Dissecting Logical Reasoning in LLMs: A Fine-Grained Evaluation and
Supervision Study

Anonymous ACL submission

Abstract

Logical reasoning is a core capability for many
applications of large language models (LLMs),
yet existing benchmarks often rely solely on
final-answer accuracy, failing to capture the
quality and structure of the reasoning process.
We propose FineLogic, a fine-grained evalua-
tion framework that assesses logical reasoning
across three dimensions: overall benchmark ac-
curacy, stepwise soundness, and representation-
level alignment. In addition, to better under-
stand how reasoning capabilities emerge, we
conduct a comprehensive study on the effects
of supervision format during fine-tuning. We
construct four supervision styles (one natural
language and three symbolic variants) and train
LLMs under each. Our findings reveal that
natural language supervision yields strong gen-
eralization even on out-of-distribution and long-
context tasks, while symbolic reasoning styles
promote more structurally sound and atomic
inference chains. Further, our representation-
level probing shows that fine-tuning primarily
improves reasoning behaviors through step-by-
step generation, rather than enhancing short-
cut prediction or internalized correctness. To-
gether, our framework and analysis provide a
more rigorous and interpretable lens for evalu-
ating and improving logical reasoning in LLMs.
The code is available at https://anonymous.
4open.science/r/FinelLogic.

1 Introduction

Large language models (LLMs) are rapidly emerg-
ing as transformative tools across a wide array
of applications (Achiam et al., 2023; Guo et al.,
2024b; Thirunavukarasu et al., 2023; Nam et al.,
2024). Among these, reasoning serves as a core
capability underpinning tasks such as problem-
solving (Lu et al., 2023), scientific question answer-
ing (Guo et al., 2024a), and code analysis (Nam
et al., 2024). Consequently, a growing body of
research has sought to evaluate and enhance the

reasoning abilities of LLMs from multiple perspec-
tives (Wei et al., 2022; Guo et al., 2025, 2024a).
Within this broader landscape, logical reasoning
stands out as a particularly challenging and in-
tellectually demanding domain (Saparov and He,
2022a). It requires a synthesis of natural language
understanding, formal logical interpretation, and
multi-step inferential processing (Patel et al., 2024;
Saparov et al., 2023; Morishita et al., 2024).

Despite growing interest in the logical reasoning
capabilities of LLMs, most existing benchmarks
focus narrowly on whether a model produces the
correct final answer (Patel et al., 2024; Parmar et al.,
2024; Han et al., 2022). This binary evaluation, typ-
ically assessing only the correctness of a “True” or
“False” output, can be misleading, as it fails to de-
termine whether the model arrived at the answer
through valid multi-step reasoning (Saparov and
He, 2022a). Consequently, correct answers may
reflect guesswork rather than genuine logical in-
ference. We are thus motivated to address RQ1:
How to rigorously evaluate LL.Ms’ step-by-step
correctness in logical reasoning tasks, beyond
the binary evaluation of the final answer?

In parallel with benchmarking efforts, numerous
methods have been proposed to enhance the multi-
step logical reasoning abilities of LLMs. While
many leverage inference-time strategies (Wang
et al., 2025), in-context learning (Creswell et al.,
2022; Xu et al., 2024), or external logical verifiers
(Pan et al., 2023) to guide the model toward more
rigorous reasoning, some recent studies explored
supervised fine-tuning (SFT) as a more direct ap-
proach to enhancing logical reasoning (Morishita
et al., 2024; Feng et al., 2023). For example, Mor-
ishita et al. (2024) proposes a synthetic logic corpus
designed to offer broad and systematic coverage
of logical knowledge. However, it remains unclear
for this important question, RQ2: What style of
training data, natural language or formal logical

https://anonymous.4open.science/r/FineLogic
https://anonymous.4open.science/r/FineLogic
https://anonymous.4open.science/r/FineLogic

General Logical Reasoning Benchmark

Metric: LLM accuracy

Not comprehensive enough!

FineLogic

~
LLM accuracy |

|
. .

IfStepwise Soundness:
{ > Validity

| » Relevance

L » Atomicity

Question:
Given the facts that (1) Every cat drinks milk, and (2) Tom is a cat,
can we conclude that Tom drinks milk?

NL-Reasoning:

Step 1: Fact 1 -> int1: If Tom is cat, then Tom drinks milk.

Step 2: Fact 2 & int1 -> hypothesis: Tom is cat, and (If Tom is cat,
then Tom drinks milk), so Tom drinks milk.

I~ 7/ Which is better for
SFT data design?

80

Symbolic Reasoning: =

For the predicates, we denote:

Cat(x): x is a cat. Milk(x): x drinks milk.

— Fact 1: Vx(Cat(x)— Milk(x)) Fact 2: Cat(Tom)
Hypothesis: Milk(Tom)

e — —

Reasoning process:
i » Correctness spanning steps

| » Redundant facts identification
| > Next-step Derivability

AN

|
|
| Step 1: From Fact 1, we derive: intl: Cat(Tom)— Milk(Tom)

: Step 2: From Fact 2 and int1, by Modus Ponens, we derive the
| | hypothesis: Milk(Tom)

1 o

Figure 1: (Left) LLM logical reasoning evaluation: the general benchmark v.s. our fine-grained benchmark
FineLogic. (Right) processing a logical reasoning task using natural language v.s. using symbolic methods.

symbols, better facilitates the learning of multi-
step logical reasoning through SFT? Addressing
this research question is important for understand-
ing how to most effectively instill logical reasoning
capabilities in LL.Ms.

To address RQ1, we propose FineLogic, a new
evaluation framework designed to more fine-
grainedly assess the logical reasoning capabilities
of LLMs. Specifically, our framework evaluates
models along three complementary dimensions: (1)
Overall benchmark accuracy: This metric cap-
tures a model’s ability to perform multi-step logical
reasoning and its generalizability across problems
from diverse domains. (2) Stepwise Soundness:
Inspired by Saparov and He (2022a), we assess the
quality of each intermediate reasoning step using
three criteria—validity (whether the step is logi-
cally valid), relevance (whether its conclusion is
used in later steps), and atomicity (whether it ap-
plies a single, minimal inference rule). These met-
rics aim to evaluate the model’s ability to generate
human-interpretable and logically coherent reason-
ing chains. (3) Representation-level probing (Ye
et al., 2024): By applying probing techniques to
LLM hidden representations, this evaluation pro-
vides insight into whether the model’s understand-
ing of logical structure is merely surface-level or
embedded in its internal state.

To address RQ2, we systematically investigate how
different supervision formats affect the reasoning
capabilities of LLMs. Specifically, we examine
both natural language-based training data and logic-
symbol-based representations, including several
structured variants. Our analysis shows that natu-
ral language supervision is particularly effective

in conveying core reasoning patterns, leading to
strong performance across a wide range of eval-
uation benchmarks. Notably, it exhibits impres-
sive generalizability even on out-of-distribution
test sets that require long reasoning chains. How-
ever, a deeper examination of stepwise soundness
and internal representation probing reveals cer-
tain limitations. Models trained with natural lan-
guage supervision tend to struggle with producing
strictly minimal reasoning chains (e.g., more likely
including redundant steps and applying multiple
inference rules in a single step, as shown in Fig-
ure 5). In contrast, models trained with symbolic
reasoning styles are better at filtering out irrelevant
information, generating atomic steps aligned with
individual deduction rules, and maintaining cleaner,
logically grounded reasoning trajectories.

To summarize, our contributions are as follows:

* We propose FineLogic, a unified and rigorous
evaluation framework for assessing LLMs’ logi-
cal reasoning, moving beyond final-answer ac-
curacy to evaluate the quality, interpretability,
and coherence of their solutions.

* We conduct a comprehensive study on the effects
of supervision format, fine-tuning LLMs on both
natural language and symbolic logic data to ex-
amine their impact on reasoning across general
and complex tasks.

* Through systematic analysis of models trained
with different supervision styles, we identify key
trade-offs between generalization and structural
reasoning quality. These findings provide con-
crete insights into the design and selection of
effective training data for supervised logical rea-

(1 Representation-level Probing M

Predict Label { PROVED, DISPROVED }
AC) A Arvy A

s e o s s o s s s s

<user> Given the fact ... </user> <assistant> Step 1: ... (end) ... Step i-1: (end) Stepi: ... (end) ... Stepn: ... (end) </assistant>

LLM

FineLogic .
Correctness Spotting Steps:
/0vera11 Benchmark Accuracy R
Multi Pronto
FLD | FOLIO LogiEval 0A

- J

Problem

) Redundant Facts Identification:

/Stepwise Soundness

A Solution
Predict Label { necessary, redundant }

Step n: facti A intj— int k.
Analyze Step n:

Step n is valid if int k is provable

s s s Y s s s s e |
<user> Given the fact ... </user> <assistant> Fact i: ... (end) </assistant>

Add a
classification layer

LLM

Freeze the LLM

ﬁ—/

from facti A intj Problem

Step n is relevant if int k is used in

Next-Step Derivability:

One fact to be evaluated
Predict : I.abel,[derivable, not derivable }

subsequent steps
Step n is atomic if int k can be

proved by facti A int j with

s e s s s s s o s s

<user> Given the fact ... </user> <assistant> Step 1: ... (end) ... Step i: ... (end)... Stepk: ... (end) </assistant>

LLM

L exactly one deduction rule.) _ Y Problem

N

Yl:urrent steps A new step to be evaluated /

Figure 2: Overview of FineLogic, where overall benchmark accuracy, stepwise soundness, and representation-level
probing are combined for a fine-grained evaluation of LLM’s logical reasoning ability.

soning.
2 Related Works

Logical Reasoning Benchmarks. Numerous
benchmarks have been proposed to evaluate the log-
ical reasoning abilities of LLMs. Liu et al. (2023);
Luo et al. (2023); Havrilla et al. (2024) mix logical
and commonsense reasoning, making it hard to iso-
late logical competence. Others assess multi-step
reasoning but rely only on final-answer accuracy
(Parmar et al., 2024; Han et al., 2022; Tafjord et al.,
2020; Mondorf and Plank, 2024). While ProntoQA
(Saparov and He, 2022a; Saparov et al., 2023) intro-
duces stepwise evaluation, it uses short problems
and focuses only on step correctness. In contrast,
our FineLogic framework provides a more rigorous
and comprehensive assessment across sample-level
correctness, step-level reasoning quality, and inter-
nal representation alignment.

