Some use patience-based early exiting with various p^{tr} values and others enforce fixed exit layers for all samples. For all models, patience-based early exiting is used during evaluation with $p^{ev} = 4$.

Exit strategy	AUC	Average exit taken during training	Seconds/iteration
FLAME, $p^{tr} = 2$	0.774	6.403	115.24
FLAME, $p^{tr} = 3$	0.877	9.984	164.36
FLAME, $p^{tr} = 4$	0.878	11.555	186.27
FLAME, $p^{tr} = 5$	0.870	11.961	191.74
FLAME, $p^{tr} = 6$	0.881	11.999	192.66
Exit layer 6	0.591	6	113.59
Exit layer 7	0.491	7	126.49
Exit layer 8	0.482	8	140.80
Exit layer 9	0.483	9	156.25
Exit layer 10	0.509	10	170.57
Exit layer 11	0.846	11	197.52

6 EXPLORING FLAME EXTENSIONS

6.1 ENABLING LARGER BATCH SIZES

A drawback of FLAME is its reliance on batch size 1, which requires stochastic gradient descent and is often less efficient than mini-batch approaches. To address this, we propose *grouped backpropagation*, which retains FLAME’s per-sample forward pass while enabling batched backpropagation. After b samples complete forward passes, they are grouped by exit layer. With 12 ICs, this yields up to 12 groups, though most are empty. Figure 3 shows this clustering effect for SST-2. For each non-empty group, losses are averaged and a single backpropagation step is performed for the averaged loss. Table 7 shows that this reduces training cost on SST-2 in Setting A. Per-client results are in Appendix Table 14. While AUC drops slightly with grouping, it remains above the no-FLAME baseline, so

378 Table 6: Evaluation AUC, average exit layer (across all training rounds), and average FLOPS per
 379 sample per one full iteration (calculated using the formulas explained in Appendix B) for MRPC
 380 models. Some use patience-based early exiting with various p^{tr} values and others enforce fixed exit
 381 layers for all samples. All models use patience-based early exiting during evaluation ($p^{ev} = 4$). The
 382 fixed-exit models do not allow exits after the layer that training stopped at.

Exit strategy	AUC	Average exit during training	Average MFLOPS/sample/iteration
FLAME, $p^{tr} = 2$	0.765	6.774	81859
FLAME, $p^{tr} = 3$	0.713	10.700	129302
FLAME, $p^{tr} = 4$	0.738	10.854	131163
FLAME, $p^{tr} = 5$	0.755	11.752	142015
FLAME, $p^{tr} = 6$	0.760	11.906	143876
Exit layer 6	0.691	6	72506
Exit layer 7	0.708	7	84590
Exit layer 8	0.712	8	96674
Exit layer 9	0.727	9	108759
Exit layer 10	0.721	10	120843
Exit layer 11	0.711	11	132927

398 we view this trade-off as minor. Table 7 also compares grouping strategies. “Full group” places all
 399 samples in one group. “Random” assigns samples to one of 12 groups at random. “Binary” splits
 400 samples by exit layers 1–6 vs. 7–12. “Distant pairing” forms six groups using (1,7), (2,8), . . . , (6,12).
 401 “Close pairing” uses (1,2), (3,4), . . . , (11,12). Our proposed strategy consistently achieves the highest
 402 AUC, especially with $b = 32$ and $b = 64$. We believe this is because our method ensures all samples
 403 in a group compute gradients for the same parameters. Other strategies average gradients across
 404 samples that may not have reached all layers, introducing zeros and distorting updates. Our method
 405 avoids this by averaging either valid gradients or zeros exclusively, ensuring consistent updates or
 406 none at all. Pseudocode for grouped backpropagation is provided in Algorithm 2 of Appendix C.

407 Table 7: Evaluation AUC on SST-2 for FLAME with different grouping strategies and b values in
 408 Setting A, compared against (1) no FLAME and (2) FLAME without grouping. We also report
 409 average seconds per iteration across 10 clients (per-client results in Table 14, Appendix H).

Grouping strategy	b	AUC	Average seconds/iteration	% change in seconds/iteration
No FLAME	1	0.830	199.11	-
Standard FLAME	1	0.981	132.98	-33.21%
Proposed grouping	16	0.891	92.84	-53.37%
Proposed grouping	32	0.913	115.75	-41.87%
Proposed grouping	64	0.912	99.71	-49.92%
Proposed grouping	128	0.899	107.49	-46.01%
Full group	8	0.896	97.56	-51.00%
Full group	32	0.893	101.93	-48.81%
Binary grouping	32	0.865	87.48	-56.06%
Random grouping	32	0.874	90.74	-54.43%
Distant pairing	32	0.890	100.57	-49.49%
Close pairing	32	0.843	99.39	-50.08%

6.2 ADAPTING AGGREGATION TO FLAME

428 We explore three aggregation methods tailored to FLAME, each modifying how client models are
 429 weighted. The first, **patience-conscious aggregation**, weights each client m ’s model W_m by its
 430 training-time patience value p_m^{tr} , based on the idea that higher p^{tr} leads to more optimized parameters.
 431 The aggregated model is computed as $W_g = \frac{\sum_{m \in \mathcal{M}} p_m^{tr} W_m}{\sum_{m \in \mathcal{M}} p_m^{tr}}$. However, as Figure 5 (Appendix I)

Figure 3: For clients that train with FLAME using different p^{tr} values, we plot the percentage of training samples (out of 4,000 total) that exit at each of the 12 total local model layers. Clients were learning the SST-2 task in Setting A.

shows, this assumption does not always hold: lower-patience clients may exit later. To address this, **exit-conscious aggregation** uses each client’s average exit layer e_m instead, so the aggregated model is $W_g = \frac{\sum_{m \in \mathcal{M}} e_m W_m}{\sum_{m \in \mathcal{M}} e_m}$. This approach better reflects how deeply each client actually trains its model. Finally, **exit-based aggregation**, inspired by HeteroFL (Diao et al., 2021), aggregates each layer using only the clients that trained it. Let $W_{m,\ell}$ and $W_{g,\ell}$ denote the parameters of layer ℓ in the client and global models, respectively. Then the update is $W_{g,\ell} = \frac{\sum_{m \in \mathcal{M}} \mathbf{1}[e_m \geq \ell] W_{m,\ell}}{\sum_{m \in \mathcal{M}} \mathbf{1}[e_m \geq \ell]}$ for $\ell = 1, \dots, L$, where $\mathbf{1}[e_m \geq \ell]$ is an indicator that client m reached layer ℓ . This isolates meaningful updates and avoids penalizing early-layer parameters just because a client did not train deeper layers. Unlike the previous two, which downweight under-trained parameters, exit-based aggregation fully excludes them. While more fine-grained, it still relies on average exits, making it approximate. As shown in Table 8, exit-conscious aggregation generally outperforms patience-conscious, offering slightly better AUCs and shallower exits. Comparing exit-conscious and exit-based, results are mixed. Despite being more targeted, exit-based may be limited by its reliance on average exit layers. In contrast, the mild noise in exit-conscious may help generalization through implicit regularization.

Table 8: Evaluation AUC scores and average exit layers (associated with exits taken during inference with $p^{ev} = 4$) from training with FLAME in Setting A using different aggregation algorithms.

