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Abstract

Shannon Information theory has achieved great001
success in not only communication technol-002
ogy where it was originally developed for but003
also many other science and engineering fields004
such as machine learning and artificial intel-005
ligence. Inspired by the famous weighting006
scheme TF-IDF, we discovered that Shannon007
information entropy actually has a natural dual.008
To complement the classical Shannon informa-009
tion entropy which measures the uncertainty we010
propose a novel information quantity, namely011
troenpy. Troenpy measures the certainty and012
commonness of the underlying distribution. So013
entropy and troenpy form an information twin.014
To demonstrate its usefulness, we propose a015
conditional troenpy based weighting scheme016
for document with class labels, namely posi-017
tive class frequency (PCF). On a collection of018
public datasets we show the PCF based weight-019
ing scheme outperforms the classical TF-IDF020
and a popular Optimal Transport based word021
moving distance algorithm in a kNN setting022
with respectively more than 22.9% and 26.5%023
classification error reduction while the corre-024
sponding entropy based approach completely025
fails. We further developed a new odds-ratio026
type feature, namely Expected Class Informa-027
tion Bias(ECIB), which can be regarded as the028
expected odds ratio of the information twin029
across different classes. In the experiments we030
observe that including the new ECIB features031
and simple binary term features in a simple lo-032
gistic regression model can further significantly033
improve the performance. The proposed simple034
new weighting scheme and ECIB features are035
very effective and can be computed with linear036
time complexity.037

1 Introduction038

The classical information theory was originally pro-039

posed by Shannon(Shannon, 1948) to solve the040

message coding problem in telecommunication. It041

turned out that it has far more profound impact042

beyond communication theory, and it has shaped043

all aspects of our science, engineering and social 044

science by now. The core concept entropy was 045

coined to measure the expected rareness or surprise 046

of a random variable X across its distribution. In 047

the literature entropy is usually taken for granted 048

as the information in many people’s mind. The 049

mutual information (MI) between two variables is 050

the difference of the entropy of a variable from its 051

conditional entropy given the other variable. MI 052

maximization principle also has been studied and 053

used widely in machine learning. Recently MI 054

has also been employed as part of the objective 055

function for optimization in neural network models 056

based representation learning(Belghazi et al., 2018; 057

Hjelm et al., 2019). 058

Along another line, weighting scheme has been 059

used extensively in information retrieval tasks. 060

Term Frequency-Inverse Document Frequency(TF- 061

IDF), a simple statistic heuristic proposed by 062

(Sparck Jones, 1972) has been widely used as a 063

weighting method over half a century in informa- 064

tion retrieval and natural language processing. It 065

weighs down a term if its document frequency in- 066

creases in the corpus, as it becomes less effective 067

to distinguish from others when it gets popular 068

and its appearance brings less surprise in the sense 069

of Shannon self-information. This simple but ef- 070

fective algorithm has achieved great success as a 071

robust weighting scheme. Even today many search 072

engines and digital database systems still employ 073

TF-IDF as an important default algorithm for rank- 074

ing. 075

In the past decades a few researchers have in- 076

tensively investigated on it for a better theoretical 077

understanding of the underlying mechanism rather 078

than a heuristic and intuition argument. (Robert- 079

son, 2004) justified it as an approximate measure 080

of naive Bayes based probability relevance model 081

in information retrieval. Some researchers tried 082

to explain from the information theory point view. 083

(Aizawa, 2003) interpreted it as some probability 084
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weighted amount of information. (Siegler and Wit-085

