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Abstract

Shannon Information theory has achieved great
success in not only communication technol-
ogy where it was originally developed for but
also many other science and engineering fields
such as machine learning and artificial intel-
ligence. Inspired by the famous weighting
scheme TF-IDF, we discovered that Shannon
information entropy actually has a natural dual.
To complement the classical Shannon informa-
tion entropy which measures the uncertainty we
propose a novel information quantity, namely
troenpy. Troenpy measures the certainty and
commonness of the underlying distribution. So
entropy and troenpy form an information twin.
To demonstrate its usefulness, we propose a
conditional troenpy based weighting scheme
for document with class labels, namely posi-
tive class frequency (PCF). On a collection of
public datasets we show the PCF based weight-
ing scheme outperforms the classical TF-IDF
and a popular Optimal Transport based word
moving distance algorithm in a kNN setting
with respectively more than 22.9% and 26.5%
classification error reduction while the corre-
sponding entropy based approach completely
fails. We further developed a new odds-ratio
type feature, namely Expected Class Informa-
tion Bias(ECIB), which can be regarded as the
expected odds ratio of the information twin
across different classes. In the experiments we
observe that including the new ECIB features
and simple binary term features in a simple lo-
gistic regression model can further significantly
improve the performance. The proposed simple
new weighting scheme and ECIB features are
very effective and can be computed with linear
time complexity.

1 Introduction

The classical information theory was originally pro-
posed by Shannon(Shannon, 1948) to solve the
message coding problem in telecommunication. It
turned out that it has far more profound impact
beyond communication theory, and it has shaped

all aspects of our science, engineering and social
science by now. The core concept entropy was
coined to measure the expected rareness or surprise
of a random variable X across its distribution. In
the literature entropy is usually taken for granted
as the information in many people’s mind. The
mutual information (MI) between two variables is
the difference of the entropy of a variable from its
conditional entropy given the other variable. MI
maximization principle also has been studied and
used widely in machine learning. Recently MI
has also been employed as part of the objective
function for optimization in neural network models
based representation learning(Belghazi et al., 2018;
Hjelm et al., 2019).

Along another line, weighting scheme has been
used extensively in information retrieval tasks.
Term Frequency-Inverse Document Frequency(TF-
IDF), a simple statistic heuristic proposed by
(Sparck Jones, 1972) has been widely used as a
weighting method over half a century in informa-
tion retrieval and natural language processing. It
weighs down a term if its document frequency in-
creases in the corpus, as it becomes less effective
to distinguish from others when it gets popular
and its appearance brings less surprise in the sense
of Shannon self-information. This simple but ef-
fective algorithm has achieved great success as a
robust weighting scheme. Even today many search
engines and digital database systems still employ
TF-IDF as an important default algorithm for rank-
ing.

In the past decades a few researchers have in-
tensively investigated on it for a better theoretical
understanding of the underlying mechanism rather
than a heuristic and intuition argument. (Robert-
son, 2004) justified it as an approximate measure
of naive Bayes based probability relevance model
in information retrieval. Some researchers tried
to explain from the information theory point view.
(Aizawa, 2003) interpreted it as some probability



weighted amount of information. (Siegler and Wit-
brock, 1999) interpreted IDF for a term exactly
as the mutual information between a random vari-
able representing a term sampling and a random
variable representing a document sampling from a
corpus. Many other variants of the term frequency
have been proposed in the literature. For example,
BM25(Robertson, 2009) based on probabilistic re-
trieval framework was further proposed and it has
been widely used by search engines to estimate the
relevance of documents to a given search query. In
general the derived applications go far beyond text
processing and information retrieval community.

The connection between TF-IDF and informa-
tion theory mentioned above is quite motivating.
This makes us wonder if there are other simple and
effective weighting schemes that can be established
from information theory. In order to achieve this
goal, it turns out that we first developed a new met-
ric of information quantity for certainty, namely
troenpy, a natural dual to entropy, and then used it
to derive a new type of weighting scheme which
works very well in the extensive experiments as we
hoped.