Logical Reasoning Enhancement. Several stud-
ies have aimed to improve LLMs’ performance on
logical reasoning tasks. Some approaches rely on
translating inputs into formal logic and using pro-
grammable verifiers to solve problems (Olausson
et al., 2023; Pan et al., 2023; Yang et al., 2023;
Ryu et al., 2024), which bypasses the model’s own
reasoning process. Others use in-context learn-
ing or inference-time strategies to guide output
without fundamentally enhancing reasoning ability
(Creswell et al., 2022; Wang et al., 2025; Xu et al.,
2024; Sun et al., 2023; Toroghi et al., 2024). While
a few works have explored fine-tuning or reinforce-

ment learning to strengthen logical reasoning (Feng
et al., 2023; Morishita et al., 2023, 2024; Xie et al.,
2025; Yang et al., 2022; Xie et al., 2024), they have
not examined which types of supervision are most
effective for teaching LLMs to reason. In this work,
we focus specifically on this open question.

3 FineLogic Evaluation Framework

As illustrated in Figure 2, FineLogic builds on ex-
isting benchmarks and evaluates logical reasoning
ability from three complementary perspectives: (1)
Overall benchmark accuracy, which measures
whether the model can correctly solve multi-step
reasoning tasks; (2) Stepwise soundness, which
evaluates whether each reasoning step is valid and
interpretable; (3) Representation-level probing,
which assesses whether the model internally cap-
tures the problem’s reasoning structure beyond
surface-level patterns.

3.1 Overall Benchmark Accuracy

Similar to most benchmarks, our overall bench-
mark accuracy focuses on final-answer correctness.
While coarse-grained, it offers a quick and effec-
tive way to assess a model’s overall reasoning abil-
ity and cross-domain generalization. We evaluate
on four challenging multi-step reasoning bench-
marks: FLD (Morishita et al., 2024), FOLIO (Han
et al., 2022), Multi-LogiEval (Patel et al., 2024),
and ProntoQA (Saparov and He, 2022a). For FLD,
we generate 50 samples per step (0-19) and 100
UNKNOWN cases. For FOLIO, the full test set is

Dataset Samples Label Types
FLD (Morishita et al., 2024) 1100 {T, F, Unknown}
FOLIO (Han et al., 2022) 203 {T, F, Unknown}
Multi-Logical (Patel et al., 2024) 390 {T, F}
Pronto-QA (Saparov and He, 2022a) 500 {T, F}

Table 1: Sample counts and label types for each dataset.

used. For Multi-LogiEval, we select first-order and
propositional problems with depths 4-5. For Pron-
toQA, we follow Pan et al. (2023) and evaluate on
the 500 hardest 5-hop samples. Dataset statistics
are shown in Table 1, with details in Appendix A.1.

3.2 Stepwise Soundness

Building on Saparov and He (2022a), we evalu-
ate the soundness of each intermediate reasoning
step along three dimensions: validity (whether the
step logically follows from its premises), relevance
(whether its conclusion is used in later steps), and
atomicity (whether it applies a single, minimal
inference rule).

To assess these criteria, we extract the premises and
conclusion of each step. We use GPT-4.1-mini to
evaluate validity and atomicity. Manual verification
on 200 annotated steps shows that GPT-4.1-mini
achieves over 98% accuracy on both metrics. For
relevance, we determine whether the conclusion of
step ¢ (e.g., int 7) is referenced in any subsequent
step k > i.

We then compute the proportion of samples in
which all steps are valid, relevant, and atomic,
providing a sample-level measure of reasoning in-
tegrity. Full prompt templates are provided in Fig-
ures 13 and 14.

3.3 Representation-level Probing

Inspired by Ye et al. (2024), we introduce
representation-level probing accuracy to assess
whether LLMs internally understand how and when
to perform specific reasoning step. Unlike behav-
ioral metrics, this method aligns internal represen-
tations with reasoning structure and tracks how
reasoning knowledge evolves across steps.

We construct probing datasets from FLD test sam-
ples requiring 10-20 reasoning steps, using 450
problems for training and 100 for testing across
three tasks, implementation details are provided in
Appendix B:

Correctness Spanning Steps (CSS): Identifies the
earliest step after which the model consistently pre-
dicts the correct label. The spanning length is the

number of remaining steps from that point to the
end. Higher accuracy indicates earlier internaliza-
tion of the correct answer.

Redundant Facts Identification (RFI): After pre-
senting all facts and the hypothesis, we append
three necessary and three redundant facts. A clas-
sifier is trained to distinguish between them, mea-
suring the model’s ability to identify irrelevant in-
formation. Higher accuracy reflects better fact dis-
crimination.

Next-Step Derivability (NSD): At six randomly
selected intermediate steps, we append three valid
and three invalid candidate steps. Probing predicts
which are currently derivable. Higher accuracy
indicates stronger awareness of valid next steps.

Our evaluation builds on two prior lines of
work—stepwise reasoning evaluation (Saparov and
He, 2022a) and representation-level probing (Ye
et al., 2024)—but introduces key extensions tai-
lored to logical reasoning.

Stepwise Soundness Evaluation. Saparov and
He (2022a) evaluate reasoning steps using three
criteria: validity (logical entailment), utility (con-
tribution to the final proof), and atomicity (single
rule application per step). Since utility depends on
gold proof annotations and is often impractical, we
propose a more accessible alternative: relevance,
which checks whether a step’s conclusion is used
in any subsequent inference. Moreover, prior work
focuses on individual steps, while we extend this to
the solution level by introducing all-steps validity,
relevance, and atomicity—sample-level metrics
that reflect whether a full reasoning chain is logi-
cally sound and interpretable.

Representation-Level Probing. Ye et al. (2024)
use probing to assess internal reasoning in math
problems. We adapt this method to logical reason-
ing and introduce a new metric: Correctness Span-
ning Steps (CSS), which identifies the earliest
point after which the model consistently predicts
the correct label. CSS approximates the model’s
internal reasoning depth by measuring how early it
stabilizes on the correct answer.

4 Supervision Format and Style: SFT
Data Design

In this section, we examine how different super-
vision styles for SFT affect the logical reasoning
abilities of LLMs. Our training data is based on

FLD and ProntoQA, both of which include gold
reasoning chains suitable for constructing diverse
supervision styles.

For FLD, we generate 500 problems for each rea-
soning depth from 0 to 15, plus 1500 UNKNOWN sam-
ples, totaling 9500 training instances. For Pron-
toQA, we use 3200 3-hop problems. During eval-
uation, FLD covers depths 0—19, while ProntoQA
uses only the hardest 5-hop samples.

We compare four supervision styles across two cat-
egories: natural language-based and symbolic rea-
soning. Each style reflects a different level of ab-
straction and clarity in reasoning structure.

* NL-Reasoning: Solutions are written entirely
in natural language, with no intermediate sym-
bolization or abstraction.

* Symbolic Reasoning (Structured): Problems
are formalized by defining variables and predi-
cates, translating facts and hypotheses into logi-
cal forms, and reasoning step by step using sym-
bolic logic.

* Symbolic Reasoning (Filtered): A simplified
variant where only necessary facts are retained,
shortening reasoning chains and reducing input
complexity.

¢ Symbolic Reasoning (Direct): Facts are di-
rectly expressed in symbolic form without defin-
ing variables or predicates, which shortens se-
quences but may introduce ambiguity.

A small portion of translations, connective phrases,
and intermediate steps are generated using GPT-
4.1. Prompt examples are shown in Figure 4 (Ap-
pendix E).

5 Experiments

5.1 Experimental Setup

We conduct all SFT experiments on two mod-
els: LLaMA-3.1-8B-Instruct and Qwen-2.5-7B-
Instruct, both fully fine-tuned for 3 epochs with
a learning rate of 1 x 1075,

Our baselines include four models: LLaMA-3.1,
Qwen-2.5, GPT-40, and DeepSeek R1. Fine-
tuning-based methods use only LLaMA and Qwen
as base models. Due to computational constraints,
representation-level probing is conducted only on
LLaMA, Qwen, and their SFT variants. Stepwise
evaluation requires strict output formatting and en-

forces explicit step-by-step generation.

We compare SFT models trained with different
supervision styles against these baselines:

* Direct Answer

* Chain-of-Thought (CoT) (Wei et al., 2022)
* Few-Shot Learning (Brown et al., 2020)

* LOGIPT (Creswell et al., 2022)

* Selection-Inference (Creswell et al., 2022)
e SymbCoT (Xu et al., 2024)

* LogicLM (Pan et al., 2023)

More detailed experimental setups can be found in
Appendix A.

