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ABSTRACT

This paper introduces an approach to filling in missing data based on deep auto-
encoder models, adequate to high-dimensional data exhibiting complex dependen-
cies, such as images. The method exploits the properties of auto-encoders’ vector
fields, which allows to approximate the gradient of the log-density from its recon-
struction error, based on which we propose a projected gradient ascent algorithm
to obtain the conditionally most probable estimate of the missing values. Exper-
iments performed on benchmark datasets show that imputations produced by our
model are sharp and realistic.

1 INTRODUCTION

Filling in missing data is an important problem in machine learning and data analysis, especially
when dealing with real-world data (Luo et al., 2018; Hwang et al., 2019; Camino et al., 2019).
A classical approach relies on density estimation, e.g., using a Gaussian mixture models (GMM)
(Titterington & Sedransk, 1989). Using the estimated density, the missing values of each observation
are then replaced either by samples or by maximizers of the corresponding conditional density, given
the observed ones. This approach tends to perform well, as long as the density model is expressive
enough for the data at hand and is accurately estimated.

Although the use of a shallow density model, e.g. GMM, may allow obtaining the conditional den-
sity analytically, as well as easily sampling from it or finding its maximizers, such a model may
be unable to efficiently describe complex dependencies in real data, such as images (Śmieja et al.,
2018). While deep generative models, e.g. generative adversarial networks (GAN) (Goodfellow
et al., 2014) or variational autoencoders (VAE) (Kingma & Welling., 2014), are sufficiently expres-
sive, it may be impossible to obtain or maximize the corresponding conditional densities of missing
values given the observed ones. Consequently, using deep generative models for density-based im-
putation is a challenging task (Mattei & Frellsen, 2018).

In this paper, we exploit the dynamics of auto-encoders’ reconstruction function. Based on theoreti-
cal results presented by Alain & Bengio (2014), the reconstruction error of a denoising auto-encoder
(DAE) (Vincent, 2011) provides an approximate expression for the gradient of the logarithm of the
probability density function (pdf), which is (implicitly) estimated from data. We adapt that approach
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(a) Trajectories of points selected
from the latent space.

3.0 2.5 2.0 1.5 1.0 0.5 0.0 0.5

0.2

0.0

0.2

0.4

0.6

0.8

1.0

(b) Splits of the basins of attrac-
tions.
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(c) An attractor in a low density re-
gion.

Figure 1: Example of a latent space trajectoris following the latent vector field u, for a VAE trained
on the MNIST dataset (classes 0, 1, 2). Dots represent latent representation of the training examples:
0-red ,1 -green, 2-yellow).

in the context of incomplete data to maximize the conditional density of the missing values, given
the observed ones. The conditionally most probable values are found as the attractors of the iterated
reconstruction function.

We instantiate the proposed approach using two types of auto-encoders: DAE and WAE (Wasserstein
auto-encoders) (Tolstikhin et al., 2017). Experiments with the MNIST and Fashion-MNIST datasets
show that both models provide very good results (the best-looking completions in the case of images
with missing pixels).

2 AUTO-ENCODER’S DYNAMICAL SYSTEM

To motivate our approach to missing data imputation, we recall known facts regarding the vector
fields generated by auto-encoders’ reconstruction functions.

An auto-encoder may be viewed as composition of two maps, an encoder f : Rd → Z and a decoder
g : Z → Rd, such that Z ⊂ Rl is a latent space and the reconstruction function r := g ◦ f is close
to identity, i.e., r(x) ≈ x. Since auto-encoders, in general, do not achieve perfect reconstructions,
we can define an auto-encoder vector field v : Rd → Rd associated to the reconstruction function as
v(x) := r(x)−x. Analogously, we also define an auto-encoder latent vector field u : Z → Z given
by u(z) := f(g(z))− z. A natural question arises: what is the structure of the dynamics generated
by v and u.

The properties of the vector fields v for DAEs were studied and discussed in details by Alain &
Bengio (2014). Namely the reconstruction error at some point x ∈ Rd, produced by a DAE, is
approximately equal to the gradient of the log-pdf computed at that point, in the low-noise limit, i.e.,

∂ log pX(x)

∂x
≈ rσ(x)− x

σ2
=
vσ(x)

σ2
, as σ → 0, (1)

where rσ is the reconstruction function of the DAE at denoising level σ and vσ is the corresponding
vector field. Consequently, the point with the highest pdf can be found via gradient ascent (gradient
flow, in the limit of infinitesimal steps) by exploiting this equality.

Analyzing the dynamics of the reconstruction error may be useful in verifying the quality of auto-
encoders. Our intuition is that the iterated reconstruction function (and its counterpart in the latent
space) should have a stationary point at an attractor. For an attractor, its basin of attraction should
represent a subset of the space where the points with similar features.

As an example we consider a convolutional VAE for the MNIST dataset. We use latent space
dimension l = 2 and train the model only for the digits 0, 1, and 2. For a point z in the latent
space Z, we draw the latent trajectory generated by the auto-encoder, i.e., zi+1 := f(g(zi)). In
most cases, we observe the behavior shown in Figure 1a: each trajectory travels through the latent
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space and converges to a fixed point. However, a small perturbation of the starting point may cause
a trajectory to converge to a different region, as illustrated in Figure 1b, where a data point for the
digit 1 after several iteration is reconstructed as a digit 2. Yet another challenge arises if an attractor
is located close to another basin of attraction; because of numerical instabilities, we may miss the
attractor and be redirected to nearby region (see Figure 1c).

3 IMPUTATION MODEL

In this section, we show how to find attractors of iterated reconstruction functions in the context of
missing data and, as a consequence, generate imputations with the highest local probability.

