
Published as a conference paper at ICLR 2023

NEURAL EPISODIC CONTROL WITH STATE ABSTRAC-
TION

Zhuo Li1 Derui Zhu2 Yujing Hu3 Xiaofei Xie4 Lei Ma5,6,
Yan Zheng7 Yan Song3 Yingfeng Chen3 Jianjun Zhao1

1Kyushu University 2Technical University of Munich 3NetEase Fuxi AI Lab
4Singapore Management University 5University of Alberta
6The University of Tokyo 7Tianjin University
ma.lei@acm.org zhao@ait.kyushu-u.ac.jp

ABSTRACT

Existing Deep Reinforcement Learning (DRL) algorithms suffer from sample inef-
ficiency. Generally, episodic control-based approaches are solutions that leverage
highly-rewarded past experiences to improve sample efficiency of DRL algorithms.
However, previous episodic control-based approaches fail to utilize the latent
information from the historical behaviors (e.g., state transitions, topological sim-
ilarities, etc.) and lack scalability during DRL training. This work introduces
Neural Episodic Control with State Abstraction (NECSA), a simple but effective
state abstraction-based episodic control containing a more comprehensive episodic
memory, a novel state evaluation, and a multi-step state analysis. We evaluate our
approach to the MuJoCo and Atari tasks in OpenAI gym domains. The experi-
mental results indicate that NECSA achieves higher sample efficiency than the
state-of-the-art episodic control-based approaches. Our data and code are available
at the project website1.

1 INTRODUCTION

Deep reinforcement learning (DRL) has garnered much attention in both research and industry, with
applications in various fields related to artificial intelligence (AI) such as games (Mnih et al., 2013;
Silver et al., 2018; Shen et al., 2020), autonomous driving (Xu et al., 2020), software testing (Zheng
et al., 2019; 2021c) and robotics (Thomaz & Breazeal, 2008). DRL usually achieves excellent
performance for many tasks and sometimes outperforms human beings. However, human-level
DRL policies usually require a tremendous amount of data and millions of training steps, which are
demonstrated to be sample inefficient (Arulkumaran et al., 2017; Tsividis et al., 2017). To mitigate
this problem, many approaches have been proposed, such as improving the exploration (Yu, 2018;
Burda et al., 2018), modeling the environment (Moerland et al., 2020), state abstraction (Vezhnevets
et al., 2017) and knowledge transfer (Lazaric et al., 2008; Zhang et al., 2020; Cao et al., 2022).
However, this paper focuses on resolving the problem of sample inefficiency through episodic control.

Episodic control is designed to assist DRL agents in making the appropriate decisions in unseen
environments using past experiences. The idea is inspired by a biological mechanism, hippocam-
pus (Lengyel & Dayan, 2007). Moreover, episodic control has been adopted to tackle the sample
inefficiency in DRL (Blundell et al., 2016; Pritzel et al., 2017). Previous neural episodic control-based
approaches usually store past experiences in a tabular memory. Therefore, the agent could retrieve
historical highly-rewarded experiences by looking up similar cached states from the episodic memory.
Then the state (action) values could be estimated based on the similar states retrieved. In this way,
the policy can efficiently reduce the bias between episodic and model estimated state values and
generalize the past highly-rewarded cases.

Although many episodic control-based approaches were proposed to improve the sample efficiency
of DRL policy, all of them suffer from obvious limitations (Hu et al., 2021; Pinto, 2020; Kuznetsov &
Filchenkov, 2021). In general, they only store the concrete states, actions, and state values (Blundell

1https://sites.google.com/view/drl-necsa

1

https://sites.google.com/view/drl-necsa


Published as a conference paper at ICLR 2023

et al., 2016). On the other hand, their episodic memory does not record information such as time
steps and transitions in the traces. As a result, some latent semantics, such as state transitions
and topological similarities, cannot be explored and exploited. However, many previous works
demonstrate that such latent information can be used to improve sample efficiency (Kuznetsov
& Filchenkov, 2021; Zhu et al., 2020). For instance, a DRL model is trained to make decisions
continuously, and the influence (e.g., approximation errors) of a state-action pair might be accumulated
and affect the forward scenes (Dynkin, 1965). In other words, the root cause of a bad decision in the
current state can either come from the latest state or the much earlier states. The topological state
transitions can help trace the root cause of the bad decisions.

Moreover, the data structure of existing episodic memories does not efficiently support storing and
exploring latent semantics. The reason is that the concrete state representations usually consist of
float numbers. Thus almost none of the states are the same. Consequently, we cannot directly count
and retrieve them from episodic memory, and it is impossible to identify the critical state transitions.
In addition, existing episodic control-based approaches, which utilize distance-based measurement
to retrieve the k-st most similar concrete states (e.g., k-nearest neighbors, i.e., kNN search) and the
weighted sum of the state (action) values for the estimation (Pritzel et al., 2017; Lin et al., 2018), are
inevitably resource-consuming. Overall, existing episodic control-based approaches lack (1) a more
comprehensive episodic memory analysis (i.e., multi-step state transitions) and (2) a more scalable
storage and retrieval strategy for episodic data.

We propose NECSA, a state abstraction-based neural episodic control approach that enables a more
comprehensive analysis of episodic data and better sample efficiency to address the above issues.
Inspired by multi-grid and model-based reinforcement learning (Grześ & Kudenko, 2008; Kaiser
et al., 2019), we discretize the continuous state space into finite grids on each dimension, and the
states located in the same grid will be labeled with a unique ID. Naturally, we conduct a multi-step
analysis of the state transitions by treating the consecutive state transitions as a fixed pattern. Finally,
we make the policy generalize different patterns, as we infer that analyzing and generalizing such
multi-step patterns might result in better performance than just focusing on a single state (Sutton
& Barto, 2018). Such abstraction enables the following strengths: (1) based on the abstracted state
space, more advanced semantic characteristics, such as state transitions and topological similarities,
can be analyzed for improving performance (Grześ & Kudenko, 2008); (2) the complexity of storing
and retrieving the episodic data is reduced O(N) to O(1) since we can retrieve the episodic memory
using an exact match.

Previous episodic controls used average state values as the state measurement to correct the DRL
policy estimation (Lin et al., 2018; Kuznetsov & Filchenkov, 2021). Nevertheless, such a state
measurement cannot be computed directly for a multi-step pattern. Instead, we propose an intrinsic
state measurement based on state abstraction instead of past state values. Specifically, we record
the returns of those episodes where they occur in an abstract pattern. Then we compute the average
returns to measure the abstract pattern. This measurement can efficiently identify those patterns
which can result in higher rewards. By utilizing such intrinsic rewards (Burda et al., 2018), we revise
the policy and accelerate the learning by encouraging those states with higher measurements but
punishing those with relatively low measurements.