In the following we will first introduce troenpy
and its basic properties, and share some insights
we have for this innovation. Then for the classi-
cal task of supervised document classification, we
will develop a troenpy based weighting scheme for
document representation. This weighting scheme
makes use of the documents class label distribution
and helps improving the model performance very
significantly. Employing both entropy and troenpy,
we will also define some new odds-ratio based class
bias features leveraging the document class label
distribution. Finally evaluating under the simple
KNN and logistic regression settings, we show that
the proposed new weighting scheme and new fea-
tures are very effective and achieved substantial
error reduction compared with the TF-IDF and a
popular optimal transport based document classi-
fication algorithm on a collection of widely used
benchmark data sets.

2 Dual of Shannon Entropy

We fix the notations first. Here we let X indi-
cate a discrete random variables with probability
mass function px (z). The Shannon entropy (some-
times also called self-information) measures the
uncertainty of the underlying variable, or the level
of surprise of an outcome in literature. To un-

derstand this, note when the event is rare, that is
the probability px (z) is small, the measurement
—log(px (x)) is large; when the event is not rare,
that is the probability px (x) is not small, the mea-
surement —log(px (x)) is not big. Therefore in this
sense of Shannon, the measurement —log(px (x))
does represent the rareness or surprise degree of
an event. In this work we purposely call it Nega-
tive Information(NI) for showing the duality nature
later. That is,

NI(z) := —log(px(z)) = log . (D

px(z)

Now since Shannon information measures surprise,
can we measure the certainty or commonness in-
stead? This is exactly the contrary to the Shannon
information, the dual of Negative Information En-
tropy. This motivates our definition below.

Definition 1 We define Positive Information (PI)
of an outcome x as

Pl(x) := —log(1 — px(z)) = logw.
2

To understand why PI measures the certainty

of an event, note when the event is rare, that is
the probability px () is small and the certainty is
small, the measurement —log(1 — px(z)) is very
small; when the event is not rare, that is the proba-
bility px (z) is large and the certainty of the event
is large, the measurement —log(1 — px (x)) is also
large. So the PI can measure the certainty of an
event faithfully in the same sense of Shannon.
For discrete random variables with probabilities p;,
where i € {1,..., K}, the value PI:log(l%pi) is
the measure of non-surprise or commonness. Note
from the definition, PI has the same value range
[0, 00) as NI. A conventional way to avoid the infin-
ity value ranges numerically is to add a small value
epsilon to the denominator, and one can choose the
epsilon value according to desired resolution. Note
if we denote = the complement of outcome x, then
PI(z) = NI(z).

Naturally by taking expectation across the dis-
tribution, we propose a dual quantity of entropy,
namely troenpy, to measure the certainty of X.
Troenpy is simply the distributed positive informa-
tion, while entropy measures the distributed Nega-
tive Information (NI). Troenpy reflects the level of
reliability of the X outcomes that the data conceals.



Definition 2 The troenpy of a discrete random
variable X is defined as the expectation of the Pls,

T(z):=—Y px(z)log(l - px(z)). ()

For continuous random variable X with density
function f(x), the differential troenpy is formally
defined by first dividing the range of X into bins
of length A, and the integral within each bin can
be represented as p; = f(x;)A by the Mean Value
Theorem for some x; in the bin, and taking the limit
by letting A — 0 if the limit is finite. It turns out
that the integral is zero.

7(f): =~ [ Fallogi - f(a))da
= f(zi)Alog(1 — f(x:)A)

Note the following fact about troenpy can be
observed. For a discrete random variable with
probabilities p;, where i € {1,..., K}, troenpy
achieves the maximum value infinity when an event
is completely certain with corresponding probabil-
ity p; = 1. Note this is different from entropy,
whose value is bounded and ranges from zero to
the maximum log K.

“

Theorem 1 Troenpy achieves the minimum value
log(%) when the underlying discrete distribu-
tion is uniform with each p; = % for all i, while
entropy achieves its maximum value log K.