Task	Aggregation algorithm	AUC	Average exit layer taken during inference
SST-2	Baseline (FedAvg)	0.891	7.828
	Patience-conscious	0.890	8.083
	Exit-conscious	0.893	7.966
	Exit-based	0.894	7.864
MRPC	Baseline (FedAvg)	0.780	6.765
	Patience-conscious	0.793	8.122
	Exit-conscious	0.801	8.042
	Exit-based	0.804	8.167
MNLI	Baseline (FedAvg)	0.806	9.971
	Patience-conscious	0.811	10.396
	Exit-conscious	0.813	10.163
	Exit-based	0.805	9.784

7 DEMONSTRATING FLAME’S ADVANTAGE OVER PRIOR WORKS

We conduct a larger, real-world experiment to compare FLAME against three representative methods: HeteroFL, ScaleFL, and AFD. These baselines capture the main strategies for reducing client-side computation in FL. HeteroFL reduces channel width with a fixed ratio r per client (Diao et al., 2021). ScaleFL generalizes this idea by selecting from width-depth variants (Ilhan et al., 2023), while AFD

486 dynamically prunes channels during training to construct client-specific subnetworks (Bouacida et al.,
 487 2020). Together, these methods represent static (HeteroFL, ScaleFL) and dynamic (AFD) strategies
 488 for subnetwork selection. However, all allocate computation uniformly across a client’s data, without
 489 adapting to sample difficulty. FLAME instead allows easier samples to exit early while allocating
 490 more computation to harder ones. With equal computation, we therefore expect FLAME to use
 491 resources more strategically.

492 All methods are trained on Sent140 with 25 clients over 20 rounds and evaluated on SST-2 (setup
 493 details in Appendix A.4). We use $p^{tr} = 3$ for FLAME, yielding a 9.8 average exit layer, which
 494 equates to 118.44 GFLOPs per client per training sample. Baseline hyperparameters are tuned for a
 495 similar compute budget (see Appendix B): $r = 0.9$ for HeteroFL, $(d = 11, r = 0.9)$ for ScaleFL,
 496 and $\delta = 0.2$ for AFD. FLAME uses $p^{ev} = 4$ during evaluation, but since none of the other methods
 497 train ICs, they cannot enable inference-time early exiting in the same way so we evaluate the full
 498 global model as normal for HeteroFL, ScaleFL, and AFD.² Table 9 shows that FLAME achieves the
 499 highest overall AUC and outperforms all baselines on both early- and late-exiting samples. HeteroFL
 500 performs well on early samples but drops on late ones, likely because uniform width scaling under-
 501 computes harder examples. ScaleFL also struggles on late samples despite a competitive early-sample
 502 AUC, suggesting that joint width-depth scaling still fails to adapt to per-sample difficulty. AFD,
 503 while conceptually dynamic, lags in overall performance under our setup. This could be because
 504 fixed-ratio structured pruning from round 1 removes capacity needed for difficult examples and, by
 505 reducing parameter overlap across clients, weakens FedAvg aggregation. Overall, FLAME delivers
 506 the best AUC under a controlled compute budget, with adaptive allocation leading to clear advantages
 507 on both easy and hard examples. In Appendix J, we include similar results for a 50-client setup where
 508 again, FLAME achieves superior performance.

509 Table 9: Comparing FLAME, HeteroFL, ScaleFL, and AFD final global model evaluation AUC scores
 510 on the Sent140 task. AUC scores are shown separately for early- and late-exiting samples, defined by
 511 the exit layer taken during inference with $p^{ev} = 4$ (thresholds provided in Appendix A.5). We train
 512 for 20 rounds with 25 clients that all use the same values for $p^{tr}/r/\delta$. Methods are compute-matched
 513 to similar FLOPs (see Appendix B). FLAME enables inference-time early exiting with $p^{ev} = 4$. The
 514 other methods are not designed to train ICs so they do not enable any early exiting during evaluation.

Method	Parameter	AUC		Average GFLOPs/client
		Early samples	Late samples	
FLAME	$p^{tr} = 3$	0.8739	0.7258	118.44
HeteroFL	$r = .9$	0.7680	0.7207	117.41
ScaleFL	$d = 11, r = .9$	0.7859	0.6393	107.63
AFD	$\delta = .2$	0.5311	0.5573	115.96

8 CONCLUSION

FLAME demonstrates that sample-adaptive multi-exit training can substantially reduce client computation in FL while preserving accuracy, achieving up to a 50% reduction in training time with AUC maintained or improved. Although this paper focuses on saving computational costs, one interesting direction to study further would be to pair FLAME with some additional FL algorithm that focuses more on saving communication or memory costs in order to maximize savings for both communication, memory, and compute. FLAME also opens several additional avenues for future research, for instance in security and privacy. Early exits could enable slowdown-style attacks that delay exits (Hong et al., 2021; Varma et al., 2024; Zhang et al., 2023; Chen et al., 2023; Coalson et al., 2023) or leakage from exit-layer signals (Shokri et al., 2017), but these risks may be mitigated with adversarial training (e.g., Varma et al. (2024) for slowdown robustness) and differential privacy (Abadi et al., 2016). In a wider sense, FLAME highlights sample-adaptiveness as a new paradigm for FL, one that could inspire approaches not only for efficiency but also for fairness, robustness, personalization, and other objectives.

²It is worth noting that this means there is an unreported benefit present. FLAME is enabling computational cost savings during inference while the other methods are not.

540 REFERENCES
541

542 Martin Abadi, Andy Chu, Ian Goodfellow, H. Brendan McMahan, Ilya Mironov, Kunal Talwar, and
543 Li Zhang. Deep learning with differential privacy. In *Proceedings of the 2016 ACM SIGSAC*
544 *Conference on Computer and Communications Security*, CCS'16. ACM, October 2016. doi:
545 10.1145/2976749.2978318. URL <http://dx.doi.org/10.1145/2976749.2978318>.

546 AI Index Steering Committee. Artificial intelligence index report 2025: Chapter 1 –
547 research and development, 2025. URL <https://hai.stanford.edu/ai-index/>
548 2025-ai-index-report. Accessed: 2025-05-15.

549 Dario Amodei and Danny Hernandez. Ai and compute. <https://openai.com/research/ai-and-compute>, 2018. Accessed: 2025-05-15.

550 Hankyul Baek, Won Joon Yun, Yunseok Kwak, Soyi Jung, Mingyue Ji, Mehdi Bennis, Jihong
551 Park, and Joongheon Kim. Joint superposition coding and training for federated learning over
552 multi-width neural networks, 2021. URL <https://arxiv.org/abs/2112.02543>.

553 Peva Blanchard, El Mahdi El Mhamdi, Rachid Guerraoui, and Julien Stainer. Machine
554 learning with adversaries: Byzantine tolerant gradient descent. In I. Guyon, U. Von
555 Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), *Advances in Neural Information Processing Systems*, volume 30. Curran Associates, Inc.,
556 2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/file/f4b9ec30ad9f68f89b29639786cb62ef-Paper.pdf.

557 Nader Bouacida, Jiahui Hou, Hui Zang, and Xin Liu. Adaptive federated dropout: Improving
558 communication efficiency and generalization for federated learning, 2020. URL <https://arxiv.org/abs/2011.04050>.

559 Jonathon Byrd and Zachary Lipton. What is the effect of importance weighting in deep learning? In
560 *International Conference on Machine Learning*, pp. 872–881. PMLR, 2019.

561 Sebastian Caldas, Sai Meher Karthik Duddu, Peter Wu, Tian Li, Jakub Konečný, H. Brendan
562 McMahan, Virginia Smith, and Ameet Talwalkar. Leaf: A benchmark for federated settings, 2019.
563 URL <https://arxiv.org/abs/1812.01097>.

564 Kaidi Cao, Colin Wei, Adrien Gaidon, Nikos Arechiga, and Tengyu Ma. Learning imbalanced
565 datasets with label-distribution-aware margin loss. *Advances in neural information processing*
566 *systems*, 32, 2019.

567 Yiming Chen, Simin Chen, Zexin Li, Wei Yang, Cong Liu, Robby T. Tan, and Haizhou Li. Dynamic
568 transformers provide a false sense of efficiency, 2023. URL <https://arxiv.org/abs/2305.12228>.

569 Zachary Coalson, Gabriel Ritter, Rakesh Bobba, and Sanghyun Hong. Bert lost patience won't be
570 robust to adversarial slowdown, 2023. URL <https://arxiv.org/abs/2310.19152>.

