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Abstract001

Logical reasoning is a core capability for many002
applications of large language models (LLMs),003
yet existing benchmarks often rely solely on004
final-answer accuracy, failing to capture the005
quality and structure of the reasoning process.006
We propose FineLogic, a fine-grained evalua-007
tion framework that assesses logical reasoning008
across three dimensions: overall benchmark ac-009
curacy, stepwise soundness, and representation-010
level alignment. In addition, to better under-011
stand how reasoning capabilities emerge, we012
conduct a comprehensive study on the effects013
of supervision format during fine-tuning. We014
construct four supervision styles (one natural015
language and three symbolic variants) and train016
LLMs under each. Our findings reveal that017
natural language supervision yields strong gen-018
eralization even on out-of-distribution and long-019
context tasks, while symbolic reasoning styles020
promote more structurally sound and atomic021
inference chains. Further, our representation-022
level probing shows that fine-tuning primarily023
improves reasoning behaviors through step-by-024
step generation, rather than enhancing short-025
cut prediction or internalized correctness. To-026
gether, our framework and analysis provide a027
more rigorous and interpretable lens for evalu-028
ating and improving logical reasoning in LLMs.029
The code is available at https://anonymous.030
4open.science/r/FineLogic.031

1 Introduction032

Large language models (LLMs) are rapidly emerg-033

ing as transformative tools across a wide array034

of applications (Achiam et al., 2023; Guo et al.,035

2024b; Thirunavukarasu et al., 2023; Nam et al.,036

2024). Among these, reasoning serves as a core037

capability underpinning tasks such as problem-038

solving (Lu et al., 2023), scientific question answer-039

ing (Guo et al., 2024a), and code analysis (Nam040

et al., 2024). Consequently, a growing body of041

research has sought to evaluate and enhance the042

reasoning abilities of LLMs from multiple perspec- 043

tives (Wei et al., 2022; Guo et al., 2025, 2024a). 044

Within this broader landscape, logical reasoning 045

stands out as a particularly challenging and in- 046

tellectually demanding domain (Saparov and He, 047

2022a). It requires a synthesis of natural language 048

understanding, formal logical interpretation, and 049

multi-step inferential processing (Patel et al., 2024; 050

Saparov et al., 2023; Morishita et al., 2024). 051

Despite growing interest in the logical reasoning 052

capabilities of LLMs, most existing benchmarks 053

focus narrowly on whether a model produces the 054

correct final answer (Patel et al., 2024; Parmar et al., 055

2024; Han et al., 2022). This binary evaluation, typ- 056

ically assessing only the correctness of a “True” or 057

“False” output, can be misleading, as it fails to de- 058

termine whether the model arrived at the answer 059

through valid multi-step reasoning (Saparov and 060

He, 2022a). Consequently, correct answers may 061

reflect guesswork rather than genuine logical in- 062

ference. We are thus motivated to address RQ1: 063

How to rigorously evaluate LLMs’ step-by-step 064

correctness in logical reasoning tasks, beyond 065

the binary evaluation of the final answer? 066

In parallel with benchmarking efforts, numerous 067

methods have been proposed to enhance the multi- 068

step logical reasoning abilities of LLMs. While 069

many leverage inference-time strategies (Wang 070

et al., 2025), in-context learning (Creswell et al., 071

2022; Xu et al., 2024), or external logical verifiers 072

(Pan et al., 2023) to guide the model toward more 073

rigorous reasoning, some recent studies explored 074

supervised fine-tuning (SFT) as a more direct ap- 075

proach to enhancing logical reasoning (Morishita 076

et al., 2024; Feng et al., 2023). For example, Mor- 077

ishita et al. (2024) proposes a synthetic logic corpus 078

designed to offer broad and systematic coverage 079

of logical knowledge. However, it remains unclear 080

for this important question, RQ2: What style of 081

training data, natural language or formal logical 082
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Question:
Given the facts that (1) Every cat drinks milk, and (2) Tom is a cat, 
can we conclude that Tom drinks milk?

Which is better for 
SFT data design?

General Logical Reasoning Benchmark

Metric: LLM accuracy

Not comprehensive enough! 

FineLogic

Representation-level Probing:
    Correctness spanning steps
    Redundant facts identification
    Next-step Derivability

Stepwise Soundness:
    Validity
    Relevance
    Atomicity

LLM accuracy

Figure 1: (Left) LLM logical reasoning evaluation: the general benchmark v.s. our fine-grained benchmark
FineLogic. (Right) processing a logical reasoning task using natural language v.s. using symbolic methods.

symbols, better facilitates the learning of multi-083

step logical reasoning through SFT? Addressing084

this research question is important for understand-085

ing how to most effectively instill logical reasoning086

capabilities in LLMs.087

To address RQ1, we propose FineLogic, a new088

evaluation framework designed to more fine-089

grainedly assess the logical reasoning capabilities090

of LLMs. Specifically, our framework evaluates091

models along three complementary dimensions: (1)092

Overall benchmark accuracy: This metric cap-093

tures a model’s ability to perform multi-step logical094

reasoning and its generalizability across problems095

from diverse domains. (2) Stepwise Soundness:096

Inspired by Saparov and He (2022a), we assess the097

quality of each intermediate reasoning step using098

three criteria—validity (whether the step is logi-099

cally valid), relevance (whether its conclusion is100

used in later steps), and atomicity (whether it ap-101

plies a single, minimal inference rule). These met-102

rics aim to evaluate the model’s ability to generate103

human-interpretable and logically coherent reason-104

ing chains. (3) Representation-level probing (Ye105

et al., 2024): By applying probing techniques to106

LLM hidden representations, this evaluation pro-107

vides insight into whether the model’s understand-108

ing of logical structure is merely surface-level or109

embedded in its internal state.110

To address RQ2, we systematically investigate how111

different supervision formats affect the reasoning112

capabilities of LLMs. Specifically, we examine113

both natural language-based training data and logic-114

symbol-based representations, including several115

structured variants. Our analysis shows that natu-116

ral language supervision is particularly effective117

in conveying core reasoning patterns, leading to 118

strong performance across a wide range of eval- 119

uation benchmarks. Notably, it exhibits impres- 120

sive generalizability even on out-of-distribution 121

test sets that require long reasoning chains. How- 122

ever, a deeper examination of stepwise soundness 123

and internal representation probing reveals cer- 124

tain limitations. Models trained with natural lan- 125

guage supervision tend to struggle with producing 126

strictly minimal reasoning chains (e.g., more likely 127

including redundant steps and applying multiple 128

inference rules in a single step, as shown in Fig- 129

ure 5). In contrast, models trained with symbolic 130

reasoning styles are better at filtering out irrelevant 131

information, generating atomic steps aligned with 132

individual deduction rules, and maintaining cleaner, 133

logically grounded reasoning trajectories. 134

To summarize, our contributions are as follows: 135

• We propose FineLogic, a unified and rigorous 136

evaluation framework for assessing LLMs’ logi- 137

cal reasoning, moving beyond final-answer ac- 138

curacy to evaluate the quality, interpretability, 139

and coherence of their solutions. 140

• We conduct a comprehensive study on the effects 141

of supervision format, fine-tuning LLMs on both 142

natural language and symbolic logic data to ex- 143

amine their impact on reasoning across general 144

and complex tasks. 145

• Through systematic analysis of models trained 146

with different supervision styles, we identify key 147

trade-offs between generalization and structural 148

reasoning quality. These findings provide con- 149

crete insights into the design and selection of 150

effective training data for supervised logical rea- 151
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 Stepwise Soundness

 Step n: fact i ∧ int j → int k.

 Analyze Step n:

    Step n is valid if int k is provable 

from fact i ∧ int j

    Step n is relevant if int k is used in 

subsequent steps

    Step n is atomic if int k can be 

proved by fact i ∧ int j with 

exactly one deduction rule.

