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Abstract

Topology reasoning, which unifies perception and structured reasoning, plays a
vital role in understanding intersections for autonomous driving. However, its
performance heavily relies on the accuracy of lane detection, particularly at con-
nected lane endpoints. Existing methods often suffer from lane endpoints deviation,
leading to incorrect topology construction. To address this issue, we propose
TopoPoint, a novel framework that explicitly detects lane endpoints and jointly
reasons over endpoints and lanes for robust topology reasoning. During training,
we independently initialize point and lane query, and proposed Point-Lane Merge
Self-Attention to enhance global context sharing through incorporating geomet-
ric distances between points and lanes as an attention mask . We further design
Point-Lane Graph Convolutional Network to enable mutual feature aggregation
between point and lane query. During inference, we introduce Point-Lane Ge-
ometry Matching algorithm that computes distances between detected points and
lanes to refine lane endpoints, effectively mitigating endpoint deviation. Extensive
experiments on the OpenLane-V2 benchmark demonstrate that TopoPoint achieves
state-of-the-art performance in topology reasoning (48.8 on OLS). Additionally, we
propose DET), to evaluate endpoint detection, under which our method significantly
outperforms existing approaches (52.6 v.s. 45.2 on DET,,). The code is released at
https://github.com/Franpin/TopoPoint.

1 Introduction

In autonomous driving scenarios, perceiving lane markings and traffic elements on the road surface is
critical for understanding complex intersection environments. To enable accurate interpretation of the
scene and determine feasible driving directions, it is essential to infer both lane-lane topology and lane-
traffic element topology. With the growing trend of end-to-end autonomous driving systems][[1} [2 3],
perception and reasoning have become increasingly integrated into a unified task, referred to as
topology reasoning[4} 5, 16l [7, [8]. This task also plays a vital role in high-definition (HD) map
learning[9, 110, |11} {12]] and supports downstream modules such as planning and control.

As a continuation of the lane detection task, topology reasoning task need to uniformly process lanes,
traffic elements, and their corresponding topological relationships, so the query-based architecture
has become the mainstream solution. In this pipeline, the multiple lanes are encoded and predicted
through multiple independent queries, as shown in Figure[I[a). However, since the lane endpoints
are actually attached to lane query and are affected by the supervised learning of multiple lanes, it
is difficult to ensure that the multiple endpoints of the final prediction can strictly coincide, which
is called the endpoint deviation problem. This problem already explored preliminarily as early as
in the era of lane detection, e.g., the method STSU[13] aligns the endpoints by moving the entire
lane, while the method LaneGAP[14] adopts a path-wise modeling approach, predicting complete
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Figure 1: Pipeline Comparison. (a) In the previous pipeline, lanes are predicted independently,
which leads to obvious endpoint deviation. (b) In our proposed pipeline, lane endpoints are explicitly
modeled, and lanes with overlapping endpoints are obtained through point-lane geometry matching.

lane paths by merging connected lane pieces. However, due to the suboptimal performance of lane
detection, these methods have been replaced. A recent work, TopoLogic[15]], has once again noticed
this problem. It integrates the lane-lane geometric distance and semantic similarity to alleviate the
interference of the endpoint deviation in topology reasoning, instead of rectifying the issue itself.
Therefore, lane detection is still inaccurate, which means that the endpoint deviation problem has not
been completely resolved.

To address the aforementioned issues, we propose TopoPoint, a novel framework that introduces
explicit endpoint detection and fuses features from both lanes and endpoints to enhance topology
reasoning, as is illustrated in Figure[IT[(b). By reasoning over the topological relationship between
endpoints and lanes, TopoPoint effectively mitigates the endpoint deviation problem. To enable
point detection and facilitate feature interaction between points and lanes during training, we design
the point-lane detector, independently initializing point query and lane query. These queries are
supervised at the output by separate objectives for lane detection and endpoint detection. We further
propose Point-Lane Merge Self-Attention (PLMSA), and it concatenates point and lane query and
leverages geometric distances as attention masks to enhance global context sharing. To enhance
point-lane feature interactions, we introduce the Point-Lane Graph Convolutional Network (PLGCN),
and it models the topological relationships between points and lanes by constructing an adjacency
matrix. This enables bidirectional message passing between point and lane features through Graph
Convolutional Network (GCN)[L6]. PLGCN serves as a key component of our Unified Scene Graph
Network. This joint learning process significantly enhances the representation capability of both
endpoints, lanes and traffic elements, thereby improving topology reasoning performance. During
inference, we propose the Point-Lane Geometry Matching (PLGM) algorithm, and it computes
geometric distances between detected endpoints and the start and end points of lanes. This allows us
to refine lane endpoints by matching points to lanes based on their geometric proximity, effectively
mitigating the endpoint deviation issue. Our contributions are summarized as follows:

1. We identify that the endpoint eviation issue in current methods stems from the fact that lane
endpoints are simultaneously supervised by multiple lanes. To tackle this, we propose independently
detecting endpoints and Point-Lane Geometry Matching algorithm to refine lane endpoints.