brock, 1999) interpreted IDF for a term exactly086

as the mutual information between a random vari-087

able representing a term sampling and a random088

variable representing a document sampling from a089

corpus. Many other variants of the term frequency090

have been proposed in the literature. For example,091

BM25(Robertson, 2009) based on probabilistic re-092

trieval framework was further proposed and it has093

been widely used by search engines to estimate the094

relevance of documents to a given search query. In095

general the derived applications go far beyond text096

processing and information retrieval community.097

The connection between TF-IDF and informa-098

tion theory mentioned above is quite motivating.099

This makes us wonder if there are other simple and100

effective weighting schemes that can be established101

from information theory. In order to achieve this102

goal, it turns out that we first developed a new met-103

ric of information quantity for certainty, namely104

troenpy, a natural dual to entropy, and then used it105

to derive a new type of weighting scheme which106

works very well in the extensive experiments as we107

hoped.108

In the following we will first introduce troenpy109

and its basic properties, and share some insights110

we have for this innovation. Then for the classi-111

cal task of supervised document classification, we112

will develop a troenpy based weighting scheme for113

document representation. This weighting scheme114

makes use of the documents class label distribution115

and helps improving the model performance very116

significantly. Employing both entropy and troenpy,117

we will also define some new odds-ratio based class118

bias features leveraging the document class label119

distribution. Finally evaluating under the simple120

KNN and logistic regression settings, we show that121

the proposed new weighting scheme and new fea-122

tures are very effective and achieved substantial123

error reduction compared with the TF-IDF and a124

popular optimal transport based document classi-125

fication algorithm on a collection of widely used126

benchmark data sets.127

2 Dual of Shannon Entropy128

We fix the notations first. Here we let X indi-129

cate a discrete random variables with probability130

mass function pX(x). The Shannon entropy (some-131

times also called self-information) measures the132

uncertainty of the underlying variable, or the level133

of surprise of an outcome in literature. To un-134

derstand this, note when the event is rare, that is 135

the probability pX(x) is small, the measurement 136

−log(pX(x)) is large; when the event is not rare, 137

that is the probability pX(x) is not small, the mea- 138

surement −log(pX(x)) is not big. Therefore in this 139

sense of Shannon, the measurement −log(pX(x)) 140

does represent the rareness or surprise degree of 141

an event. In this work we purposely call it Nega- 142

tive Information(NI) for showing the duality nature 143

later. That is, 144

NI(x) := −log(pX(x)) = log
1

pX(x)
. (1) 145

Now since Shannon information measures surprise, 146

can we measure the certainty or commonness in- 147

stead? This is exactly the contrary to the Shannon 148

information, the dual of Negative Information En- 149

tropy. This motivates our definition below. 150

Definition 1 We define Positive Information (PI) 151

of an outcome x as 152

PI(x) := −log(1− pX(x)) = log
1

1− pX(x)
.

(2) 153

To understand why PI measures the certainty 154

of an event, note when the event is rare, that is 155

the probability pX(x) is small and the certainty is 156

small, the measurement −log(1− pX(x)) is very 157

small; when the event is not rare, that is the proba- 158

bility pX(x) is large and the certainty of the event 159

is large, the measurement −log(1− pX(x)) is also 160

large. So the PI can measure the certainty of an 161

event faithfully in the same sense of Shannon. 162

For discrete random variables with probabilities pi, 163

where i ∈ {1, . . . ,K}, the value PI=log( 1
1−pi

) is 164

the measure of non-surprise or commonness. Note 165

from the definition, PI has the same value range 166

[0,∞) as NI. A conventional way to avoid the infin- 167

ity value ranges numerically is to add a small value 168

epsilon to the denominator, and one can choose the 169

epsilon value according to desired resolution. Note 170

if we denote x̄ the complement of outcome x, then 171

PI(x) = NI(x̄). 172

Naturally by taking expectation across the dis- 173

tribution, we propose a dual quantity of entropy, 174

namely troenpy, to measure the certainty of X . 175

Troenpy is simply the distributed positive informa- 176

tion, while entropy measures the distributed Nega- 177

tive Information (NI). Troenpy reflects the level of 178

reliability of the X outcomes that the data conceals. 179
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Definition 2 The troenpy of a discrete random180

variable X is defined as the expectation of the PIs,181

T (x) := −
∑
x

pX(x)log(1− pX(x)). (3)182

For continuous random variable X with density183

function f(x), the differential troenpy is formally184

defined by first dividing the range of X into bins185

of length ∆, and the integral within each bin can186

be represented as pi = f(xi)∆ by the Mean Value187

Theorem for some xi in the bin, and taking the limit188

by letting ∆ → 0 if the limit is finite. It turns out189

that the integral is zero.190

T (f) : = −
∫

f(x)log(1− f(x))dx

=
∑

f(xi)∆log(1− f(xi)∆)