Proof 1 To see why troenpy achieves such mini-
mum value, note that the sum S5 (1 — p;) =
K—(p1+....,px) =K—1. Ifwelet q; = (1 —
pi)/(K—1), then q = (q1,...,qK) is a probabil-
ity distribution. According to the Gibbs inequality
(MacKay, 2003), the cross entropy — Zfi 1 pilogg;
achieves minimum value when p; = q;, which im-
mediately gives p; = 1/K. It is also obvious that
the troenpy can be treated as the above cross en-
tropy minus the constant log(K — 1).

Note conceptually we can regard troenpy as a
complimentary metric of information in a distri-
bution in the sense of reliability. It measures how
much confidence about the outcomes in a distri-
bution. If the certainty increases, it means some
outcomes gain more confidence and the uncertainty
of the outcomes decreases correspondingly. Be-
cause of the intrinsic nature of troenpy, it naturally
serves as a weighting scheme measuring the relia-
bility of a random variable. More certainty means
more predictability. If a random variable has very

low certainty, this just means it has a high entropy
and is very noisy. Thus it is not a good feature for
prediction purposes and should be correspondingly
down-weighted.

Next we define conditional troenpy which will
motivate and lead to the weighting scheme in next
section. Let p(z, y) denote the joint distribution of
the discrete random variables X and Y, and lower-
case letters denote the random variable values.

Definition 3 We define the Conditional Troenpy
of X given'Y, denoted as T(X|Y'), to be the fol-
lowing T(X|Y') = -, p(y)T(X|Y = y).

It can further be reduced to the following

T(X|Y) = = [py)p(zly)log(1 — p(z|y))]

y7x

== p(x,y)log(1 — p(|y))

:E’y

Definition 4 We define the Pure Positive Informa-
tion of X from knowing Y, denoted as PPI(X;Y),
to be the troenpy gain T(X|Y) — T(X) =
5 P, y)log Tk

Note PPI(X; Y) is the analogue of the classical mu-
tual information. It measures the troenpy change
due to the presence of another random variable.
Thus this PPI can serve as a candidate for weighting
scheme. Note in general PPI(X;Y") # PPI(Y; X).
This is very different from the mutual information
MI(X;Y') of two random variables X and Y in the
literature, where MI(X;Y) = MI(Y’; X). In order
for them to be equal, this requires (1 — p(x))/(1 —
p(zly)) = (1=p(y))/ (1 =p(y|x)), which is equiv-
alent to p(z) — p(x|y) = p(y) — p(y|x). However,
this last equation does not hold in general.

3 Weighting Scheme for Supervised
Documents Classification

In this section we first briefly review the informa-
tion theoretic interpretation of TF-IDF, then natu-
rally we define a new weighting scheme using the
newly proposed troenpy as an analogue.

3.1 Review of IDF

Here we follow the information theoretic view men-
tioned above (Aizawa, 2003). We consider the
classical text documents classification task in the
routine supervised learning setting. The typical sce-
nario is that given a corpus collection of documents
D4, ...,D,, where n denotes the total number of
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documents. Each document D; has a class label
y; from a finite class label set Y = {1,2,..., K},
where K is the total number of classes. For a given
word term w, let d denote the number of documents
where w appears. Then the IDF is simply given by
the following:

IDF(w) = 1+ log

n
1+d ®)

It can be interpreted as the self (negative) infor-
mation in information theory, which measures the
surprise of the term t. The idea follows as be-
low: Fix a word w with document frequency d in
a collection of N documents, then the probabil-
ity of w appear in a document D can be approxi-
mated by Prob(w € D) = <. Then the negative-
information NI(w) —logProb(w € D)
log%. To smooth out the case when d = 0, adding
1 to the denominator gives N1(z) ~ log%. Also,
the summation of all TF-IDFs, each of which repre-
sents bits of information weighted by the probabil-
ity of a term, also recovers the mutual information
between terms and documents.