2. We introduce TopoPoint, a novel framework designed to enhance topology reasoning by incorpo-
rating explicit endpoint detection. Within TopoPoint, point query and lane query exchange global
contextual information through the proposed Point-Lane Merge Self-Attention, and their feature
interaction is further reinforced by the Point-Lane Graph Convolutional Network.

3. All experiments are conducted on the OpenLane-V2[17] benchmark, where our method outper-
forms existing approaches and achieves state-of-the-art performance. In addition, We introduce DET,,
for evaluating endpoint detection, and our method achieves notable improvements.

2 Related Work

2.1 Lane Detection

Lane detection is essential for autonomous driving, providing structural cues for road perception[9, 12,
11, [10] and motion planning[3]]. Traditional methods typically use semantic segmentation to identify
lane areas in front-view images, but they often struggle with long-range consistency and occlusions.



To overcome these limitations, vector-based approaches model lanes as sparse representations.
Recent advances in 3D lane detection have been driven by sparse BEV-based object detectors like
DETR3D[18] and PETR[19], which use sparse query and multi-view geometry to reason directly in
3D space. These ideas have inspired a new wave of lane detectors. For instance, CurveFormer(20]
represents lanes with 3D line anchors and introduces curve query that encode strong positional priors.
Anchor3DLane[21]] extends Lane ATT[22]’s line anchor pooling and incorporates both intrinsic and
extrinsic camera parameters to accurately project 3D anchor points onto front-view feature maps.
PersFormer[23]] leverages deformable attention to learn the transformation from front-view to BEV
space, improving spatial alignment. LATR[24] further refines lane modeling by decomposing it into
dynamic point-level and lane-level query, enabling finer topological representation.

2.2 Topology Reasoning

Topology reasoning in autonomous driving aims to interpret road scenes and define drivable routes.
STSU[13] encodes lane query for topology prediction by DETR[25]]. LaneGAP[14]] applies shortest
path algorithms to transform lane-lane topology into overlapping paths. TopoNet[26] combines
Deformable DETR[27] with GNNJ[28]| to aggregate features from connected lanes. TopoMLP[29][30]
leverages PETR[19]] for lane detection and uses a multi-layer perceptron for topology reasoning.
TopoLogic|15] integrates geometric and semantic information by combining lane-lane geometric
distance with semantic similarity. TopoFormer[31]] introduces unified traffic scene graph to explicitly
model lanes. SMERF[32] improves lane detection by incorporating SDMap as an additional input,
while LaneSegNet[33]] uses Lane Attention to identify lane segments. In our work, We introduce
endpoint detection to enhance topology reasoning and mitigate endpoint deviation.

3 Method

3.1 Problem Definition

Given surround-view images captured by multiple cameras mounted on a vehicle, the topology
reasoning task includes: 3D lane centerline detection[34, (191351136, 23] in the bird’s-eye view (BEV)
space, 2D traffic element detection[37/] in the front-view image, topology reasoning[26} |33} 17} 132]
among lane centerlines and topology reasoning between lane centerlines and traffic elements. All
lane centerlines are represented by multiple sets of ordered point sequences L = {l; € RF*3|i =

1,2,...,n}, where n; is the number of lane centerlines and % is the number of points on the lane
centerline. All traffic elements are represented using multiple 2D bounding boxes T' = {¢; €
R%|i = 1,2,...,n;}, where n; is the number of traffic elements. The lane-lane topology, which

encodes the connectivity between lanes, is represented by an adjacency matrix Gy;. The lane-traffic
element topology, capturing the association between lanes and traffic elements, is represented by
another adjacency matrix Gy;. In addition, the framework includes point detection and point-lane
topology reasoning. A set of candidate points P = {p; € R3|i = 0,1,2,...n,} is constructed by
de-duplicating all endpoints of lane centerlines, where n,, is the number of unique endpoints. The
point-lane topology G, is created by checking whether the point lies on lane centerline.