571 Enmao Diao, Jie Ding, and Vahid Tarokh. Heterofl: Computation and communication efficient
572 federated learning for heterogeneous clients, 2021. URL <https://arxiv.org/abs/2010.01264>.

573 William B. Dolan and Chris Brockett. Automatically constructing a corpus of sentential paraphrases.
574 In *Proceedings of the Third International Workshop on Paraphrasing (IWP2005)*, 2005.

575 Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
576 Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom
577 Hennigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia Guy,
578 Simon Osindero, Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, and Laurent Sifre.
579 Training compute-optimal large language models, 2022. URL <https://arxiv.org/abs/2203.15556>.

580 Sanghyun Hong, Yiğitcan Kaya, Ionuț-Vlad Modoranu, and Tudor Dumitras. A panda? no, it's
581 a sloth: Slowdown attacks on adaptive multi-exit neural network inference. In *International*
582 *Conference on Learning Representations*, 2021.

594 Samuel Horvath, Stefanos Laskaridis, Mario Almeida, Ilias Leontiadis, Stylianos I. Venieris, and
 595 Nicholas D. Lane. Fjord: Fair and accurate federated learning under heterogeneous targets with
 596 ordered dropout, 2022. URL <https://arxiv.org/abs/2102.13451>.

597

598 Gao Huang, Danlu Chen, Tianhong Li, Felix Wu, Laurens van der Maaten, and Kilian Weinberger.
 599 Multi-scale dense networks for resource efficient image classification. In *International Conference on Learning Representations*, 2018. URL <https://openreview.net/forum?id=Hk2aImxA>.

600

601 Fatih Ilhan, Gong Su, and Ling Liu. Scalefl: Resource-adaptive federated learning with heterogeneous
 602 clients. In *2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp.
 603 24532–24541, 2023. doi: 10.1109/CVPR52729.2023.02350.

604

605 Yiğitcan Kaya, Sanghyun Hong, and Tudor Dumitras. Shallow-Deep Networks: Understanding and
 606 mitigating network overthinking. In *Proceedings of the 2019 International Conference on Machine
 607 Learning (ICML)*, Long Beach, CA, Jun 2019.

608

609 Minjae Kim, Sangyoon Yu, Suhyun Kim, and Soo-Mook Moon. DepthFL : Depthwise federated
 610 learning for heterogeneous clients. In *The Eleventh International Conference on Learning Representations (ICLR)*, 2023. URL <https://openreview.net/forum?id=pf8RIZTMU58>.

611

612 Royson Lee, Javier Fernandez-Marques, Shell Xu Hu, Da Li, Stefanos Laskaridis, Łukasz Dudziak,
 613 Timothy Hospedales, Ferenc Huszár, and Nicholas D. Lane. Recurrent early exits for federated
 614 learning with heterogeneous clients, 2024. URL <https://arxiv.org/abs/2405.14791>.

615

616 Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith.
 617 Federated optimization in heterogeneous networks, 2020a. URL <https://arxiv.org/abs/1812.06127>.

618

619 Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang. On the convergence of
 620 fedavg on non-iid data, 2020b. URL <https://arxiv.org/abs/1907.02189>.

621

622 Zexi Li, Tao Lin, Xinyi Shang, and Chao Wu. Revisiting weighted aggregation in federated learning
 623 with neural networks, 2023. URL <https://arxiv.org/abs/2302.10911>.

624

625 Tao Lin, Lingjing Kong, Sebastian U. Stich, and Martin Jaggi. Ensemble distillation for robust model
 626 fusion in federated learning, 2021. URL <https://arxiv.org/abs/2006.07242>.

627

628 Evan Z Liu, Behzad Haghgoo, Annie S Chen, Aditi Raghunathan, Pang Wei Koh, Shiori Sagawa,
 629 Percy Liang, and Chelsea Finn. Just train twice: Improving group robustness without training
 630 group information. In *International Conference on Machine Learning*, pp. 6781–6792. PMLR,
 631 2021.

632

633 Ruixuan Liu, Fangzhao Wu, Chuhan Wu, Yanlin Wang, Lingjuan Lyu, Hong Chen, and Xing Xie.
 634 No one left behind: Inclusive federated learning over heterogeneous devices. In *Proceedings
 635 of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining*, KDD '22,
 636 pp. 3398–3406. ACM, August 2022. doi: 10.1145/3534678.3539086. URL <http://dx.doi.org/10.1145/3534678.3539086>.

637

638 Weijie Liu, Peng Zhou, Zhe Zhao, Zhiruo Wang, Haotang Deng, and Qi Ju. Fastbert: a self-distilling
 639 bert with adaptive inference time, 2020.

640

641 Nestor Maslej, Loredana Fattorini, Raymond Perrault, Vanessa Parli, Anka Reuel, Erik Brynjolfsson,
 642 John Etchemendy, Katrina Ligett, Terah Lyons, James Manyika, Juan Carlos Niebles, Yoav Shoham,
 643 Russell Wald, and Jack Clark. Artificial intelligence index report 2024. Technical report, Stanford
 644 University, 2024. URL <https://aiindex.stanford.edu/report/>.

645

646 H. Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Agüera y Arcas.
 647 Communication-efficient learning of deep networks from decentralized data, 2023. URL <https://arxiv.org/abs/1602.05629>.

648 Yiqun Mei, Pengfei Guo, Mo Zhou, and Vishal Patel. Resource-adaptive federated learning with
 649 all-in-one neural composition. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and
 650 A. Oh (eds.), *Advances in Neural Information Processing Systems*, volume 35, pp. 4270–4284.
 651 Curran Associates, Inc., 2022.

652 Junhyun Nam, Hyuntak Cha, Sungsoo Ahn, Jaeho Lee, and Jinwoo Shin. Learning from failure:
 653 De-biasing classifier from biased classifier. *Advances in Neural Information Processing Systems*,
 654 33:20673–20684, 2020.

655 Hongseok Namkoong and John C Duchi. Variance-based regularization with convex objectives.
 656 *Advances in neural information processing systems*, 30, 2017.

657 Yue Niu, Saurav Prakash, Souvik Kundu, Sunwoo Lee, and Salman Avestimehr. Federated learning
 658 of large models at the edge via principal sub-model training, 2023. URL <https://arxiv.org/abs/2208.13141>.

659 Shiori Sagawa, Pang Wei Koh, Tatsunori B Hashimoto, and Percy Liang. Distributionally robust
 660 neural networks for group shifts: On the importance of regularization for worst-case generalization.
 661 *arXiv preprint arXiv:1911.08731*, 2019.

662 Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership inference attacks
 663 against machine learning models, 2017. URL <https://arxiv.org/abs/1610.05820>.

664 Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Ng, and
 665 Christopher Potts. Recursive deep models for semantic compositionality over a sentiment treebank.
 666 In *Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing*, pp.
 667 1631–1642, Seattle, Washington, USA, October 2013. Association for Computational Linguistics.

668 Nimit Sohoni, Jared Dunnmon, Geoffrey Angus, Albert Gu, and Christopher Ré. No subclass left
 669 behind: Fine-grained robustness in coarse-grained classification problems. *Advances in Neural
 670 Information Processing Systems*, 33:19339–19352, 2020.

671 Sebastian U. Stich. Local sgd converges fast and communicates little, 2019. URL <https://arxiv.org/abs/1805.09767>.

672 Sebastian U. Stich, Jean-Baptiste Cordonnier, and Martin Jaggi. Sparsified sgd with memory, 2018.
 673 URL <https://arxiv.org/abs/1809.07599>.

674 Yue Tan, Guodong Long, Lu Liu, Tianyi Zhou, Qinghua Lu, Jing Jiang, and Chengqi Zhang. Fedproto:
 675 Federated prototype learning across heterogeneous clients, 2022. URL <https://arxiv.org/abs/2105.00243>.