(4)191

Note the following fact about troenpy can be192

observed. For a discrete random variable with193

probabilities pi, where i ∈ {1, . . . ,K}, troenpy194

achieves the maximum value infinity when an event195

is completely certain with corresponding probabil-196

ity pi = 1. Note this is different from entropy,197

whose value is bounded and ranges from zero to198

the maximum logK.199

Theorem 1 Troenpy achieves the minimum value200

log( K
K−1) when the underlying discrete distribu-201

tion is uniform with each pi =
1
K for all i, while202

entropy achieves its maximum value logK.203

Proof 1 To see why troenpy achieves such mini-204

mum value, note that the sum
∑K

i=1(1 − pi) =205

K − (p1 + . . . , pK) = K − 1. If we let qi = (1 −206

pi)/(K − 1), then q = (q1, . . . , qK) is a probabil-207

ity distribution. According to the Gibbs inequality208

(MacKay, 2003), the cross entropy −
∑K

i=1 pilogqi209

achieves minimum value when pi = qi, which im-210

mediately gives pi = 1/K. It is also obvious that211

the troenpy can be treated as the above cross en-212

tropy minus the constant log(K − 1).213

Note conceptually we can regard troenpy as a214

complimentary metric of information in a distri-215

bution in the sense of reliability. It measures how216

much confidence about the outcomes in a distri-217

bution. If the certainty increases, it means some218

outcomes gain more confidence and the uncertainty219

of the outcomes decreases correspondingly. Be-220

cause of the intrinsic nature of troenpy, it naturally221

serves as a weighting scheme measuring the relia-222

bility of a random variable. More certainty means223

more predictability. If a random variable has very224

low certainty, this just means it has a high entropy 225

and is very noisy. Thus it is not a good feature for 226

prediction purposes and should be correspondingly 227

down-weighted. 228

Next we define conditional troenpy which will 229

motivate and lead to the weighting scheme in next 230

section. Let p(x, y) denote the joint distribution of 231

the discrete random variables X and Y , and lower- 232

case letters denote the random variable values. 233

Definition 3 We define the Conditional Troenpy 234

of X given Y , denoted as T(X|Y ), to be the fol- 235

lowing T(X|Y ) =
∑

y p(y)T(X|Y = y). 236

It can further be reduced to the following 237

T(X|Y ) = −
∑
y,x

[p(y)p(x|y)log(1− p(x|y))]

= −
∑
x,y

p(x, y)log(1− p(x|y))
238

Definition 4 We define the Pure Positive Informa- 239

tion of X from knowing Y , denoted as PPI(X;Y ), 240

to be the troenpy gain T(X|Y ) − T(X) = 241∑
x,y p(x, y)log 1−p(x)