Finally, we evaluate NECSA on MuJoCo (Todorov et al., 2012) and Atari tasks in OpenAI gym (Brock-
man et al., 2016) domains. The evaluation shows that our approach can significantly improve the
sample efficiency and outperform state-of-the-art episodic control. In summary, we make the follow-
ing contributions: (1) we propose a multi-step analysis of state transitions to achieve better policies;
(2) we propose a comprehensive episodic memory that enables a more advanced analysis of past
experiences; (3) we propose an intrinsic reward-based episodic control method to optimize the policy.

2 RELATED WORK

2.1 NEURAL EPISODIC CONTROL

Episodic control (Lengyel & Dayan, 2007) was creatively applied on model-free DRL tasks to retrieve
episodic memory-based state values (Blundell et al., 2016) for resolving sample inefficiency. The
distance-based measurements were applied for looking up similar episodic data (Pritzel et al., 2017).
The episodic memory buffer can be smaller by applying Gaussian Random Projection to reduce the

2



Published as a conference paper at ICLR 2023

Figure 1: The overview of NECSA. We abstract the concrete state-action pairs, measure the abstract
states and combine the state measurement with the traces. Finally, the revised traces will be stored in
the replay buffer for the agent to sample.

dimension of concrete states (Lin et al., 2018). The retrieved state values from episodic memory can
be combined with the predictions of the critic network (Hansen et al., 2018). Novel episodic memory
structure such as associative memory and generalized memory efficiently propagates state values
to stored memory items (Zhu et al., 2020; Hu et al., 2021). Episodic control was also combined
with multi-agent tasks (Zheng et al., 2021a) with curiosity-based exploration and model-based
reinforcement learning (Le et al., 2021). Recently, the episodic control was also applied to the
continuous control (Zhang et al., 2019; Kuznetsov & Filchenkov, 2021), which outperformed the
state-of-the-art DRL algorithms. The universal episodic control (Hu et al., 2021; Pinto, 2020) was
proved effective on both discrete and continuous action space by adopting a generalized episodic
memory (e.g., neural network) to fit the past state values. Offline tasks can be solved by the state
value-based episodic buffer and avoid the over-generalization of actions in the dataset (Ma et al.,
2021). Episodic memory was also used to search the optimal hyperparameter for policy gradient
methods (Le et al., 2022). This paper proposes NECSA, a novel and simple episodic control-based
approach. NECSA adopts a grid-based state abstraction instead of distance-based measurement to
operate episodic memory more efficiently. Moreover, unlike previous works, our episodic memory is
more comprehensive since the state abstraction strategy enables us to explore abstract state transitions
and topological information. Such information can be used to improve the sample efficiency (Yin &
Li, 2020).

2.2 STATE ABSTRACTION

The purpose of state abstraction is to group states which share the same characteristics into a single
cluster. One solution is discretizing the continuous domains (Dougherty et al., 1995). In model-
based RL tasks (Kaiser et al., 2019), the state abstraction (Jiang et al., 2015; Burda et al., 2018)
plays an essential role in reducing the data scales, although such abstraction requires strong domain
knowledge of the environment or assumptions. In model-free reinforcement learning, the grid-based
state abstraction has proved effective (Anderson & Crawford-Hines, 1994; Grześ & Kudenko, 2008).
Particularly in continuous control, the continuous action space can be divided into equal intervals,
then those concrete actions in the same value scales can be labeled by a common abstraction (Pazis &
Lagoudakis, 2009; Tang & Agrawal, 2020; Du et al., 2019; Xie et al., 2019; Zhu et al., 2021). Another
work of state abstraction in reinforcement learning is DreamerV2 (Hafner et al., 2020) which encodes
the observations directly as discrete state variables. The idea of smoothing the state space (Gangwani
et al., 2020) shares similarities with our work exploring topological information on state transitions.
Dynamic state clustering (Mannor et al., 2004) is proved to be effective, although it is hard to be
applied to the multi-step analysis. Moreover, previous works partially focus on state or action space,
and few works have been done on abstracting state-action pairs. Inspired by the above works, we use
the grid-based abstraction to group the state-action pairs simultaneously.

3 BACKGROUND

Generally, the process of reinforcement learning (RL) can be defined as a Markov Decision Process
(MDP) (Sutton & Barto, 2018). MDP is a four-tuple ⟨S,A,R, P ⟩, where S and A represent the sets
of states and actions respectively. The agent interacts with the environment at each time step t by
observing the current state st ∈ S, choosing an action at ∈ A to execute, receiving an immediate

3



Published as a conference paper at ICLR 2023

(a) Concrete state transitions. (b) Grid-based state abstraction. (c) Abstract state transitions.

Figure 2: Take a 2-dimensional concrete state space as an example. Concrete states can be labeled by
the ID of grids. For example, In trace 1, state si−1 is abstract state ŝ1. Concrete state si+2 in trace
1 and si+1 in trace 2 are located in the same grid; thus, they share the same abstract state ŝ13 (red
ones). In this way, trace 1 can be represented as (ŝ5, ŝ1, ŝ7, ŝ17, ŝ13).

reward rt = R(st, at) after doing at, and transferring to a new state st+1 ∼ P (st, at). The R(·) and
P (·) are the reward function and state transition function respectively.

The agent selects an action a ∼ π(s) to execute according to a policy π(·) and interacts with the
environment to generate a trace, [(s0, a0, r0), ..., (st, at, rt), ...], where the subscripts denote different
time steps. The return of each trace is defined by

∑T
t=0 γ

trt, where rewards are discounted by a
factor γ ∈ [0, 1). RL generally aims to find an optimal policy to maximize the returns.

The state-action value function: Qπ(st, at) = Eπ

[∑T−1
t=0 γtrt|st, at

]
is widely used in many RL

algorithms. In value-based approaches (e.g., DQN (Mnih et al., 2013)), action with maximal
Qπ(st, at) value will be selected, and these approaches have achieved great success in discrete
action space environments. The policy-based approaches such as A3C (Mnih et al., 2016) are more
efficient and suitable for continuous action spaces than value-based approaches, which generate
a policy distribution and sample actions from it instead of iterating in the infinite action space.
DDPG (Lillicrap et al., 2016) is used in a continuous action setting to improve the sample efficiency
over the vanilla actor-critic, in which the deterministic means the Actor can directly output the actions
instead of computing a probability distribution over actions. Twin Delayed DDPG (TD3) (Fujimoto
et al., 2018) tackles the over-estimation of state values. In this work, we build our episodic control in
continuous action space based on TD3 (Fujimoto et al., 2018).

4 METHODOLOGY

This paper proposes an effective and efficient episodic control framework, NECSA. Figure 1 shows
the main procedure of our framework. We have two additional modules: (1) a grid-based abstraction
to convert the concrete states to abstract ID (i.e., the ŝi as noted later); (2) a key-value-manner
episodic memory module to store the abstract states with the state measurement (i.e., the reward
confidence scores ci as mentioned later). The traces are revised based on the state measurement and
further flow to the replay buffer for policy optimization. NECSA is highly supplementary, which can
be applied to the general reinforcement learning paradigm.