FineLogic
 Overall Benchmark Accuracy

Multi
LogiEval

Pronto
QA

FOLIOFLD
LLM

<user> Given the fact ... </user> <assistant> Step 1: ... (end) ... Step i-1: ....  (end)  Step i: ... (end) ...  Step n: ...  (end) </assistant>

Predict Label { PROVED, DISPROVED }

Problem Solution

LLM

<user> Given the fact ... </user>  <assistant> Fact i: ... (end)  </assistant>

Predict Label { necessary, redundant }

Problem One fact to be evaluated

LLM

<user> Given the fact ... </user>  <assistant> Step 1: ... (end) ... Step i: ...  (end) ... Step k: ... (end)  </assistant>

Predict ：Label { derivable, not derivable }

Problem Current steps A new step to be evaluated

Representation-level Probing
Correctness Spotting Steps:

Redundant Facts Identification:

Next-Step Derivability:

Add a 
classification layer

Freeze the LLM

Figure 2: Overview of FineLogic, where overall benchmark accuracy, stepwise soundness, and representation-level
probing are combined for a fine-grained evaluation of LLM’s logical reasoning ability.

soning.152

2 Related Works153

Logical Reasoning Benchmarks. Numerous154

benchmarks have been proposed to evaluate the log-155

ical reasoning abilities of LLMs. Liu et al. (2023);156

Luo et al. (2023); Havrilla et al. (2024) mix logical157

and commonsense reasoning, making it hard to iso-158

late logical competence. Others assess multi-step159

reasoning but rely only on final-answer accuracy160

(Parmar et al., 2024; Han et al., 2022; Tafjord et al.,161

2020; Mondorf and Plank, 2024). While ProntoQA162

(Saparov and He, 2022a; Saparov et al., 2023) intro-163

duces stepwise evaluation, it uses short problems164

and focuses only on step correctness. In contrast,165

our FineLogic framework provides a more rigorous166

and comprehensive assessment across sample-level167

correctness, step-level reasoning quality, and inter-168

nal representation alignment.169

Logical Reasoning Enhancement. Several stud-170

ies have aimed to improve LLMs’ performance on171

logical reasoning tasks. Some approaches rely on172

translating inputs into formal logic and using pro-173

grammable verifiers to solve problems (Olausson174

et al., 2023; Pan et al., 2023; Yang et al., 2023;175

Ryu et al., 2024), which bypasses the model’s own176

reasoning process. Others use in-context learn-177

ing or inference-time strategies to guide output178

without fundamentally enhancing reasoning ability179

(Creswell et al., 2022; Wang et al., 2025; Xu et al.,180

2024; Sun et al., 2023; Toroghi et al., 2024). While181

a few works have explored fine-tuning or reinforce-182

ment learning to strengthen logical reasoning (Feng 183

et al., 2023; Morishita et al., 2023, 2024; Xie et al., 184

2025; Yang et al., 2022; Xie et al., 2024), they have 185

not examined which types of supervision are most 186

effective for teaching LLMs to reason. In this work, 187

we focus specifically on this open question. 188

3 FineLogic Evaluation Framework 189

As illustrated in Figure 2, FineLogic builds on ex- 190

isting benchmarks and evaluates logical reasoning 191

ability from three complementary perspectives: (1) 192

Overall benchmark accuracy, which measures 193

whether the model can correctly solve multi-step 194

reasoning tasks; (2) Stepwise soundness, which 195

evaluates whether each reasoning step is valid and 196

interpretable; (3) Representation-level probing, 197

which assesses whether the model internally cap- 198

tures the problem’s reasoning structure beyond 199

surface-level patterns. 200

3.1 Overall Benchmark Accuracy 201

Similar to most benchmarks, our overall bench- 202

mark accuracy focuses on final-answer correctness. 203

While coarse-grained, it offers a quick and effec- 204

tive way to assess a model’s overall reasoning abil- 205

ity and cross-domain generalization. We evaluate 206

on four challenging multi-step reasoning bench- 207

marks: FLD (Morishita et al., 2024), FOLIO (Han 208

et al., 2022), Multi-LogiEval (Patel et al., 2024), 209

and ProntoQA (Saparov and He, 2022a). For FLD, 210

we generate 50 samples per step (0–19) and 100 211

UNKNOWN cases. For FOLIO, the full test set is 212
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Dataset Samples Label Types

FLD (Morishita et al., 2024) 1100 {T, F, Unknown}
FOLIO (Han et al., 2022) 203 {T, F, Unknown}
Multi-Logical (Patel et al., 2024) 390 {T, F}
Pronto-QA (Saparov and He, 2022a) 500 {T, F}

Table 1: Sample counts and label types for each dataset.

used. For Multi-LogiEval, we select first-order and213

propositional problems with depths 4–5. For Pron-214

toQA, we follow Pan et al. (2023) and evaluate on215

the 500 hardest 5-hop samples. Dataset statistics216

are shown in Table 1, with details in Appendix A.1.217

3.2 Stepwise Soundness218

Building on Saparov and He (2022a), we evalu-219

ate the soundness of each intermediate reasoning220

step along three dimensions: validity (whether the221

step logically follows from its premises), relevance222

(whether its conclusion is used in later steps), and223

atomicity (whether it applies a single, minimal224

inference rule).225

To assess these criteria, we extract the premises and226

conclusion of each step. We use GPT-4.1-mini to227

evaluate validity and atomicity. Manual verification228

on 200 annotated steps shows that GPT-4.1-mini229

achieves over 98% accuracy on both metrics. For230

relevance, we determine whether the conclusion of231

step i (e.g., int j) is referenced in any subsequent232

step k > i.233

We then compute the proportion of samples in234

which all steps are valid, relevant, and atomic,235

providing a sample-level measure of reasoning in-236

tegrity. Full prompt templates are provided in Fig-237

ures 13 and 14.238

3.3 Representation-level Probing239

Inspired by Ye et al. (2024), we introduce240

representation-level probing accuracy to assess241

whether LLMs internally understand how and when242

to perform specific reasoning step. Unlike behav-243

ioral metrics, this method aligns internal represen-244

tations with reasoning structure and tracks how245

reasoning knowledge evolves across steps.246

We construct probing datasets from FLD test sam-247

ples requiring 10–20 reasoning steps, using 450248

problems for training and 100 for testing across249

three tasks, implementation details are provided in250

Appendix B:251

Correctness Spanning Steps (CSS): Identifies the252

earliest step after which the model consistently pre-253

dicts the correct label. The spanning length is the254

number of remaining steps from that point to the 255

end. Higher accuracy indicates earlier internaliza- 256

tion of the correct answer. 257

Redundant Facts Identification (RFI): After pre- 258

senting all facts and the hypothesis, we append 259

three necessary and three redundant facts. A clas- 260

sifier is trained to distinguish between them, mea- 261

suring the model’s ability to identify irrelevant in- 262

formation. Higher accuracy reflects better fact dis- 263

crimination. 264

Next-Step Derivability (NSD): At six randomly 265

selected intermediate steps, we append three valid 266

and three invalid candidate steps. Probing predicts 267

which are currently derivable. Higher accuracy 268

indicates stronger awareness of valid next steps. 269

Our evaluation builds on two prior lines of 270

work—stepwise reasoning evaluation (Saparov and 271

He, 2022a) and representation-level probing (Ye 272

et al., 2024)—but introduces key extensions tai- 273

lored to logical reasoning. 274

Stepwise Soundness Evaluation. Saparov and 275

He (2022a) evaluate reasoning steps using three 276

criteria: validity (logical entailment), utility (con- 277

tribution to the final proof), and atomicity (single 278

rule application per step). Since utility depends on 279

gold proof annotations and is often impractical, we 280

propose a more accessible alternative: relevance, 281

which checks whether a step’s conclusion is used 282

in any subsequent inference. Moreover, prior work 283

focuses on individual steps, while we extend this to 284

the solution level by introducing all-steps validity, 285

relevance, and atomicity—sample-level metrics 286

that reflect whether a full reasoning chain is logi- 287

cally sound and interpretable. 288

Representation-Level Probing. Ye et al. (2024) 289

use probing to assess internal reasoning in math 290

problems. We adapt this method to logical reason- 291

ing and introduce a new metric: Correctness Span- 292

ning Steps (CSS), which identifies the earliest 293

point after which the model consistently predicts 294

the correct label. CSS approximates the model’s 295

internal reasoning depth by measuring how early it 296

stabilizes on the correct answer. 297

4 Supervision Format and Style: SFT 298

Data Design 299

In this section, we examine how different super- 300

vision styles for SFT affect the logical reasoning 301

abilities of LLMs. Our training data is based on 302
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FLD and ProntoQA, both of which include gold303