3.2 Overview

As illustrated in Figure 2] our proposed TopoPoint framework consists of traffic detector, point-lane
detector, geometric attention bias, topology head and point-lane result fusion. We downsample the
multi-view by a factor of 0.5, while keeping the front-view at its original resolution. During training,
all images are passed through ResNet-50[38] pretrained on ImageNet[39] with FPN[40] to extract
multi-scale features. These features are then encoded into BEV representations using BevFormer[41]
encoder. In the traffic detector, front-view features are directly processed by Deformable DETR[27]]
to produce traffic query Qt. In the point-lane detector, point query @), and lane query (); interact via
Point-Lane Merge Self-Attention, which computes geometric attention bias serving as an attention
mask to enhance global information sharing. The resulting queries then perform cross-attention with
BEV features. Then ), and Q; together with Qt, are fed into Unified Scene Graph Network. The
topology head computes point-lane topology, lane-lane topology and lane-traffic topology. During
inference, predicted points and lanes are fused via Point-Lane Geometry Matching algorithm to refine
lane endpoints and effectively mitigate the endpoint deviation problem.
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Figure 2: TopoPoint framework. (a) In addition to the traffic elements and lanes, lane endpoints are
also explicitly perceived in the detector. (b) The geometric attention bias is also incorporated into the
point-lane merge self attention module to exchange information. (c) On this basis, the queries are
used for topology reasoning, and the topology is also used for query enhancement in scene graph
network. (d) During inference, point-lane result fusion is applied to eliminate endpoint deviation.

3.3 Traffic Detector

To detect traffic elements in the front-view image, we initialize traffic element query )¢, which
interact with multi-scale front-view features F's,, via Deformable DETR to compute cross-attention
and produce updated representations Q;. The Q, are then passed through the Traffic Head to predict
2D bounding boxes T. The process is as follows:

Q; = DeformableDETR(Q;, Fy,) (1)
T = TrafficHead(Q;) 2)

where Q, € RN:xd, Fy, € RHF*xWrxd gnd 7' € RN+*4| N, denotes the number of Q:, d denotes
the feature dimension, (H,, Wy, ) denotes the size of Fie,.

3.4 Point-Lane Detector

We independently initialize point query (), and lane query ;. These queries first interact through
Point-Lane Merge Self-Attention to exchange global information. The updated queries then compute
cross-attention with the BEV features, followed by two separate feed-forward networks (FFNs). The
resulting (), and Q); are subsequently fed into Unified Scene Graph Network, where they aggregate
features from each other via graph convolution networks (GCNs). The enhanced representations are
finally used by the point head and lane head to regress endpoints and lane centerlines, respectively.

Point-Lane Merge Self-Attention. We first concatenate ), and (); along the instance dimension
to form Qp;. @y is then used as the query, key, and value in the self-attention computation. The
definition of (),,; as follows:

Qpl = Concat (Q;m Ql) 3)

where Q, € RM»*d @, € RM*d Q. € RN»Xd N, denotes the number of @Q,, N; denotes
the number of );, Ny = N, + IN; and d denotes the feature dimension. To incorporate the
geometric relationships between points and lanes in the BEV space, we compute their pairwise



Figure 3: Module details. (a) Based on geometric attention bias and reasoned topology, lane & point
queries are enhanced from the associated traffic elements & lanes & points by the unified scene graph
network, (b) where the PLGCN is designed for better interaction between lanes and points.

geometric distances based on the predicted points 13171 ={p; e R¥i =1,2,..., N,} and lanes

Li_y = {l; € R¥*3|j = 1,2,..., N;} from the previous decoder layer, where k denote the number
of points in each lane. These distances are then transformed by a learnable mapping function fiqp to
obtain geometric bias matrix M,,,, My, and M, as follows:

Duz{Z|i§—i;| i:1,2,...,Np,j:1,2,...,Nl} @)
Dy = {Min (Zmi — LY Ips —i§|) ‘i: 1,2,...N,,j = 1,2,...Nl} (5)
Mpl = fmap(Dpl)7 My = fmap(Dll) (6)

where [¢ € R3 denotes the start point of [;, [¢ € R? denotes the end point of I;, Dy € RN*N:
denote the L1 distance from the start points to the end points in L; 1, and D,,; € RN >Nt denote the

minimum L1 distance from P,_; to the endpoints of L. Notably, fraep = e~ %5 is proposed in
TopoLogic[15], «, A are learnable parameters, and & is the standard deviation of distance matrix D.