4.1 GRID-BASED STATE ABSTRACTION

The K-dimensional state space RK contains infinite concrete states, each state si is represented as
(s0i , ..., s

K
i ). Each component smi in the m-th dimension satisfies smi ∈ [lm, um], where the lm and

um are the lower and upper boundaries, respectively. We split each dimension [lm, um] into N equal
intervals. Thus the concrete state space RK will be divided into NK grids as follows:

emn = [lm + n× um − lm
N

, lm + (n+ 1)× um − lm
N

] (1)

4



Published as a conference paper at ICLR 2023

Figure 3: A schematic diagram of the multi-step analysis. We slide windows with different lengths to
extract patterns.

where emn represents the n-th interval on the m-th dimension in the state space. In this way, (1)
each concrete will fall into a grid; (2) all the concrete states si which fall into the same grid can
be identified as in the same cluster; (3) each cluster (i.e. each grid) can be represented by a unique
abstract state ŝ:

ŝ = {si|smi ∈ emn , n ∈ [0, N ],m ∈ [0,K]} (2)

Figure 2 is a schematic diagram of grid-based clustering, in which the infinite concrete state space is
converted into the finite discrete state space. The environment determines the lm and um. It is worth
mentioning that we can either perform the abstraction on concrete states or state-action pairs. As
the experimental results suggest, abstracting state-action pairs can perform better than focusing on
concrete states. Take Walker2d-v3 as an example; the state vector’s shape is (1,17), and the action
vector is (1,6). Then, we combine the state and action vectors into a state-action pair with a shape
of (1,23). The boundaries of the state and action vectors are [-10,10] and [-1,1], respectively. For
instance, we obtain the fixed lower bounds as (-10, -10, ..., -10, -1, -1, ..., -1). finally, we abstract the
state-action pairs by grid-based clustering. Each dimension of a state-action pair is split into equal
intervals.

In general, the high-dimensional concrete state (-action pairs) would increase the difficulty and
complexity of state abstraction. Inspired by Gaussian random projection (Dasgupta, 2013), we apply
a random matrix to reduce the dimensions of state (-action) vectors. When creating the matrix, we
ensure that the values of the matrix elements follow the Gaussian distribution and that the value
scope is [-1,1]. By multiplying the state (-action) vector (e.g., (1,376) in Humanoid-v3) to a Gaussian
random matrix with a shape of (376,24), we can obtain a smaller state (-action) representation vector
as (1,24). The Gaussian random matrix is initialized at the beginning of the training. Then, it would
remain the same during the training. Finally, all the state (-action) vectors are projected to a smaller
one by a common Gaussian random matrix.

Note that abstracting images directly can be inefficient in Atari games. Pixel-based image vectors
consist of multiple channels, which can be unsuitable for abstraction using grid-based methods.
Therefore, we use the hidden outputs for abstraction, considering that (1) the hidden outputs are
natural features of images but relatively smaller than the raw images, and (2) hidden outputs reflect
the states of actions. Moreover, incorporating hidden outputs with episodic control is also effective in
previous episodic control approaches such as EVA (Hansen et al., 2018).

4.2 EPISODIC MEMORY WITH MULTI-STEP ANALYSIS AND STATE MEASUREMENT

Figure 3 shows the logic of extending the state abstraction to multi-step patterns. The abstract patterns
are extracted by sliding a N -step window on each trace. We treat N -step continuous abstract states
as a whole pattern. Moreover, we count the patterns iteratively and orderly, where {ŝi, ŝi+1, ŝi+2}
and {ŝi+1, ŝi+2, ŝi+3} are treated as different patterns.

To revise the state (action) values (i.e. Q) estimation, previous episodic control-based approaches
usually leverage a shift of episodic returns to correct the critic Q-value. Such approaches can achieve
better performance while requiring domain-specific knowledge of corresponding DRL algorithms,
model structure reform, and engineering work efforts. Furthermore, measuring states by the statistics
of Q-values is only applicable in one-step episodic memory. With multi-step patterns, we propose
a state measurement named reward confidence scores. The score ci represents the expectation of
the episode return when ŝi occurs. Although the scores are similar to state (-action) values in terms

5



Published as a conference paper at ICLR 2023

of the definitions, they stand for different semantics. State (action) values represent the forwarding
rewards after the state ŝi, but the scores measure the episode reward over the whole trace.

We design a simple key-value-manner episodic memory C based on state abstraction and measurement.
Each item in the episodic memory is indexed by the ŝi with three values: the current score ci, the
historical total episodic rewards Ei earned by the traces which contain the ŝi, and the total number of
occurrences ηi of ŝi. The following equation is the implementation of computing scores:


Ei =

∑
r, ηi = 1, ci = Ei, if ŝi /∈ C

Ei = Ei +
∑

r, ηi = ηi + 1, ci =
Ei

ηi
, otherwise,

(3)

Where the
∑

r is the final episodic return of the trace, which contains ŝi. In this way, our memory
buffer can efficiently record past experiences and update the scores. Our episodic memory enables
three operations: ADD, LOOKUP, and UPDATE. ADD is the operation to store the ŝi into C.
LOOKUP returns score ci for ŝi by taking O(1). UPDATE is to revise the ci of ŝi. Moreover, the
episodic memory enables the normalizing of the scores to [0,1], and the average of the score ci is
adopted as the intrinsic reward for abstract pattern ŝi.

Algorithm 1 NECSA.

Input: M: DRL model, E: Environment, B: Replay Buffer
Input: C: An episodic memory to record each ŝi and the score ci
Output: M′

: A tuned DRL model
1: Initialization: i← 0, S, Ŝ, A,R,D,B ← ∅
2: while i < Total_steps do
3: si ← state, ai ← action, ri ← reward, di ← done
4: S.append(si), A.append(ai), D.append(di)
5: ŝi ← State_Abstract(si, ai)

6: Ŝ.append(ŝi)
7: ci ← Inquire_Score(ŝi, C)
8: r̂i ← Reward_Revision(ri, ci)
9: R.append(ri)

10: B.add(si, ai, r̂i)
11: if di is true then
12: C ← Update_Score(Ŝ, R,C)

13: S, Ŝ, A,R,D ← ∅
14: end if
15: i← i+ 1
16: M← Train(M,B.sample())
17: end while

4.3 EPISODIC CONTROL-BASED LEARNING

As inspired by previous episodic control-based approaches, we infer that a statistic-based measure-
ment of state-action pairs can be a helpful reference to revise the estimation of state (-action) values
by the critic network (Lin et al., 2018; Kuznetsov & Filchenkov, 2021). The core of our method is to
measure the abstract patterns by scores and make the agent generalize the high-score experiences.
Previous work like reward shaping (Harutyunyan et al., 2015; Laud & DeJong, 2003; Devlin &
Kudenko, 2012; Burda et al., 2018) helps the policy incorporate domain knowledge into policy
optimization. Therefore, it is natural to reshape the reward with a score-based intrinsic reward to
revise the policy. Formally, the revised reward r̂i = rt +∆, where rt is the return of the original
reward function, ∆ is the intrinsic reward (computed based on the reward confidence scores) which
represents the semantics for improving the rewarding mechanism. We perform reward revision for
each pattern as follows:

r̂i = ri + (ci −
∑M

m=0 cm
M

)︸ ︷︷ ︸
∆

×ϵ, (4)

6



Published as a conference paper at ICLR 2023

where the r̂i is the revised reward based on ri. M is the total number of abstract patterns.
∑M

m=0 cm
M

is the average of all the scores. The term ∆ will be less than 0 if the ŝi score is less than the average.
Thus the corresponding concrete state will be punished. The state will be encouraged if ∆ is greater
than 0. The agent will earn more rewards if it passes through ŝi. In a word, the lower the score
ci is, the more the pattern is punished. ϵ is a hyperparameter that helps control the magnitude of
punishment and encouragement.