676 Kamala Varma, Enmao Diao, Tanya Roosta, Jie Ding, and Tao Zhang. Once-for-all federated learning:
 677 Learning from and deploying to heterogeneous clients, 2023.

678 Kamala Varma, Arda Numanoğlu, Yigitcan Kaya, and Tudor Dumitras. Understanding, uncovering,
 679 and mitigating the causes of inference slowdown for language models. In *2nd IEEE Conference
 680 on Secure and Trustworthy Machine Learning*, 2024. URL <https://openreview.net/forum?id=hom1480tHu>.

681 Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman. Glue:
 682 A multi-task benchmark and analysis platform for natural language understanding, 2019.

683 Haozhao Wang, Yabo Jia, Meng Zhang, Qinghao Hu, Hao Ren, Peng Sun, Yonggang Wen, and Tian-
 684 wei Zhang. Feddse: Distribution-aware sub-model extraction for federated learning over resource-
 685 constrained devices, 2024. URL <https://doi.org/10.1145/3589334.3645416>.

686 Adina Williams, Nikita Nangia, and Samuel Bowman. A broad-coverage challenge corpus for
 687 sentence understanding through inference. In *Proceedings of the 2018 Conference of the North
 688 American Chapter of the Association for Computational Linguistics: Human Language Tech-
 689 nologies, Volume 1 (Long Papers)*, pp. 1112–1122. Association for Computational Linguistics,
 690 2018.

702 Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
 703 Pierrick Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von
 704 Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama
 705 Drame, Quentin Lhoest, and Alexander M. Rush. Huggingface’s transformers: State-of-the-art
 706 natural language processing, 2020.

707 Hongda Wu, Ping Wang, and C V Aswartha Narayana. Straggler-resilient federated learning: Tackling
 708 computation heterogeneity with layer-wise partial model training in mobile edge network, 2023.
 709 URL <https://arxiv.org/abs/2311.10002>.

710 Georgios Xenos and Dimitrios Serpanos. Cross-silo federated learning in security operations centers
 711 for effective malware detection. *International Journal of Information Security*, 24, 07 2025. doi:
 712 10.1007/s10207-025-01101-4.

713 Ji Xin, Raphael Tang, Jaejun Lee, Yaoliang Yu, and Jimmy Lin. Deebert: Dynamic early exiting for
 714 accelerating bert inference, 2020.

715 Hao Yu, Sen Yang, and Shenghuo Zhu. Parallel restarted sgd with faster convergence and less
 716 communication: Demystifying why model averaging works for deep learning, 2018. URL <https://arxiv.org/abs/1807.06629>.

717 Yaodong Yu, Alexander Wei, Sai Praneeth Karimireddy, Yi Ma, and Michael I. Jordan. Tct: Con-
 718 vexifying federated learning using bootstrapped neural tangent kernels, 2022. URL <https://arxiv.org/abs/2207.06343>.

719 Shengyao Zhang, Xudong Pan, Mi Zhang, and Min Yang. SlowBERT: Slow-down attacks on input-
 720 adaptive multi-exit BERT. In *Findings of the Association for Computational Linguistics: ACL*
 721 2023, pp. 9992–10007, Toronto, Canada, July 2023. Association for Computational Linguistics.
 722 doi: 10.18653/v1/2023.findings-acl.634.

723 Yuchen Zhang, John C. Duchi, and Martin Wainwright. Communication-efficient algorithms for
 724 statistical optimization, 2013. URL <https://arxiv.org/abs/1209.4129>.

725 Wangchunshu Zhou, Canwen Xu, Tao Ge, Julian McAuley, Ke Xu, and Furu Wei. Bert loses patience:
 726 Fast and robust inference with early exit, 2020.

727

728 A ADDITIONAL EXPERIMENTAL SETUP DETAILS

729 A.1 MODEL ARCHITECTURE AND INTERNAL CLASSIFIER DETAILS

730 Our architecture is based on the PABEE model (Zhou et al., 2020), which modifies BERT-base by
 731 attaching an internal classifier (IC) at the output of each of its 12 hidden layers. Each IC consists of
 732 a linear projection from the hidden state to a softmax layer that outputs class probabilities. All IC
 733 parameters are updated during training along with the rest of the model parameters. All models are
 734 initialized with pre-trained weights from Hugging Face (Wolf et al., 2020) and then fine-tuned on
 735 downstream tasks.

736 We consider the added storage and communication costs associated with the addition of ICs to be
 737 negligible. Since each hidden state has 768-dimensional output, for a task with y output labels, the
 738 total number of parameters that the ICs add is $(768 * y + y) * 12$. For $y = 2$, which is the case for
 739 SST-2 and MRPC, this equates to 18456 additional parameters. This is an approximately .017%
 740 increase from the total 110M parameters that the typical BERT base model has. For MNLI, with
 741 $y = 3$, this becomes 27684 parameters, which is a .025% increase.

742 A.2 OPTIMIZATION AND LEARNING RATE SCHEDULE

743 All models are fine-tuned using the AdamW optimizer with β values set to (0.9, 0.999) and $\epsilon = 1e-8$.
 744 We use a linearly decaying learning rate schedule across training rounds. Training always begins with
 745 a learning rate of $2e-5$ and decays uniformly. Specifically, we use the following learning rates.

746 For 10 rounds of training: $[2e-5, 1.8e-5, 1.6e-5, \dots, 4e-6, 2e-6]$

756 For 20 rounds: $[2e-5, 1.9e-5, 1.8e-5, \dots, 2e-6, 1e-6]$
 757 This schedule is applied consistently across all clients and tasks.
 758

760 A.3 SPLITTING TRAINING DATA ACROSS CLIENTS

761 For our FL experiments, we split a task’s training data such that each client has an equal number of
 762 samples associated with each label. In Table 10, we provide the cardinality of the resulting local
 763 training datasets. Note that we usually do not allow any clients to share the same sample, but we
 764 do allow some overlap with MRPC in Table 8 of Section 6.2 since MRPC has such a small training
 765 dataset.
 766

767 A.4 ADDITIONAL SENT140 DETAILS

768 For our experiments in Section 7, we select 25 clients from the Sentiment140 benchmark that have at
 769 least 100 training samples. This yields the following per-client training set sizes: 549, 246, 281, 192,
 770 227, 248, 213, 195, 202, 179, 207, 216, 171, 107, 103, 118, 113, 101, 112, 106, 189, 212, 114, 117,
 771 and 102.
 772

773 Table 10: Cardinalities of the local training datasets used by each of 10 FL clients.
 774

775 Task	776 Total # training 777 samples	778 # samples 779 per client	780 # per class 781 breakdown
778 SST-2	779 67349	780 4000	781 positive: 2000 782 negative: 2000
780 MRPC (no overlap)	781 3069	782 306	783 equivalent: 101 784 not equivalent: 205
782 MRPC (with overlap)	783 3069	784 1000	785 equivalent: 500 786 not equivalent: 500
785 MNLI	786 392702	787 1500	788 neutral: 5000 789 entailment: 5000 790 contradiction: 5000

791 A.5 DISTINGUISHING TEST SAMPLES AS EARLY- OR LATE-EXITING

792 In Table 4 of Section 5.1, Table 9 of Section 7, and Table 13 of Appendix G, we report separate AUC
 793 scores for early- and late-exiting test samples, defined by the exit layer taken during inference with
 794 $p^{ev} = 4$. We determined this early/late distinction by training centralized multi-exit models on each
 795 task’s full training dataset, using these models to run inference on all test samples while allowing
 796 patience-based early exiting with $p^{ev} = 4$, and noting the exit layer taken by each sample. For SST-2,
 797 if the sample exited before layer 9, it was considered early-exiting, and it was otherwise considered
 798 late-exiting. Out of 872 total test samples, this splitting process resulted in 340 early-exiting samples
 799 and 532 late-exiting samples. For MRPC, we similarly split samples on exit layer 8 and end up with
 800 363 early-exiting and 236 late-exiting samples from the 599-sample test dataset. We experimented
 801 with various p^{ev} values for inference and different ranges of exit layers to define the early and late
 802 split and ultimately selected the values that produced the most balanced divisions.
 803

804 B FLOPs COMPUTATIONS AND COMPARISONS

805 To compare the computational cost across FLAME, HeteroFL, ScaleFL, and AFD, we compute
 806 FLOPs for a single training iteration on one sample for one client under various hyperparameters.
 807 Table 11 reports total training MFLOPs (forward + backward pass). Each individual row corresponds
 808 to using FLAME with average exit depth d to define a target compute budget. Other columns
 809 correspond to other methods, and we select hyperparameters for those methods that lead to an amount
 of FLOPs closest to the row’s target compute budget.