reasoning chains suitable for constructing diverse304

supervision styles.305

For FLD, we generate 500 problems for each rea-306

soning depth from 0 to 15, plus 1500 UNKNOWN sam-307

ples, totaling 9500 training instances. For Pron-308

toQA, we use 3200 3-hop problems. During eval-309

uation, FLD covers depths 0–19, while ProntoQA310

uses only the hardest 5-hop samples.311

We compare four supervision styles across two cat-312

egories: natural language-based and symbolic rea-313

soning. Each style reflects a different level of ab-314

straction and clarity in reasoning structure.315

• NL-Reasoning: Solutions are written entirely316

in natural language, with no intermediate sym-317

bolization or abstraction.318

• Symbolic Reasoning (Structured): Problems319

are formalized by defining variables and predi-320

cates, translating facts and hypotheses into logi-321

cal forms, and reasoning step by step using sym-322

bolic logic.323

• Symbolic Reasoning (Filtered): A simplified324

variant where only necessary facts are retained,325

shortening reasoning chains and reducing input326

complexity.327

• Symbolic Reasoning (Direct): Facts are di-328

rectly expressed in symbolic form without defin-329

ing variables or predicates, which shortens se-330

quences but may introduce ambiguity.331

A small portion of translations, connective phrases,332

and intermediate steps are generated using GPT-333

4.1. Prompt examples are shown in Figure 4 (Ap-334

pendix E).335

5 Experiments336

5.1 Experimental Setup337

We conduct all SFT experiments on two mod-338

els: LLaMA-3.1-8B-Instruct and Qwen-2.5-7B-339

Instruct, both fully fine-tuned for 3 epochs with340

a learning rate of 1× 10−6.341

Our baselines include four models: LLaMA-3.1,342

Qwen-2.5, GPT-4o, and DeepSeek R1. Fine-343

tuning-based methods use only LLaMA and Qwen344

as base models. Due to computational constraints,345

representation-level probing is conducted only on346

LLaMA, Qwen, and their SFT variants. Stepwise347

evaluation requires strict output formatting and en-348

forces explicit step-by-step generation. 349

We compare SFT models trained with different 350

supervision styles against these baselines: 351

• Direct Answer 352

• Chain-of-Thought (CoT) (Wei et al., 2022) 353

• Few-Shot Learning (Brown et al., 2020) 354

• LOGIPT (Creswell et al., 2022) 355

• Selection-Inference (Creswell et al., 2022) 356

• SymbCoT (Xu et al., 2024) 357

• LogicLM (Pan et al., 2023) 358

More detailed experimental setups can be found in 359

Appendix A. 360

5.2 Results 361

We conducted experiments for analyzing the per- 362

formance of four models combined with various 363

prompting and fine-tuning settings under the Fine- 364

Logic Evaluation Framework. 365

5.2.1 Results on Overall Benchmark 366

Accuracy 367

As shown in Table 1, we report the overall bench- 368

mark accuracy across four datasets, as well as the 369

step-wise accuracy on the FLD benchmark, strat- 370

ified by reasoning depth (Figure 3. Our analysis 371

yields several key observations: 372

CoT and few-shot prompting generally improve 373

performance, but baseline methods do not con- 374

sistently yield gains. Across the four evaluation 375

datasets, both CoT and few-shot prompting lead 376

to broadly positive improvements, indicating their 377

general effectiveness in enhancing LLM perfor- 378

mance on logical reasoning tasks. Notably, few- 379

shot prompting consistently outperforms CoT, 380

suggesting that for complex logical tasks, showing 381

the model how to think (via exemplars) is more 382

beneficial than simply encouraging it to reason step 383

by step. This may be because logical questions 384

naturally elicit multi-step reasoning under direct 385

prompting, limiting the marginal benefit of CoT. In 386

contrast, few-shot demonstrations provide clearer 387

procedural scaffolding, which appears more effec- 388

tive in guiding the model’s reasoning process. 389

In contrast, baseline prompting methods such as 390

Logic-LM, SymbCoT, and Sel-Inf show inconsis- 391

tent performance and sometimes underperform 392

even direct prompting. For example, Logic-LM 393

performs well on simpler problems but degrades 394

on complex ones, with Qwen’s Multi-LogiEval ac- 395
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Model Setting FLD FOLIO Multi-
LogiEval ProntoQA

Direct 53.0 72.4 71.0 98.8
CoT 54.1 69.5 76.9 98.6

Few-shot 58.3 74.4 84.4 99.0
Logic-LM 46.9 72.1 83.3 100
SymbCoT 47.6 71.6 72.1 100

GPT-4o

Sel-Inf 51.9 66.5 84.9 94.4

Direct 77.2 75.9 81.8 100
CoT 77.6 78.8 79.0 100

Few-shot 77.3 81.8 84.6 99.4
Logic-LM 69.6 77.5 81.2 96.4
SymbCoT 69.6 82.8 72.0 98.2

DeepSeek-R1

Sel-Inf 83.8 85.2 73.1 96.0

Direct 31.7 54.7 40.5 64.6
CoT 29.3 50.7 44.6 63.8

Few-shot 41.0 46.5 59.4 48.9
Logic-LM 38.3 52.5 44.4 77.6
SymbCoT 38.1 58.8 46.3 78.8

Sel-Inf 48.5 47.5 55.2 64.2
LogiPT 53.3 61.7 57.9 76.4
SFT-NL 67.5 57.1 71.3 99.6

SFT-Symb-Struct 63.2 56.2 59.7 99.8
SFT-Symb-Filter 66.7 54.7 50.8 91.0

Llama-3.1-8B-Instruct

SFT-Symb-Direct 52.8 48.3 53.9 98.8

Direct 46.6 61.1 37.0 90.6
CoT 50.4 65.5 54.3 90.4

Few-shot 53.2 68.5 61.3 91.1
Logic-LM 46.6 69.1 27.1 85.8
SymbCoT 22.6 57.5 63.9 87.0

Sel-Inf 49.0 62.6 39.7 92.6
LogiPT 58.6 61.7 55.6 52.4
SFT-NL 71.0 62.6 64.3 97.4

SFT-Symb-Struct 54.6 50.7 57.7 83.8
SFT-Symb-Filter 54.7 55.7 61.0 96.0

Qwen-2.5-7B-Instruct

SFT-Symb-Direct 54.8 53.2 58.7 61.4

Table 2: Overall Benchmark Accuracy on four models with different settings.

curacy dropping to 27.1%. SymbCoT sometimes396

improves over Logic-LM (e.g., 63.8% on Multi-397

LogiEval with Qwen) but also shows large drops398

elsewhere (e.g., 22.6% on FLD, versus 44.6% with399

direct prompting).400

Supervised fine-tuning outperforms inference-401

time methods, but its effectiveness heavily de-402

pends on the supervision style. Compared to403

inference-time prompting strategies, SFT yields404

significantly greater improvements in logical rea-405

soning performance. Among all training styles,406

natural language-based supervision (SFT-NL)407

produces the most substantial and consistent408

gains across datasets and models.409

Notably, even though SFT was conducted using410

only problems from FLD and ProntoQA with rea-411

soning depths less than those in the test set, the412

resulting models show robust improvements. For413

example, under the SFT-NL setting, Llama’s accu-414

racy on FLD increased from 31.7% (direct prompt- 415

ing) to 67.5% and Qwen improved from 46.6% to 416

71.0%, approaching the best-performing baseline 417

DeepSeek R1. On ProntoQA, most SFT variants 418

achieve over 90% accuracy. Furthermore, even 419

on out-of-distribution datasets such as FOLIO and 420

Multi-LogiEval, some SFT settings deliver strong 421

generalization. For instance, on Multi-LogiEval, 422

Llama with SFT-NL improved to 71.3%, matching 423

the performance of GPT-4o. 424

While SFT-NL demonstrates the best overall and 425

most transferable performance, other styles of 426

supervision yield much smaller gains. This 427

may be since LLMs are primarily pretrained on 428

natural language data, making symbolic reason- 429

ing—especially when it requires both translation 430

and inference over logic forms—significantly more 431

challenging. Among the symbolic settings, SFT- 432

Symb-Filter consistently outperforms other vari- 433
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(a) Performance of Llama-3.1-8B-Instruct SFT. (b) Performance of Qwen-2.5-7B-Instruct SFT.