We implement NECSA as Algorithm 1. We use a module named State_Abstract in line 5, which
can covert the concrete states to abstract patterns in run-time. While tuning the model, scores can
be inquired from the episodic memory C in line 7, and the reward will be revised in line 8. We also
added a module named Update_Score in line 12, which helps calculate the scores for the abstract
patterns in Ŝ and update the scores in C as each termination of an episode. The revised rewards will
be stored in the replay buffer B. Finally, the policy will be updated with the sampled data from the B
in line 16.

5 EXPERIMENT

Figure 4: The evaluation of each approach on MuJoCo and Atari tasks. More evaluation results are in
Appendix.

5.1 EXPERIMENT SETUP

We conduct the experiments on nine MuJoCo tasks and six Atari games in OpenAI gym (Brockman
et al., 2016) domains. For continuous control tasks in MuJoCo, we select four baselines including
EMAC (Kuznetsov & Filchenkov, 2021), GEM (Hu et al., 2021) DDPG (Lillicrap et al., 2016) and
TD3 (Fujimoto et al., 2018) for comparison. We also compare NECSA to four baselines, including
DQN (Mnih et al., 2013), Rainbow (Hessel et al., 2018), EVA (Hansen et al., 2018) and GEM (Hu
et al., 2021) on Atari games, which use image-based states and discrete action spaces. EMAC is a
state-of-the-art episodic control approach that proved effective on continuous control tasks. EVA is
effective on discrete action spaces by performing ephemeral adjustments of Q-values to impact the
parametric value functions. GEM integrates a neural network to generalize episodic experiences,
enabling fast episodic memory retrieval. GEM can be applied to both continuous and discrete action
spaces.

5.2 EVALUATION RESULTS

Figure 4 shows the main evaluation results of each approach on MuJoCo and Atari tasks. Note
that more evaluation results are in the Appendix A.2. In our experiments, we set the length of
the multi-step abstract pattern m=3. As shown in Figure 4, our approach NECSA significantly

7



Published as a conference paper at ICLR 2023

outperforms the baselines on all tasks. Table 3 and Table 4 in the Appendix are the average returns
and standard deviations of the learned policies over multiple random seeds. Overall, we found that
(1) NECSA is the most sample-efficient algorithm on various tasks, while other algorithms only
establish good performance on the part of tasks; (2) NECSA performs better on relatively complex
tasks (e.g., high-dimensional states and image-based states). Such results prove that NECSA is a
scalable episodic control on continuous and discrete control tasks.

Take Humanoid-v3 as an example, a 376-dimensions state space with five grids on each dimension
generates a 5376 abstract state space, which is impossible to efficiently store and retrive in the episodic
memory. On Atari games, we take the hidden outputs after the convolutional neural network layers of
the policy network to represent the image states (-action pairs). However, the dimension of hidden
outputs is also unsuitable for grid-based abstraction. Gaussian random projection can be a promising
solution to make the concrete states (or hidden outputs) smaller (Pritzel et al., 2017; Kuznetsov &
Filchenkov, 2021). Therefore, we perform a dimension reduction of the concrete state vectors to
1× 24 by a random projection and divide each dimension into fixed intervals. The results show that
the random projection reduces dimension without significant side effects, thus making NECSA a
scalable episodic control on high-dimensional continuous control and image-states tasks.

The experimental results on MuJoCo tasks and Atari games prove that NECSA is effective on various
DRL tasks. We performed an in-depth ablation studies on the critical parts of NECSA in the following
section. Besides, we have conducted detailed hyperparameter analyses. Note that the hyperparameter
analyses are in Appendix A.3. We also proved that NECSA is effective on continuous control tasks
with image-based inputs. The related experiments are conducted on DMControl (Tunyasuvunakool
et al., 2020) tasks. Please refer to Appendix A.4 for details.

5.3 ABLATION STUDY

Figure 5: The evaluation of performance between one-step and m-step NECSA.

One of the most critical parts of this paper is to adopt a multi-step analysis of past experiences. To
better demonstrate the effectiveness of the multi-step episodic control, we compare the performance
between different multi-step settings. The results in Figure 5 show that the three-step NECSA
outperforms one-step and two-step settings. In our evaluation, the default setting of NECSA multi-
step (m) analysis is set to 3. The reason is that longer patterns cause the exact matches to become
exceedingly rare, which makes episodic control less helpful for improving performance.

Figure 6: The comparison between measuring the abstract state by scores and Q-values.

We also study the effectiveness of reward confidence scores. We use scores to measure each state-
action pair, although previous works mainly focus on the state-action values (i.e., the Q-values).
Specifically, we use the average of scores and Q-values (Lin et al., 2018; Kuznetsov & Filchenkov,

8



Published as a conference paper at ICLR 2023

2021) for each abstract state (pattern) to compute the intrinsic reward. Note that we cannot directly
attain the Q-value of a multi-step abstract pattern. We instead use the average Q value of the
corresponding concrete states (Lin et al., 2018). The results in Figure 6 show that measuring the
state-action pairs through scores (NECSA_Scores) can lead to better sample efficiency than using
Q-values (NECSA_Q-values). We claim that such state measurement is effective and necessary since
the scores contain the overall impact of an abstract on a whole trace. Furthermore, such a difference
makes the scores more comprehensive since we reference the historical impact on the abstract states.

We conclude that NECSA performs better than the state-of-the-art episodic control-based approaches
based on the experiments. State abstraction-based episodic memory enables more advanced analysis
of past experiences. The scores of state abstractions are valuable, and the rationale for state measure-
ment and the multi-step analysis of state transitions can significantly improve the performance.

6 DISCUSSION

We adopt grid-based abstraction instead of kNN. Although kNN can group concrete states into unique
IDs, it cannot update episodic memory in real-time. Moreover, kNN does not support inquiries
about the state measurement of multi-step patterns. We extend the episodic control to multi-step
analysis, which is one of the most important contributions of NECSA. Overall, we select a grid-based
abstraction (clustering) instead of kNN for (1) more efficient state abstraction and (2) multi-step
abstract pattern analysis.