We use the following forward-pass formulas, then multiply by 3 to obtain training MFLOPs (backward $\approx 2 \times$ forward). A full 12-layer BERT forward costs 48,318.4 MFLOPs, so a full training pass costs 144,955.2 MFLOPs.

$$\text{FLAME (forward): } \left(\frac{d}{12} \right) \cdot 48,318.4 + (1.5711 \cdot d) \quad (1)$$

$$\text{HeteroFL (forward): } r^2 \cdot 48,318.4 \quad (2)$$

$$\text{ScaleFL (forward): } \left(\frac{d_s}{12} \right) \cdot (r_s^2 \cdot 48,318.4) \quad (3)$$

$$\text{AFD (forward): } (1 - \delta) \cdot 48,318.4 \quad (4)$$

Here, d is the average exit depth (FLAME), r is the width ratio (HeteroFL), (d_s, r_s) are ScaleFL's depth/width settings, and δ is the dropout ratio for AFD. Note that we implement AFD by selecting a fixed fraction of attention heads and feed-forward neurons per layer. In the formula we use for AFD MFLOPs, we approximate forward MFLOPs as linear in the keep probability $(1 - \delta)$, which slightly overcounts constant terms (e.g., LayerNorm, residual, classifier) that do not scale with δ . In the table, hyperparameters are chosen from a one-decimal grid to be closest to the FLAME budget and shown in parentheses.

Table 11: Total training MFLOPs (forward + backward per sample) for FLAME, HeteroFL, ScaleFL, and AFD. Each row uses FLAME at depth d to define a target compute budget. Parentheses indicate the parameter settings: HeteroFL (r), ScaleFL (d_s, r_s), and AFD (δ).

d	FLAME	HeteroFL (r)	ScaleFL (d_s, r_s)	AFD (δ)
1	12,084.31	13,045.97 (0.3)	12,079.60 (4,0.5)	14,495.52 (0.9)
2	24,168.63	23,192.83 (0.4)	23,676.02 (4,0.7)	28,991.04 (0.8)
3	36,252.94	36,238.80 (0.5)	35,514.02 (6,0.7)	43,486.56 (0.7)
4	48,337.26	52,183.87 (0.6)	47,352.03 (8,0.7)	43,486.56 (0.7)
5	60,421.57	52,183.87 (0.6)	61,847.55 (8,0.8)	57,982.08 (0.6)
6	72,505.88	71,028.05 (0.7)	69,578.50 (9,0.8)	72,477.60 (0.5)
7	84,590.19	92,771.33 (0.8)	88,060.28 (9,0.9)	86,973.12 (0.4)
8	96,674.51	92,771.33 (0.8)	97,844.76 (10,0.9)	101,468.64 (0.3)
9	108,758.82	117,413.71 (0.9)	107,629.24 (11,0.9)	115,964.16 (0.2)
10	120,843.14	117,413.71 (0.9)	107,629.24 (11,0.9)	115,964.16 (0.2)
11	132,927.45	144,955.20 (1.0)	132,875.60 (11,1.0)	130,459.68 (0.1)
12	145,011.76	144,955.20 (1.0)	144,955.20 (12,1.0)	144,955.20 (0.0)

C PSEUDOCODE FOR THE FLAME PIPELINE

D THEORETICAL CONVERGENCE GUARANTEE

We very closely model our proof of FLAME's convergence off of that of Federated Partial Model Training (FedPMT) (Wu et al., 2023). With FedPMT, all clients compute the forward pass through the entire model as usual. Backpropagation also starts from the output layer as usual, but it can finish before reaching the shallowest layers. Each client is assigned a parameter value that indicates how many layers are updated during backpropagation. Thus, with FedPMT, like with FLAME, not all layers are consistently updated during training.

864 The two methods differ in two key aspects. First, with FedPMT, the depth of the network that receives
 865 updates is client-specific and fixed throughout training. With FLAME, the utilized network depth
 866 is sample-specific and may change across rounds. Second, with FedPMT, the deeper layers are
 867 prioritized and the early layers may be skipped due to backpropagation stopping early. With FLAME,
 868 the early layers are always updated and the later layers may be skipped due to forward propagation
 869 stopping early.

870

871 D.1 PRELIMINARIES

872

873 D.1.1 SURROGATE LOSS FUNCTION

874 Before proceeding, we first define \tilde{f}_k , which is the local surrogate loss for a client k that uses FLAME.
 875 Since FLAME allows clients to use early exits, not every sample produces gradients for all layers.
 876 Therefore, this objective is just the usual training loss, but averaged not only over data samples but
 877 also over the randomness of exits. Formally, for a model parameter vector w and a client k with data
 878 distribution \mathcal{D}_k ,

$$879 \tilde{f}_k(w) = \mathbb{E}_{(x,y) \sim \mathcal{D}_k} \mathbb{E}_{j \sim q(\cdot|x)} [\ell_j(w; x, y)],$$

880 where $\ell_j(w; x, y)$ denotes the loss computed at exit j and $q(j|x)$ is the exit distribution for input
 881 x . We can then define the global surrogate objective as the average of this surrogate loss across all
 882 clients:

$$883 \tilde{F}(w) = \frac{1}{K} \sum_{k=1}^K \tilde{f}_k(w).$$

886

887 D.1.2 ASSUMPTIONS

888 To aid in our proof, we list the following standard assumptions, which are also used in the convergence
 889 analyses of FedAvg (Li et al., 2020b) and FedPMT (Wu et al., 2023). The first two assumptions are
 890 standard (for example, used in Stich (2019); Li et al. (2020a;b); Wu et al. (2023)). Assumptions 3
 891 and 4 have been used in similar convergence analyses, such as Stich (2019); Li et al. (2020b); Wu
 892 et al. (2023); Baek et al. (2021); Zhang et al. (2013); Yu et al. (2018); Stich et al. (2018). We also
 893 define a new fifth assumption, which is necessary to ensure that no layer is completely deprived of
 894 updates.