5.2 Results

We conducted experiments for analyzing the per-
formance of four models combined with various
prompting and fine-tuning settings under the Fine-
Logic Evaluation Framework.

5.2.1 Results on Overall Benchmark
Accuracy

As shown in Table 1, we report the overall bench-
mark accuracy across four datasets, as well as the
step-wise accuracy on the FLD benchmark, strat-
ified by reasoning depth (Figure 3. Our analysis
yields several key observations:

CoT and few-shot prompting generally improve
performance, but baseline methods do not con-
sistently yield gains. Across the four evaluation
datasets, both CoT and few-shot prompting lead
to broadly positive improvements, indicating their
general effectiveness in enhancing LLM perfor-
mance on logical reasoning tasks. Notably, few-
shot prompting consistently outperforms CoT,
suggesting that for complex logical tasks, showing
the model how to think (via exemplars) is more
beneficial than simply encouraging it to reason step
by step. This may be because logical questions
naturally elicit multi-step reasoning under direct
prompting, limiting the marginal benefit of CoT. In
contrast, few-shot demonstrations provide clearer
procedural scaffolding, which appears more effec-
tive in guiding the model’s reasoning process.

In contrast, baseline prompting methods such as
Logic-LM, SymbCoT, and Sel-Inf show inconsis-
tent performance and sometimes underperform
even direct prompting. For example, Logic-LM
performs well on simpler problems but degrades
on complex ones, with Qwen’s Multi-LogiEval ac-

Multi-

Model Setting FLD FOLIO LogiEval ProntoQA
Direct 53.0 72.4 71.0 98.8
CoT 54.1 69.5 76.9 98.6
Few-shot 58.3 74.4 84.4 99.0
CE Logic-LM 46.9 72.1 83.3 100
SymbCoT 47.6 71.6 72.1 100
Sel-Inf 51.9 66.5 84.9 94.4
Direct 77.2 75.9 81.8 100
CoT 77.6 78.8 79.0 100
Few-shot 77.3 81.8 84.6 99.4
DeepSeek-R1 Logic-LM 69.6 775 81.2 96.4
SymbCoT 69.6 82.8 72.0 98.2
Sel-Inf 83.8 85.2 73.1 96.0
Direct 31.7 54.7 40.5 64.6
CoT 29.3 50.7 44.6 63.8
Few-shot 41.0 46.5 59.4 48.9
Logic-LM 38.3 52.5 444 77.6
SymbCoT 38.1 58.8 46.3 78.8
Llama-3.1-8B-Instruct Sel-Inf 48.5 47.5 55.2 64.2
LogiPT 53.3 61.7 57.9 76.4
SFT-NL 67.5 57.1 71.3 99.6
SFT-Symb-Struct 63.2 56.2 59.7 99.8
SFT-Symb-Filter 66.7 54.7 50.8 91.0
SFT-Symb-Direct 52.8 483 53.9 98.8
Direct 46.6 61.1 37.0 90.6
CoT 50.4 65.5 54.3 90.4
Few-shot 53.2 68.5 61.3 91.1
Logic-LM 46.6 69.1 27.1 85.8
SymbCoT 22.6 57.5 63.9 87.0
Qwen-2.5-7B-Instruct Sel-Inf 49.0 62.6 39.7 92.6
LogiPT 58.6 61.7 55.6 524
SFT-NL 71.0 62.6 64.3 97.4
SFT-Symb-Struct 54.6 50.7 57.7 83.8
SFT-Symb-Filter 54.7 55.7 61.0 96.0
SFT-Symb-Direct 54.8 53.2 58.7 61.4

Table 2: Overall Benchmark Accuracy on four models with different settings.

curacy dropping to 27.1%. SymbCoT sometimes
improves over Logic-LM (e.g., 63.8% on Multi-
LogiEval with Qwen) but also shows large drops
elsewhere (e.g., 22.6% on FLD, versus 44.6% with
direct prompting).

Supervised fine-tuning outperforms inference-
time methods, but its effectiveness heavily de-
pends on the supervision style. Compared to
inference-time prompting strategies, SFT yields
significantly greater improvements in logical rea-
soning performance. Among all training styles,
natural language-based supervision (SFT-NL)
produces the most substantial and consistent
gains across datasets and models.

Notably, even though SFT was conducted using
only problems from FLD and ProntoQA with rea-
soning depths less than those in the test set, the
resulting models show robust improvements. For
example, under the SFT-NL setting, Llama’s accu-

racy on FLD increased from 31.7% (direct prompt-
ing) to 67.5% and Qwen improved from 46.6% to
71.0%, approaching the best-performing baseline
DeepSeek R1. On ProntoQA, most SFT variants
achieve over 90% accuracy. Furthermore, even
on out-of-distribution datasets such as FOLIO and
Multi-LogiEval, some SFT settings deliver strong
generalization. For instance, on Multi-LogiEval,
Llama with SFT-NL improved to 71.3%, matching
the performance of GPT-4o.

While SFT-NL demonstrates the best overall and
most transferable performance, other styles of
supervision yield much smaller gains. This
may be since LLMs are primarily pretrained on
natural language data, making symbolic reason-
ing—especially when it requires both translation
and inference over logic forms—significantly more
challenging. Among the symbolic settings, SFT-
Symb-Filter consistently outperforms other vari-

100

—e— GPT-40 (Direct)
—=— SFT-NL

—&— SFT-Symb-Struct
—&— SFT-Symb-Filter
SFT-Symb-Direct

90

80
70

60

30

Accuracy (%)

0-3 4-7 8-11
Reasoning Steps

12-15 16-19

(a) Performance of Llama-3.1-8B-Instruct SFT.

100

—e— GPT-40 (Direct)
—a— SFT-NL

—4— SFT-Symb-Struct
—&— SFT-Symb-Filter
SFT-Symb-Direct

90

80

o N

C NG

30 03 47 811
Reasoning Steps

Accuracy (%)

(b) Performance of Qwen-2.5-7B-Instruct SFT.

Figure 3: Comparison of SFT variants’ performance across different reasoning step ranges in FLD dataset. Both
charts show accuracy declines with increasing inference steps, with GPT-40 (Direct) included as a reference. In (a),
Llama with SFT-Symb-Filter maintains strong performance even in the 16-19 step range (out-of-distribution), while
in (b), Qwen with SFT-NL shows remarkable early-stage reasoning capabilities.

ants. By removing redundant reasoning steps from
the symbolic training data, this setting simplifies
training and enhances performance. In contrast,
SFT-Symb-Direct, which skips variable and pred-
icate definitions entirely, performs poorly, likely
due to the introduction of ambiguity and the lack
of explicit logical structure.

Accuracy declines with reasoning depth, but
SFT enables small models to match GPT-40 even
on the most challenging out-of-distribution sam-
ples. As shown in Figure 3, model accuracy de-
creases as the required number of reasoning steps
increases. Nonetheless, our results show that SFT
substantially improves model robustness, even on
long-chain, out-of-distribution examples. On in-
distribution FLD test problems (0—15 steps), SFT
models trained under most styles outperform GPT-
40. For instance, across reasoning depths up to
15, both Llama and Qwen with SFI-NL surpass
GPT-40’s performance.

On more difficult out-of-distribution questions re-
quiring 16-19 steps of reasoning—where no train-
ing samples are available—performance drops by
approximately 10% relative to the 12—-15 step range.
However, even under these conditions, SFT models
maintain accuracy comparable to GPT-40. Com-
bined with strong generalization to unseen datasets
such as FOLIO and Multi-LogiEval, these results
suggest that SFT induces genuine logical reason-
ing ability in LLMs. At the same time, the sharp
performance decline on longer reasoning chains im-
plies that some portion of success on shorter prob-
lems may still stem from shallow pattern matching
or memorization, rather than robust inference. De-
tailed results can be found in C.

Model ‘ Setting All Valid All Relevant All Atomic
GPT-40 Few-shot 7.6 56.2 44
Deepseek-R1 ‘ Few-shot 13.1 33.8 5.7
Few-shot 4.5 17.4 1.6

| LogiPT 52 285 49

Llama-3.1- SFT-NL 40.9 8.5 13.0
8B-Instruct | SFT.Symb-Struct 35.0 15.4 247
SFT-Symb-Filter 2138 16.9 12.4

| SFT-Symb-Direct 337 102 251

Few-shot 10.1 35.1 26

| LogiPT 6.4 39.8 53

Qwen25- SFT-NL 27.6 5.4 8.5
7B-Instruct | SFT-Symb-Struct 353 9.1 19.8
SFT-Symb-Filter 16.7 11.7 10.5

| SFT-Symb-Direct 19.7 03 11.9

Table 3: Stepwise soundness of various models under
settings without inference-time interventions. The best
variant of Llama and Qwen is highlighted.

5.2.2 Results on Stepwise Soundness

Table 3 reports the results of stepwise soundness
evaluation across different models and training
settings, offering a more fine-grained view of how
well LLMs internalize logical reasoning principles.

