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ABSTRACT

Long-range dependencies are critical for understanding genomic structure and
function, yet most conventional methods struggle with them. Widely adopted
transformer-based models, while excelling at short-context tasks, are limited by
the attention module’s quadratic computational complexity and inability to extrap-
olate to sequences longer than those seen in training. In this work, we explore
State-Space Models (SSMs) as a promising alternative by benchmarking two SSM
inspired architectures, Caduceus and Hawk, on long-range genomics modeling
tasks under conditions parallel to a SOM-parameter transformer baseline. We dis-
cover that SSMs match transformer performance and exhibit impressive zero-shot
extrapolation across multiple tasks, handling contexts 10—100x longer than those
seen during training, indicating more generalizable representations better suited
for modeling the long and complex human genome. Moreover, we demonstrate
that these models can efficiently process sequences of 1M tokens on a single GPU,
allowing for modeling entire genomic regions at once, even in labs with limited
compute. Our findings establish SSMs as efficient and scalable for long-context
genomic analysis.

1 INTRODUCTION

Genomes are the fundamental blueprint of life. Advances in DNA sequencing have rapidly lowered
costs, enabling the curation of high-quality genomic datasets and opening new avenues to understand
complex biological processes. Yet, a critical challenge remains in modeling the long-range interactions
inherent to genomic data, which can span billions of base pairs (e.g. ~3 billion in the human genome).

A single human chromosome can span hundreds of millions of nucleotides, with regulatory elements
often residing hundreds of kilobases or more from their target genes. Subtle variations, such as single-
nucleotide polymorphisms (SNPs), can disrupt these regulatory landscapes by changing enhancer
or promoter activity, sometimes resulting in substantial phenotypic effects. As these elements and
variations are interspersed throughout massive stretches of DNA, any method that cannot maintain full
sequence context while also distinguishing base-level changes risks missing critical genomic signals.
Models that rely on chunking sequences into shorter windows, or that tokenize DNA at the k-mer
level, frequently lose the global view needed to understand how distant elements interact. Capturing
ultralong (in this paper ultralong refers to 1Mbp+ sequences) context at single-base resolution is
therefore central to revealing the intricate networks that govern gene regulation, disease susceptibility,
and evolutionary adaptation. At the same time, the long context necessitates efficient training with
respect to memory and computational complexity. Being able to extrapolate beyond sequence lengths
seen during training proves to be a decisive advantage in the same, as it reduces the training burden
without sacrificing the ability to evaluate the longest sequences.
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Advances in machine learning have begun to transform genomics. Protein language models now
reliably predict the effects of coding mutations on protein function (Lin et al., 2023), generate viable
protein sequences conditioned on functional properties (Madani et al.,2023)), and accurately predict
protein structures (Lin et al.;[2023), aided by benchmarks such as CASP (Kryshtafovych et al.} 2021),
TAPE (Rao et al., 2019), PEER (Xu et al., 2022}, and ProteinGym (Notin et al., 2023)). Following
these advances, DNA-focused language models—including Nucleotide Transformer (Dalla-Torre
et al.| 2024), DNABERT (Ji et al.,[2021), and GPN-MSA (Benegas et al.,|2025)—have emerged to
assist in tasks like motif discovery and gene annotation. However, while transformer-based models
(Vaswani, 2017)) excel in short-context settings, their computational demands and quadratic scaling
with sequence length limit their ability to capture truly long-range dependencies.

Recently, State-Space Models (SSMs) (Gu et al., [2022) have shown promise as an efficient alternative.
Their linear complexity with respect to sequence length allows them to maintain rich contextual
information over extended spans. Here, we evaluate two classes of SSM-inspired architectures
—Caduceus (Schiff et al.,|2024) and Hawk (De et al.| 2024)), which are built on top of Mamba (Gu &
Dao|, 2023) and LRU (Orvieto et al., 2023)), on DNA modeling tasks. We find that SSMs not only
match transformer performance under standard settings but also demonstrate a striking capacity for
zero-shot extrapolation to sequence lengths up to 10-100x beyond those encountered during training,
with trends indicating this can be pushed even further. This ability makes them strong candidates
for handling ultralong context lengths, a property that is invaluable for tackling the complexities of
genomic sequences. We demonstrate this on multiple different genomics tasks, indicating rich and
meaningful underlying representations. We also show that SSMs can scale to process sequences of
IMbp+ on a single GPU, further underscoring their potential for large-scale genomic analysis.