3.2 Positive Class Frequency

In this section we will make use of the document
class distribution and define a new term weighting
method, which can be applied later for the clas-
sification task. First for all the n documents in
the corpus, we collect the counts of documents for
each class. We denote the class label distribution
as C = {C1,...,Ck}, where C; is the count of
the i*" class label. Normalizing by dividing the
total number of documents n gives the probabil-

ity distribution @ = {cy,..., ¢k}, where ¢; = %
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This vector ¢ contains the global distribution infor-
mation and we can define two intrinsic quantities
measuring the certainty and uncertainty.

Definition 5 We define Positive Class Fre-
quency(PCF) for C' as the troenpy of <. Similarly,
Negative (or Inverse) Class Frequency(NCF or
ICF) as the entropy of <

PCF(C) : = Troenpy(c)

NCF(C) : = Entropy(c) ©

For the whole documents collection (abbreviated
as DC,), the PCF of the normalized label vector
?, denoted as PCF, is a constant for each term
indicating the certainty level of the whole label
distribution at the collection population level. Re-
stricting to the documents with the term w present
(abbreviated as DC'), the corresponding condi-
tional PCF is denoted as PCF;. Similarly, PCF_;
denotes the PCF for documents without the term w
(abbreviated as DC_1). We propose using the dif-
ference PCF; — PCF, between PCF; and PCF, as
a term weighting reflecting the certainty gain due
to the presence of the term w. Note this is the same
as the PPI introduced in last section, i.e, the con-
ditional troenpy gain condition on the knowledge
of the presence or absence of the term w. With-
out abuse of notation, we simply keep using PCF
to denote this new weighting scheme. Note in the
classical TF-IDF setting and general machine learn-
ing literature, such label distribution information
is usually used in some supervised ways (Ghosh
and Desarkar, 2018). It has not been made use of
before in such a simple and principled way.



To combine the IDF and PCF weightings, we
propose using their multiplication PCF - IDF, ab-
breviated as PIDF, as the weighting. Note the
IDF computation uses only the term document fre-
quency information across the corpus while the
PCF leverages the documents label information
via the conditional troenpy. So the simple prod-
uct model make use of both corpus information
about document frequencies as well as the docu-
ment label information. Hence multiplying with
the term frequency gives the name TF-PIDF. So
in our setting each document can be represented
as a vector of word term frequencies multiplied
with selected weighting method applied such as
doc; = [t f1PIDFy, ..., tf,PIDF,,], where tf; de-
notes the term frequency for the i*" token in litera-
ture and m is the number of unique selected terms
in a document.

On the other hand, the entropy based weight-
ing NCF - IDF is correspondingly abbreviated as
NIDF and multiplying the term frequency gives
TF-NIDF. Note the NCF is not suitable for weight-
ing as they are the negative information measuring
the uncertainty. The rationale behind this is that
when a mathematical model predicts things, it re-
lies on the learned certainty from the data, not the
uncertainty. This intrinsic nature of certainty de-
termines troenpy is the right candidate. To support
this view, we will illustrate it is ineffective in the
experiment session.

4 Class Information Bias Features and
Binary Term Frequency Features

In this section we introduce two types of features
for document representation: the odds ratio based
features for class information distribution and a
simple binary term frequency feature. For brevity,
we denote these two features as 2B features in the
experiments.

4.1 Odds-Ratio based Class Information Bias
Features

The idea is that both the TF-IDF and TF-PIDF
are obtained from a term frequency multiplied
with a weight information quantity measuring their
rareness or certainty, instead we can weight these
term frequencies by how biased they distributed
across the classes. This idea was inspired by an al-
gorithm called Delta-IDF. In a simple two class sen-
timent classification setting, (Martineau and Fanin,
2009) proposed first taking the difference of the

IDFs between the documents of the positive class
and the documents of the negative class and then
multiplying with the term frequency to give their
delta-TFIDF. That is, t ., [log#- — log -], where
P and N respectively stand for the total numbers
of positive documents and negative documents, and
the P, and IV, respectively stand for the total num-
bers of positive documents with the term w appears
and the total number of negative documents with
term w appears. So the difference between the
IDFs of the two collections of documents are ex-
actly the odds ratio of the documents counts for
the two complementary collections of documents,
which can be rewritten as log giv 1.