The All Valid metric measures the proportion
of samples in which every generated reasoning
step is logically valid. This is a stringent indica-
tor of a model’s grasp of formal reasoning rules.
We observe that models trained with the SFT-NL
and SFT-Symb-Struct settings achieve particularly
high All Valid scores—substantially outperform-
ing even GPT-40 and DeepSeek-R1. Notably, the
Llama model fine-tuned under SFT-NL achieves an
All Valid rate of 40.9

The All Relevant metric measures the proportion
of samples in which every generated step is rele-
vant—i.e., none of the steps are redundant or un-

Model Setting CSS RFI NSD
- 80 99 320
LogiPT 8.1 07 442
Llama-3.1- | SFT-NL 85 99 515
8B-Instruct | GET.Qymb-Struct 8.7 11.1 36.1
SFT-Symb-Filter 9.7 11.1 464
SFT-Symb-Direct 9.0 18.5 41.2
- 86 74 433
LogiPT 81 92 432
Qwen-2.5- | SFT-NL 82 160 443
7B-Instruct | SFT-Symb-Struct 8.5 14.8 433
SFT-Symb-Filter 83 16.0 45.4
SFT-Symb-Direct 8.6 18.5 43.3

Table 4: Evaluation of Correctness Spanning Steps
(CSS), Redundant Fact Identification (RFI), and Next-
step Derivability (NSD) on Llama and Qwen. ‘-’ indi-
cates the original model. The best variant is highlighted.

necessary for reaching the conclusion. GPT-40 and
LogiPT perform exceptionally well on this metric,
implying that they rarely generate superfluous rea-
soning steps. In contrast, SFT-NL and SFT-Symb-
Direct consistently underperform. For SFT-NL,
this may stem from the nature of natural language
reasoning: due to its semantic richness and lack
of structural constraints, the model may occasion-
ally include exploratory or overly verbose steps,
unsure of which inference is most effective. For
SFT-Symb-Direct, the poor performance is likely
due to the model may failure to fully capture inter-
fact dependencies, resulting in reasoning sequences
that are logically valid but contain unused or irrele-
vant steps.

The All Atomic metric evaluates whether every
step in a reasoning chain corresponds to a sin-
gle atomic inference—i.e., whether steps avoid
combining multiple logical moves. Here, SFT-
Symb-Struct consistently outperforms other set-
tings, highlighting the advantages of structured
symbolic reasoning. Symbolic reasoning is inher-
ently more compact and constrained, which likely
helps the model learn what constitutes a minimal,
rule-aligned inference step. In contrast, natural
language reasoning often fuses multiple reasoning
rules into a single step, making it harder for the
model to isolate atomic operations.

5.2.3 Results on Representation-level Probing

Table 4 presents results from our representation-
level probing analysis, which aims to assess
whether the models have internally acquired key

reasoning abilities.

Regarding Correctness Spanning Steps (CSS),
which assesses how early the model predicts the fi-
nal answer, most SFT methods show little improve-
ment. Only SFT-Symb-Filter on Llama yields
a modest gain, suggesting SFT primarily guides
step-by-step generation rather than enhancing early
"shortcut" predictions.

For the Redundant Fact Identification metric,
most SFT settings show noticeable gains. Inter-
estingly, SFT-Symb-Direct consistently achieves
the highest performance. We hypothesize that this
setting, which omits the explicit logic translation
phase, forces the model to implicitly learn both
symbolic interpretation and reasoning. In doing
S0, it may develop a stronger understanding of the
logical roles and dependencies among the facts,
thus improving its ability to distinguish between
relevant and redundant conditions.

In the Next-Step Derivability task, SFT consis-
tently benefits Llama, particularly SFT-NL (likely
due to natural language’s accessibility). In con-
trast, SFT shows minimal impact on Qwen, possi-
bly because its base model is already proficient in
step-tracking.

6 Conclusion

We introduce FineLogic, a unified and fine-grained
framework for evaluating the logical reasoning ca-
pabilities of large language models. By integrat-
ing overall benchmark accuracy, stepwise sound-
ness, and representation-level probing, FineLogic
enables more interpretable and rigorous assessment
beyond final-answer correctness. Leveraging this
framework, we conduct a systematic investigation
of how different fine-tuning supervision formats
impact reasoning ability. Our experiments demon-
strate that while natural language supervision leads
to strong generalization and benchmark gains, sym-
bolic styles better support minimal, rule-aligned
reasoning structures. Furthermore, representation-
level probing reveals that SFT primarily affects how
models generate stepwise solutions rather than their
ability to predict answers directly. These findings
offer practical guidance for designing supervision
strategies tailored to different reasoning objectives
and highlight the importance of evaluating both
behavioral and internal reasoning quality when ad-
vancing LLM reasoning systems.

Limitations

Our work has two main limitations. First, although
FineLogic evaluates models across three comple-
mentary dimensions, it is built upon a limited set of
datasets. While we selected benchmarks that span
multiple domains and reasoning depths, no fixed
dataset collection can offer a complete assessment
of LLM reasoning capabilities. Nevertheless, the
modular design of FineLogic allows it to be easily
extended to future benchmarks, enabling the same
set of evaluation tasks—overall accuracy, stepwise
soundness, and representation-level probing—to be
applied to new problem settings. Second, although
we provide detailed analyses of how different su-
pervision styles succeed or fail across tasks, we do
not explore how to systematically integrate these
insights into the design of more comprehensive or
hybrid SFT datasets. We leave it to future work to
develop adaptive or mixed-format training strate-
gies that balance generalization, structural sound-
ness, and interpretability in logical reasoning.

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo
Almeida, Janko Altenschmidt, Sam Altman, Shyamal
Anadkat, and 1 others. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Placeholder Author and 1 others. 2025. Llm+al: Bridg-
ing large language models and action languages for
complex reasoning about actions. In AAAIL

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Sub-
biah, Jared D Kaplan, Prafulla Dhariwal, Arvind Nee-
lakantan, Pranav Shyam, Girish Sastry, Amanda Askell,
and 1 others. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877-1901.

Andy T. Chen and 1 others. 2023. Program of thoughts
prompting: Disentangling computation from reasoning.
In ICLR.

Wenhuchen Chen, Nafise Sadat Moosavi, and Mario
Fritz. 2020. Logical natural language generation from
open-domain tables. In ACL.

Antonia Creswell, Murray Shanahan, and Irina Hig-
gins. 2022. Selection-inference: Exploiting large lan-
guage models for interpretable logical reasoning. arXiv
preprint arXiv:2205.09712.

Bhavana Dalvi, Peter Jansen, Oyvind Tafjord, and 1
others. 2021. Explaining answers with entailment trees.
In EMNLP.

Jiazhan Feng, Ruochen Xu, Junheng Hao, Hiteshi
Sharma, Yelong Shen, Dongyan Zhao, and Weizhu

Chen. 2023. Language models can be logical solvers.
arXiv preprint arXiv:2311.06158.

Luyu Gao and 1 others. 2023. Program-aided language
models. In Proceedings of the 40th International Con-
ference on Machine Learning.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song,
Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma,
Peiyi Wang, Xiao Bi, and 1 others. 2025. Deepseek-r1:
Incentivizing reasoning capability in llms via reinforce-
ment learning. arXiv preprint arXiv:2501.12948.

Kehan Guo, Bozhao Nan, Yujun Zhou, Taicheng Guo,
Zhichun Guo, Mihir Surve, Zhenwen Liang, Nitesh
Chawla, Olaf Wiest, and Xiangliang Zhang. 2024a. Can
llms solve molecule puzzles? a multimodal benchmark
for molecular structure elucidation. Advances in Neural
Information Processing Systems, 37:134721-134746.

Taicheng Guo, Xiuying Chen, Yaqi Wang, Ruidi Chang,
Shichao Pei, Nitesh V Chawla, Olaf Wiest, and Xian-
gliang Zhang. 2024b. Large language model based
multi-agents: A survey of progress and challenges.
arXiv preprint arXiv:2402.01680.

Simeng Han, Hailey Schoelkopf, Yilun Zhao, Zhenting
Qi, Martin Riddell, Wenfei Zhou, James Coady, David
Peng, Yujie Qiao, Luke Benson, and 1 others. 2022.
Folio: Natural language reasoning with first-order logic.
arXiv preprint arXiv:2209.00840.

Alex Havrilla, Sharath Raparthy, Christoforus Nalm-
pantis, Jane Dwivedi- Yu, Maksym Zhuravinskyi, Eric
Hambro, and Roberta Raileanu. 2024. Glore: When,
where, and how to improve 1lm reasoning via global and
local refinements. arXiv preprint arXiv:2402.10963.

Omar Khattab and 1 others. 2023. Dspy: Compiling
declarative language-model calls into self-optimizing
pipelines. In ICLR.

Jiawei Li and 1 others. 2023. Explicit planning helps
language models in logical reasoning. In ACL.

Hanmeng Liu, Jian Liu, Leyang Cui, Zhiyang Teng,
Nan Duan, Ming Zhou, and Yue Zhang. 2023. Logiqa
2.0—an improved dataset for logical reasoning in natu-
ral language understanding. /IEEE/ACM Transactions
on Audio, Speech, and Language Processing, 31:2947—
2962.

Zheng Liu, Zixu Liu, Yiming Liu, and 1 others. 2020.
Logiqa: A challenge dataset for machine reading com-
prehension with logical reasoning. In IJCAL

Pan Lu, Hritik Bansal, Tony Xia, Jiacheng Liu, Chun-
yuan Li, Hannaneh Hajishirzi, Hao Cheng, Kai-Wei
Chang, Michel Galley, and Jianfeng Gao. 2023. Math-
vista: Evaluating mathematical reasoning of foun-

dation models in visual contexts. arXiv preprint
arXiv:2310.02255.