Our specific findings are:

* SSM-based models achieve performance on par with attention-based models on a wide
range of DNA modeling tasks.

* SSMs zero-shot extrapolate to much longer contexts (10-100x) without additional finetuning,
suffering minimal performance loss, with trends suggesting possible extrapolation to even
longer contexts.

* We demonstrate scalability to IMbp+ sequences at single nucleotide-level on just one GPU,
laying the groundwork for future large-scale genomic modeling.

2 BACKGROUND AND RELATED WORKS

2.1 LONG-RANGE GENOMICS MODELING AND BENCHMARKS

Understanding genomic functions often requires modeling interactions across vast distances, as
regulatory elements like enhancers can influence gene expression over hundreds of kilobases. Tradi-
tional benchmarks focusing on short sequences fail to capture these extensive dependencies, limiting
progress in long-range genomic modeling. The Genomics Long-Range Benchmark (GLRB) (Kao
et al.}2024; [InstaDeep.) fills this gap by providing a suite of tasks—rvariant effect prediction, gene
expression prediction, regulatory element detection, and chromatin feature identification—with in-
puts ranging from a few to hundreds of kilobases. By standardizing evaluation on both short- and
long-range contexts, GLRB not only catalyzes advances in modeling extensive genomic interactions
but also serves as a biologically meaningful indicator of a model’s ability to capture the long-range
dependencies underlying enhancer-promoter interactions, chromatin remodeling, and gene regulation.

2.2  LIMITATIONS OF EXISTING MODELS IN LONG-RANGE GENOMICS

While transformer-based models have advanced genomic sequence modeling, they encounter signifi-
cant limitations when applied to ultralong sequences due to computational constraints.

Nucleotide Transformer (Dalla-Torre et al.l 2024) (NT): NT employs a transformer architecture
with masked language modeling to learn dependencies within DNA sequences, achieving strong
performance in tasks like splice site detection and enhancer classification. Recent efforts have led to
extend the context length of pretrained NT models using extrapolation techniques such as YaRN(Peng
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et al., 2023)), however these still require a fine-tuning with new sequence lengths, and don’t work
zero-shot.

DNABERT (Ji et al., [2021): DNABERT adapts the BERT architecture for genomic data using
k-mer tokenization to process DNA sequences. It excels in motif detection and regulatory sequence
prediction but faces limitations in handling longer sequences due to its fixed tokenization scheme and
strict sequence length limit (e.g., 512 tokens), hindering its ability to capture long-range interactions.

HyenaDNA (Nguyen et al.,|2023): HyenaDNA represents a shift from transformer-based approaches
by adopting implicit convolutional mechanisms to efficiently model long-range dependencies. It
processes sequences up to 1 million tokens at the single nucleotide-level.

Although HyenaDNA can process up to 1 million tokens—matching the 1Mbp performance reported
for SSM in this paper—it significantly underperforms NTv2 on several GLRB tasks, including
BulkRNA, CAGE, and Histone Marks Detection. (Kao et al.,2024; InstaDeep.). This likely stems
from its convolutional architecture, which lacks the representational capacity and interpretability of
attention-based models. Therefore we use a better performing NTv2 as our primary comparison.

2.3 STATE SPACE MODELS FOR EFFICIENT LONG-RANGE SEQUENCE MODELING

State Space Models (SSMs) have emerged as powerful architectures for long-range sequence mod-
eling, particularly in genomics. Leveraging latent state representations and recurrent mechanisms,
SSMs achieve linear complexity with respect to sequence length, making them well-suited for ultra-
long genomic sequences (see Figure[6a]in Appendix for more details). Recent advances in SSMs,
such as time-dependent parameterization and bidirectional processing, have further enhanced their
scalability and adaptability for dense genomic data (Gu et al., 2022} |Gu & Dao, [2023}; |Schiff et al.}
2024; De et al.,[2024). While SSMs have shown promise in sequence modeling, they have not yet
been systematically benchmarked for long-range genomic tasks, making our study one of the first to
rigorously evaluate their scalability, zero-shot extrapolation, and practical feasibility in this domain.

3  EXPERIMENTS

Our experimental approach rigorously compares State-Space Models (SSMs) with state-of-the-art
(SOTA) transformer-based architectures under a standardized evaluation framework, ensuring fair
assessment. We begin by pre-training all models on the same dataset using similar model sizes,
and then fine-tune them on Long-Range Genomics Benchmark (GLRB) tasks. As our baseline, we
employ the NTv2 (Dalla-Torre et al.||2024) transformer model, which represents SOTA in genomic
tasks.