To compute self-attention, we concatenate My, My, to form geometric attention bias, which is added
to the attention weights computed from @),,;. The self attention process is described as follows:

-
: Z M,
Qp, Q1 = Softmax @t Oy [ P!

Gy ) e o
va QL= LN(Qp)vLN(Qp) (®)

where Z € RY»*N> denotes the zero matrix, My, € RNo XN Ay € RVXNe and LN demotes the
layer normalization.

Point-Lane Deformable Cross Attention. After self-attention, (), and (); are used to compute
deformable cross-attention with the BEV feature. Specifically, we independently initialize two sets
of learnable reference points, R, and R;, corresponding to ), and ();, which attends to the BEV
feature via deformable cross-attention using its own reference points. The results are then passed
through two separate feed-forward networks (FFNs). The process is described as follows:

Qp, Qi = LN(DeformAttn(Qp, Ry, Fyey)), LN(DeformAttn(Q;, R, Fyey)) 9)

@p, Q1 = LN(FFN(Q),)), LN(FFN(Q,)) (10)

where R, € RY»*3 R € RN>*3 Fy., € REEXWEXd denotes BEV feature map, (Hp, Wp)
denotes the BEV size of Fj.,.

Unified Scene Graph Network. We construct a Unified Scene Graph Network by assembling the
Qp, Q1. and @, as illustrated in Figure Eka). To enhance the interaction between point and lane
representations, we further introduce the Point-Lane Graph Convolutional Network (PLGCN), as
shown in Figure3[b). The PLGCN is designed to facilitate bidirectional feature aggregation between
@, and @); based on their geometric relationships. The structure of the PLGCN is as follows:

Apl = )\1Gpl + )\2Mpl (11



Qp = GCNyi (Q1, Apt) + Qp, Q1 = GCN (Qp, Ayy) + Qi (12)
In the Unified Scene Graph Network, ), and @), first interact with each other through the first
Point-Lane Graph Convolutional Network (PLGCN) ) to generate updated features Qzl, and Q;. Then
Qj is processed through two separate GCNs: GCN,; aggregates information from @)} itself to enhance
intra-lane relationships, while GCN;; aggregates information from Q¢ to incorporate semantic context.
The outputs from these two branches are concatenated and downsampled to form Q7. Finally, a
second round of Point-Lane Graph Convolutional Network (PLGCN5) is applied to Q7 and Q?,
yielding the final enhanced features @7 and Qf;, which are used as the output of the Point-Lane
detector decoder layer. The overall process can be formulated as:

> @7 = PLGCN1(Qp, Q1, My, Gpi) (13)

Q? = Downsample (Concat (GCN”(Q},MH) +Q}, GCNy(Qy, Gie) + Qll)) (14)
3. Q} = PLGCNy(Q,, QF, My, Gpi) (15)

Qp. Q1 =Q3.Q} (16)

where A1, Ay denotes the learnable parameters. GCN(X, A) = o(AXW), X denotes the input, W
denotes the learnable weight matrix, A denotes the adjacency matrix, A denotes the normalized
A and o denotes sigmoid[42] function. My = I + My + M,], I € RN*N: denotes the identity
matrix, Mp;, M is derived within the Point-Lane Merge Self-Attention, Gp,;,G; is derived within
the Topology Head from the previous decoder layer. Downsample denotes the Linear-layer.

Point-Lane Head. After passing through the Unified Scene Graph Network, we obtain the enhanced
point query Qp and lane query Ql, which are fed into the PointHead and LaneHead, respectively, to
produce the predicted point set P= {preg, Pcls} and lane set L = {ﬁ,eg, ﬁcls}, as follows:

P = PointHead(Q,), L = LaneHead(Q;) (17

where If’,,.eg € RN»*3 and f;,.eg € RN»xkx3 denote the regressed points and lanes, respectively,

P, € RV»*1 and Lo, € RN denotes classification scores for points and lanes, LaneHead and
PointHead each consist of two separate MLP branches for regression and classification.