Man Luo, Shrinidhi Kumbhar, Mihir Parmar, Neeraj
Varshney, Pratyay Banerjee, Somak Aditya, Chitta
Baral, and 1 others. 2023. Towards logiglue: A brief
survey and a benchmark for analyzing logical reason-
ing capabilities of language models. arXiv preprint

arXiv:2310.00836.

Philipp Mondorf and Barbara Plank. 2024. Liar, Liar,
Logical Mire: A Benchmark for Suppositional Rea-
soning in Large Language Models. arXiv preprint.
ArXiv:2406.12546 [cs] TLDR: This paper introduces
$\textit{ TruthQuest}$, a benchmark for suppositional
reasoning based on the principles of knights and knaves
puzzles, and shows that large language models like
Llama 3 and Mixtral-8x7B exhibit significant difficul-
ties solving these tasks.

Terufumi Morishita, Gaku Morio, Atsuki Yamaguchi,
and Yasuhiro Sogawa. 2023. Learning deductive rea-
soning from synthetic corpus based on formal logic. In
International Conference on Machine Learning, pages

25254-25274. PMLR.

Terufumi Morishita, Gaku Morio, Atsuki Yamaguchi,
and Yasuhiro Sogawa. 2024. Enhancing reasoning ca-
pabilities of llms via principled synthetic logic corpus.
Advances in Neural Information Processing Systems,
37:73572-73604.

Daye Nam, Andrew Macvean, Vincent Hellendoorn,
Bogdan Vasilescu, and Brad Myers. 2024. Using an llm
to help with code understanding. In Proceedings of the
IEEE/ACM 46th International Conference on Software
Engineering, pages 1-13.

Theo X Olausson, Alex Gu, Benjamin Lipkin, Cede-
gao E Zhang, Armando Solar-Lezama, Joshua B Tenen-
baum, and Roger Levy. 2023. Linc: A neurosymbolic
approach for logical reasoning by combining language
models with first-order logic provers. arXiv preprint
arXiv:2310.15164.

Liangming Pan, Alon Albalak, Xinyi Wang, and
William Yang Wang. 2023. Logic-lm: Empowering
large language models with symbolic solvers for faith-
ful logical reasoning. arXiv preprint arXiv:2305.12295.

Mihir Parmar, Nisarg Patel, Neeraj Varshney, Mutsumi
Nakamura, Man Luo, Santosh Mashetty, Arindam Mi-
tra, and Chitta Baral. 2024. Logicbench: Towards sys-
tematic evaluation of logical reasoning ability of large
language models. arXiv preprint arXiv:2404.15522.

Nisarg Patel, Mohith Kulkarni, Mihir Parmar, Aashna
Budhiraja, Mutsumi Nakamura, Neeraj Varshney, and
Chitta Baral. 2024. Multi-logieval: Towards evaluating
multi-step logical reasoning ability of large language
models. arXiv preprint arXiv:2406.17169.

Hyun Ryu, Gyeongman Kim, Hyemin S Lee, and Eunho
Yang. 2024. Divide and translate: Compositional first-
order logic translation and verification for complex logi-
cal reasoning. arXiv preprint arXiv:2410.08047.

Abulhair Saparov and He He. 2022a. Language models
are greedy reasoners: A systematic formal analysis of
chain-of-thought. arXiv preprint arXiv:2210.01240.

Abulhair Saparov and He He. 2022b. Language models
are greedy reasoners: A systematic formal analysis of
chain-of-thought. arXiv:2210.01240.

Abulhair Saparov, Richard Yuanzhe Pang, Vishakh Pad-

10

makumar, Nitish Joshi, Mehran Kazemi, Najoung Kim,
and He He. 2023. Testing the general deductive rea-
soning capacity of large language models using ood
examples. Advances in Neural Information Processing

Systems, 36:3083-3105.

Koustuv Sinha, Chris Dyer, Dani Yogatama, and 1 oth-
ers. 2019. Clutrr: A diagnostic benchmark for inductive
reasoning from text. In EMNLP.

Hongda Sun, Weikai Xu, Wei Liu, Jian Luan, Bin
Wang, Shuo Shang, Ji-Rong Wen, and Rui Yan. 2023.
Determlr: Augmenting llm-based logical reasoning

from indeterminacy to determinacy. arXiv preprint
arXiv:2310.18659.

Oyvind Tafjord, Bhavana Dalvi Mishra, and Peter Clark.
2020. Proofwriter: Generating implications, proofs,
and abductive statements over natural language. arXiv
preprint arXiv:2012.13048.

Arun James Thirunavukarasu, Darren Shu Jeng Ting,
Kabilan Elangovan, Laura Gutierrez, Ting Fang Tan,
and Daniel Shu Wei Ting. 2023. Large language models
in medicine. Nature medicine, 29(8):1930-1940.

Armin Toroghi, Willis Guo, Ali Pesaranghader, and
Scott Sanner. 2024. Verifiable, debuggable, and re-
pairable commonsense logical reasoning via llm-based
theory resolution. In Proceedings of the 2024 Con-
ference on Empirical Methods in Natural Language
Processing, pages 6634-6652.

Siyuan Wang, Enda Zhao, Zhongyu Wei, and Xiang Ren.
2025. Stepwise informativeness search for improving
llm reasoning. arXiv preprint arXiv:2502.15335.

Xuezhi Wang and 1 others. 2022. Self-consistency im-
proves chain of thought reasoning in language models.
arXiv:2203.11171.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
and 1 others. 2022. Chain-of-thought prompting elicits
reasoning in large language models. Advances in neural
information processing systems, 35:24824-24837.

Chulin Xie, Yangsibo Huang, Chiyuan Zhang, Da Yu,
Xinyun Chen, Bill Yuchen Lin, Bo Li, Badih Ghazi,
and Ravi Kumar. 2024. On memorization of large
language models in logical reasoning. arXiv preprint
arXiv:2410.23123.

Tian Xie, Zitian Gao, Qingnan Ren, Haoming Luo,
Yugian Hong, Bryan Dai, Joey Zhou, Kai Qiu, Zhi-
rong Wu, and Chong Luo. 2025. Logic-rl: Unleashing
Ilm reasoning with rule-based reinforcement learning.
arXiv preprint arXiv:2502.14768.

Jundong Xu, Hao Fei, Liangming Pan, Qian Liu, Mong-
Li Lee, and Wynne Hsu. 2024. Faithful logical rea-
soning via symbolic chain-of-thought. arXiv preprint
arXiv:2405.18357.

Kaiyu Yang, Jia Deng, and Dangi Chen. 2022. Generat-
ing natural language proofs with verifier-guided search.
arXiv preprint arXiv:2205.12443.

Yuan Yang, Siheng Xiong, Ali Payani, Ehsan Shareghi,

https://doi.org/10.48550/arXiv.2406.12546
https://doi.org/10.48550/arXiv.2406.12546
https://doi.org/10.48550/arXiv.2406.12546
https://doi.org/10.48550/arXiv.2406.12546
https://doi.org/10.48550/arXiv.2406.12546

and Faramarz Fekri. 2023. Harnessing the power of
large language models for natural language to first-order
logic translation. arXiv preprint arXiv:2305.15541.

Shunyu Yao and 1 others. 2022. React: Syn-
ergizing reasoning and acting in language models.
arXiv:2210.03629.

Tian Ye, Zicheng Xu, Yuanzhi Li, and Zeyuan Allen-
Zhu. 2024. Physics of language models: Part 2.1, grade-
school math and the hidden reasoning process. In The
Thirteenth International Conference on Learning Rep-
resentations.

Denny Zhou and 1 others. 2023. Least-to-most prompt-
ing enables complex reasoning in large language models.
In ICLR.

11

A Detailed Experimental Setup

A.1 Detailed Dataset Information

In this section, we present the logical reasoning
datasets used in our experiments. All datasets are
publicly available. We describe the data sources
and sampling procedures in detail below.

FLD (Morishita et al., 2024) The FLD dataset is
constructed based on the number of reasoning steps
(denoted as steps). We first generate 50,000 raw
samples uniformly distributed across step depths
from O to 15. For each step, we randomly sample
250 PROVED and 250 DISPROVED examples, yield-
ing a total of 16 x 500 = 8,000 labeled samples.
Additionally, we include 1,500 randomly drawn
UNKNOWN instances, resulting in a total training set
of 9,500 samples.

The test set follows a similar sampling process but
spans a broader range of reasoning depths (0-19).
We select 25 PROVED and 25 DISPROVED instances
per step, yielding 20 x 50 = 1,000 labeled ex-
amples. We also sample 100 UNKNOWN instances,
producing a test set of 1,100 samples(Sinha et al.,
2019; Tafjord et al., 2020; Pan et al., 2023).

FOLIO (Han et al., 2022) The FOLIO dataset
contains 203 test examples, all of which are in-
cluded in our experiments(Chen et al., 2020; Liu
et al., 2020).

Multi-LogiEval The Multi-LogiEval dataset con-
sists of five subsets with different depth (denoted
‘d1’ through ‘d5’). We include only the ‘d4’ and
‘d5’ subsets to maintain a consistent dataset size,
yielding a total of 390 examples. From each, we
extract all samples from the First-Order Logic
and Propositional Logic categories, masking
their logic type annotations to ensure a uniform
setting(Dalvi et al., 2021).