3.1 MODEL ARCHITECTURES

We consider three classes of models, each with 50M parameters for a fair comparison:

NTv2: Our baseline is a smaller-variant Nucleotide Transformer model, which is the current SOTA
model on GLRB.

Caduceus: Caduceus is the first successful application of an SSM to genomic tasks. (Schiff et al.,
2024) It extends Mamba layers (Gu & Dao, 2023)) with bi-directionality and reverse-complement
(RC) equivariance, showing promising genomics modeling results.

Hawk: Hawk is a recurrent architecture built on Linear Recurrence Units (LRUs) (Orvieto et al.,
2023). It achieves competitive standard performance while excelling in zero-shot extrapolation to
sequence lengths far beyond those seen during training. Inspired by Caduceus we enhanced Hawk
with bi-directional processing.

3.2 PRETRAINING

For our experiments, we train our own version of Caduceus and Hawk, but use a pretrained version
of NTv2. We follow the data sourcing and preprocessing procedures outlined in established genomic
language model protocols (Dalla-Torre et al., 2024; Nguyen et al. [2023)). Specifically, we made
use of the multispecies genome used to pretrain NTv2 in the exact same setting (Dalla-Torre et al.,
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2024)), and pretrained our models on 300B nucleotides. Standard preprocessing steps are applied:
tokenization treats each nucleotide (A, C, G, T, plus padding or masking tokens) as a single token to
ensure full single-nucleotide resolution. We employ a masked language modeling (MLM) objective,
randomly masking approximately 15% of tokens in each input sequence, with sequences truncated
or padded to a fixed length (e.g. 12 kbp) for batch consistency. The training protocol uses the
AdamW (Loshchilov & Hutter|, |2019) optimizer with cosine learning rate scheduling. Although
hyperparameters such as batch size, learning rate, and gradient clipping are kept consistent across
model types, slight adjustments were made relative to the original NTv2 values since we found that
mamba-based architectures tend to be more stable with larger batch sizes. Pretraining is carried out
using data-parallel training across multiple GPUs.

3.3 FINE-TUNING ON LONG-RANGE GENOMICS TASKS

Following pretraining, the models are fine-tuned on a suite of long-range genomics tasks from the
GLRB benchmark (Kao et al., 2024; |InstaDeep.), which assess the ability to predict genomic features
(e.g., regulatory elements, gene expression, chromatin marks) from long-context sequences. For NTv2
and Caduceus, fine-tuning was performed on six key tasks from GLRB, including Bulk RNA (R?),
VEP eQTL (AUROC), VEP ClinVar (AUROC), Histone Marks (AUPRC), Promoters (AUPRC), and
Enhancers (AUROC). In contrast, Hawk was selectively fine-tuned only on the VEP tasks (VEP eQTL
and VEP ClinVar). This decision was driven by our goal of testing Hawk’s zero-shot extrapolation
capability to process sequences up to 1Mbp via hidden state expansion, as it allowed easier adaptation
than Caduceus which would have required extensive modifications to its Mamba block architecture.

Table|l|summarizes the performance of NTv2, Caduceus, and Hawk. Notably, Caduceus achieves
very competitive results, outperforming NTv2 on several tasks (e.g., Bulk RNA, Histone Marks, and
Promoters), with all models being trained in a similar fixed setting. This observation underscores
the strength of the Caduceus and SSMs overall in capturing long-range genomic dependencies,
and having meaningful internal representations for genomics aiding generalization across various
tasks. Hawk underperforms relative to Caduceus, likely due to its architecture being less adapted
to genomics modeling. However, its results remain significant, as we later use them to assess the
extrapolation performance of SSMs with 1Mbp.

Table 1: Long-Range Genomics Benchmark results, using 12kbp per sequence. Caducues achieves
the best result in three out of six GLRB tasks.