1−p(x|y) . 242

Note PPI(X;Y ) is the analogue of the classical mu- 243

tual information. It measures the troenpy change 244

due to the presence of another random variable. 245

Thus this PPI can serve as a candidate for weighting 246

scheme. Note in general PPI(X;Y ) ̸= PPI(Y ;X). 247

This is very different from the mutual information 248

MI(X;Y ) of two random variables X and Y in the 249

literature, where MI(X;Y ) = MI(Y ;X). In order 250

for them to be equal, this requires (1− p(x))/(1− 251

p(x|y)) = (1−p(y))/(1−p(y|x)), which is equiv- 252

alent to p(x)− p(x|y) = p(y)− p(y|x). However, 253

this last equation does not hold in general. 254

3 Weighting Scheme for Supervised 255

Documents Classification 256

In this section we first briefly review the informa- 257

tion theoretic interpretation of TF-IDF, then natu- 258

rally we define a new weighting scheme using the 259

newly proposed troenpy as an analogue. 260

3.1 Review of IDF 261

Here we follow the information theoretic view men- 262

tioned above (Aizawa, 2003). We consider the 263

classical text documents classification task in the 264

routine supervised learning setting. The typical sce- 265

nario is that given a corpus collection of documents 266

D1, . . . ,Dn, where n denotes the total number of 267

3



Figure 1: Errors of document classification for 7 Datasets with TF-IDF and TF-PI

documents. Each document Di has a class label268

yi from a finite class label set Y = {1, 2, . . . ,K},269

where K is the total number of classes. For a given270

word term w, let d denote the number of documents271

where w appears. Then the IDF is simply given by272

the following:273

IDF(w) = 1 + log
n

1 + d
(5)274

It can be interpreted as the self (negative) infor-275

mation in information theory, which measures the276

surprise of the term t. The idea follows as be-277

low: Fix a word w with document frequency d in278

a collection of N documents, then the probabil-279

ity of w appear in a document D can be approxi-280

mated by Prob(w ∈ D) = d
N . Then the negative-281

information NI(w) = −logProb(w ∈ D) =282

logN
d . To smooth out the case when d = 0, adding283

1 to the denominator gives NI(x) ≈ log N
d+1 . Also,284

the summation of all TF-IDFs, each of which repre-285

sents bits of information weighted by the probabil-286

ity of a term, also recovers the mutual information287

between terms and documents.288

3.2 Positive Class Frequency289

In this section we will make use of the document290

class distribution and define a new term weighting291

method, which can be applied later for the clas-292

sification task. First for all the n documents in293

the corpus, we collect the counts of documents for294

each class. We denote the class label distribution295

as C = {C1, . . . , CK}, where Ci is the count of296

the ith class label. Normalizing by dividing the297

total number of documents n gives the probabil-298

ity distribution −→c = {c1, . . . , cK}, where ci = Ci
n .299

This vector −→c contains the global distribution infor- 300

mation and we can define two intrinsic quantities 301

measuring the certainty and uncertainty. 302

Definition 5 We define Positive Class Fre- 303

quency(PCF) for C as the troenpy of −→c . Similarly, 304

Negative (or Inverse) Class Frequency(NCF or 305

ICF) as the entropy of −→c . 306

PCF(C) : = Troenpy(c)

NCF(C) : = Entropy(c)
(6) 307

For the whole documents collection (abbreviated 308

as DC∗), the PCF of the normalized label vector 309
−→c , denoted as PCF∗ is a constant for each term 310

indicating the certainty level of the whole label 311

distribution at the collection population level. Re- 312

stricting to the documents with the term w present 313

(abbreviated as DC1), the corresponding condi- 314

tional PCF is denoted as PCF1. Similarly, PCF−1 315

denotes the PCF for documents without the term w 316

(abbreviated as DC−1). We propose using the dif- 317

ference PCF1 − PCF∗ between PCF1 and PCF∗ as 318

a term weighting reflecting the certainty gain due 319

to the presence of the term w. Note this is the same 320

as the PPI introduced in last section, i.e, the con- 321

ditional troenpy gain condition on the knowledge 322

of the presence or absence of the term w. With- 323

out abuse of notation, we simply keep using PCF 324

to denote this new weighting scheme. Note in the 325

classical TF-IDF setting and general machine learn- 326

ing literature, such label distribution information 327

is usually used in some supervised ways (Ghosh 328

and Desarkar, 2018). It has not been made use of 329

before in such a simple and principled way. 330
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To combine the IDF and PCF weightings, we331