ProntoQA We use the standard ProntoQA
dataset rather than the OOD variant, following prior
work (Pan et al., 2023). We use 500 hardest sam-
ples requiring 5-hop reasoning steps as a held-out
test set. For training, we sample 3,200 problems
that each require 3-hop reasoning, selected to pro-
vide sufficient multi-step depth while remaining
tractable for supervised fine-tuning(Saparov and
He, 2022b; Li et al., 2023).

A.2 Detailed Baseline Methods

LOGIPT (Feng et al., 2023) LOGIPT is a novel
language model designed to emulate the reason-
ing processes of logical solvers. Unlike traditional
solver-augmented models that parse natural lan-
guage into symbolic representations before rea-
soning, LOGIPT directly learns to generate sym-
bolic reasoning steps, bypassing potential parsing
errors(Gao et al., 2023; Chen et al., 2023).

Selection-Inference (Creswell et al., 2022) En-
hancing LL.Ms by n-shot learning between select-
ing relevant facts and inferring new information,
enabling interpretable multi-step logical reasoning.
In the experiments, we achieved rather low accu-
racy for limited questions (hypothesis) to trigger
new inferences. Code is open-sourced(Yao et al.,
2022; Wang et al., 2022; Zhou et al., 2023).

LogicLM (Pan et al., 2023) A neuro-symbolic
framework that addresses LLMs’ limitations in
complex logical reasoning by integrating symbolic
solvers with language models. The approach works
through a three-stage pipeline: (1) using LLMs
to translate natural language problems into sym-
bolic formulations, (2) employing deterministic
symbolic solvers to perform faithful logical infer-
ence, and (3) interpreting results back to natural
language. It features a self-refinement module that
iteratively revises symbolic representations based
on solver error messages.

SymbCoT (Xu et al., 2024) The model intro-
duces a novel framework that enhances LLMs by
integrating symbolic expressions and logical rules
into the CoT reasoning process. It translates natural
language contexts into symbolic formats, derives
step-by-step plans using symbolic logic, and em-
ploys a verifier to ensure the correctness of trans-
lations and reasoning chains(Author et al., 2025;
Khattab et al., 2023; Gao et al., 2023).

B Representation-Level Probing
Implementation Details

We design three probing tasks to assess whether the
model’s internal representations capture reasoning-
relevant information during multi-step logical prob-
lem solving. All probing experiments are con-
ducted on a subset of the FLD dataset, specifically
the 550 most complex problems requiring 10-20
reasoning steps. We use 450 problems for training
and 100 for evaluation.

12

B.1 Representation Extraction

For all probing tasks, we extract the hidden state of
the final token from the last transformer layer
after processing the input prefix. The prefix con-
sists of all reasoning steps up to a target step k
(i.e., steps 1 to k), and the final-token representa-
tion is treated as a summary of the model’s internal
reasoning state at that point.

B.2 Probing Model

We use a lightweight yet effective classifier to
probe the information contained in these hidden
states. Specifically, we adopt a logistic regres-
sion classifier with feature standardization and 5-
fold cross-validation for hyperparameter selection.
This setup ensures a simple and interpretable linear
decision boundary while maintaining robustness
against overfitting. The classifier is trained solely
on the extracted representations, while the underly-
ing language model remains frozen throughout the
probing process.

B.3 Task 1: Correctness Spanning Steps

This task evaluates how early in the reasoning pro-
cess the model internalizes the correct final answer.
For a problem requiring n reasoning steps, we:

* Generate n input prefixes, each ending at step
i, where i € [1,n].

* Train a probing classifier to predict the ground-
truth label (True / False) based on the repre-
sentation at each prefix.

* For each test sample, we identify the smallest
¢ such that the classifier correctly predicts the
label at step ¢ but fails at step ¢ — 1.

The correctness spanning length is defined as
n — ¢, capturing how early the model “knows” the
correct answer.

B.4 Task 2: Redundant Facts Identification

This task assesses whether the model can distin-
guish between relevant and irrelevant facts. For
each sample:

* We locate the point after all facts and the hy-
pothesis have been presented.

* We construct six variants of the input: three
with necessary facts (used later in the proof),
and three with redundant facts (unused in
any proof step).

* The classifier is trained to predict whether
the appended facts are necessary or redundant
based on the updated representation.

This task tests whether the model encodes aware-
ness of which premises are logically relevant for
solving the task.

B.5 Task 3: Next-Step Derivability

This task probes whether the model can determine
which steps are logically available at a given point
in the proof. For each sample:

* We randomly select six intermediate steps.

 Ateach step, we append three valid next steps
(that are inferable from the current context)
and three invalid steps (that appear later in
the proof but are not yet derivable).

* The classifier is trained to distinguish between
currently valid and invalid steps.

This task evaluates whether the model has encoded
an implicit understanding of the forward progres-
sion of logical inference.

C Experiment Details

This section provides further details on our experi-
mental results. Table 5 presents a comprehensive
breakdown of FLD accuracy across different rea-
soning step ranges for the evaluated models and
settings. The data illustrates that while models
fine-tuned with natural language supervision (e.g.,
Llama-3.1-SFT-NL achieving 89.5% accuracy for
0-3 steps on FLD) perform strongly on tasks with
shallower reasoning depths, their symbolic reason-
ing counterparts tend to exhibit greater resilience
as the complexity and number of reasoning steps
increase. For instance, on FLD problems requiring
16-19 steps, Llama-3.1-SFT-Symb-Filter (62.5%)
and Llama-3.1-SFT-Symb-Struct (58.5%) maintain
higher accuracy compared to Llama-3.1-SFT-NL
(46.0%), highlighting the benefit of symbolic for-
mats for robust multi-step inference.

D Computational Resources

All supervised fine-tuning experiments were con-
ducted using 4 NVIDIA A100 GPUs. Each model
was trained for approximately 2 hours. Evalua-
tion on the full suite of benchmarks and diagnostic
metrics required an additional 0.5 hours per model.

13

E Example and Case Study

This section showcases examples from our training
dataset along with an error case study. Further
details can be found in Figure 4 and Figure 5.

F Prompt Template

This section showcases various prompts, en-
compassing those designed for reasoning
and data generation, as detailed in Figures
6,7,8,9,10,11,12,13,14

FLD Accuracy by Step

Model Setting

0-3 4-7 8-11 12-15 16-19

Direct 78.5 63.0 43.0 46.5 35.5

CoT 82.0 62.0 56.5 44.0 46.5

Few-shot 81.5 68.5 53.5 46.0 47.0

CEE Logic-LM 68.4 52.1 31.5 28.2 22.8

SymbCoT 69.9 52.5 32.0 26.5 24.5

Sel-Inf 64.5 55.5 49.5 49.0 55.5

Direct 92.5 86.0 80.5 75.0 76.5

CoT 92.0 86.0 78.0 77.5 73.5

DeepSeek Few-shot 89.0 85.0 80.5 69.0 71.0

-R1 Logic-LM 91.4 78.6 64.8 58.2 52.4

SymbCoT 86.4 80.5 70.9 45.2 53.4

Sel-Inf 93.0 88.0 84.5 79.0 75.5

Direct 40.5 30.0 24.0 27.0 25.5

CoT 41.5 32.0 29.0 24.0 19.5

Few-shot 49.5 45.5 33.0 39.0 32.0

Logic-LM 56.4 41.3 32.6 28.8 26.2

Llama-3.1 SymbCoT 57.8 41.0 39.0 37.8 354

-8B-Instruct Sel-Inf 63.5 55.5 52.5 45.0 42.0

LogiPT 72.5 53.5 51.0 35.0 37.0

SFT-NL 89.5 72.5 52.0 56.5 46.0

SFT-Symb-Struct 88.5 78.5 65.0 66.0 58.5

SFT-Symb-Filter 72.0 73.0 67.5 72.0 62.5

SFT-Symb-Direct 81.0 58.5 48.5 38.5 27.5

Direct 69.0 45.5 45.0 38.5 36.0

CoT 70.5 55.5 36.5 42.5 40.5

Few-shot 63.0 44.0 33.5 27.0 33.0

Logic-LM 68.7 51.2 314 26.0 29.2

Qwen-2.5 SymbCoT 52.3 39.5 30.7 28.1 19.9

Z7B-Instruct Sel-.Inf 49.0 26.5 29.5 27.0 24.5

LogiPT 80.5 74.0 64.0 68.0 57.5

SFT-NL 93.5 78.5 67.5 66.5 52.5

SFT-Symb-Struct 74.5 65.5 50.0 43.0 34.0

SFT-Symb-Filter 68.0 59.5 48.0 51.5 45.0

SFT-Symb-Direct 82.0 60.0 51.5 42.5 37.0

Table 5: FLD accuracy breakdown by reasoning step ranges

14

Question (original):
Facts: factl: If this
wormbhole does shine
chemoimmunology
and it is catadromous
then this introitus is

not macerative. fact2:

This introitus is
macerative and
weighs. fact3: This
wormhole shines
chemoimmunology.
fact4: That
gingerroot shines
chemoimmunology
and it is
catadromous if it is

not macerative. fact5:

That gingerroot is
upstager. fact6: That
gingerroot is not
catadromous and is
not non-upstager if
this wormhole is not
catadromous.
Hypothesis: That
gingerroot is not
catadromous.