Task NTv2 | Caduceus | Hawk
Bulk RNA (R2) 0.52 0.53 -
VEP eQTL (AUROC) 0.72 0.68 0.60
VEP ClinVar (AUROC) 0.75 0.75 0.55
Histone Marks (AUPRC) | 0.34 0.52 -
Promoters (AUPRC) 0.75 0.77 -
Enhancers (AUROC) 0.78 0.75 -

3.4 ZERO-SHOT EXTRAPOLATION

We evaluate models’ ability to generalize to significantly longer sequences in a scalable way, without
requiring further fine-tuning. Specifically, we assess zero-shot extrapolation by testing on downstream
tasks input lengths up to 10x greater than those seen during pretraining. We observe that SSMs
can perform well without additional changes, leveraging their ability to handle extended sequences.
For transformer-based models, we experiment with inference-time position interpolation, shown to
enhance performance. Performance is measured using metrics like AUPRC, AUROC, and RZ on
GLRB downstream tasks enabling a direct comparison of each architecture’s generalization capability.
Direct comparison of our equally sized and trained NTv2, NTv2 with Position Interpolation (Chen
et al.,[2023) within RoPE (Su et al., 2024}, Caduceus, and Hawk models can be viewed in Figurem
and extrapolation results on additional tasks for Caduceus are shown in Figure [2]
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Figure 1: Comparison of the extrapolation methods of state-space models and attention-based models
on VEP eQTLs (AUROC). For NTv2, we also reported an inference-time extrapolation method:
position interpolation. A dotted vertical line indicates the fine-tuning sequence length (12 kbp) of
all models. Attention-based models collapse when processing sequences that are longer than what
they have encountered at training time, whereas state-space models show an ability to generalize
to sequences up to 10x longer. Lines that turn into dotted indicate values that we were unable to
compute due to computational cost constraints and are therefore assumed based on trends.

3.5 PERFORMANCE ACROSS MULTIPLE DOWNSTREAM TASKS

Caduceus achieves good zero-shot extrapolation results across all tasks (with sequence lengths
ranging from 12 kbp to 120kbp), as further visualized in Figure 2] These findings indicate that SSMs
are not only capable of long-context extrapolation in a single task but also generalize effectively
across diverse genomic prediction challenges, as well as their learned internal representations being
very generalizable and high quality, allowing the model to confidently operate far beyond its training
distribution.
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Figure 2: Zero-shot extrapolation results of state space models across the 6 tasks of the GLRB. Dotted
vertical lines indicate the fine-tuning sequence length (12 kbp).
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3.6 PROCESSING ULTRALONG SEQUENCES ON A SINGLE GPU

In this section, we demonstrate how hidden state transfer mechanism in SSMs can be used to process
ultralong sequences of 1M+ tokens on a single GPU. As input sequences get longer, loading and
processing it all at once, requires a large amount of memory. If an input sequence exceeds the
maximum length that a single GPU can handle, the sequence is divided into smaller chunks (for
example 100 kbp segments). The final hidden state from each chunk is passed as the initial state for
the next chunk, ensuring continuity and preservation of dependencies across the entire sequence. This
mechanism is intended to almost identically replicate a forward pass of the full ultralong sequence on
a theoretical device with enough capacity (see Figure[3).

Hawk | —H,— | Hawk |[—Hz>+ ¢ «Hyn4> | Hawk | ——Hy

Chunk 1 { Chunk 2 } c e { Chunk N ) @
\
|
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Figure 3: A Mechanism for Hidden State Propagation in SSMs for Ultralong Sequences Visualized.
An ultralong sequence is split into multiple chunks, thereby doing a linear scan over chunks. An
individual chunk size could be set to any size that fits on a single GPU. The hidden state’s size always
stays fixed.

Building on our hidden state transfer mechanism for zero-shot extrapolation framework we adapt
Hawk to process sequences up to 1Mbp on the VEP ClinVar and VEP eQTL tasks without any
significant degradation in AUROC, on a single NVIDIA A100 GPU, highlighting its scalability and
efficiency. A decision to use Hawk was made due to Hawk’s simple mechanism for initializing and
passing the hidden state as well as its simple implementation for linear scan. Future work can explore
performing hidden state transfer on Caduceus where its custom kernel significantly complicates
this task. Figure[d]illustrates Hawk’s performance stability across the expanded sequences for the
VEP ClinVar and VEP eQTL tasks. This marks a significant advancement of SSMs over standard
transformer architectures. By scaling to 1Mbp dependencies, these models can capture long-range
regulatory interactions that are often missed by traditional approaches. For instance, enable the
detection of distal enhancers located hundreds of kilobases away from their target promoters, which is
crucial for accurately linking non-coding variants to gene expression changes and disease phenotypes.
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Figure 4: Zero-shot extrapolation on VEP ClinVar and VEP eQTL with Hawk (50M parameters) up
to 1 Mbp input length. Performance remains stable despite the substantial increase in context size,
indicating strong scalability.
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3.7 TESTING EXTRAPOLATION DURING PRETRAINING