Figure 3: Comparison of SFT variants’ performance across different reasoning step ranges in FLD dataset. Both
charts show accuracy declines with increasing inference steps, with GPT-4o (Direct) included as a reference. In (a),
Llama with SFT-Symb-Filter maintains strong performance even in the 16-19 step range (out-of-distribution), while
in (b), Qwen with SFT-NL shows remarkable early-stage reasoning capabilities.

ants. By removing redundant reasoning steps from434

the symbolic training data, this setting simplifies435

training and enhances performance. In contrast,436

SFT-Symb-Direct, which skips variable and pred-437

icate definitions entirely, performs poorly, likely438

due to the introduction of ambiguity and the lack439

of explicit logical structure.440

Accuracy declines with reasoning depth, but441

SFT enables small models to match GPT-4o even442

on the most challenging out-of-distribution sam-443

ples. As shown in Figure 3, model accuracy de-444

creases as the required number of reasoning steps445

increases. Nonetheless, our results show that SFT446

substantially improves model robustness, even on447

long-chain, out-of-distribution examples. On in-448

distribution FLD test problems (0–15 steps), SFT449

models trained under most styles outperform GPT-450

4o. For instance, across reasoning depths up to451

15, both Llama and Qwen with SFT-NL surpass452

GPT-4o’s performance.453

On more difficult out-of-distribution questions re-454

quiring 16–19 steps of reasoning—where no train-455

ing samples are available—performance drops by456

approximately 10% relative to the 12–15 step range.457

However, even under these conditions, SFT models458

maintain accuracy comparable to GPT-4o. Com-459

bined with strong generalization to unseen datasets460

such as FOLIO and Multi-LogiEval, these results461

suggest that SFT induces genuine logical reason-462

ing ability in LLMs. At the same time, the sharp463

performance decline on longer reasoning chains im-464

plies that some portion of success on shorter prob-465

lems may still stem from shallow pattern matching466

or memorization, rather than robust inference. De-467

tailed results can be found in C.468

Model Setting All Valid All Relevant All Atomic

GPT-4o Few-shot 7.6 56.2 4.4

Deepseek-R1 Few-shot 13.1 33.8 5.7

Llama-3.1-
8B-Instruct

Few-shot 4.5 17.4 1.6
LogiPT 5.2 28.5 4.9
SFT-NL 40.9 8.5 13.0
SFT-Symb-Struct 35.0 15.4 24.7
SFT-Symb-Filter 21.8 16.9 12.4
SFT-Symb-Direct 33.7 10.2 25.1

Qwen-2.5-
7B-Instruct

Few-shot 10.1 35.1 2.6
LogiPT 6.4 39.8 5.3
SFT-NL 27.6 5.4 8.5
SFT-Symb-Struct 35.3 9.1 19.8
SFT-Symb-Filter 16.7 11.7 10.5
SFT-Symb-Direct 19.7 0.3 11.9

Table 3: Stepwise soundness of various models under
settings without inference-time interventions. The best
variant of Llama and Qwen is highlighted.

5.2.2 Results on Stepwise Soundness 469

Table 3 reports the results of stepwise soundness 470

evaluation across different models and training 471

settings, offering a more fine-grained view of how 472

well LLMs internalize logical reasoning principles. 473

The All Valid metric measures the proportion 474

of samples in which every generated reasoning 475

step is logically valid. This is a stringent indica- 476

tor of a model’s grasp of formal reasoning rules. 477

We observe that models trained with the SFT-NL 478

and SFT-Symb-Struct settings achieve particularly 479

high All Valid scores—substantially outperform- 480

ing even GPT-4o and DeepSeek-R1. Notably, the 481

Llama model fine-tuned under SFT-NL achieves an 482

All Valid rate of 40.9 483

The All Relevant metric measures the proportion 484

of samples in which every generated step is rele- 485

vant—i.e., none of the steps are redundant or un- 486
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Model Setting CSS RFI NSD

Llama-3.1-
8B-Instruct

– 8.0 9.9 32.0
LogiPT 8.1 0.7 44.2
SFT-NL 8.5 9.9 51.5
SFT-Symb-Struct 8.7 11.1 36.1
SFT-Symb-Filter 9.7 11.1 46.4
SFT-Symb-Direct 9.0 18.5 41.2

Qwen-2.5-
7B-Instruct

– 8.6 7.4 43.3
LogiPT 8.1 9.2 43.2
SFT-NL 8.2 16.0 44.3
SFT-Symb-Struct 8.5 14.8 43.3
SFT-Symb-Filter 8.3 16.0 45.4
SFT-Symb-Direct 8.6 18.5 43.3

Table 4: Evaluation of Correctness Spanning Steps
(CSS), Redundant Fact Identification (RFI), and Next-
step Derivability (NSD) on Llama and Qwen. ‘-’ indi-
cates the original model. The best variant is highlighted.

necessary for reaching the conclusion. GPT-4o and487

LogiPT perform exceptionally well on this metric,488

implying that they rarely generate superfluous rea-489

soning steps. In contrast, SFT-NL and SFT-Symb-490

Direct consistently underperform. For SFT-NL,491

this may stem from the nature of natural language492

reasoning: due to its semantic richness and lack493

of structural constraints, the model may occasion-494

ally include exploratory or overly verbose steps,495

unsure of which inference is most effective. For496

SFT-Symb-Direct, the poor performance is likely497

due to the model may failure to fully capture inter-498

fact dependencies, resulting in reasoning sequences499

that are logically valid but contain unused or irrele-500

vant steps.501

The All Atomic metric evaluates whether every502

step in a reasoning chain corresponds to a sin-503

gle atomic inference—i.e., whether steps avoid504

combining multiple logical moves. Here, SFT-505

Symb-Struct consistently outperforms other set-506

tings, highlighting the advantages of structured507

symbolic reasoning. Symbolic reasoning is inher-508

ently more compact and constrained, which likely509

helps the model learn what constitutes a minimal,510

rule-aligned inference step. In contrast, natural511

language reasoning often fuses multiple reasoning512

rules into a single step, making it harder for the513

model to isolate atomic operations.514

5.2.3 Results on Representation-level Probing515

Table 4 presents results from our representation-516

level probing analysis, which aims to assess517

whether the models have internally acquired key518

reasoning abilities. 519

Regarding Correctness Spanning Steps (CSS), 520

which assesses how early the model predicts the fi- 521

nal answer, most SFT methods show little improve- 522

ment. Only SFT-Symb-Filter on Llama yields 523

a modest gain, suggesting SFT primarily guides 524

step-by-step generation rather than enhancing early 525

"shortcut" predictions. 526

For the Redundant Fact Identification metric, 527

most SFT settings show noticeable gains. Inter- 528

estingly, SFT-Symb-Direct consistently achieves 529

the highest performance. We hypothesize that this 530

setting, which omits the explicit logic translation 531

phase, forces the model to implicitly learn both 532

symbolic interpretation and reasoning. In doing 533

so, it may develop a stronger understanding of the 534

logical roles and dependencies among the facts, 535

thus improving its ability to distinguish between 536

relevant and redundant conditions. 537

In the Next-Step Derivability task, SFT consis- 538

tently benefits Llama, particularly SFT-NL (likely 539

due to natural language’s accessibility). In con- 540

trast, SFT shows minimal impact on Qwen, possi- 541

bly because its base model is already proficient in 542

step-tracking. 543

6 Conclusion 544

We introduce FineLogic, a unified and fine-grained 545

framework for evaluating the logical reasoning ca- 546

pabilities of large language models. By integrat- 547

ing overall benchmark accuracy, stepwise sound- 548

ness, and representation-level probing, FineLogic 549

enables more interpretable and rigorous assessment 550

beyond final-answer correctness. Leveraging this 551

framework, we conduct a systematic investigation 552

of how different fine-tuning supervision formats 553

impact reasoning ability. Our experiments demon- 554

strate that while natural language supervision leads 555

to strong generalization and benchmark gains, sym- 556

bolic styles better support minimal, rule-aligned 557

reasoning structures. Furthermore, representation- 558

level probing reveals that SFT primarily affects how 559

models generate stepwise solutions rather than their 560

ability to predict answers directly. These findings 561

offer practical guidance for designing supervision 562

strategies tailored to different reasoning objectives 563

and highlight the importance of evaluating both 564

behavioral and internal reasoning quality when ad- 565

vancing LLM reasoning systems. 566
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Limitations567