Although NECSA is sample efficient, there still exists room for improvement. First of all, the state
abstraction strategy might cause variances or errors. For example, we divide each dimension by
the same number of intervals, though sometimes the value scale of each dimension is not the same.
Therefore, some concrete states might not be labeled by abstract ID. Based on prior knowledge of
the state space, we infer that a possible solution may be to automatically divide each dimension into
appropriate but not fixed intervals.

The motivation behind NECSA is to construct a more comprehensive episodic memory. We consider
that past experiences need to be further explored, and more valuable information could be obtained
and exploited. Furthermore, exploring latent semantics based on the abstraction-based episodic
memory promises to improve the sample efficiency. In addition, NECSA is highly scalable and can
be applied to various DRL algorithms and tasks.

7 CONCLUSION AND FUTURE WORK

We propose NECSA, a novel state abstraction-based neural episodic control approach to improve
DRL’s sample efficiency. We transform dense concrete state-action pairs into abstract patterns, which
enables efficient storage and retrieval of episodic data. We also perform a multi-step analysis of the
pattern transitions to enhance their performance. Furthermore, we propose a novel state measurement
metric, reward confidence scores, which can be incorporated with extrinsic rewards to accelerate
policy optimization. The evaluation results prove that our approach is more sample efficient than
state-of-the-art episodic control approaches.

We believe that more advanced research can be conducted based on the state abstraction, state
measurement, and multi-step analysis of state transitions, including (1) abstracting the behaviors of
the policy via state abstraction since we can build an automaton base on the abstraction; (2) analyzing
the state transitions and topological relationships of multi-agent tasks (Zheng et al., 2018; 2021b);
(3) applying our approach to model-based reinforcement learning with dynamic planning. We leave
these topics for future work.

ACKNOWLEDGMENTS

This work was supported in part by JSPS KAKENHI Grant No.JP19H04086 and No.JP20H04168,
JST-Mirai Program Grant No.JPMJMI20B8, JST SPRING Grant No.JPMJSP2136, as well as Canada
CIFAR AI Chairs Program, the Natural Sciences and Engineering Research Council of Canada
(NSERC No.RGPIN-2021-02549, No.RGPAS-2021-00034, No.DGECR-2021-00019), the National
Natural Science Foundation of China (Grant No.62106172), the “New Generation of Artificial Intelli-

9



Published as a conference paper at ICLR 2023

gence” Major Project of Science & Technology 2030 (Grant No.2022ZD0116402), and the Science
and Technology on Information Systems Engineering Laboratory (Grant No.WDZC20235250409,
No.WDZC20205250407).

REFERENCES

Charles W. Anderson and Stewart Crawford-Hines. Multigrid q-learning. 1994.

Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, and Anil Anthony Bharath. A brief
survey of deep reinforcement learning. arXiv preprint arXiv:1708.05866, 2017.

Charles Blundell, Benigno Uria, Alexander Pritzel, Yazhe Li, Avraham Ruderman, Joel Z Leibo,
Jack Rae, Daan Wierstra, and Demis Hassabis. Model-free episodic control. arXiv preprint
arXiv:1606.04460, 2016.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. CoRR, abs/1606.01540, 2016. URL http://arxiv.org/
abs/1606.01540.

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network
distillation. arXiv preprint arXiv:1810.12894, 2018.

Yushi Cao, Zhiming Li, Tianpei Yang, Hao Zhang, Yan Zheng, Yi Li, Jianye Hao, and Yang Liu.
GALOIS: boosting deep reinforcement learning via generalizable logic synthesis. In Advances in
Neural Information Processing Systems, 2022.

Sanjoy Dasgupta. Experiments with random projection. arXiv preprint arXiv:1301.3849, 2013.

Sam Michael Devlin and Daniel Kudenko. Dynamic potential-based reward shaping. In Proceedings
of the 11th International Conference on Autonomous Agents and Multiagent Systems, pp. 433–440.
IFAAMAS, 2012.

James Dougherty, Ron Kohavi, and Mehran Sahami. Supervised and unsupervised discretization of
continuous features. In Machine learning proceedings 1995, pp. 194–202. Elsevier, 1995.

Xiaoning Du, Xiaofei Xie, Yi Li, Lei Ma, Yang Liu, and Jianjun Zhao. Deepstellar: Model-based
quantitative analysis of stateful deep learning systems. In Proceedings of the 2019 27th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the Foundations of
Software Engineering, pp. 477–487, 2019.

E. B. Dynkin. Markov processes, pp. 77–104. Springer Berlin Heidelberg, Berlin, Heidelberg, 1965.
ISBN 978-3-662-00031-1. doi: 10.1007/978-3-662-00031-1_4. URL https://doi.org/10.
1007/978-3-662-00031-1_4.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In International Conference on Machine Learning, pp. 1587–1596. PMLR, 2018.

Tanmay Gangwani, Yuan Zhou, and Jian Peng. Learning guidance rewards with trajectory-space
smoothing. Advances in Neural Information Processing Systems, 33:822–832, 2020.

Marek Grześ and Daniel Kudenko. Multigrid reinforcement learning with reward shaping. In
International Conference on Artificial Neural Networks, pp. 357–366. Springer, 2008.

Danijar Hafner, Timothy Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering atari with discrete
world models. arXiv preprint arXiv:2010.02193, 2020.

Steven Hansen, Alexander Pritzel, Pablo Sprechmann, André Barreto, and Charles Blundell. Fast deep
reinforcement learning using online adjustments from the past. Advances in Neural Information
Processing Systems, 31, 2018.

Anna Harutyunyan, Sam Devlin, Peter Vrancx, and Ann Nowé. Expressing arbitrary reward functions
as potential-based advice. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 29, 2015.

10

http://arxiv.org/abs/1606.01540
http://arxiv.org/abs/1606.01540
https://doi.org/10.1007/978-3-662-00031-1_4
https://doi.org/10.1007/978-3-662-00031-1_4


Published as a conference paper at ICLR 2023

Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney, Dan
Horgan, Bilal Piot, Mohammad Azar, and David Silver. Rainbow: Combining improvements in
deep reinforcement learning. In Thirty-second AAAI conference on artificial intelligence, 2018.

Hao Hu, Jianing Ye, Guangxiang Zhu, Zhizhou Ren, and Chongjie Zhang. Generalizable episodic
memory for deep reinforcement learning. arXiv preprint arXiv:2103.06469, 2021.

Nan Jiang, Alex Kulesza, and Satinder Singh. Abstraction selection in model-based reinforcement
learning. In Francis Bach and David Blei (eds.), Proceedings of the 32nd International Conference
on Machine Learning, volume 37 of Proceedings of Machine Learning Research, pp. 179–188,
Lille, France, 07–09 Jul 2015. PMLR. URL https://proceedings.mlr.press/v37/
jiang15.html.

Lukasz Kaiser, Mohammad Babaeizadeh, Piotr Milos, Blazej Osinski, Roy H Campbell, Konrad
Czechowski, Dumitru Erhan, Chelsea Finn, Piotr Kozakowski, Sergey Levine, et al. Model-based
reinforcement learning for atari. arXiv preprint arXiv:1903.00374, 2019.