We test if the nature of some downstream tasks in our experiments may be making it easier for the
models to perform zero-shot extrapolation. We perform a 0-shot extrapolation test with different
extrapolation lengths with the Masked Language Modeling (MLM) loss as our metric during valida-
tion for a Hawk model being trained on 12kbp sequences. The results in Figure [3]also underscore
a key theme in our paper: the capacity of state-space models (SSMs) to extrapolate effectively to
longer contexts with minimal performance degradation. By evaluating pure MLM loss—independent
of downstream tasks—we isolate how well the model handles missing-token predictions at varying
lengths. The near-uniform loss profiles across different sequence lengths support the broader findings
of the paper, namely that SSM-based architectures learn high quality internal representation that
allow them to retain their predictive accuracy and generalization properties even beyond the context
lengths they were originally trained on.
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Figure 5: MLM validation loss as a function of training step for different sequence lengths (2 kbp,
4 kbp, 8 kbp, 12 kbp, 24 kbp, 48 kbp, 96 kbp, and 128 kbp). A dashed vertical line indicates the
point at which training with 12 kbp sequences begins (the 140,000th training step). The y-axis shows
the MLLM loss, while the x-axis denotes training steps. Although the model continues training on a
fixed 12 kbp context after this point, we measure validation loss across multiple lengths to assess
generalization and extrapolation. The curves remain closely clustered, indicating that the model
maintains comparable loss values even as the sequence length changes significantly.

4 DISCUSSION AND CONCLUSION

Our evaluation of State-Space Models (SSMs) for long-range genomic modeling demonstrates that
these architectures learn high-quality representations that are both biologically meaningful and
computationally scalable. Across multiple downstream tasks, SSMs not only match transformer
performance but also excel in zero-shot extrapolation—extending from a 12 kbp training context to
sequences up to 120 kbp and even 1 Mbp without additional fine-tuning. This behavior aligns with
our goal of capturing the genome’s hierarchical regulation, preserving both fine-grained nucleotide
details and long-range regulatory interactions.

4.1 EXPANDED ANALYSIS OF KEY FINDINGS

Our experiments reveal several critical insights:

Performance on Downstream Genomic Tasks: SSM-based models demonstrate competitive
performance on standard tasks such as Bulk RNA prediction, VEP ClinVar, and Histone Marks
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detection. In several cases, models like Caduceus even outperform the transformer baseline (NTv2),
underscoring the capability of SSMs to capture intricate genomic patterns despite their reduced
parameter count and improved computational efficiency.

Zero-shot Extrapolation: A standout result is the ability of SSMs to generalize to input sequences
significantly longer than those encountered during training. Figures and []illustrate that the
recurrent state propagation inherent in SSMs allows for 10-100 x increase in sequence lengths beyond
the training context without any considerable decline in performance. In fact, the trend lines suggest
they can process even longer sequences without suffering performance declines. This zero-shot
extrapolation is especially important for genomics, where regulatory interactions can span hundreds
of kilobases or more. The consistent performance across varied sequence lengths suggests that
SSMs capture distributed dependencies in a way that aligns with the biological reality of long-range
interactions.

Consistency of Pretraining Loss: Our analysis of Masked Language Modeling (MLM) loss (Fig-
ure[5) shows nearly uniform loss values across a wide range of sequence lengths. This consistency
reinforces the idea that SSMs build robust internal representations capable of handling extended
contexts. The stable loss behavior provides additional evidence that these models are not simply
memorizing local patterns but are instead learning scalable representations that remain effective when
applied to ultralong genomic sequences.

Biological Relevance and Representation Quality: The observed performance, combined with the
ability to extrapolate effectively, implies that SSMs capture the intrinsic organization of genomic data.
By preserving both the nucleotide-level details and the extended regulatory networks, these models
generate representations that mirror the true hierarchical nature of the genome. This fidelity is critical
for modeling biological phenomena such as enhancer—promoter interactions and chromatin remodel-
ing, which are essential for understanding gene regulation, disease mechanisms, and evolutionary
processes.