Our work has two main limitations. First, although568

FineLogic evaluates models across three comple-569

mentary dimensions, it is built upon a limited set of570

datasets. While we selected benchmarks that span571

multiple domains and reasoning depths, no fixed572

dataset collection can offer a complete assessment573

of LLM reasoning capabilities. Nevertheless, the574

modular design of FineLogic allows it to be easily575

extended to future benchmarks, enabling the same576

set of evaluation tasks—overall accuracy, stepwise577

soundness, and representation-level probing—to be578

applied to new problem settings. Second, although579

we provide detailed analyses of how different su-580

pervision styles succeed or fail across tasks, we do581

not explore how to systematically integrate these582

insights into the design of more comprehensive or583

hybrid SFT datasets. We leave it to future work to584

develop adaptive or mixed-format training strate-585

gies that balance generalization, structural sound-586

ness, and interpretability in logical reasoning.587
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A Detailed Experimental Setup 800

A.1 Detailed Dataset Information 801

In this section, we present the logical reasoning 802

datasets used in our experiments. All datasets are 803

publicly available. We describe the data sources 804

and sampling procedures in detail below. 805

FLD (Morishita et al., 2024) The FLD dataset is 806

constructed based on the number of reasoning steps 807

(denoted as steps). We first generate 50,000 raw 808

samples uniformly distributed across step depths 809

from 0 to 15. For each step, we randomly sample 810

250 PROVED and 250 DISPROVED examples, yield- 811

ing a total of 16 × 500 = 8,000 labeled samples. 812

Additionally, we include 1,500 randomly drawn 813

UNKNOWN instances, resulting in a total training set 814

of 9,500 samples. 815

The test set follows a similar sampling process but 816

spans a broader range of reasoning depths (0–19). 817

We select 25 PROVED and 25 DISPROVED instances 818

per step, yielding 20 × 50 = 1,000 labeled ex- 819

amples. We also sample 100 UNKNOWN instances, 820

producing a test set of 1,100 samples(Sinha et al., 821

2019; Tafjord et al., 2020; Pan et al., 2023). 822

FOLIO (Han et al., 2022) The FOLIO dataset 823

contains 203 test examples, all of which are in- 824

cluded in our experiments(Chen et al., 2020; Liu 825

et al., 2020). 826

Multi-LogiEval The Multi-LogiEval dataset con- 827

sists of five subsets with different depth (denoted 828

‘d1’ through ‘d5’). We include only the ‘d4’ and 829

‘d5’ subsets to maintain a consistent dataset size, 830

yielding a total of 390 examples. From each, we 831

extract all samples from the First-Order Logic 832

and Propositional Logic categories, masking 833

their logic type annotations to ensure a uniform 834

setting(Dalvi et al., 2021). 835

ProntoQA We use the standard ProntoQA 836

dataset rather than the OOD variant, following prior 837

work (Pan et al., 2023). We use 500 hardest sam- 838

ples requiring 5-hop reasoning steps as a held-out 839

test set. For training, we sample 3,200 problems 840

that each require 3-hop reasoning, selected to pro- 841

vide sufficient multi-step depth while remaining 842

tractable for supervised fine-tuning(Saparov and 843

He, 2022b; Li et al., 2023). 844
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A.2 Detailed Baseline Methods845

LOGIPT (Feng et al., 2023) LOGIPT is a novel846

language model designed to emulate the reason-847

ing processes of logical solvers. Unlike traditional848

solver-augmented models that parse natural lan-849

guage into symbolic representations before rea-850

soning, LOGIPT directly learns to generate sym-851

bolic reasoning steps, bypassing potential parsing852

errors(Gao et al., 2023; Chen et al., 2023).853

Selection-Inference (Creswell et al., 2022) En-854

hancing LLMs by n-shot learning between select-855

ing relevant facts and inferring new information,856

enabling interpretable multi-step logical reasoning.857

In the experiments, we achieved rather low accu-858

racy for limited questions (hypothesis) to trigger859

new inferences. Code is open-sourced(Yao et al.,860

2022; Wang et al., 2022; Zhou et al., 2023).861

LogicLM (Pan et al., 2023) A neuro-symbolic862

framework that addresses LLMs’ limitations in863

complex logical reasoning by integrating symbolic864

solvers with language models. The approach works865

through a three-stage pipeline: (1) using LLMs866

to translate natural language problems into sym-867

bolic formulations, (2) employing deterministic868

symbolic solvers to perform faithful logical infer-869

ence, and (3) interpreting results back to natural870

language. It features a self-refinement module that871

iteratively revises symbolic representations based872

on solver error messages.873

SymbCoT (Xu et al., 2024) The model intro-874

duces a novel framework that enhances LLMs by875

integrating symbolic expressions and logical rules876

into the CoT reasoning process. It translates natural877

language contexts into symbolic formats, derives878

step-by-step plans using symbolic logic, and em-879

ploys a verifier to ensure the correctness of trans-880

lations and reasoning chains(Author et al., 2025;881

Khattab et al., 2023; Gao et al., 2023).882

B Representation-Level Probing883

Implementation Details884

We design three probing tasks to assess whether the885

model’s internal representations capture reasoning-886

relevant information during multi-step logical prob-887

lem solving. All probing experiments are con-888

ducted on a subset of the FLD dataset, specifically889

the 550 most complex problems requiring 10–20890

reasoning steps. We use 450 problems for training891

and 100 for evaluation.892

B.1 Representation Extraction 893

For all probing tasks, we extract the hidden state of 894

the final token from the last transformer layer 895

after processing the input prefix. The prefix con- 896

sists of all reasoning steps up to a target step k 897

(i.e., steps 1 to k), and the final-token representa- 898

tion is treated as a summary of the model’s internal 899

reasoning state at that point. 900

B.2 Probing Model 901

We use a lightweight yet effective classifier to 902

probe the information contained in these hidden 903

states. Specifically, we adopt a logistic regres- 904

sion classifier with feature standardization and 5- 905

fold cross-validation for hyperparameter selection. 906

This setup ensures a simple and interpretable linear 907

decision boundary while maintaining robustness 908

against overfitting. The classifier is trained solely 909

on the extracted representations, while the underly- 910

ing language model remains frozen throughout the 911

probing process. 912

B.3 Task 1: Correctness Spanning Steps 913

This task evaluates how early in the reasoning pro- 914

cess the model internalizes the correct final answer. 915

For a problem requiring n reasoning steps, we: 916

• Generate n input prefixes, each ending at step 917

i, where i ∈ [1, n]. 918

• Train a probing classifier to predict the ground- 919

truth label (True / False) based on the repre- 920

sentation at each prefix. 921

• For each test sample, we identify the smallest 922

i such that the classifier correctly predicts the 923

label at step i but fails at step i− 1. 924

The correctness spanning length is defined as 925

n− i, capturing how early the model “knows” the 926

correct answer. 927

B.4 Task 2: Redundant Facts Identification 928

This task assesses whether the model can distin- 929

guish between relevant and irrelevant facts. For 930

each sample: 931

• We locate the point after all facts and the hy- 932

pothesis have been presented. 933

• We construct six variants of the input: three 934

with necessary facts (used later in the proof), 935

and three with redundant facts (unused in 936

any proof step). 937
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• The classifier is trained to predict whether938