895 **Assumption 1 (smoothness).** *Each client’s surrogate loss is L -smooth: for all w and w' , $\tilde{f}_k(w) \leq$
 896 $\tilde{f}_k(w') + (w - w')^T \nabla \tilde{f}_k(w') + \frac{L}{2} \|w - w'\|^2$*

897 **Assumption 2 (strong convexity).** *Each client’s surrogate loss is μ -strongly convex: for all w and
 898 w' , $\tilde{f}_k(w) \geq \tilde{f}_k(w') + (w - w')^T \nabla \tilde{f}_k(w') + \frac{\mu}{2} \|w - w'\|^2$*

900 **Assumption 3 (bounded variance).** *Stochastic gradients have bounded variance σ^2 : for all w ,
 901 $\mathbb{E}_{(x,y) \sim \mathcal{D}_k} \|\nabla \ell(w; x, y) - \nabla \tilde{f}_k(w)\|^2 \leq \sigma^2$.*

902 **Assumption 4 (heterogeneity bound).** *The variance across client gradients is bounded by ζ^2 : for
 903 all w , $\frac{1}{K} \sum_{k=1}^K \|\nabla \tilde{f}_k(w) - \nabla \tilde{F}(w)\|^2 \leq \zeta^2$*

905 **Assumption 5 (update probability).** *Each model parameter has a nonzero probability of being
 906 updated: $\rho > 0$, where ρ is the minimum probability (taken across all layers) that a layer contributes
 907 a gradient update (i.e. a sample doesn’t exit before the layer).*

908

909 D.2 PROOF

910 **Proposition 1 (Downhill gradients).** *For each client’s surrogate loss, \tilde{f}_k , the assumption of strong
 911 convexity (Assumption 2) implies that the stochastic gradient step is a valid descent step (is directed
 912 downhill).*

913 *Formally, for any parameter vector w and optimal parameters w^* ,*

$$914 \langle w - w^*, \nabla \tilde{f}_k(w) \rangle \geq \tilde{f}_k(w) - \tilde{f}_k(w^*) + \frac{\mu}{2} \|w - w^*\|^2.$$

916 Note that, unlike FedPMT’s Proposition 1, we do not introduce an ϵ term to capture the information
 917 loss that results from not consistently updating the full network. In FLAME, the effect of early exits

918 is already accounted for in the surrogate loss, which averages over all possible exits. The impact of
 919 reduced gradient information instead appears later, in Lemmas 1 and 2 and Theorem 1, through a $1/\rho$
 920 factor that reflects the minimum probability that an arbitrary network layer is updated.

921 **Lemma 1 (Variance under exits.).** *Here, we adapt Lemma 1 of FedPMT (Wu et al., 2023). Formally,
 922 using Assumption 3 and Assumption 5, for global round t , the variance of the global surrogate
 923 gradient is bounded as*

$$924 \quad 925 \quad 926 \quad \mathbb{E}[\|\nabla \tilde{F}(w^t) - \nabla \bar{F}(w^t)\|^2] \leq \frac{2\sigma^2}{\rho}.$$

927 $\nabla \tilde{F}(w^t)$ denotes the expected global surrogate gradient, defined as the average of the client-level
 928 surrogate gradients $\nabla \tilde{f}_k(w_k^t)$ (which is itself defined as an expectation over minibatches and exits).
 929 $\nabla \bar{F}(w^t)$ is the empirical global surrogate gradient, defined as the average of the sampled client-level
 930 surrogate gradients $\nabla \tilde{f}_k(w_k^t; \xi_k, j)$, where ξ_k is a minibatch sampled from \mathcal{D}_k and j is an exit
 931 sampled from $q(\cdot | x)$.

932 The key difference from this lemma and the corresponding one from FedPMT is the noise term that is
 933 multiplied by $2\sigma^2$ to define the variance bound. In FedPMT, the noise term, $|I|\psi$, reflects client-level
 934 masking. In FLAME, masking occurs at the sample level so the noise term becomes $1/\rho$, where ρ
 935 denotes the minimum probability that any layer is updated. This $1/\rho$ term represents the fact that
 936 layers that update less frequently receive fewer gradient contributions, which increases the variance
 937 of their estimates relative to layers that are updated more often. When ρ is small, the stochastic
 938 gradient for that block is based on less information so the noise must be inversely proportional to ρ .
 939

940 Apart from the modified noise term, the proof for this lemma exactly mirrors that of FedPMT.

941 **Lemma 2 (Single-round improvement).** *Under Assumptions 1-5, in the $(t + 1)$ -th global round,
 942 the expected distance between the current global model w^{t+1} and the optimal solution w^* satisfies*

$$943 \quad 944 \quad 945 \quad \mathbb{E}\|w^{t+1} - w^*\|^2 \leq (1 - \eta_t \mu) \mathbb{E}\|w^t - w^*\|^2 + \eta_t^2 \left(8(\tau - 1)^2 G^2 + 2L\zeta^2 + \frac{2\sigma^2}{\rho} \right),$$

946 where η_t is the learning rate in round t and τ is the number of local steps.

947 Note that FedPMT used a different term to represent client heterogeneity: $2L\eta_t^2(|I|\psi + |S| + \varepsilon)\Lambda$.
 948 This was designed to accommodate FedPMT’s client-wise masking design. For FLAME, we harness
 949 Assumption 4 and replace this heterogeneity term with the standard $2L\zeta^2$ bound (as is used in the
 950 FedAvg proof of convergence). The other differences are that FLAME does not require ε and that it
 951 uses $1/\rho$ in place of $|I|\psi$ (as justified earlier in the proof).

952 **Theorem 1 (Convergence of FLAME).** *Under Assumptions 1-5, using step size $\eta_t = \frac{2}{\mu(t+\lambda)}$, the
 953 convergence of FLAME satisfies*

$$954 \quad 955 \quad 956 \quad \mathbb{E}[\tilde{F}(w^T) - \tilde{F}(w^*)] \leq \frac{1}{T + \lambda} \left(\frac{\lambda + 1}{2} \Gamma_1 + \frac{2\tilde{\Delta}}{\mu^2} \right),$$

957 where $\lambda > 0$, $\Gamma_1 = \mathbb{E}\|w^1 - w^*\|^2$, and $\tilde{\Delta} = 8(\tau - 1)^2 G^2 + 2L\zeta^2 + \frac{2\sigma^2}{\rho}$.

958 This result shows that FLAME has the same $\mathcal{O}(1/T)$ convergence rate as FedAvg and FedPMT. The
 959 differences lie in the constants. Specifically, FLAME replaces FedPMT’s client-wise masking factors
 960 $(|I|\psi + |S| + \varepsilon)\Lambda$ with the heterogeneity bound ζ^2 , eliminates the ε term, and incorporates a $1/\rho$
 961 factor to account for sample-specific exits. Apart from these modifications, the proof follows the
 962 same telescoping argument as supported in FedPMT (Wu et al., 2023).

963 E SECONDS PER ITERATION FOR MRPC AND MNLI CLIENTS

964 Here, we include additional results associated with Section 4. In Table 12, we list the seconds per
 965 training iteration for clients using FLAME with different p^{tr} values and learning the MRPC and
 966 MNLI tasks in Setting A. Compared to a baseline where FLAME is not used, we see 22.18-46.43%
 967 and 1.70-28.06% savings with MRPC and MNLI.

972 F PLOTTING COST ACROSS ROUNDS OF TRAINING WITH FLAME
973

974 Figure 4 plots the seconds per iteration associated with each of 10 clients that are training using
975 FLAME in a FL system that is learning the MRPC task using Setting A. Clients are using different
976 p^{tr} values with FLAME. This plot illustrates the pattern that we have also noticed with SST-2 and
977 MNLI, and suspect to be a general pattern: clients’ time per iteration decreases as training progresses.
978 This observation justifies our decision to focus on analyzing the seconds per iteration from the last
979 round of training (e.g. in Tables 3, 5, 7, 12, and 14).

992
993 Figure 4: Seconds per iteration associated with clients using various p^{tr} values with FLAME to learn
994 the MRPC task in a FL system using Setting A. We plot these values across each of the 20 total
995 training rounds.

996
997 G MRPC RESULTS FROM ABLATING THE COLLABORATION OF FLAME
998

1000 In Table 13, we include results for MRPC associated with the ablation study from Section 5.1. These
1001 results support the observation that training a single, centralized model using FLAME leads to
1002 compromised AUC score, particularly with late-exiting samples.

1003
1004 H SECONDS PER ITERATION PER CLIENT FOR GROUPED BACKPROPAGATION
1005

1006 In Table 7 of Section 6.1, when discussing the grouped backpropagation extension for FLAME, we
1007 reported the average seconds per training iteration across clients that used different p^{tr} values. Now,
1008 in Table 14, we list the full set of seconds per iteration values that were used to compute the averages.