propose using their multiplication PCF · IDF, ab-332

breviated as PIDF, as the weighting. Note the333

IDF computation uses only the term document fre-334

quency information across the corpus while the335

PCF leverages the documents label information336

via the conditional troenpy. So the simple prod-337

uct model make use of both corpus information338

about document frequencies as well as the docu-339

ment label information. Hence multiplying with340

the term frequency gives the name TF-PIDF. So341

in our setting each document can be represented342

as a vector of word term frequencies multiplied343

with selected weighting method applied such as344

doci = [tf1PIDF1, . . . , tfmPIDFm], where tfi de-345

notes the term frequency for the ith token in litera-346

ture and m is the number of unique selected terms347

in a document.348

On the other hand, the entropy based weight-349

ing NCF · IDF is correspondingly abbreviated as350

NIDF and multiplying the term frequency gives351

TF-NIDF. Note the NCF is not suitable for weight-352

ing as they are the negative information measuring353

the uncertainty. The rationale behind this is that354

when a mathematical model predicts things, it re-355

lies on the learned certainty from the data, not the356

uncertainty. This intrinsic nature of certainty de-357

termines troenpy is the right candidate. To support358

this view, we will illustrate it is ineffective in the359

experiment session.360

4 Class Information Bias Features and361

Binary Term Frequency Features362

In this section we introduce two types of features363

for document representation: the odds ratio based364

features for class information distribution and a365

simple binary term frequency feature. For brevity,366

we denote these two features as 2B features in the367

experiments.368

4.1 Odds-Ratio based Class Information Bias369

Features370

The idea is that both the TF-IDF and TF-PIDF371

are obtained from a term frequency multiplied372

with a weight information quantity measuring their373

rareness or certainty, instead we can weight these374

term frequencies by how biased they distributed375

across the classes. This idea was inspired by an al-376

gorithm called Delta-IDF. In a simple two class sen-377

timent classification setting, (Martineau and Fanin,378

2009) proposed first taking the difference of the379

IDFs between the documents of the positive class 380

and the documents of the negative class and then 381

multiplying with the term frequency to give their 382

delta-TFIDF. That is, tfw[log P
Pw

− log N
Nw

], where 383

P and N respectively stand for the total numbers 384

of positive documents and negative documents, and 385

the Pw and Nw respectively stand for the total num- 386

bers of positive documents with the term w appears 387

and the total number of negative documents with 388

term w appears. So the difference between the 389

IDFs of the two collections of documents are ex- 390

actly the odds ratio of the documents counts for 391

the two complementary collections of documents, 392

which can be rewritten as logPNw
PwN . 393

Motivated by the above, we can first compute 394

the NCF and PCF difference for any class i, which 395

gives the the Class Information Bias (CIB) fea- 396

tures. And then we take the weighted average 397

of such CIB features across all K classes. We 398

call these new features the Expected Class Infor- 399

mation Bias (ECIB) features. Specifically for a 400

term w, we first use nw denote the number of 401

documents with w present and niw denote the 402

number of documents with class label i and w 403

present. Then the NCF based CIB for class i is 404

given as CIBi(w) = log Ci
1+niw

− log n−Ci
1+nw−niw

, 405

as (n − Ci) stands for the total documents not in 406

class i and (nw − niw) stands for the total num- 407

ber of documents not in class i but with w ap- 408

pears. Similarly, the PCF based CIB is given as 409

log Ci
1+Ci−niw

− log n−Ci
1+n−Ci−nw+niw

. 410

Therefore for each term w, we can define two 411

such distributed Class Information Bias features, 412

one using NCF and one using PCF. The expected 413

CIB features are precisely given by the following. 414

CIB-NCF(w) :

=
K∑
i=1

Ci

n
(log

Ci

1 + niw
− log

n− Ci

1 + nw − niw
)

CIB-PCF(w) :=
K∑
i=1

Ci

n
(log

Ci

1 + Ci − niw

− log
n− Ci

1 + n− Ci − nw + niw
)