Question (filtered):
Facts: factl: If this
wormbhole does shine
chemoimmunology
and it is
catadromous then
this introitus is not
macerative. fact2:
This introitus is
macerative and
weighs. fact3: This
wormbhole shines
chemoimmunology.
faet4: That

upstager- fact4:
That gingerroot is
not catadromous and
is not non-upstager
if this wormbhole is
not catadromous.
Hypothesis: That
gingerroot is not

Formalization & Reasoning:
Our problem-solving procedure
begins by formalizing all given
facts and the hypothesis into
first-order logic using
standardized predicate
definitions. Firstly, we define
the entities involved:

- a: This wormhole

- b: This introitus

- c: That gingerroot

For the predicate, we denote:
A(x): x shines
chemoimmunology

B(x): x is catadromous

C(x): x is macerative

D(x): x is upstager

E(x): x weighs

Then the facts can be translated
as:

Fact 1: (A(a) A B(a)) — -C(b)
Fact 2: (C(b) A E(b))

Fact 3: A(a)

Fact 4: -C(c) — (A(c) A B(c))
Fact 5: D(c)

Fact 6: -B(a) — (~-B(c) A D(c))
The hypothesis to be verified
can be translates to the logical
formula: -B(c)

We now begin the formal
reasoning process:

Step 1: Assume for
contradiction: assumpl: B(a)
Step 2: From fact3 and
assumpl, we derive: intl: (A(a)
A B(a))

Step 3: From int1 and factl, we
derive: int2: -C(b)

Step 4: From fact2, we derive:
int3: C(b)

Step 5: Contradiction: int4: 1
Step 6: By reductio ad
absurdum from Step 1: int5:
-B(a)

Step 7: From int5 and fact6, we
derive: int6: (-B(c) A D(c))
Step 8: From int6, we derive
the hypothesis: hypothesis

Final conclusion:
__PROVED__

Reasoning with Filtered Facts:
Our problem-solving procedure
begins by formalizing all given
facts and the hypothesis into
first-order logic using
standardized predicate
definitions. Firstly, we define
the entities involved:

- a: This wormhole

- b: This introitus

- c: That gingerroot

For the predicate, we denote:
A(x): x shines
chemoimmunology

B(x): x is catadromous

C(x): x is macerative

D(x): x is upstager

E(x): x weighs

Then the facts can be
translated as:

Fact 1: (A(a) A B(a)) — -C(b)
Fact 2: (C(b) A E(b))

Fact 3: A(a)

Fact 4: -B(a) — (~-B(c) A D(c))
The hypothesis to be verified
can be translates to the logical
formula: -B(c)

We now begin the formal
reasoning process:

Step 1: Assume for
contradiction:

assumpl: B(a)

Step 2: From fact3 and
assumpl, we derive: intl: (A(a)
A B(a))

Step 3: From int1 and fact1,
we derive: int2: -C(b)

Step 4: From fact2, we derive:
int3: C(b)

Step 5: Contradiction: int4: L
Step 6: By reductio ad
absurdum from Step 1: int5:
-B(a)

Step 7: From int5 and fact4,
we derive: int6: (-B(c) A D(c))
Step 8: From int6, we derive
the hypothesis: hypothesis

Final conclusion:
__PROVED__

\
Direct Logical Symbolization & :
Reasoning: |
We first represent the facts and |
hypothesis using logical symbols.
Facts: |
Fact 1: (A(a) A B(a)) — -C(b) |
Fact 2: (C(b) A E(b)) |
Fact 3: A(a) :
Fact 4: -C(c) — (A(c) A B(c)) |
Fact 5: D(c) :
Fact 6: -B(a) — (-B(c) A D(c)) |
Hypothesis: -B(c). :

I

|

|

|

Step 1: Assume for
contradiction:
assumpl: B(a)
Step 2: From fact3 and assumpl,:
we derive: intl: (A(a) A B(a)) |
Step 3: From int1 and factl, we I
derive: int2: -C(b)

Step 4: From fact2, we derive:
int3: C(b)

Step 5: Contradiction: int4: L
Step 6: By reductio ad absurdum
from Step 1: int5: -B(a)

Step 7: From int5 and fact6, we
derive: int6: (-B(c) A D(c))
Step 8: From int6, we derive the
hypothesis: hypothesis

Final conclusion:

__PROVED__
___________________________ |

Natural Language Solution: :
Step 1: void -> assumpl: Let's :
assume that this wormhole is |
catadromous.; |
Step 2: fact3 & assumpl -> int1: :
This wormhole shines |
chemoimmunology and this is :
catadromous.; I
Step 3: int1 & factl -> int2: !
This introitus is not macerative.; |
Step 4: fact2 -> int3: This :
introitus is macerative.; |
Step 5: int2 & int3 -> int4: This :
l
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

is contradiction.;

Step 6: [assumpl] & int4 -> int5:
This wormbhole is not
catadromous.;

Step 7: int5 & fact6 -> int6:
That gingerroot is non-
catadromous thing that is
upstager.;

Step 8: int6 -> hypothesis;
Final conclusion:
__PROVED__

Figure 4: Comparison of a logical reasoning problem under four distinct training data settings. The figure illustrates:
(a) direct logical symbolization and reasoning ; (b) full formalization in first-order logic, including definitions and
fact translation ; (c) reasoning conducted purely in natural language; and (d) formal reasoning using a pre-filtered
set of facts. This comparison highlights the differences in processing pathways and the structure of the resulting
solutions for each approach.

15

~)
Facts and Hypothesis

Factl: Benignantness happens.

Fact2: That hands happens results in that that Highlanderness but not enlightening reincarnationism occurs
is true.

Fact3: Calculating jailed takes place.

Fact4: If lavishness happens prostitution occurs but fandango does not takes place.

Fact5: That readiness but not arundinaceousness occurs are caused by forgettableness.

Fact6: If trumpeting Asvins takes place then amauroticness happens and outdoing glasnost does not occurs.
Fact7: That fandango takes place yields that lavishness does not takes place.

Fact8: Fandango brings about that prostitution but not lavishness occurs.

Fact9: Combining Yorkshire takes place.

Fact10: Fandango occurs if that closing revisal happens is correct.

Factl1: That lavishness does not occurs holds.

Fact12: Trumpeting Asvins but not stargazinging happens.

Fact13: That quarantining does not occurs leads to that that lavishness occurs and disgruntleding tularaemia
does not takes place is right.

Factl4: Quarantining does not happens if that repressing Sclerodermataceae takes place and asterismalness
occurs is wrong.

Hypothesis: The statement that prostitution is caused by closing revisal is incorrect.”

GPT-40 Response (Non-Necessary case)

To determine if the hypothesis "The statement that prostitution is caused by closing revisal is incorrect” is
correct, we must reason using the provided facts.

Step 1: Assume closing revisal happens. (assumption for contradiction)
Step 2: Fact10 states, "Fandango occurs if that closing revisal happens is correct.” Thus, if closing revisal
happens, then fandango takes place.

Step 7: Using int1 and Fact7, it follows that lavishness does not take place. (int3)

Step 8: Factl1 confirms, "That lavishness does not occurs holds,” which is consistent with our finding
inint3.

Step 9: We proved that fandango happening (due to closing revisal) leads to prostitution happening,
supporting step-wise reasoning until prostitution indeed occurs through factual consequences.

Step 10: Therefore, the assumption that prostitution is directly caused by closing revisal through the indirect
chain (through fandango) leads to a valid conclusion that prostitution occurs.

Step 11: Hence, there is no contradiction observed that refutes the original claim that closing revisal causes
prostitution through the chain found in statements and facts, indirectly.

Based on this reasoning, the hypothesis stating that "prostitution is caused by closing revisal is incorrect”
does not hold any demonstrable contradictions and isn't proven false with the current set of facts.

_ Final conclusion: __DISPROVED__)

Figure 5: Case Study: In the GPT-40 response, Step 8 redundantly confirms the conclusion from Step 7 (int3) by
citing Factl 1, making it an unnecessary step in the reasoning chain. Step 9 is not atomic because it summarizes
a multi-step inference (from "fandango happening" to "prostitution happening" using Fact 8) as a single proven
outcome without detailing the individual logical operations involved.

Prompt Template: Direct Reasoning

Based on the provided facts, answer the question. Conclude with one
of the markers: "__PROVED__" for proven, "__DISPROVED__" for disproven, or
"__UNKNOWN__" if uncertain.

Facts:{facts}
Hypothesis:{hypothesis?}

Figure 6: Prompt template for direct reasoning. Placeholders: {facts}, {hypothesis}.

16

Prompt Template: CoT Reasoning

Based on the provided facts, answer the question. Conclude with one
of the markers: "__PROVED__" for proven, "__DISPROVED__" for disproven, or
"__UNKNOWN__" if uncertain.

Facts:{facts}
Hypothesis:{hypothesis?}
Let’s analyze this step by step.

Figure 7: Prompt template for Chain-of-Thought (CoT) reasoning. Placeholders: {facts}, {hypothesis}.

Prompt Template: Few-Shot Reasoning

Based on the provided facts, answer the question. Conclude with one
of the markers: "__PROVED__" for proven, "__DISPROVED__" for disproven, or
"__UNKNOWN__" if uncertain.

Here are some examples of proofs for your reference:

[Start of example]

For example, for this question:

{example}

[End of example]

You can refer to the proof method of the above question, think step by step, and
give the result of this question.