1009
1010 I CLIENT-WISE EXIT LAYER OVER TIME
1011

1012 The design of patience-conscious aggregation is based on the assumption that clients using higher p^{tr}
1013 will have training samples exiting later. However, as we mentioned in Section 6.2, we find that this is
1014 not always the case. The plots in Figure 5 support this observation. For instance, with SST-2 and
1015 MRPC, in early rounds of training, a client with $p^{tr} = 2$ has higher average exit layer than clients
1016 with higher p^{tr} .

1017
1018 J 50-CLIENT SENT140 RESULTS COMPARING FLAME TO PRIOR WORKS
1019

1020 These experiments go along with our 25-client experiments in Section 7, but now, we use 50 clients.
1021 Again, we are using the Sent140 task and training for 20 rounds. Specifically, we use a set of 50
1022 clients that have the following training dataset sizes: 50, 75, 192, 112, 52, 94, 111, 64, 60, 101, 51,
1023 71, 76, 54, 50, 58, 78, 65, 63, 62, 51, 248, 53, 109, 152, 113, 92, 51, 151, 52, 216, 103, 58, 54, 93,
1024 177, 79, 84, 73, 107, 61, 279, 141, 62, 238, 75, 78, 60, 93, 50. We simply chose a random set of 50
1025 clients that had at least 50 training samples.

Figure 5: Plotting the average exit layer of local training samples for each of 10 clients across 10 rounds of training in a FL system. Each subplot is associated with learning a different task. Clients are using FLAME with various p^{tr} values (using Setting A).

We compare results for FLAME, HeteroFL, ScaleFL, and AFD, using similar compute budgets. We use $p^{tr} = 3$ for FLAME, which led to an average exit layer of 6.97. Using the formulas in Appendix B, we match this average exit to the following hyperparameters that equate to roughly the same FLOP usage: $r = 0.8$ for HeteroFL, $(d = 9, r = 0.9)$ for ScaleFL, and $\delta = 0.4$ for AFD. The results of these experiments are included in Table 15, which reports separate AUC scores for early- and late-exiting test samples (see Appendix A.5 for details on the early vs. late distinction).

K FLAME’S MEMORY SAVINGS

Although FLAME’s primary intention is to reduce the computational costs associated with training, we find that the method also leads to memory savings. As FLAME allows samples to only pass through subsets of a model’s total parameters, activations will only be computed and stored for subsets of the total parameters. Activations typically need to be stored in RAM as samples forward-pass through a network so that they can be used to update parameters during backpropagation, and this can amount to burdensome memory overhead. Therefore, as we see in Table 16, using FLAME can save up to approximately 200 MB of RAM. In this table, we report the total amount of GPU RAM that was used in training 10-client FL systems where all clients use FLAME with the same p^{tr} value. We compare these values to baseline values clients do not use FLAME and therefore do not allow any early exiting. The minimal logical p^{tr} value to use is 2, which is where we see 100 (with MNLI) to 200 (with SST-2 and MRPC) MB in savings. Using the maximum p^{tr} value considered in our paper (6) results in no memory savings, which makes sense since the average exit layer in these experiments is nearly 12 (the same as in the baseline).

1080
1081 **Algorithm 1: FLAME: FEDERATED LEARNING WITH SAMPLE-ADAPTIVE MULTI-EXIT**
1082 TRAINING. Each client $m \in \mathcal{M}$ has local data \mathcal{D}_m and a training-time patience value p_m^{tr} . Clients
1083 train for E local epochs across T global rounds with learning rate η . Models have L hidden
1084 layers, each followed by an internal classifier (IC), which is a linear projection $W_\ell^{\text{IC}} h_\ell$ of the
1085 hidden state into a softmax over classes. We write $\text{Layer}_\ell(h_{\ell-1}; W)$ for the mapping of hidden
1086 state $h_{\ell-1}$ through the ℓ -th hidden layer (with $h_0 = x$). For now, we assume batch size = 1. See
1087 Algorithm 2 for the grouped backpropagation extension that enables larger minibatch sizes. Note
1088 that we use FedAvg for aggregation by default, but line 8 can be replaced with the aggregation
1089 formulas we introduce in Section 6.2.

1090 1 **Server executes:**
1091 2 Initialize W_g ;
1092 3 **for** $t = 1$ **to** T **do**
1093 4 **for** *each client* $m \in \mathcal{M}$ **do**
1094 5 // send current global parameters
1095 6 $W_m \leftarrow W_g$;
1096 7 // client trains locally
1097 8 $W_m \leftarrow \text{ClientUpdate}(m, W_m, p_m^{\text{tr}}, E, \eta)$;
1098 9 **end**
1099 10 // aggregate local models (using FedAvg by default)
1100 11 $W_g \leftarrow \frac{1}{\sum_{m \in \mathcal{M}} |\mathcal{D}_m|} \sum_{m \in \mathcal{M}} |\mathcal{D}_m| W_m$;
1101 12 **end**
1102 13 **Client executes:**
1103 14 **ClientUpdate**($m, W, p_m^{\text{tr}}, E, \eta$):
1104 15 **for** $e = 1$ **to** E **do**
1105 16 **for** *each* $(x, y_{\text{true}}) \in \mathcal{D}_m$ **do**
1106 17 $c \leftarrow 0$;
1107 18 // consecutive-IC-agreement counter
1108 19 $\hat{y}_{\text{curr}} \leftarrow \perp$;
1109 20 // sentinel (no label yet)
1110 21 $h_0 \leftarrow x$;
1111 22 **for** $\ell = 1$ **to** L **do**
1112 23 // forward through layer ℓ
1113 24 $h_\ell \leftarrow \text{Layer}_\ell(h_{\ell-1}; W)$;
1114 25 // IC (linear projection then softmax)
1115 26 $z_\ell \leftarrow W_\ell^{\text{IC}} h_\ell$;
1116 27 $\pi_\ell \leftarrow \text{softmax}(z_\ell)$;
1117 28 $\hat{y}_\ell \leftarrow \arg \max \pi_\ell$;
1118 29 **if** $\hat{y}_\ell = \hat{y}_{\text{curr}}$ **then**
1119 30 $c \leftarrow c + 1$;
1120 31 **else**
1121 32 $c \leftarrow 1$;
1122 33 $\hat{y}_{\text{curr}} \leftarrow \hat{y}_\ell$;
1123 34 **end**
1124 35 **if** $c \geq p_m^{\text{tr}}$ **or** $\ell = L$ **then**
1125 36 $\ell_{\text{exit}} \leftarrow \ell$;
1126 37 **break**;
1127 38 **end**
1128 39 // compute loss at the chosen exit and update only
1129 40 // layers $1:\ell_{\text{exit}}$ and that IC
1130 41 $\mathcal{L} \leftarrow \text{CrossEntropyLoss}(z_{\ell_{\text{exit}}}, y_{\text{true}})$;
1131 42 Update $W_{\leq \ell_{\text{exit}}}$ and $W_{\ell_{\text{exit}}^{\text{IC}}}$ via SGD with learning rate η and gradient $\nabla \mathcal{L}$;
1132 43 **end**
1133 44 **return** W