Motivated by the above, we can first compute
the NCF and PCF difference for any class ¢, which
gives the the Class Information Bias (CIB) fea-
tures. And then we take the weighted average
of such CIB features across all K classes. We
call these new features the Expected Class Infor-
mation Bias (ECIB) features. Specifically for a
term w, we first use n, denote the number of
documents with w present and n;, denote the
number of documents with class label ¢ and w
present. Then the NCF based CIB for class ¢ is
given as CIB;(w) = log 1+C;:m — log 1+Z;€;%w
as (n — C;) stands for the total documents not in
class i and (n,, — n;y) stands for the total num-
ber of documents not in class ¢ but with w ap-

pears. Similarly, the PCF based CIB is given as
Ci _Ci
log 1oty — o9 o T,
Therefore for each term w, we can define two

such distributed Class Information Bias features,
one using NCF and one using PCF. The expected
CIB features are precisely given by the following.

CIB-NCF(w) :
K
AT 1
;n(ogl‘i‘nzw Ogl+nw_niw)
K
C; C;
—log n=G )

1+TL—C¢—TLw+nZ‘w
(7

The effect for this ECIB feature is that words
that are evenly distributed for their contribution of
the information quantities in a class and the rest
of the class get little weight, while words that are
prominent in some class for their contribution of
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Figure 2: Errors rates of TF-IDF, TF-PIDF and TF-NIDF across seven datasets in a KNN setting

the information quantities get more weight. So the
terms characterizing specific classes are relatively
better weighted as they are more representative.

4.2 Binary Term Frequency

The binary term frequency (BTF) is simply a bi-
nary feature for each term w. BTF(w) is 1 if w is
present in a document and it is O if it is absent in a
document. BTF gives the most naive representation
of a document, regardless of frequency counts. We
notice that BTF features are actually quite infor-
mative and together with TF-IDF can significantly
improve the classification performance in the kNN
setting. One can achieve this by simply summing
the TF-IDF based pairwise document distance and
the BTF features based document pairwise distance
as the final document pairwise distance.

5 Datasets and Experiment

The goal of our experiments in this section is to
validate our proposed weighting schemes and fea-
tures for the supervised document classification
tasks, and compare with the baseline algorithms.
To achieve this we include seven text document
datasets that are often used for the documents clas-
sification tasks in the literature. Three datasets
already have a training dataset and a test dataset
split while the rest four have no such splits. The
experiments of supervised document classification
tasks have two settings for the evaluation: a sim-
ple kNN setting and a logistic regression setting.
The evaluation metric is the error rates on the test
datasets.

5.1 Datasets

Here we follow closely the setup of (Yurochkin
et al., 2019). We use the popular seven open source
datasets below for the study on KNN based clas-
sification tasks. Note these datasets have been ex-
tensively used numerous times for the classifica-
tion tasks. The datasets include BBC sports news
articles labeled into five sports categories (BBC-
sports); medical documents labeled into 10 classes
of cardiovascular disease types( Ohsumed); Ama-
zon reviews labeled by three categories of Positive,
Neutral and Negative (Amazon); tweets labeled
by sentiment categories (Twitter); newsgroup arti-
cles labeled into 20 categories (20 News group);
sentences from science articles labeled by differ-
ent publishers ( Classic) and Reuters news articles
labeled by eight different topics (R8). The more de-
tailed information about the datasets can be found
in the references mentioned above. For the datasets
with no explicit train and test splits, we use the
common 80/20 train-test split and report the per-
formance result based on fifty repeats of random
sampling.

To minimize the datasets version mismatch, in
all the experiments we use the raw text documents
rather than some pre-processed intermediate for-
mats such as some of the processed datasets pro-
vided in (Kusner et al., 2015).