the appended facts are necessary or redundant939

based on the updated representation.940

This task tests whether the model encodes aware-941

ness of which premises are logically relevant for942

solving the task.943

B.5 Task 3: Next-Step Derivability944

This task probes whether the model can determine945

which steps are logically available at a given point946

in the proof. For each sample:947

• We randomly select six intermediate steps.948

• At each step, we append three valid next steps949

(that are inferable from the current context)950

and three invalid steps (that appear later in951

the proof but are not yet derivable).952

• The classifier is trained to distinguish between953

currently valid and invalid steps.954

This task evaluates whether the model has encoded955

an implicit understanding of the forward progres-956

sion of logical inference.957

C Experiment Details958

This section provides further details on our experi-959

mental results. Table 5 presents a comprehensive960

breakdown of FLD accuracy across different rea-961

soning step ranges for the evaluated models and962

settings. The data illustrates that while models963

fine-tuned with natural language supervision (e.g.,964

Llama-3.1-SFT-NL achieving 89.5% accuracy for965

0-3 steps on FLD) perform strongly on tasks with966

shallower reasoning depths, their symbolic reason-967

ing counterparts tend to exhibit greater resilience968

as the complexity and number of reasoning steps969

increase. For instance, on FLD problems requiring970

16-19 steps, Llama-3.1-SFT-Symb-Filter (62.5%)971

and Llama-3.1-SFT-Symb-Struct (58.5%) maintain972

higher accuracy compared to Llama-3.1-SFT-NL973

(46.0%), highlighting the benefit of symbolic for-974

mats for robust multi-step inference.975

D Computational Resources976

All supervised fine-tuning experiments were con-977

ducted using 4 NVIDIA A100 GPUs. Each model978

was trained for approximately 2 hours. Evalua-979

tion on the full suite of benchmarks and diagnostic980

metrics required an additional 0.5 hours per model.981

E Example and Case Study 982

This section showcases examples from our training 983

dataset along with an error case study. Further 984

details can be found in Figure 4 and Figure 5. 985

F Prompt Template 986

This section showcases various prompts, en- 987

compassing those designed for reasoning 988

and data generation, as detailed in Figures 989

6,7,8,9,10,11,12,13,14 990
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Model Setting FLD Accuracy by Step

0–3 4–7 8–11 12–15 16–19

Direct 78.5 63.0 43.0 46.5 35.5
CoT 82.0 62.0 56.5 44.0 46.5

Few-shot 81.5 68.5 53.5 46.0 47.0
Logic-LM 68.4 52.1 31.5 28.2 22.8
SymbCoT 69.9 52.5 32.0 26.5 24.5

GPT-4o

Sel-Inf 64.5 55.5 49.5 49.0 55.5

Direct 92.5 86.0 80.5 75.0 76.5
CoT 92.0 86.0 78.0 77.5 73.5

Few-shot 89.0 85.0 80.5 69.0 71.0
Logic-LM 91.4 78.6 64.8 58.2 52.4
SymbCoT 86.4 80.5 70.9 45.2 53.4

DeepSeek
-R1

Sel-Inf 93.0 88.0 84.5 79.0 75.5

Direct 40.5 30.0 24.0 27.0 25.5
CoT 41.5 32.0 29.0 24.0 19.5

Few-shot 49.5 45.5 33.0 39.0 32.0
Logic-LM 56.4 41.3 32.6 28.8 26.2
SymbCoT 57.8 41.0 39.0 37.8 35.4

Sel-Inf 63.5 55.5 52.5 45.0 42.0
LogiPT 72.5 53.5 51.0 35.0 37.0
SFT-NL 89.5 72.5 52.0 56.5 46.0

SFT-Symb-Struct 88.5 78.5 65.0 66.0 58.5
SFT-Symb-Filter 72.0 73.0 67.5 72.0 62.5

Llama-3.1
-8B-Instruct

SFT-Symb-Direct 81.0 58.5 48.5 38.5 27.5

Direct 69.0 45.5 45.0 38.5 36.0
CoT 70.5 55.5 36.5 42.5 40.5

Few-shot 63.0 44.0 33.5 27.0 33.0
Logic-LM 68.7 51.2 31.4 26.0 29.2
SymbCoT 52.3 39.5 30.7 28.1 19.9

Sel-Inf 49.0 26.5 29.5 27.0 24.5
LogiPT 80.5 74.0 64.0 68.0 57.5
SFT-NL 93.5 78.5 67.5 66.5 52.5

SFT-Symb-Struct 74.5 65.5 50.0 43.0 34.0
SFT-Symb-Filter 68.0 59.5 48.0 51.5 45.0

Qwen-2.5
-7B-Instruct

SFT-Symb-Direct 82.0 60.0 51.5 42.5 37.0

Table 5: FLD accuracy breakdown by reasoning step ranges
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Question (original):
Facts: fact1: If this 
wormhole does shine 
chemoimmunology 
and it is catadromous 
then this introitus is 
not macerative. fact2: 
This introitus is 
macerative and 
weighs. fact3: This 
wormhole shines 
chemoimmunology. 
fact4: That 
gingerroot shines 
chemoimmunology 
and it is  
catadromous if it is 
not macerative. fact5: 
That gingerroot is 
upstager. fact6: That 
gingerroot is not 
catadromous and is 
not non-upstager if 
this wormhole is not 
catadromous.
Hypothesis: That 
gingerroot is not 
catadromous.

Question (filtered):
Facts: fact1: If this 
wormhole does shine 
chemoimmunology 
and it is 
catadromous then 
this introitus is not 
macerative. fact2: 
This introitus is 
macerative and 
weighs. fact3: This 
wormhole shines 
chemoimmunology. 
fact4: That 
gingerroot shines 
chemoimmunology 
and it is  
catadromous if it is 
not macerative. 
fact5: That 
gingerroot is 
upstager. fact4: 
That gingerroot is 
not catadromous and 
is not non-upstager 
if this wormhole is 
not catadromous.
Hypothesis: That 
gingerroot is not 
catadromous.

Natural Language Solution:
Step 1: void -> assump1: Let's 
assume that this wormhole is 
catadromous.;
Step 2: fact3 & assump1 -> int1: 
This wormhole shines 
chemoimmunology and this is 
catadromous.;
Step 3: int1 & fact1 -> int2: 
This introitus is not macerative.;
Step 4: fact2 -> int3: This 
introitus is macerative.;
Step 5: int2 & int3 -> int4: This 
is contradiction.;
Step 6: [assump1] & int4 -> int5: 
This wormhole is not 
catadromous.;
Step 7: int5 & fact6 -> int6: 
That gingerroot is non-
catadromous thing that is 
upstager.;
Step 8: int6 -> hypothesis;
Final conclusion:  
__PROVED__

Direct Logical Symbolization & 
Reasoning:
We first represent the facts and 
hypothesis using logical symbols. 
Facts:
Fact 1: (A(a) ∧ B(a)) → ¬C(b)
Fact 2: (C(b) ∧ E(b))
Fact 3: A(a)
Fact 4: ¬C(c) → (A(c) ∧ B(c))
Fact 5: D(c)
Fact 6: ¬B(a) → (¬B(c) ∧ D(c))
Hypothesis: ¬B(c).