1134

1135

1136

1137 **Algorithm 2:** GROUPED BACKPROPAGATION. A modification of the client-side local training
 1138 that happens with FLAME, which allows the use of minibatches with a size $b > 1$. This function,
 1139 **GroupedClientUpdate**, replaces **ClientUpdate** in the standard FLAME pipeline in Algorithm 1
 1140 (where $b = 1$). Note that lines lines 10–26 in **GroupedClientUpdate** are essentially identical to
 1141 lines lines 16–30 in **ClientUpdate**.

```

1142 1 GroupedClientUpdate( $m$ ,  $W$ ,  $p_m^{\text{tr}}$ ,  $E$ ,  $\eta$ ,  $b$ ):
1143 2   for  $e = 1$  to  $E$  do
1144 3     for each minibatch  $\mathcal{B} \subset \mathcal{D}_m$  of size  $b$  do
1145 4       for  $\ell = 1$  to  $L$  do
1146 5         Initialize exit-layer loss list  $\mathcal{L}_\ell \leftarrow []$ 
1147 6         end
1148 7         // individually forward-pass samples with patience-based
1149 8         // early exits
1150 9         for each  $(x, y_{\text{true}}) \in \mathcal{B}$  do
1151 10            $c \leftarrow 0$ ;
1152 11           // consecutive-IC-agreement counter
1153 12            $\hat{y}_{\text{curr}} \leftarrow \perp$ ;
1154 13           // sentinel (no label yet)
1155 14            $h_0 \leftarrow x$ ;
1156 15           for  $\ell = 1$  to  $L$  do
1157 16             // forward through layer  $\ell$ 
1158 17              $h_\ell \leftarrow \text{Layer}_\ell(h_{\ell-1}; W)$ ;
1159 18             // IC (linear projection then softmax)
1160 19              $z_\ell \leftarrow W_\ell^{\text{IC}} h_\ell$ ;
1161 20              $\pi_\ell \leftarrow \text{softmax}(z_\ell)$ ;
1162 21              $\hat{y}_\ell \leftarrow \arg \max \pi_\ell$ ;
1163 22             if  $\hat{y}_\ell = \hat{y}_{\text{curr}}$  then
1164 23                $c \leftarrow c + 1$ ;
1165 24             else
1166 25                $c \leftarrow 1$ ;
1167 26                $\hat{y}_{\text{curr}} \leftarrow \hat{y}_\ell$ ;
1168 27             end
1169 28             if  $c \geq p_m^{\text{tr}}$  or  $\ell = L$  then
1170 29                $\ell_{\text{exit}} \leftarrow \ell$ ;
1171 30                $\mathcal{L}_{\text{curr}} \leftarrow \text{CrossEntropyLoss}(z_{\ell_{\text{exit}}}, y_{\text{true}})$ ;
1172 31               store  $\mathcal{L}_{\text{curr}}$  in  $\mathcal{L}_{\ell_{\text{exit}}}$ ;
1173 32               break;
1174 33             end
1175 34           end
1176 35           // perform one backpropagation per non-empty exit-layer
1177 36           // group
1178 37           for  $\ell = 1$  to  $L$  do
1179 38             if  $\mathcal{L}_\ell \neq []$  then
1180 39                $\mathcal{L}_\ell^{\text{avg}} \leftarrow \frac{1}{|\mathcal{L}_\ell|} \sum_{\lambda \in \mathcal{L}_\ell} \lambda$ ;
1181 40               Update  $W_{\leq \ell}$  and  $W_\ell^{\text{IC}}$  via SGD with learning rate  $\eta$  and gradient  $\nabla \mathcal{L}_\ell^{\text{avg}}$ ;
1182 41             end
1183 42           end
1184 43         end
1185 44       return  $W$ ;

```

1186

1187

1188

1189

1190

1191

1192 Table 12: Seconds per iteration from the last iteration of training for clients using various p^{tr} values
 1193 with FLAME in Setting A. We compare these values against a baseline where FLAME is not used
 1194 (no early exiting occurs during training).

1195

1196	Task	# samples	p^{tr}	Avg.	% change
1197		per client		secs/it	from baseline
1198	MRPC	1000	Baseline	55.31	–
1199			2	29.63	-46.43%
1200			3	33.37	-39.67%
1201			4	36.59	-33.85%
1202			5	39.79	-28.06%
1203			6	43.04	-22.18%
1204	MNLI	15000	Baseline	854.75	–
1205			2	614.93	-28.06%
1206			3	673.37	-21.22%
1207			4	776.67	-9.13%
1208			5	814.41	-4.72%
1209			6	840.26	-1.70%

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224 Table 13: Evaluation AUC scores resulting from training a single, centralized model on the MRPC
 1225 task using MET with various p^{tr} values. We report scores separately for early- and late-exiting
 1226 evaluation samples, defined by the exit layer taken during inference with $p^{ev} = 4$ (thresholds are
 1227 detailed in Appendix A.5). We also include results from a baseline model that did not use MET (no
 1228 early exiting allowed).

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

	Method	Samples	AUC
Baseline		Early-exiting	0.82
		Late-exiting	0.71
MET, $p^{tr} = 2$		Early-exiting	0.83
		Late-exiting	0.58
MET, $p^{tr} = 3$		Early-exiting	0.83
		Late-exiting	0.65
MET, $p^{tr} = 4$		Early-exiting	0.84
		Late-exiting	0.67

1242
 1243
 1244
 1245
 1246
 1247 Table 14: Seconds per training iteration for clients using different p^{tr} values with FLAME to learn the
 1248 SST-2 task in a FL system that uses Setting A. The clients are using backpropagation with FLAME
 1249 and we report results associated with different grouping strategies and b values. We compare these
 1250 results to those from a baseline where FLAME is used without grouped backpropagation.
 1251

Grouping strategy	b	Seconds/iteration				
		$p^{tr} = 2$	$p^{tr} = 3$	$p^{tr} = 4$	$p^{tr} = 5$	$p^{tr} = 6$
Standard FLAME	1	102.90	120.09	134.41	147.43	160.06
Proposed grouping	16	70.09	82.99	93.72	103.68	113.73
Proposed grouping	32	90.23	107.73	120.26	127.80	132.73
Proposed grouping	64	62.30	78.61	112.01	120.42	125.22
Proposed grouping	128	65.58	78.11	125.95	131.70	136.09
Full group	8	72.69	86.35	99.54	110.45	118.79
Full group	32	81.24	92.48	102.88	112.95	120.12
Binary grouping	32	61.65	78.32	89.55	99.63	108.23
Random grouping	32	67.39	80.08	92.57	102.73	110.92
Distant pairing	32	83.91	87.03	101.89	111.61	118.43
Close pairing	32	78.07	86.51	101.93	111.66	118.78

1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276 Table 15: Comparing FLAME, HeteroFL, ScaleFL, and AFD final global model evaluation AUC
 1277 scores on the Sent140 task. AUC scores are shown separately for early- and late-exiting samples,
 1278 defined by the exit layer taken during inference with $p^{ev} = 4$ (thresholds provided in Appendix A.5).
 1279 We train for 20 rounds with 50 clients that all use the same values for $p^{tr}/r/\delta$. Methods are compute-
 1280 matched to similar FLOPs (see Appendix B). FLAME enables inference-time early exiting with
 1281 $p^{ev} = 4$. The other methods are not designed to train ICs so they do not enable any early exiting
 1282 during evaluation.
 1283

Method	Parameter	AUC		Average GFLOPs/client
		Early samples	Late samples	
FLAME	$p^{tr} = 3$	0.8110	0.7161	84.23
HeteroFL	$r = .8$	0.7034	0.6144	92.77
ScaleFL	$d = 9, r = .9$	0.7268	0.5153	88.06
AFD	$\delta = .4$	0.5346	0.4800	86.97

1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312

1313 Table 16: Average exit layer and total GPU RAM used in training FL systems where clients
 1314 are using FLAME with the same p^{tr} value. We compare these values to baseline where none of
 1315 the clients use FLAME (no early exiting allowed during training). Note that we used an NVIDIA
 1316 A100-SXM4-40 GB GPU and we only had access to RAM usage metrics that are rounded to the
 1317 nearest 0.1 GB.

1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332

Task	# samples per client	p^{tr}	Avg. exit layer	GPU RAM (GB)
SST-2	4000	Baseline	12	16.0
		2	7.712	15.8
		6	11.914	16.0
MRPC	1000	Baseline	12	16.0
		2	9.987	15.8
		6	11.998	16.0
MNLI	1500	Baseline	12	16.0
		2	9.564	15.9
		6	11.999	16.0

1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349