5.2 Experiment Settings

Here we introduce the baseline algorithms and their
settings in the experiments.
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Figure 3: Error rates of document classification using 2B features in logistic regression classifier

Baselines: For the evaluation of supervised doc-
uments classification on term frequencies and their
weighting, we include the classical TF-IDF docu-
ment representation as a baseline. The pairwise
document distance in kNN setting is computed
using the TF-IDF represented vectors. For com-
parison purpose and reference, in the experiments
we also include the result of a Word Moving Dis-
tance (WMD) based algorithm, namely HOFTT
proposed by (Yurochkin et al., 2019). It is a hierar-
chical optimal transport distance in the topic spaces
of documents. We follow closely the experiment
setting of HOFTT.

kNN based Classification: The features include
term frequencies only. The goal is to validate the
TF-PIDF weighting and compare with TF-IDF. The
data pre-processing starts with removing the fre-
quent English words in the stop word list, which
can be found in the above references. To ease the
kNN evaluation part, we fix the number of clos-
est neighborhoods K=7 rather than dynamically
selecting the optimal K. We compute the integrated
weighting PIDF as the product of PCF and IDF,
and compare with the IDF weighting for each term
frequency. Using the TF-PIDF and TF-IDF, we
obtain the bag-of-words vector representation of
each document and take their L2 normalization,
and then compute the document pairwise distance
following the standard kNN procedures. Again our
main goal here is to assess if the proposed PCF
weighting is effective and can help improve the
classical TF-IDF method. Also we want to evalu-
ate the entropy based approach and see if it fails as
we expected.

Logistic Regression based Classification: In
this setting we simply replace the simple kNN with
a standard logistic regression model instead. In
the experiments we use the Sklearn package imple-
mentation with default settings. Here we have two
goals to evaluate. First we need to evaluate if the
models have performance improvement when the
2B features are included, compared with the mod-
els using only the TF-PIDF features. So we can
assess if 2B features are effective for the document
classification task. Second we want to evaluate
the PCF weighting effect on the ECIB and BTF
features both separately and jointly.

Here the data preprocessing is identical to the
kNN classification settings above. We mainly con-
sider three types of features in the experiment,
namely the TF-PIDF features, binary term features
(BTF) and the ECIB features.

6 Results

kNN based Classification Experiments: In Fig-
ure 1 we can visually observe that the TF-PIDF
based kNN model uniformly outperformed the
classical TF-IDF based kNN across all seven
datasets and the improvement is quite substantial
for most cases with an average overall error reduc-
tion 22.9%. Noticeably the R8 dataset achieves
the most 53.4% error reduction. Compared with
HOFFT, the TF-PIDF achieves even more error
reduction with the average of 26.5%. These uni-
form improvement can be explained as the PCF
weighting does effectively leverage the certainty
and common similarity of class label distributions
across the corpus at a term level. For a term, the
more PCF it has the better prediction capacity it has.



R8 Test Data using TF-IDF

Figure 4: t-SNE on R8 data

For example, the different news groups in Ng20
actually share many non-stop words in common
and some groups are very relevant. The learned
similarity information about one group is helpful at
predicting a relevant group. We also observe only
slight improvement on the Twitter and BBC sport
datasets which might be simply due to the small
sample sizes. The Twitter has 3115 samples and
BBCsport has only 737 samples, which are quite
small compared with other datasets. Additionally,
the Twitter sentiment dataset has three class labels
consisting of positive, neutral and negative. The
extreme polarity of the classes is often consistent
with the fact that relatively less common descrip-
tion words are shared across the classes.