Facts:{facts}

Hypothesis:{hypothesis?}

Figure 8: Prompt template for few-shot reasoning. Placeholder: {example}, {facts}, {hypothesis}..

17

p Prompt Template: Entity and Predicate Extraction N

You are a logic analysis expert. Please extract all entities and predicates
from the following logical expression translations:
Translation content: {formula_translations}
facts_formula: {facts_formula}
facts: {facts}
Special Requirement: If any entity or predicate symbol appears in the
facts_formula, but has NO direct definition in the Translation content, you
MUST go to the facts section and locate the corresponding natural language
description and extract it. Be extremely careful NOT to omit any such entities
or predicates. Only skip if it is literally missing from both translation content
and facts.
Task:
1. Identify all entities involved (e.g., this tablefork, this corsair) and
assign variables to them (a, b, c, d...)
2. Identify all predicates (e.g., is a raised, is a collotype) and assign symbols
(using the original symbols like A, B, C...)
Critical instructions:
- Only give full entity and predicate explanations if their definitions appear
in the formula_translations or facts.
- Only include entities and predicates that explicitly appear in the provided
translation content or facts.
- Do not invent, infer, or add any entities or predicates not directly mentioned
in the translations or facts.
- Maintain the original variable identifiers (e.g.,
the first entity).

)

a’ in A(a) corresponds to

- Maintain the original predicate identifiers (e.g., ’A’ in A(x) represents "x
is a raised”).
- If a symbol (like ’c’, ’F’, etc.) doesn’t appear in the translations or facts,

do not include it in your output.

Expected output format:

We define the entities involved:

- a: [Corresponding entity, e.g., "This tablefork"”]

- b: [Corresponding entity, e.g., "This corsair”]...

We denote:

[Original predicate symbol](x): [Predicate description]

[Original predicate symbol](x): [Predicate description]...

Please provide only the requested definitions without any additional information
or explanations.

N\ /

Figure 9: Prompt template for extracting entities and predicates when lowercase variables (entities) are present.
Placeholders: {formula_translations}, {facts_formula}, {facts}.

18

p Prompt Template: Predicate Extraction (No Entities) -

You are a logic analysis expert. Please extract all predicates from the

following logical expression translations:
Translation content: {formula_translations}
facts_formula: {facts_formula}
facts: {facts}
Special Requirement: If any entity or predicate symbol appears in the
facts_formula, but has NO direct definition in the Translation content, you
MUST go to the facts section and locate the corresponding natural language
description and extract it. Be extremely careful NOT to omit any such entities
or predicates. Only skip if it is literally missing from both translation content
and facts.
Task: Identify all predicates and translate each uppercase symbol directly.
Critical instructions:
- For each uppercase symbol in the facts_formula, provide a direct translation
in the format: [SYMBOL]: xxx happened.
- **%Do not omit any symbols that appear in facts_formula or translation content.
If they appear, they must be translated.xx*
- Only include symbols that actually appear in the facts_formula or translation
content.
- Do not invent or infer any entities or relationships not explicitly mentioned.
- If a predicate’s meaning is clearly defined in the translations or facts, use
that definition.
- Do not include any lowercase symbols or entity definitions as they are not
relevant in this case.
- If some symbols appear in facts_formula but not in translation content, you
can directly translate the entire formula expression containing those symbols
rather than translating each symbol individually. For example, for an expression
like =C——(FA—-E), you don’t need to separately translate E if it’s not defined
elsewhere.
Expected output format:
We define:
A: xxx happened.
B: xxx happened.
AB: xxx happened. ..
Please provide only the requested definitions without any additional information
or explanations.

N .

Figure 10: Prompt template for extracting predicates when no lowercase variables (entities) are present. Placeholders:
{formula_translations}, {facts_formula}, {facts}.

19

p Prompt Template: Logic Proof Translation

You are a logic proof translator. Your task is to translate a logical proof
sequence from symbolic notation into a clear, step-by-step explanation.
Given: 1. A proof sequence in symbolic form 2. Definitions of entities and
predicates used in the proof 3. Logical formula translations
Task: Convert the symbolic proof into a concise, step-by-step explanation that
a human can easily follow.
Proof sequence to translate: {proofs_sentence}
Conclusion: {conclusion}
Instructions for translation:
1. Split the proof at each semicolon (;) to identify individual steps.
2. For each step: First, write a brief, natural language explanation on its
own line (e.g. "Assume for contradiction: [formulal” or "From [inputs], we
derive:"). On the next line, write the step label and the logical formula as in
the original proof (e.g. assumpl: A(b), int2: —-B(b), etc.). Do not put both
the explanation and the formula on the same line. For assumptions, use "Assume
for contradiction: [formulal]” then write assumpX: [formulal on the following
line. For a standard derived step, use "From [inputs], we derive:" then on the
following line write intX: [formula]. For contradictions, use "Contradiction:"
then on the following line write "1L". For reductio ad absurdum, use "By reductio
ad absurdum from [step number]:" then write the derived conclusion on the next
line. Do not skip formula labels or step names. Write both the explanation and
the labeled formula.

3. Maintain correct logical notation (such as -, A, V, —, 3, 1, etc.).
4. 1In the final step, clearly relate the conclusion to the hypothesis, if
appropriate.

5. The output should be only the formatted translation, with no additional
commentary.
Output format:
Step 1: [Brief explanation]

[Formula derived]
Step 2: From [input], we derive:

[Formula derived]
Step 3: Assume for contradiction:
assumpX: [Formula derived]

{status_message_content}

Final conclusion: {conclusion}

The conclusion must use exactly two underscores before and after either PROVED
or DISPROVED or UNKNOWN, with no additional spaces or characters. Translate
the proof concisely but retain all logical information from the original proof
sequence. Do not add any steps not present in the original, and do not skip any
steps. Output the translation only, with no additional commentary.

- v,
Figure 11: Prompt template for logic proof translation. The placeholder {proofs_sentence}
is for the symbolic proof sequence. The placeholder {conclusion} is for the conclusion

(__PROVED__/_ DISPROVED_ /__ UNKNOWN_). The placeholder {status_message_content} is
replaced by the string The search path has been exhausted without finding a way to either prove or disprove
the hypothesis.” if {conclusion}is ’__UNKNOWN__’, and is an empty string otherwise (which will result in
different spacing around it as per the original prompt generation logic).

20

Prompt Template: Logical Proof Generation

Solve the following logical reasoning problem using formal symbolic logic and
provide a step-by-step reasoning process.

Follow these steps precisely:

1. Define predicates to represent terms in the problem

2. Translate all facts and the hypothesis into formal logical expressions

3. Derive the conclusion through systematic reasoning

4. State the final conclusion

OUTPUT FORMAT:

Your answer should follow this format exactly:

- Begin with "Our problem-solving procedure begins by formalizing all given
facts and the hypothesis into first-order logic using standardized predicate
definitions.”

- Then state "For the predicate, we denote:’
definitions

- Translate each fact into a formal logical expression

- Present your reasoning steps in numbered format (Step 1:, Step 2:, etc.)

- End with "Final conclusion: " followed by either "__PROVED__" or "__DISPROVED__"
IMPORTANT: The conclusion must use exactly two underscores before and after
either PROVED or DISPROVED, with no additional spaces or characters.

Here is an example problem solution, You need to strictly follow the format like
this:

Example Solution:

{fewshot_example}

Now, solve this problem: {question}

The answer should be: {label}

Provide only the solution with no additional commentary or preamble.

'

followed by your predicate

Figure 12: Prompt template for generating a logical reasoning process. Placeholders: {question} for the problem
statement, {1label} for the expected answer (e.g., "__PROVED__"), and {fewshot_example} for a formatted
example solution.

Prompt Template: Step Validity Evaluation

Premises:
{premises_str}

Conclusion:
{concl_text_full}

Do the premises entail the conclusion? Answer true or false only.

Figure 13: Prompt template for evaluating step validity. Placeholders: {premises_str} (a string listing the
premises, e.g., "factl: Text of fact 1 intl: Text of intermediate 1"), {concl_text_full} (a string representing the
conclusion, e.g., "int2: Text of intermediate 2" or "hypothesis: Text of hypothesis"). The model is expected to return
’true’ or “false’.

21

Prompt Template: Step Atomicity Evaluation N

Premises:
{premises_str}

Conclusion:
{concl_text_full}

Is this inference atomic...? Answer true or false only.

.

Figure 14: Prompt template for evaluating step atomicity. Placeholders: {premises_str} (a string listing the
premises), {concl_text_full} (a string representing the conclusion). The model is expected to return ’true’ or
’false’ indicating if the inference from premises to conclusion is a single, indivisible logical step.

22

	Introduction
	Related Works
	FineLogic Evaluation Framework
	Overall Benchmark Accuracy
	Stepwise Soundness
	Representation-level Probing

	Supervision Format and Style: SFT Data Design
	Experiments
	Experimental Setup
	Results
	Results on Overall Benchmark Accuracy
	Results on Stepwise Soundness
	Results on Representation-level Probing

	Conclusion
	Detailed Experimental Setup
	Detailed Dataset Information
	Detailed Baseline Methods

	Representation-Level Probing Implementation Details
	Representation Extraction
	Probing Model
	Task 1: Correctness Spanning Steps
	Task 2: Redundant Facts Identification
	Task 3: Next-Step Derivability

	Experiment Details
	Computational Resources
	Example and Case Study
	Prompt Template