Step 1: Assume for 
contradiction:  
assump1: B(a)
Step 2: From fact3 and assump1, 
we derive:  int1: (A(a) ∧ B(a))
Step 3: From int1 and fact1, we 
derive:  int2: ¬C(b)
Step 4: From fact2, we derive:  
int3: C(b)
Step 5: Contradiction:  int4: ⊥
Step 6: By reductio ad absurdum 
from Step 1:  int5: ¬B(a)
Step 7: From int5 and fact6, we 
derive:  int6: (¬B(c) ∧ D(c))
Step 8: From int6, we derive the 
hypothesis:  hypothesis
Final conclusion: 
__PROVED__

Formalization & Reasoning:
Our problem-solving procedure 
begins by formalizing all given 
facts and the hypothesis into 
first-order logic using 
standardized predicate 
definitions. Firstly, we define 
the entities involved: 
- a: This wormhole
- b: This introitus
- c: That gingerroot
For the predicate, we denote: 
A(x): x shines 
chemoimmunology  
B(x): x is catadromous  
C(x): x is macerative  
D(x): x is upstager  
E(x): x weighs
Then the facts can be translated 
as:
Fact 1: (A(a) ∧ B(a)) → ¬C(b)
Fact 2: (C(b) ∧ E(b))
Fact 3: A(a)
Fact 4: ¬C(c) → (A(c) ∧ B(c))
Fact 5: D(c)
Fact 6: ¬B(a) → (¬B(c) ∧ D(c))
The hypothesis to be verified 
can be translates to the logical 
formula: ¬B(c) 

We now begin the formal 
reasoning process:

Step 1: Assume for 
contradiction:  assump1: B(a)
Step 2: From fact3 and 
assump1, we derive:  int1: (A(a) 
∧ B(a))
Step 3: From int1 and fact1, we 
derive:  int2: ¬C(b)
Step 4: From fact2, we derive:  
int3: C(b)
Step 5: Contradiction:  int4: ⊥
Step 6: By reductio ad 
absurdum from Step 1:  int5: 
¬B(a)
Step 7: From int5 and fact6, we 
derive:  int6: (¬B(c) ∧ D(c))
Step 8: From int6, we derive 
the hypothesis:  hypothesis

Final conclusion: 
__PROVED__

Reasoning with Filtered Facts:
Our problem-solving procedure 
begins by formalizing all given 
facts and the hypothesis into 
first-order logic using 
standardized predicate 
definitions. Firstly, we define 
the entities involved:
- a: This wormhole
- b: This introitus
- c: That gingerroot
For the predicate, we denote:
A(x): x shines 
chemoimmunology
B(x): x is catadromous
C(x): x is macerative
D(x): x is upstager
E(x): x weighs
Then the facts can be 
translated as:
Fact 1: (A(a) ∧ B(a)) → ¬C(b)
Fact 2: (C(b) ∧ E(b))
Fact 3: A(a)
Fact 4: ¬B(a) → (¬B(c) ∧ D(c))
The hypothesis to be verified 
can be translates to the logical 
formula: ¬B(c)

We now begin the formal 
reasoning process:

Step 1: Assume for 
contradiction:  
assump1: B(a)
Step 2: From fact3 and 
assump1, we derive:  int1: (A(a) 
∧ B(a))
Step 3: From int1 and fact1, 
we derive:  int2: ¬C(b)
Step 4: From fact2, we derive:  
int3: C(b)
Step 5: Contradiction:  int4: ⊥
Step 6: By reductio ad 
absurdum from Step 1:  int5: 
¬B(a)
Step 7: From int5 and fact4, 
we derive:  int6: (¬B(c) ∧ D(c))
Step 8: From int6, we derive 
the hypothesis:  hypothesis

Final conclusion: 
__PROVED__

Figure 4: Comparison of a logical reasoning problem under four distinct training data settings. The figure illustrates:
(a) direct logical symbolization and reasoning ; (b) full formalization in first-order logic, including definitions and
fact translation ; (c) reasoning conducted purely in natural language; and (d) formal reasoning using a pre-filtered
set of facts. This comparison highlights the differences in processing pathways and the structure of the resulting
solutions for each approach.
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GPT-4o Response (Non-Necessary case)
To determine if the hypothesis "The statement that prostitution is caused by closing revisal is incorrect" is 
correct, we must reason using the provided facts.

Step 1: Assume closing revisal happens. (assumption for contradiction)
Step 2: Fact10 states, "Fandango occurs if that closing revisal happens is correct." Thus, if closing revisal 
happens, then fandango takes place.
...
Step 7: Using int1 and Fact7, it follows that lavishness does not take place. (int3)
Step 8: Fact11 confirms, "That lavishness does not occurs holds," which is consistent with our finding 
in int3.
Step 9: We proved that fandango happening (due to closing revisal) leads to prostitution happening, 
supporting step-wise reasoning until prostitution indeed occurs through factual consequences.
Step 10: Therefore, the assumption that prostitution is directly caused by closing revisal through the indirect 
chain (through fandango) leads to a valid conclusion that prostitution occurs.
Step 11: Hence, there is no contradiction observed that refutes the original claim that closing revisal causes 
prostitution through the chain found in statements and facts, indirectly.
Based on this reasoning, the hypothesis stating that "prostitution is caused by closing revisal is incorrect" 
does not hold any demonstrable contradictions and isn't proven false with the current set of facts.

Final conclusion: __DISPROVED__

 Facts and Hypothesis 
Fact1: Benignantness happens.
Fact2: That hands happens results in that that Highlanderness but not enlightening reincarnationism occurs 
is true.
Fact3: Calculating jailed takes place.
Fact4: If lavishness happens prostitution occurs but fandango does not takes place.
Fact5: That readiness but not arundinaceousness occurs are caused by forgettableness.
Fact6: If trumpeting Asvins takes place then amauroticness happens and outdoing glasnost does not occurs.
Fact7: That fandango takes place yields that lavishness does not takes place.
Fact8: Fandango brings about that prostitution but not lavishness occurs.
Fact9: Combining Yorkshire takes place.
Fact10: Fandango occurs if that closing revisal happens is correct.
Fact11: That lavishness does not occurs holds.
Fact12: Trumpeting Asvins but not stargazinging happens.
Fact13: That quarantining does not occurs leads to that that lavishness occurs and disgruntleding tularaemia 
does not takes place is right.
Fact14: Quarantining does not happens if that repressing Sclerodermataceae takes place and asterismalness 
occurs is wrong.

Hypothesis: The statement that prostitution is caused by closing revisal is incorrect."

Figure 5: Case Study: In the GPT-4o response, Step 8 redundantly confirms the conclusion from Step 7 (int3) by
citing Fact11, making it an unnecessary step in the reasoning chain. Step 9 is not atomic because it summarizes
a multi-step inference (from "fandango happening" to "prostitution happening" using Fact 8) as a single proven
outcome without detailing the individual logical operations involved.

Prompt Template: Direct Reasoning

Based on the provided facts, answer the question. Conclude with one
of the markers: "__PROVED__" for proven, "__DISPROVED__" for disproven, or
"__UNKNOWN__" if uncertain.
Facts:{facts}
Hypothesis:{hypothesis}

Figure 6: Prompt template for direct reasoning. Placeholders: {facts}, {hypothesis}.
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Prompt Template: CoT Reasoning

Based on the provided facts, answer the question. Conclude with one
of the markers: "__PROVED__" for proven, "__DISPROVED__" for disproven, or
"__UNKNOWN__" if uncertain.
Facts:{facts}
Hypothesis:{hypothesis}
Let’s analyze this step by step.

Figure 7: Prompt template for Chain-of-Thought (CoT) reasoning. Placeholders: {facts}, {hypothesis}.