4.2 IMPLICATIONS AND FUTURE DIRECTIONS

The results presented in this work highlight the potential of SSM-based architectures as scalable
alternatives for comprehensive genomic analysis. The demonstrated ability to process ultralong
sequences on a single GPU not only makes these models practical for large-scale studies but also
opens the door for integrated analyses of entire genomic regions in one pass. Future research should
focus on:

* Architectural Refinement. Further enhancing model designs to improve task-specific
performance while retaining zero-shot extrapolation. Investigating hybrid models that
combine the benefits of state-space and attention-based mechanisms may yield additional
gains.

» Expanded Evaluation. Applying these models to a broader array of genomic benchmarks
to validate their versatility across different biological contexts, thereby solidifying their
utility in diverse genomic applications.

» Improving utilization of extended context. While we show SSMs can reliably extrapolate
to longer contexts, we don’t see a significant improvement in downstream tasks despite the
added contextual information. Analyzing this could give us insights into utilizing longer
contexts more thoroughly, thereby improving their performance on downstream tasks.

4.3 CONCLUDING REMARKS

In summary, our integrated results demonstrate that SSM-based models not only achieve competitive
performance on traditional genomic tasks but also offer significant advantages in capturing long-
range dependencies through zero-shot extrapolation and consistent pretraining behavior. By faithfully
representing both local and global genomic features, these models provide a computational framework
that aligns with the inherent complexity of biological systems. As we refine these architectures
and extend their application, we are poised to drive new discoveries in gene regulation, disease
mechanisms, and evolution—ultimately capturing a more meaningful representation of life.
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Meaningfulness Statement. Meaningful representations of life capture the intrinsic organization and
multi-scale interactions of biological systems. In genomics, this means preserving the fine-grained
nucleotide details and the long-range regulatory networks that govern gene expression, enabling
broad applicability across biological tasks, i.e. generalization. In our work, we show that SSMs create
such representations, and show utility and generalization across diverse tasks and input distributions
(sequence lengths).
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A APPENDIX

An equally important advantage of SSM-based architectures is their computational efficiency. Fig-
ures [6a) and [6b| report GPU memory usage and inference time of Hawk as functions of input sequence
length. The linear scaling observed for both metrics confirms that SSMs can process ultralong se-
quences with a computational cost that increases only linearly with sequence length—an improvement
over the quadratic scaling typical of transformer-based models. This efficiency not only enables the
processing of million-token sequences on a single GPU but also highlights the practical feasibility of
applying SSMs to large-scale genomic datasets. Our Hawk model is 12 LRU blocks—each featuring
6 attention heads, a hidden width of 576, and a feed-forward expansion factor of 3 (yielding 1728)
and LRU block width of 768. During pretraining we used a warmup-cosine decay from le-8 up to
le-4 learning rate, and applied gradient accumulation to reach an effective batch size of 96.
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(a) GPU Memory Usage vs. Sequence Length (b) Inference Time vs. Sequence Length

B COMPARISON OF POSITIONAL ENCODINGS IN TRANSFORMERS AND
STATE-SPACE MODELS FOR LONG GENOMIC SEQUENCES

Transformers explicitly encode positional information through mechanisms such as sinusoidal em-
beddings (Vaswani} 2017), Rotary Position Embeddings (RoPE) (Su et al.| 2024), YaRN (Peng et al.;
2023)), and SelfExtend (Jin et al., [2024). Each of these methods encounters inherent limitations
when extrapolating far beyond their training sequence length, critically limiting their effectiveness
in ultralong genomic contexts. Specifically, sinusoidal embeddings, which rely on fixed periodic
functions, become ambiguous at positions significantly longer than the training range, resulting
in diminished predictive accuracy. RoPE embeddings attempt to improve this by using rotational
transformations to encode relative positions; however, at large genomic distances, these rotations
become increasingly misaligned, undermining accuracy in modeling long-range interactions like
enhancer-promoter dynamics.

Further enhancements, including YaRN and SelfExtend, partially address this limitation through
positional interpolation or grouping. However, these techniques either require supplementary fine-
tuning or lose essential positional granularity, which is vital for accurately modeling subtle yet
biologically meaningful genomic relationships.

In contrast, State-Space Models (SSMs) implicitly capture positional information through continuous
hidden-state updates, providing inherent scalability and robust positional encoding without recal-
ibration. This implicit encoding maintains accuracy across extreme sequence lengths, effectively
modeling genomic interactions at high resolution and addressing fundamental extrapolation limita-
tions faced by transformers. We hypothesize that this intrinsic mechanism is one of the primary factors
contributing to the strong performance of SSMs in zero-shot long-range extrapolation observed in
our work.
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