3.5 Topology Head

To predict the point-lane topology, lane-lane topology and lane-traffic topology. We perform topology
reasoning based on the enhanced features Qp, Ql and Qt obtained from the detectors. We encode
these features using separate MLPs and compute their pairwise similarities as the topology reasoning
outputs. The process is formulated as follows:

Gy = Sigmoid(MLP(Q,,) - MLP(Q;) ) (18)
Gy = Sigmoid(MLP(Q;) - MLP(Q;) ") (19)
G = Sigmoid(MLP(Q;) - MLP(Q,)") (20)

where Gpl € RN»*Ni denotes the point-lane topology, G € RN*MNi denotes the lane-lane topology,
Gy € RNXNe denotes the lane-traffic topology.

3.6 Training

During the training phase, the overall loss of TopoPoint is composed of detection loss and topology
reasoning loss. The detection loss includes the traffic element detection loss, point detection loss and
lane detection loss. The topology reasoning loss consists of the point-lane topology loss, lane-lane
topology loss and lane-traffic topology loss. The total loss is defined as:

Liotar = MLy + ALy + ML+ Api Lot + ALl + AieLit (21
where L;, L, and £; denote the traffic element detection loss, point detection loss and lane detection
loss, respectively. £, £y; and L, represent the losses for point-lane topology, lane-lane topology
and lane-traffic topology reasoning. A, A\p, A;, Api, Ay and Ay are the corresponding loss weights.
Specially, the £, and £, consist of classification loss and regression loss, where the classification
loss employs the Focal loss[43]] and the regression loss utilizes the L1 loss[44]]. For L, in addition
to classification loss and regression loss, we incorporate the GloU loss[45] to further improve
localization accuracy. For topology reasoning, we adopt the focal loss for both £, £;; and Ly;.



3.7 Inference

To mitigate the endpoint deviation issue in lane prediction during inference, we propose the Point-
Lane Geometry Matching (PLGM) algorithm. This method first filters out high -confidence predictions
from Preg and L,«eg using their associated classification scores Pcls and Lcls For each selected point
P € Pgelect, we identify a set of nearby lane endpoints N; from Lgelecf based on their geometric
distances in the BEV space. If the matching is found, the selected point and its neighboring lane
endpoints are jointly averaged to compute refined endpoint E;, which is then used to update the
corresponding lane predictions. This refinement leads to better-aligned lane endpoints and improved
overall topology consistency. The complete procedure is illustrated in Algorithm|[T]

Algorithm 1: Point-Lane Geometry Matching Algorithm

Input: Predicted points Preg, Pcls; predicted lanes ﬁrew iczs; classification thresholds 7, 7;;
geometry distance threshold §.

Output: Refined lanes ﬁmf
Step 1: High-Confidence Filtering

Filter points with high classification scores: Pyjee; = { P! Teg | P s > Tp}

Filter lanes with high classification scores: L‘elec, = {L | L s > 7}

Step 2: Geometry-Based Matching and Refinement
foreach point If’i S Pselm do
Initialize empty match set: A; = 0 ;
foreach lane E € ﬁme( . do
if dzstcmce(PZ, Le”d”‘""’) < § then
| Add L; to N ;
if V; # () then
Compute refined endpoint:
E; = ﬁ (Pi + Zij N L;ndpmm);
| Update endpoints of all L ; € N; with E;:

reg

return L,. ¢ with refined endpoints

where Py, € RN»¥3, L., € RN><F>3 P e RN»*1and Ly, € RN *1. N, denotes the number
of point query, IV; denotes the number of lane query, and k denotes the number of points in each lane.

4 Experiment

4.1 Dataset and Metric

Dataset. We evaluate TopoPoint on the large-scale topology reasoning benchmark OpenLane-
V2[17], which is constructed based on Argoverse2[46] and nuScenes[47]]. The dataset provides
comprehensive annotations for lane centerline detection, traffic element detection, and topology
reasoning tasks. OpenLane-V2 is divided into two subsets: subset_A and subset_B, each containing
1,000 scenes captured at 2 Hz with multi-view images and corresponding annotations. Both subsets
include annotations for lane centerlines, traffic elements, lane-lane topology, and lane-traffic topology.
Notably, subset_A provides seven camera views as input, while subset_B includes six views.