A point with missing data is denoted by a pair (x, J), where x ∈ Rd and J ⊂ {1, . . . , d} is the
set of indices with missing values; for a fully-observed point, J = ∅. The question is: what is the
“best” choice for filling the missing coordinates xJ (restriction of x to unobserved components)? In
this paper, we tackle this problem in a classical probabilistic way: we choose the maximizer of the
corresponding conditional pdf, given the observed variables xJ̄ , where J̄ = {1, ..., d} \ J is the set
of indices of the observed components of x.

To make the above statement more precise, let pX be a pdf defined on Rd, estimated from a dataset
X ∈ Rd×n. Given a data point with missing components (x, J), assume that J 6= ∅, otherwise
imputation is unnecessary, and J 6= {1, ..., d}, otherwise we do not have an imputation problem.
The conditional pdf is given by Bayes law,

p(xJ |xJ̄) =
p(xJ , xJ̄)

p(xJ̄)
=
pX(x)

p(xJ̄)
, (2)

because xJ∪J̄ = x ∈ Rd (missing and observed). Since we are looking for the maximizer of this
conditional pdf, the denominator is irrelevant:

x̂J = arg max
xJ∈R|J|

p(xJ |xJ̄) = arg max
y∈Rd:yJ̄=xJ̄

log pX(y). (3)

In this work, we exploit the properties of auto-encoders’ reconstruction function to seek the maxi-
mizer of the conditional density as defined in Equation 3. Based on the approximate formula for the
gradient of log-pdf from Equation 1, we propose the following natural procedure:

1. Train an auto-encoder model on a dataset X .

2. Given a data point with missing values (x, J), randomly pick an initial filling x̂0
J of the

missing part xJ .

3. Iteratively update x̂J using x̂t+1
J = x̂tJ + h [rσ(x̂t)− x̂t]J ,

where h is a step size and x̂t = (x̂tJ , xJ′) ∈ Rd denotes a complete point where the observed com-
ponents are fixed at the observed values and the missing ones are replaced by the current estimate.
This procedure corresponds to moving on an (axes-aligned) affine subspace of dimension R|J| of the
data space Rd in a direction determined by the gradient of the log-density function. Because of the
axes-aligned nature of the affine subspace, this coincides with a projected gradient ascent algorithm.

4 EXPERIMENTS

In this section, we experimentally assess the proposed model. We instantiate our procedure with a
denosing auto-encoder (DAE) and a Wasserstein auto-encoder (WAE). We use architectures from
the C.1. MNIST experiment reported by Tolstikhin et al. (2017). The step size for iterative filling of
missing data is h = 0.001.

As a baseline, we consider a type of context encoder (CE) (Pathak et al., 2016), which fills in miss-
ing regions by minimizing the L2 norm between input and output of the auto-encoder. The encoder
of CE is composed of three convolutional layers, while decoder contains analogical transpose con-
volutions. Additionally, we used two typical imputation methods: (a) k-NN (Batista & Monard,
2002), which fills missing features with mean values of those features computed from the k nearest
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Figure 2: Reconstructions of partially incomplete images from MNIST (letf) and Fashion-MNIST
(right) datasets. From left: (1) original image, (2) initial random filling of missing region, and
imputations using (3) DAE dynamics, (4) WAE dynamics, (5) CE (6) k-NN, (7) MICE.

training samples (we used k = 5); (b) MICE (Buuren & Groothuis-Oudshoorn, 2010; Azur et al.,
2011), where several imputations are drawn from the conditional pdf using Markov chain Monte
Carlo sampling.

We consider two standard datasets: MNIST (LeCun et al., 1998) and Fashion-MNIST (Xiao et al.,
2017). For each test image of the size 28× 28, we drop a square patch of size 13× 13, at a random
location (uniformly sampled for each image).

Figure 2 presents sample results obtained by the different methods considered. In this experiment,
the DAE and WAE gave the best-looking imputations; they are sharp and look visually plausi-
ble. One can observe that WAE usually produces more details (see 2nd and 9th rows for Fashion-
MNIST), however this is not always the case (see 10th row for Fashion-MNIST, where imputation
returned by DAE is more realistic). On the other hand, the imputations returned by CE, k-NN, and
MICE are often blurry (especially so for CE and MICE).

To provide a quantitative assessment of the methods, we report mean square error (MSE) values in
Table 1. Although the CE imputations are quite blurry, this method achieves the lowest MSE on both
datasets. This means that, although the filled-in pixels agree with the original images on average,
the results do not have to be realistic. As can be seen, WAE also obtained very low errors while
maintaining sharp images, while DAE gave only slightly worse results for Fashion-MNIST. It is not
surprising that CE provides the lowest MSE, because its cost function directly focuses on this goal.
On the other hand, our method tries to fit the hole with the most probable values, yielding sharp and
realistic images, which may not match exactly with the true image.

One possible explanation for why the WAE performed slightly better than the DAE could be con-
nected with its generative nature. The WAE tries to fit the encoded data to a Gaussian, which reduces
holes in the latent space.

5 CONCLUSION

In this paper, we investigated auto-encoder vector fields and proposed a strategy for filling in miss-
ing values. Our approach does not require any specialized network architectures and training proce-
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Table 1: Mean square error of imputations.

Dataset DAE WAE CE k-NN MICE
MNIST 0.0872 0.0864 0.0588 0.0879 0.0811
Fashion-MNIST 0.0328 0.0286 0.0243 0.0324 0.0302

dures. Given any AE model, we traverse through its vector field to its attractors, which are elements
with the highest probability (in some local neighborhood). Experiments showed that this cheap
procedure leads to realistically-looking imputations.
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