Igor Kuznetsov and Andrey Filchenkov. Solving continuous control with episodic memory. arXiv
preprint arXiv:2106.08832, 2021.

Adam Laud and Gerald DeJong. The influence of reward on the speed of reinforcement learning: An
analysis of shaping. In Proceedings of the 20th International Conference on Machine Learning
(ICML-03), pp. 440–447, 2003.

Alessandro Lazaric, Marcello Restelli, and Andrea Bonarini. Transfer of samples in batch rein-
forcement learning. In Proceedings of the 25th international conference on Machine learning, pp.
544–551, 2008.

Hung Le, Thommen Karimpanal George, Majid Abdolshah, Truyen Tran, and Svetha Venkatesh.
Model-based episodic memory induces dynamic hybrid controls. Advances in Neural Information
Processing Systems, 34:30313–30325, 2021.

Hung Le, Majid Abdolshah, Thommen K George, Kien Do, Dung Nguyen, and Svetha Venkatesh.
Episodic policy gradient training. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 36, pp. 7317–7325, 2022.

Máté Lengyel and Peter Dayan. Hippocampal contributions to control: the third way. Advances in
neural information processing systems, 20, 2007.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. In ICLR
(Poster), 2016.

Zichuan Lin, Tianqi Zhao, Guangwen Yang, and Lintao Zhang. Episodic memory deep q-networks.
arXiv preprint arXiv:1805.07603, 2018.

Xiaoteng Ma, Yiqin Yang, Hao Hu, Qihan Liu, Jun Yang, Chongjie Zhang, Qianchuan Zhao, and
Bin Liang. Offline reinforcement learning with value-based episodic memory. arXiv preprint
arXiv:2110.09796, 2021.

Shie Mannor, Ishai Menache, Amit Hoze, and Uri Klein. Dynamic abstraction in reinforcement
learning via clustering. In Proceedings of the twenty-first international conference on Machine
learning, pp. 71, 2004.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In International conference on machine learning, pp. 1928–1937. PMLR, 2016.

Thomas M Moerland, Joost Broekens, and Catholijn M Jonker. Model-based reinforcement learning:
A survey. arXiv preprint arXiv:2006.16712, 2020.

11

https://proceedings.mlr.press/v37/jiang15.html
https://proceedings.mlr.press/v37/jiang15.html


Published as a conference paper at ICLR 2023

Jason Pazis and Michail G Lagoudakis. Binary action search for learning continuous-action control
policies. In Proceedings of the 26th Annual International Conference on Machine Learning, pp.
793–800, 2009.

Rafael Pinto. Model-free episodic control with state aggregation. arXiv preprint arXiv:2008.09685,
2020.

Alexander Pritzel, Benigno Uria, Sriram Srinivasan, Adria Puigdomenech Badia, Oriol Vinyals,
Demis Hassabis, Daan Wierstra, and Charles Blundell. Neural episodic control. In International
Conference on Machine Learning, pp. 2827–2836. PMLR, 2017.

Ruimin Shen, Yan Zheng, Jianye Hao, Zhaopeng Meng, Yingfeng Chen, Changjie Fan, and Yang Liu.
Generating behavior-diverse game ais with evolutionary multi-objective deep reinforcement learn-
ing. In Christian Bessiere (ed.), Proceedings of the Twenty-Ninth International Joint Conference
on Artificial Intelligence, IJCAI 2020, pp. 3371–3377. ijcai.org, 2020.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. A general reinforcement
learning algorithm that masters chess, shogi, and go through self-play. Science, 362(6419):
1140–1144, 2018.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Yunhao Tang and Shipra Agrawal. Discretizing continuous action space for on-policy optimization.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pp. 5981–5988, 2020.

Andrea L Thomaz and Cynthia Breazeal. Teachable robots: Understanding human teaching behavior
to build more effective robot learners. Artificial Intelligence, 172(6-7):716–737, 2008.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033.
IEEE, 2012.

Pedro A Tsividis, Thomas Pouncy, Jaqueline L Xu, Joshua B Tenenbaum, and Samuel J Gershman.
Human learning in atari. In 2017 AAAI spring symposium series, 2017.

Saran Tunyasuvunakool, Alistair Muldal, Yotam Doron, Siqi Liu, Steven Bohez, Josh Merel, Tom
Erez, Timothy Lillicrap, Nicolas Heess, and Yuval Tassa. dm_control: Software and tasks for
continuous control. Software Impacts, 6:100022, 2020.

Alexander Sasha Vezhnevets, Simon Osindero, Tom Schaul, Nicolas Heess, Max Jaderberg, David
Silver, and Koray Kavukcuoglu. Feudal networks for hierarchical reinforcement learning. In
International Conference on Machine Learning, pp. 3540–3549. PMLR, 2017.

Jiayi Weng, Huayu Chen, Dong Yan, Kaichao You, Alexis Duburcq, Minghao Zhang, Yi Su, Hang
Su, and Jun Zhu. Tianshou: A highly modularized deep reinforcement learning library. arXiv
preprint arXiv:2107.14171, 2021.

Xiaofei Xie, Lei Ma, Felix Juefei-Xu, Minhui Xue, Hongxu Chen, Yang Liu, Jianjun Zhao, Bo Li,
Jianxiong Yin, and Simon See. Deephunter: a coverage-guided fuzz testing framework for deep
neural networks. In Proceedings of the 28th ACM SIGSOFT International Symposium on Software
Testing and Analysis, pp. 146–157, 2019.

Zhuo Xu, Jianyu Chen, and Masayoshi Tomizuka. Guided policy search model-based reinforcement
learning for urban autonomous driving. arXiv preprint arXiv:2005.03076, 2020.

Denis Yarats, Rob Fergus, Alessandro Lazaric, and Lerrel Pinto. Mastering visual continuous control:
Improved data-augmented reinforcement learning. arXiv preprint arXiv:2107.09645, 2021.

Zhao-Heng Yin and Wu-Jun Li. Toma: Topological map abstraction for reinforcement learning.
arXiv preprint arXiv:2005.06061, 2020.

Yang Yu. Towards sample efficient reinforcement learning. In IJCAI, pp. 5739–5743, 2018.

12



Published as a conference paper at ICLR 2023

Peng Zhang, Jianye Hao, Weixun Wang, Hongyao Tang, Yi Ma, Yihai Duan, and Yan Zheng.
Kogun: Accelerating deep reinforcement learning via integrating human suboptimal knowledge.
In Christian Bessiere (ed.), Proceedings of the Twenty-Ninth International Joint Conference on
Artificial Intelligence, IJCAI 2020, pp. 2291–2297. ijcai.org, 2020.

Zhizheng Zhang, Jiale Chen, Zhibo Chen, and Weiping Li. Asynchronous episodic deep deterministic
policy gradient: Toward continuous control in computationally complex environments. IEEE
transactions on cybernetics, 51(2):604–613, 2019.