Metric. We adopt the evaluation metrics defined by OpenLane-V2, including DET;, DET,, TOP;;,
and TOP;,, all of which are computed based on mean Average Precision (mAP). Specifically, DET;
quantifies similarity by averaging the Fréchet distance under matching thresholds of 1.0, 2.0, and 3.0.
DET; evaluates detection quality for traffic elements using the Intersection over Union (IoU) metric,
averaged across different traffic categories. TOP;; and TOP;; measure the similarity of the predicted
lane-lane topology matrix and lane-traffic topology matrix, respectively. The overall OpenLane-V2
Score (OLS) is calculated as follows:

1
OLS = Z[DETl + DET, + /TOP;; 4+ \/TOP,] (22)




All evaluation metrics are computed based on the latest version (v2.1.0) of OpenLane-V2, which is
available on the official OpenLane-V2 GitHub repository. In addition, to evaluate the performance of
endpoint detection, we define a custom metric DET),, which is computed as the average over match
thresholds T = {1.0, 2.0, 3.0} based on the point-wise Fréchet distance, as follows:

1
DET, = — » AP, 23
» mteZT : (23)

4.2 TImplementation Details

Model details. The multi-view images have a resolution of 2048 x 1550 pixels, with the front
view specifically cropped and padded to match 2048 x 1550. Notably, all multi-view inputs are
downsampled by a factor of 0.5 before being fed into the backbone, except for the front view, which
is directly processed at the original resolution. A pretrained ResNet-50 is adopted as the backbone,
and a Feature Pyramid Network is used as the neck to extract multi-scale features. The hidden
feature dimension d is set to 256. BEV grid size is configured to 200 x 100. The number of traffic
element query V;, point query N,, and lane query [V; are set to 100, 200 and 300, respectively. The
sampled points number k of each lane is set to 11. The decoder consists of 6 layers. Following
TopoLogic, the learnable parameters A and « in the mapping function f,,,, are initialized to 0.2
and 2.0, respectively, A; and A, in A, are both initialized to 1.0. The detection loss weights A, A,
A; and are all set to 1.0, while the topology reasoning loss weights \;; and A;; are both set to 5.0.
In inference, the classification thresholds for filtering high-confidence predictions are both set to
Tp = 11 = 0.3. For geometric matching, the distance threshold ¢ is set to 1.5 meters to determine
valid point-lane associations.

Training details. We train the traffic detector, point-lane detector and topology head in an end-to-end
manner. TopoPoint is trained using the AdamW optimizer with a cosine annealing learning rate
schedule, starting at 2.0 x 10~ with a weight decay of 0.01. All experiments are conducted for 24
epochs on 8 Tesla V100 GPUs with a batch size of 8.

4.3 Comparison on OpenLane-V2 Dataset

We compare TopoPoint with existing methods on the OpenLane-V2 benchmark, and the results are
summarized in Table [I} On subset_A, TopoPoint achieves 48.8 on OLS, surpassing all previous
approaches and achieving state-of-the-art performance. Notably, despite TopoFormer leveraging
a pretrained lane detector, our method achieves superior performance (48.8 v.s. 46.3 on OLS).
Built upon TopoLogic, TopoPoint demonstrates superior performance in lane detection (31.4 v.s.
29.9 on DET;) and shows a substantial improvement in traffic element detection (55.3 v.s. 47.2 on
DET,). Furthermore, it outperforms in lane-lane topology reasoning (28.7 v.s. 23.9 on TOP;;) and
achieves better results in lane-traffic topology reasoning (30.0 v.s. 25.4 on TOP;;). Additionally,
there is a notable improvement in the endpoint detection (52.6 v.s. 45.2 on DET,). Meanwhile,
TopoPoint also achieves state-of-the-art performance on subset_B (49.2 on OLS, 45.1 on DET),,),
further demonstrating its effectiveness.

4.4 Ablation Study

We conduct ablation studies on several key components of TopoPoint using OpenLane-V2 subset_A.

Impact of each module. We conduct an ablation study to assess the impact of each module on
topology reasoning performance. As shown in the Table [2] keeping the original front-view scale
(scale =1.0) improves traffic element detection (53.8 v.s. 46.8 on DET,), enhancing lane-traffic
topology reasoning (27.0 v.s. 24.3 on TOP;;). Adding Point-Lane Merge Self-Attention (PLMSA)
boosts lane and endpoint detection (30.2 v.s. 29.4 on DET;, 49.8 v.s. 44.8 on DET,,), leading to
better lane-lane and lane-traffic topology reasoning (27.2 v.s. 23.8 on TOP;;, 28.5 v.s. 27.0 on TOPy).
Incorporating Point-Lane Graph Convolutional Network (PLGCN) further improves detection (30.8
v.s. 30.2 on DETj, 51.8 v.s. 49.8 on DET),). Finally, the Point-Lane Geometry Matching (PLGM)
algorithm refines lane endpoints during inference, mitigating endpoint deviation and enhancing lane
and point detection (31.4 v.s. 30.8 on DET;, 52.6 v.s. 51.8 on DET)).