PCF and NCF Comparison: To compare the
performance of TF-PIDF and TF-NIDF with the
baseline TF-IDF, we did another experiment, where
the datasets with no given train/test splits are re-
sampled fifty times. The result is reported in Figure

2. We observed that the TF-PIDF is consistently
effective on reducing the errors compared with TF-
IDF while the entropy based approach TF-NIDF
completely fails in reducing the errors as expected.
This clearly shows that our proposal of Troenpy
does bring additional value beyond the classical
Shannon entropy for machine learning classifica-
tion tasks.

t-SNE: We also use the popular t-SNE by
(van der Maaten and Hinton, 2008) to visualize
the TF-IDF and TF-PIDF classification effect on
the R8 dataset. In Figure 4, the TF-PIDF appears
to cluster relatively closer for each class labels and
clusters are relatively separated from other cluster
groups.

Word Moving Distance Methods: In the exper-
iments a modern Optimal Transport (OT) based
Word Moving Distance (WMD) approach HOFTT
performs poorly compared with the TF-PIDF



weighting on all dataset except on R8 dataset, on
which it is also outperformed by TF-PIDF em-
ploying the additional 2B features. However we
are also aware another advanced WMD method
Wasserstein-Fisher-Rao(WFR) developed by Wang
et al. (2020), which uses the Fisher-Rao metric for
the unbalanced optimal transport problem. The
reported result of WFR is comparable to our pro-
posed methods across the datasets. Unfortunately
there are some version mismatch for some datasets
as well as slightly different sampling procedure
for datasets with no pre-specified train-test splits,
so we did not include the corresponding result in
our figures. Note also that the general Sinkhorn
based algorithms for such OT optimization prob-
lems have relatively high computational complexity
and so they are quite expensive on computational
cost. While the proposed weighting scheme and
ECIB features can be obtained in a single scan of
the data and the time complexity is linear, they are
fast and a lot cheaper on computational cost.

Logistic Regression based Experiments: In Fig-
ure 1 we observed the following: (1) for the same
TE-PIDF feature set, the logistic regression model
uniformly outperforms the kNN approach across
all datasets. This is not surprised as the logistic
regression optimizes the term coefficients for op-
timal fitting the data while the kNN is rigid as
given. (2) adding the 2B features of binary term
frequency (BTF) and expected class information
bias (ECIB) further significantly reduces the er-
rors on most datasets. Compared with TF-IDF, the
average error reduction is 35%. Compared with
HOFFT, the error reduction reaches 43.4%. For
the BBC dataset we observed a relatively large er-
ror increase, and we hypothesize that this may be
due to the very small test sample size of the dataset.

In Figure 3 we reported the results of using BTF
and ECIB features in the logistic regression set-
ting. We observed the following. Both BTF and
ECIB features are quite effective when used indi-
vidually alone. ECIB performs better than BTF on
all datasets except on the dataset of 20 Newsgroup,
where they are relatively close. Simply combining
the two features together not necessarily always im-
proves the performance, instead it leads to slightly
more errors on a couple of the datasets. We also
observe that applying the PCF weighting helps on
majority of the cases. Visually the left three bars
of light color represent 2B features without PCF
weighting while the right three bars of darker color

represent corresponding features with PCF weight-
ing applied.

7 Discussion

The current work first proposed a new information
measurement of certainty and an associated weight-
ing scheme leveraging the document label informa-
tion, and further demonstrated its effectiveness on
several popular benchmark datasets of English text
documents. For documents without label informa-
tion available, the current proposal cannot apply
directly. However, a few unsupervised tasks often
can be reformulated into popular self-supervised
problems. The only difference from the above su-
pervised setting is that the labels and features are
from the same space, and we can apply the devel-
oped methods to process without much difference.
A detailed illustration and explanation is given in
another project elsewhere. In modern NLP com-
munity distributed representations of word vectors
are widely used in language models for various
tasks. The proposed troenpy and the weighting
schemes can actually be integrated into neural net-
work based language models and can further im-
prove the performance.

For image processing with pixels values in the
typical range [0,255] or other continuous data fea-
tures such as speech acoustic waveforms and gene
expression data etc, straightly applying the above
weighting schemes does not work. A natural strat-
egy is to first quantize the data and try to apply
similar idea in the discrete scenarios. We will in-
vestigate this elsewhere.
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