Lulu Zheng, Jiarui Chen, Jianhao Wang, Jiamin He, Yujing Hu, Yingfeng Chen, Changjie Fan, Yang
Gao, and Chongjie Zhang. Episodic multi-agent reinforcement learning with curiosity-driven
exploration. Advances in Neural Information Processing Systems, 34, 2021a.

Yan Zheng, Zhaopeng Meng, Jianye Hao, Zongzhang Zhang, Tianpei Yang, and Changjie Fan. A
deep bayesian policy reuse approach against non-stationary agents. In Samy Bengio, Hanna M.
Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett (eds.),
Advances in Neural Information Processing Systems 31: Annual Conference on Neural Information
Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pp. 962–972,
2018.

Yan Zheng, Changjie Fan, Xiaofei Xie, Ting Su, Lei Ma, Jianye Hao, Zhaopeng Meng, Yang Liu,
Ruimin Shen, and Yingfeng Chen. Wuji: Automatic online combat game testing using evolutionary
deep reinforcement learning. In 34th IEEE/ACM International Conference on Automated Software
Engineering, ASE 2019, San Diego, CA, USA, November 11-15, 2019, pp. 772–784. IEEE, 2019.

Yan Zheng, Jianye Hao, Zongzhang Zhang, Zhaopeng Meng, Tianpei Yang, Yanran Li, and Changjie
Fan. Efficient policy detecting and reusing for non-stationarity in markov games. Auton. Agents
Multi Agent Syst., 35(1):2, 2021b.

Yan Zheng, Yi Liu, Xiaofei Xie, Yepang Liu, Lei Ma, Jianye Hao, and Yang Liu. Automatic web
testing using curiosity-driven reinforcement learning. In 43rd IEEE/ACM International Conference
on Software Engineering, ICSE 2021, Madrid, Spain, 22-30 May 2021, pp. 423–435. IEEE, 2021c.

Derui Zhu, Jinfu Chen, Weiyi Shang, Xuebing Zhou, Jens Grossklags, and Ahmed E. Hassan.
Deepmemory: Model-based memorization analysis of deep neural language models. In 2021
36th IEEE/ACM International Conference on Automated Software Engineering (ASE), 2021. doi:
10.1109/ASE51524.2021.9678871.

Guangxiang Zhu, Zichuan Lin, Guangwen Yang, and Chongjie Zhang. Episodic reinforcement
learning with associative memory. In ICLR, 2020.

13



Published as a conference paper at ICLR 2023

A APPENDIX

A.1 COMMON HYPERPARAMETER AND SETTINGS

Our hyperparameter settings are listed in Table 1 and Table 2. In addition, we directly evaluate the
program released by the authors of EMAC (Kuznetsov & Filchenkov, 2021), EVA (Hansen et al.,
2018), and GEM (Hu et al., 2021). We also adopt the implementation of DDPG, TD3, DQN, and
Rainbow in (Weng et al., 2021). For MuJoCo tasks, the neural network consists of two hidden layers.
The size of each layer is 256. The activation unit is ReLU. Both the Actor and Critic networks share
the same structure. For Atari tasks, we use a three-layer convolution neural network head and a fully
connected layer to output the Q-values of each action. The specific parameter values are listed in
Table 2. More details are available in the code repository.

Hyper-paramater NECSA

Critic Learning Rate 3e-4
Actor Learning Rate 3e-4
Optimizer Adam
Replay Buffer Size 100000
Batch Size 100
Discount Factor 0.99
Episode Length 1000
Exploration Policy N(0, 0.1)

Table 1: Hyperparameters for MuJoCo tasks.

Hyper-paramater NECSA

Learning Rate 1e-4
Optimizer Adam
Replay Buffer Size 100000
Batch Size 32
Discount Factor 0.99
Filter Sizes [8, 4, 3]
Filter Strides [4, 2, 1]
Channels [32, 64, 64]

Table 2: Hyperparameters for Atari games.

A.2 THE RESULTS OF NECSA AND OTHER BASELINES ON MUJOCO AND ATARI TASKS.

Table 3: The average returns of learned policies on MuJoCo tasks.

Task Name DDPG TD3 EMAC GEM NECSA

Walker2d 387.73±48.34 1756.09±240.76 2338.24±215.81 1224.94±183.48 3768.08±270.21
Hopper 1180.64±276.70 2411.15±323.56 2347.98±375.97 1150.24±138.52 3026.57±292.30
Humanoid 431.69±139.10 3858.07±703.91 150.32±65.59 2380.91±757.82 5029.99±208.15
Ant 811.53±221.40 5223.94±270.36 789.99±101.04 4107.28±254.35 5588.44±136.28
HalfCheetah 11314.36±424.11 10120.34±775.47 11052.82±669.18 11458.70±136.31 12097.91±152.09
Swimmer 96.73±13.10 49.82±5.56 86.54±22.13 126.22±12.70 149.63±6.69
Reacher -4.05±0.14 -4.01±0.08 -5.01±0.12 -5.99±0.39 -3.97±0.05
Pendulum 1000.0±34.77 535.97±56.50 1000.0±42.50 655.48±101.19 1000.0±38.17
DoublePendulum 9316.83±88.85 9333.19±226.34 9327.17±158.01 5858.88±881.50 9359.33±263.09

We adopt the implementations of DDPG, TD3, DQN, and Rainbow in Tianshou (Weng et al., 2021).
The implementation of NECSA is based on TD3. We use the public replicate package of the respective
baselines for experiments. We run each experiment with five different random seeds to counteract the
randomness and compare the average performance over respective training steps. All the experiments
were run on powerful servers with CPU (Intel(R) Core(TM) i9-10940X CPU @ 3.30GHz), and
GPU(NVIDIA Corporation GA102GL [RTX A6000]) with 128GB RAM.

We have evaluated NECSA on nine MuJoCo tasks and six Atari games in total. Table 3 and Table 4
are the performance and standard deviation of all the learned policies of the respective approaches.
Figure 7 is the performance trends of all the approaches on different tasks (i.e., except the results
we have reported in Figure 4). Based on the above results, we found that the learned policies of
NECSA achieve the highest performance. Most of the improvements against other approaches are
significant. On the tasks such as InvertedPendulum-v2, InvertedDoublePendulum-v2, and Reacher-v2,
NECSA reaches the same performance or slightly outperforms the baselines. The reason is that such
tasks are relatively easy than others. Therefore NECSA and other baseline approaches can achieve
state-of-the-art performance in fewer training steps. Overall, the evaluation results demonstrate that
NECSA is effective and sample-efficient on MuJoCo and Atari tasks.

14



Published as a conference paper at ICLR 2023

Table 4: The average returns of learned policies on Atari games.