Effect of different GCNs. We investigate the impact of various GCN designs on topology reasoning
performance. As shown in Table[3] adding the lane-lane GCN and lane-traffic GCN improves lane


https://github.com/OpenDriveLab/OpenLane-V2/blob/master/docs/metrics.md

Table 1: Performance comparison on OpenLane-V?2. Results are from TopoLogic and TopoFormer
papers. TopoFormer* utilizes a pretrained lane detector. The DET),, scores for TopoNet, TopoMLP,
and TopoLogic are computed using their official codebases. "-" denotes the absence of relevant data.

Data \Method Conference ~ DET;t DET,t TOP;t TOP;t OLS{ DET,t
STSU[13] ICCV2021 12.7  43.0 2.9 19.8 293 -
VectorMapNet[10] ICML2023 11.1 41.7 2.7 9.2 24.9 -
MapTR[48]] ICLR2023 17.7 435 5.9 15.1  31.0 -
TopoNet[26]] Arxiv2023 28.6  48.6 10.9 23.8 39.8 438

subset_A | TopoMLP[29] ICLR2024 28.3 495 21.6 269 441 434
TopoLogic|[[15] NeurIPS2024 299 472 239 254 441 452
TopoFormer*[31] CVPR2025 347 482  24.1 29.5  46.3 -

TopoPoint (Ours) - 314 553 28.7 30.0 488 52.6

STSUJ[13] ICCV2021 8.2 43.9 - - - -
VectorMapNet[10] ICML2023 3.5 49.1 - - - -
MapTR[48]] ICLR2023 152 540 - - - -
TopoNet[26]] Arxiv2023 243  55.0 6.7 16.7 36.8 38.5

subset_B | TopoMLP[29] ICLR2024 26.6 583 210 198 43.8 39.6
TopoLogic[15]] NeurIPS2024 259 547 21.6 179 423 392
TopoFormer*[31] CVPR2025 348 589 232 233 475 -

TopoPoint (Ours) - 312  60.2 283 27.1 492 451

Table 2: Ablation study on different modules. Table 3: Ablation study on different GCNs. “w/o
Baseline is reproduced using TopoLogic code. = GCN” denotes removal of Unified Graph Network.

Module |DET;t DET, TOP; 1 TOP;,t OLSt DET,t Module  |DET,t DET;} TOP;t TOP;; OLS DET, 1

Baseline | 29.2 46.8 234 243 434 445 w/oGCN | 289 539 256 264 462 48.6
+ FVScale| 29.4 53.8 23.8 27.0 46.0 4438 + GCNy 298 542 269 271 47.0 498
+PLMSA| 302 548 272 285 47.6 4938 + GCNy 306 545 274 288 47.8 50.5
+PLGCN| 308 553 28.0 292 483 5138 +PLGCN; | 309 550 282 295 483 519
+PLGM | 314 553 287 300 48.8 52.6 +PLGCN, | 314 553 287 30.0 48.8 52.6

detection (30.6 v.s. 29.8 v.s. 28.9 on DET)), thereby enhancing both lane-lane and lane-traffic
topology reasoning (27.4 v.s. 26.9 v.s. 25.6 on TOPy;, 28.8 v.s. 27.1 v.s. 26.4 on TOP;;). Moreover,
introducing two variants of the point-lane GCN effectively boosts both lane and endpoint detection
performance (31.4 v.s. 30.9 v.s. 30.6 on DET, 52.6 v.s. 51.9 v.s. 50.5 on DET)).

Image scales set up. We investigate the impact of different image scaling strategies on topology
reasoning performance. As shown in the Table [4] keeping the front-view image at its original
resolution improves the performance of traffic element detection (55.3 v.s. 48.6, 54.7 v.s. 48.3 on
DET,). On the other hand, downscaling the multi-view images by a factor of 0.5 slightly boosts lane
detection performance (31.2 v.s. 30.5, 31.4 v.s. 30.8 on DET)).