Prompt Template: Few-Shot Reasoning

Based on the provided facts, answer the question. Conclude with one
of the markers: "__PROVED__" for proven, "__DISPROVED__" for disproven, or
"__UNKNOWN__" if uncertain.
Here are some examples of proofs for your reference:
[Start of example]
For example, for this question:
{example}
[End of example]
You can refer to the proof method of the above question, think step by step, and
give the result of this question.
Facts:{facts}
Hypothesis:{hypothesis}

Figure 8: Prompt template for few-shot reasoning. Placeholder: {example}, {facts}, {hypothesis}..
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Prompt Template: Entity and Predicate Extraction

You are a logic analysis expert. Please extract all entities and predicates
from the following logical expression translations:
Translation content: {formula_translations}
facts_formula: {facts_formula}
facts: {facts}
Special Requirement: If any entity or predicate symbol appears in the
facts_formula, but has NO direct definition in the Translation content, you
MUST go to the facts section and locate the corresponding natural language
description and extract it. Be extremely careful NOT to omit any such entities
or predicates. Only skip if it is literally missing from both translation content
and facts.
Task:
1. Identify all entities involved (e.g., this tablefork, this corsair) and
assign variables to them (a, b, c, d...)
2. Identify all predicates (e.g., is a raised, is a collotype) and assign symbols
(using the original symbols like A, B, C...)
Critical instructions:
- Only give full entity and predicate explanations if their definitions appear
in the formula_translations or facts.
- Only include entities and predicates that explicitly appear in the provided
translation content or facts.
- Do not invent, infer, or add any entities or predicates not directly mentioned
in the translations or facts.
- Maintain the original variable identifiers (e.g., ’a’ in A(a) corresponds to
the first entity).
- Maintain the original predicate identifiers (e.g., ’A’ in A(x) represents "x
is a raised").
- If a symbol (like ’c’, ’F’, etc.) doesn’t appear in the translations or facts,
do not include it in your output.
Expected output format:
We define the entities involved:
- a: [Corresponding entity, e.g., "This tablefork"]
- b: [Corresponding entity, e.g., "This corsair"]...
We denote:
[Original predicate symbol](x): [Predicate description]
[Original predicate symbol](x): [Predicate description]...
Please provide only the requested definitions without any additional information
or explanations.

Figure 9: Prompt template for extracting entities and predicates when lowercase variables (entities) are present.
Placeholders: {formula_translations}, {facts_formula}, {facts}.
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Prompt Template: Predicate Extraction (No Entities)

You are a logic analysis expert. Please extract all predicates from the
following logical expression translations:
Translation content: {formula_translations}
facts_formula: {facts_formula}
facts: {facts}
Special Requirement: If any entity or predicate symbol appears in the
facts_formula, but has NO direct definition in the Translation content, you
MUST go to the facts section and locate the corresponding natural language
description and extract it. Be extremely careful NOT to omit any such entities
or predicates. Only skip if it is literally missing from both translation content
and facts.
Task: Identify all predicates and translate each uppercase symbol directly.
Critical instructions:
- For each uppercase symbol in the facts_formula, provide a direct translation
in the format: [SYMBOL]: xxx happened.
- **Do not omit any symbols that appear in facts_formula or translation content.
If they appear, they must be translated.**
- Only include symbols that actually appear in the facts_formula or translation
content.
- Do not invent or infer any entities or relationships not explicitly mentioned.
- If a predicate’s meaning is clearly defined in the translations or facts, use
that definition.
- Do not include any lowercase symbols or entity definitions as they are not
relevant in this case.
- If some symbols appear in facts_formula but not in translation content, you
can directly translate the entire formula expression containing those symbols
rather than translating each symbol individually. For example, for an expression
like ¬C→¬(F∧¬E), you don’t need to separately translate E if it’s not defined
elsewhere.
Expected output format:
We define:
A: xxx happened.
B: xxx happened.
AB: xxx happened...
Please provide only the requested definitions without any additional information
or explanations.

Figure 10: Prompt template for extracting predicates when no lowercase variables (entities) are present. Placeholders:
{formula_translations}, {facts_formula}, {facts}.
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Prompt Template: Logic Proof Translation

You are a logic proof translator. Your task is to translate a logical proof
sequence from symbolic notation into a clear, step-by-step explanation.
Given: 1. A proof sequence in symbolic form 2. Definitions of entities and
predicates used in the proof 3. Logical formula translations
Task: Convert the symbolic proof into a concise, step-by-step explanation that
a human can easily follow.
Proof sequence to translate: {proofs_sentence}
Conclusion: {conclusion}
Instructions for translation:
1. Split the proof at each semicolon (;) to identify individual steps.
2. For each step: First, write a brief, natural language explanation on its
own line (e.g. "Assume for contradiction: [formula]" or "From [inputs], we
derive:"). On the next line, write the step label and the logical formula as in
the original proof (e.g. assump1: A(b), int2: ¬B(b), etc.). Do not put both
the explanation and the formula on the same line. For assumptions, use "Assume
for contradiction: [formula]" then write assumpX: [formula] on the following
line. For a standard derived step, use "From [inputs], we derive:" then on the
following line write intX: [formula]. For contradictions, use "Contradiction:"
then on the following line write "⊥". For reductio ad absurdum, use "By reductio
ad absurdum from [step number]:" then write the derived conclusion on the next
line. Do not skip formula labels or step names. Write both the explanation and
the labeled formula.
3. Maintain correct logical notation (such as ¬, ∧, ∨, →, ∃, ⊥, etc.).
4. In the final step, clearly relate the conclusion to the hypothesis, if
appropriate.
5. The output should be only the formatted translation, with no additional
commentary.
Output format:
Step 1: [Brief explanation]
[Formula derived]
Step 2: From [input], we derive:
[Formula derived]
Step 3: Assume for contradiction:
assumpX: [Formula derived]
...
{status_message_content}
Final conclusion: {conclusion}
The conclusion must use exactly two underscores before and after either PROVED
or DISPROVED or UNKNOWN, with no additional spaces or characters. Translate
the proof concisely but retain all logical information from the original proof
sequence. Do not add any steps not present in the original, and do not skip any
steps. Output the translation only, with no additional commentary.

Figure 11: Prompt template for logic proof translation. The placeholder {proofs_sentence}
is for the symbolic proof sequence. The placeholder {conclusion} is for the conclusion
(__PROVED__/__DISPROVED__/__UNKNOWN__). The placeholder {status_message_content} is
replaced by the string ’The search path has been exhausted without finding a way to either prove or disprove
the hypothesis.’ if {conclusion} is ’__UNKNOWN__’, and is an empty string otherwise (which will result in
different spacing around it as per the original prompt generation logic).
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Prompt Template: Logical Proof Generation

Solve the following logical reasoning problem using formal symbolic logic and
provide a step-by-step reasoning process.
Follow these steps precisely:
1. Define predicates to represent terms in the problem
2. Translate all facts and the hypothesis into formal logical expressions
3. Derive the conclusion through systematic reasoning
4. State the final conclusion
OUTPUT FORMAT:
Your answer should follow this format exactly:
- Begin with "Our problem-solving procedure begins by formalizing all given
facts and the hypothesis into first-order logic using standardized predicate
definitions."
- Then state "For the predicate, we denote:" followed by your predicate
definitions
- Translate each fact into a formal logical expression
- Present your reasoning steps in numbered format (Step 1:, Step 2:, etc.)
- End with "Final conclusion: " followed by either "__PROVED__" or "__DISPROVED__"
IMPORTANT: The conclusion must use exactly two underscores before and after
either PROVED or DISPROVED, with no additional spaces or characters.
Here is an example problem solution, You need to strictly follow the format like
this:
Example Solution:
{fewshot_example}
Now, solve this problem: {question}
The answer should be: {label}
Provide only the solution with no additional commentary or preamble.

Figure 12: Prompt template for generating a logical reasoning process. Placeholders: {question} for the problem
statement, {label} for the expected answer (e.g., "__PROVED__"), and {fewshot_example} for a formatted
example solution.

Prompt Template: Step Validity Evaluation

Premises:
{premises_str}

Conclusion:
{concl_text_full}

Do the premises entail the conclusion? Answer true or false only.

Figure 13: Prompt template for evaluating step validity. Placeholders: {premises_str} (a string listing the
premises, e.g., "fact1: Text of fact 1 int1: Text of intermediate 1"), {concl_text_full} (a string representing the
conclusion, e.g., "int2: Text of intermediate 2" or "hypothesis: Text of hypothesis"). The model is expected to return
’true’ or ’false’.
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Prompt Template: Step Atomicity Evaluation

Premises:
{premises_str}

Conclusion:
{concl_text_full}

Is this inference atomic...? Answer true or false only.

Figure 14: Prompt template for evaluating step atomicity. Placeholders: {premises_str} (a string listing the
premises), {concl_text_full} (a string representing the conclusion). The model is expected to return ’true’ or
’false’ indicating if the inference from premises to conclusion is a single, indivisible logical step.
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