Task Name DQN Rainbow EVA GEM NECSA

Alien 1188.73±58.37 1488.84±114.93 1432.22±109.17 1030.67±48.17 1725.56±83.03
Breakout 61.26±4.01 385.07±12.33 381.29±15.63 220.73±54.09 412.30±9.94
Enduro 748.45±49.08 824.62±45.77 733.50±24.98 729.60±49.87 1147.48±29.26
MsPacman 1997.72±120.59 2075.16±106.50 1991.82±78.71 1990.81±134.34 2205.28±81.38
Qbert 9670.13±464.31 10817.71±656.88 9617.25±464.31 9643.69±492.48 112659.28±471.96
SpaceInvaders 629.85±42.62 810.12±49.93 799.06±26.32 686.25±53.36 951.62±28.03

Figure 7: The evaluation of each approach on other MuJoCo and Atari tasks.

A.3 SPECIAL HYPERPARAMETERS AND SETTINGS IN NECSA

During the experiments, we evaluated different settings of several hyperparameters, which can help
us better understand the effectiveness of NECSA. We discuss four settings and answer the following
questions through detailed experiments:

1. Should we abstract the state or state-action pairs (or the hidden outputs)?

2. What is the effect of discrete state space grid numbers on performance?

3. How to control the magnitude of revising environment rewards via intrinsic reward (i.e.,
reward confidence scores)?

4. How do the backbone algorithms affect the performance of NECSA?

Figure 8 shows the performance of abstracting state and state-action pairs. NECSA_state is the
curve that we only abstract the concrete states (or the static features of the image states). On the
other hand, NECSA_state-action means that we abstract state-action pairs. It reveals that abstracting
the state-action pairs can significantly improve performance on MuJoCo tasks. The reason is that
abstracting state-action pairs can involve more information for modeling the policy than just focusing
on states.

15



Published as a conference paper at ICLR 2023

Figure 8: Comparison between abstraction of the state, state-action pairs, and hidden outputs.

NECSA_hidden means that we use the hidden outputs of the policy network for abstracting. Using the
hidden outputs on Atari games can also outperform the performance of just abstracting the states. The
hidden outputs are natural features of images but relatively smaller than the raw images. Moreover,
the hidden outputs reflect the states of actions. Therefore, we infer that using hidden outputs for
abstraction shares the same benefits as using state-action pairs.

Figure 9 shows the performance under different abstraction granularities. Grid-N means we divide
each dimension of state-action pairs into N equal intervals. The results show that grid numbers 8 and
10 are the best abstraction choices in Walker2d-v3, Hopper-v3 and Alien. Our evaluation is limited to
10 grids since a greater grid number causes the exponential growth of the abstract number, which
is very memory-consuming. We found that more grids cannot always achieve better performance.
For example, in Walker2d-v3, 8-grids abstraction outperforms 10-grids. The reason is that although
more grids can cluster similar concrete states more accurately, as the grid number of the abstraction
becomes smaller, the scores of abstract states and patterns are less representative. For MuJoCo tasks,
we set the grid numbers to 10 for Swimmer-v3 and Hopper-v3, and 5 for other tasks, respectively.
For Atari tasks, we uniformly set the grid numbers to 5.

Figure 9: Comparison between different granularities of grid-based abstraction.

Figure 10 shows how the parameter ϵ in Equation 4 influences the performance. The results suggest
two major conclusions: (1) ϵ in [0.1, 0.2] is the best choice for controlling reward shaping in
Walker2d-v3 and Hopper-v3, respectively; (2) a value for ϵ that is greater or smaller will reduce
performance. The reason is that a smaller ϵ reduces the impact of scores, and a greater ϵ will increase
the weight of state evaluation and completely reform the rewarding mechanism. In addition, for
MuJoCo tasks, we set ϵ = 0.15 for Swimmer-v3 and ϵ = 0.2 for other tasks. We set ϵ = 0.1 for all
the Atari games.

Figure 10: Comparison of performance between different granularities of revising rewards.

16



Published as a conference paper at ICLR 2023

Figure 11 shows how the backbone algorithms affect the performance of NECSA. In this evaluation,
we build NECSA on TD3 and DDPG and compare the performance with the primary algorithms. The
results show that (1) algorithms can achieve better sample efficiency by incorporating with NECSA
and (2) the backbone algorithms affect the performance of NECSA. For example, in Walker2d-v3
and Hopper-v3, TD3 is more sample efficient than DDPG. In Alien, Rainbow outperforms DQN.
After applying NECSA to these algorithms, the comparison results remain the same trend. Such a
conclusion demonstrates that NECSA is scalable and effective on different backbone algorithms.

Figure 11: Comparison of performance between building NECSA on different backbones.

A.4 PERFORMANCE OF APPLYING NECSA TO DMCONTROL TASKS

Figure 12 shows the performance of NECSA on DMControl (Tunyasuvunakool et al., 2020) tasks. In
this evaluation, we build NECSA on DrQ-v2 (Yarats et al., 2021), an approach to solve continuous
tasks with image-based states. NECSA outperforms DrQ-v2 on Walker-Walk and Hopper-Stand, and
achieves the same performance on Cartpole-Balance. The results show that (1) NECSA improves the
sample efficiency of DrQ-v2 and (2) NECSA is general and effective for DRL tasks with image-based
states and continuous action spaces.

Figure 12: Performance of applying NECSA to DMControl tasks.

Figure 13: Density of abstract state visiting times on Walker2d-v3.

A.5 ANALYSIS OF STATE VISITING DENSITY

We plot the density of state visiting times in Figure 13. Take Walker2d-v3 as an example. The
1-step NECSA generated 198,613 abstract states, the 2-step NECSA generated 282,717 abstract
patterns, and the 3-step NECSA generated 377,629 abstract patterns. In 1-step setting, 163,273
abstract patterns were visited by only one time, and 35,340 were visited more than one time. In 3-step
setting, 372,253 abstract patterns were visited one time, and 5,376 of them were visited more than

17



Published as a conference paper at ICLR 2023

one time. All 5,376 multi-times visited patterns were visited 27,747 times, more than the one-time
visited pattern.

The density plot shows that the number of 1-time visits increases in multi-step statr abstraction.
However, the performance in Figure 5 shows that multi-step analysis can still achieve the best sample
efficiency in our settings. Therefore, we assume that the multi-times visited patterns played an
essential role in enhancing the sample efficiency. Neverthleass, we assume that there exists better
choice of the abstraction steps (e.g., 5-step, 10-step). Due to the abstraction state aprsity issue, we
might need a novel state encoder instead of grid-based abstraction. We leave the above assumption as
future work.

18


	Introduction
	Related Work
	Neural Episodic Control
	State Abstraction

	Background
	Methodology
	Grid-based State Abstraction
	Episodic Memory with Multi-step Analysis and State Measurement
	Episodic Control-Based Learning

	Experiment
	Experiment Setup
	Evaluation Results
	Ablation Study

	Discussion
	Conclusion and Future Work
	Appendix
	Common Hyperparameter and Settings
	The results of NECSA and other baselines on MuJoCo and Atari tasks.
	Special Hyperparameters and Settings in NECSA
	Performance of applying NECSA to DMControl tasks
	Analysis of State Visiting Density