Effect of point and lane query numbers. We investigate the impact of varying the number of point
and lane query on topology reasoning performance. As shown in the Table[5] increasing the number
of point query from 100 to 200 improves endpoint detection (51.8 v.s. 49.7 on DET)), which in
turn enhances lane detection performance (30.7 v.s. 29.5 on DET;). However, further increasing
the number from 200 to 300 introduces more negative point samples, leading to degraded endpoint
detection (51.4 v.s. 52.6 on DET,) and consequently worse lane detection performance (30.8 v.s.
31.4 on DET}). On the other hand, increasing the number of lane query from 200 to 300 consistently
improves lane detection accuracy(31.4 v.s. 30.7 on DET}).

4.5 Qualitative Results

Figure 4] provides a qualitative result comparison between TopoLogic and our TopoPoint. On the
whole, both TopoLogic and TopoPoint yield good results. Nevertheless, as TopoLogic lacks a direct
enhancement to lane detection itself, it is more likely to produce incorrect or missing lanes, thereby
resulting in inaccurate or absent topologies. Benefit from the independent endpoint modeling and the



Table 4: Ablation study on front-view scale and Table 5: Ablation study on number of point query
multi-view scale. Sy, denotes the scale of front- and lane query. IV,, denotes the number of point
view, S,,,, denotes the scale of multi-view. query, N; denotes the number of lane query.

Sfs Smo |DET;1 DET;t TOP; 1 TOP, 1 OLST DET,t N, N, [DET,} DET,} TOP,1 TOP; OLS{ DET,

05 05312 486 285 284 46.6 523 100200 | 29.5 543 256 270 465 49.7
05 10| 305 483 280 279 46.1 515 200200| 30.7 53.7 274 282 475 518
1.0 05| 314 553 287 30.0 488 52.6 200300 | 314 553 28.7 300 488 52.6
1.0 1.0| 30.8 547 283 289 48.1 518 300300 | 30.8 546 282 298 483 514

TopoPoint
- ),
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Figure 4: Qualitative comparison of TopoLogic and our TopoPoint. The first row denotes multi-
view inputs, and the second row denotes lane detection result with lane topology result. In the graph
form of lane topology, node indicates lane while edge indicates lane topology, where green/red/blue
color respectively indicates the correct/wrong/missed prediction.

interaction between points and lanes, TopoPoint has managed to avoid such situations as much as
possible. Moreover, it is evident that TopoPoint eradicates the endpoint deviation at lane connections,
which still exist in TopoLogic. Both Figure[5|and Figure[f]provide more qualitative results comparison
between TopoLogic and our TopoPoint.

5 Conclusion

In this paper, we identify the endpoint deviation issue in existing topology reasoning methods. To
tackle this, we propose TopoPoint, which introduces explicit endpoint detection and strengthens
point-lane interaction through Point-Lane Merge Self-Attention and Point-Lane GCN. We further
design a geometry matching strategy to refine lane endpoints. Experiments on OpenLane-V2 show
that TopoPoint achieves state-of-the-art performance in OLS. Additionally, we introduce DET,, metric
for evaluating endpoint detection, where TopoPoint also achieves significant improvement.

Impact. TopoPoint improves 3D lane detection by addressing endpoint deviation and enhancing
topology reasoning, benefiting autonomous driving tasks like planning and mapping.
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: We have clearly stated this in the introduction.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have discussed this in the conclusion of the paper.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: We have provided this in the method section.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: We have provided implementation detail in the experiment section.
Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We have provided the data and code in supplemental material.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We have provided implementation detail in the experiment section.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Due to limitation in computational resource, we did not conduct multiple
iterations of the same experiment to calculate error.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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10.

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have provided the computer resources necessary to reproduce the experi-
ments in implementation detail of the experiment section.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We adhere to the NeurIPS Code of Ethics in every respect.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We have mentioned the impact in the conclusion.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

17


https://neurips.cc/public/EthicsGuidelines

11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Our paper poses no such risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: They are properly credited and properly respected.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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15.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: New assets introduced in the paper well are documented and the documentation
is provided alongside the assets.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Figure 5: Additional qualitative comparison of TopoLogic and TopoPoint.
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Figure 6: More qualitative comparison of TopoLogic and TopoPoint. The first row denotes
multi-view inputs, the second row denotes the endpoint detection and lane detection results, where

lane topology result, and

the last row denotes traffic element detection and lane-traffic topology results in the front-view.

the lane endpoints are indicated by red dots. The third row denotes the lane:
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