(7)

415

The effect for this ECIB feature is that words 416

that are evenly distributed for their contribution of 417

the information quantities in a class and the rest 418

of the class get little weight, while words that are 419

prominent in some class for their contribution of 420
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Figure 2: Errors rates of TF-IDF, TF-PIDF and TF-NIDF across seven datasets in a KNN setting

the information quantities get more weight. So the421

terms characterizing specific classes are relatively422

better weighted as they are more representative.423

4.2 Binary Term Frequency424

The binary term frequency (BTF) is simply a bi-425

nary feature for each term w. BTF(w) is 1 if w is426

present in a document and it is 0 if it is absent in a427

document. BTF gives the most naive representation428

of a document, regardless of frequency counts. We429

notice that BTF features are actually quite infor-430

mative and together with TF-IDF can significantly431

improve the classification performance in the kNN432

setting. One can achieve this by simply summing433

the TF-IDF based pairwise document distance and434

the BTF features based document pairwise distance435

as the final document pairwise distance.436

5 Datasets and Experiment437

The goal of our experiments in this section is to438

validate our proposed weighting schemes and fea-439

tures for the supervised document classification440

tasks, and compare with the baseline algorithms.441

To achieve this we include seven text document442

datasets that are often used for the documents clas-443

sification tasks in the literature. Three datasets444

already have a training dataset and a test dataset445

split while the rest four have no such splits. The446

experiments of supervised document classification447

tasks have two settings for the evaluation: a sim-448

ple kNN setting and a logistic regression setting.449

The evaluation metric is the error rates on the test450

datasets.451

5.1 Datasets 452

Here we follow closely the setup of (Yurochkin 453

et al., 2019). We use the popular seven open source 454

datasets below for the study on KNN based clas- 455

sification tasks. Note these datasets have been ex- 456

tensively used numerous times for the classifica- 457

tion tasks. The datasets include BBC sports news 458

articles labeled into five sports categories (BBC- 459

sports); medical documents labeled into 10 classes 460

of cardiovascular disease types( Ohsumed); Ama- 461

zon reviews labeled by three categories of Positive, 462

Neutral and Negative (Amazon); tweets labeled 463

by sentiment categories (Twitter); newsgroup arti- 464

cles labeled into 20 categories (20 News group); 465

sentences from science articles labeled by differ- 466

ent publishers ( Classic) and Reuters news articles 467

labeled by eight different topics (R8). The more de- 468

tailed information about the datasets can be found 469

in the references mentioned above. For the datasets 470

with no explicit train and test splits, we use the 471

common 80/20 train-test split and report the per- 472

formance result based on fifty repeats of random 473

sampling. 474

To minimize the datasets version mismatch, in 475

all the experiments we use the raw text documents 476

rather than some pre-processed intermediate for- 477

mats such as some of the processed datasets pro- 478

vided in (Kusner et al., 2015). 479

5.2 Experiment Settings 480

Here we introduce the baseline algorithms and their 481

settings in the experiments. 482
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Figure 3: Error rates of document classification using 2B features in logistic regression classifier

Baselines: For the evaluation of supervised doc-483

uments classification on term frequencies and their484

weighting, we include the classical TF-IDF docu-485

ment representation as a baseline. The pairwise486

document distance in kNN setting is computed487

using the TF-IDF represented vectors. For com-488

parison purpose and reference, in the experiments489

we also include the result of a Word Moving Dis-490

tance (WMD) based algorithm, namely HOFTT491

proposed by (Yurochkin et al., 2019). It is a hierar-492

chical optimal transport distance in the topic spaces493

of documents. We follow closely the experiment494

setting of HOFTT.495

kNN based Classification: The features include496

term frequencies only. The goal is to validate the497

TF-PIDF weighting and compare with TF-IDF. The498

data pre-processing starts with removing the fre-499

quent English words in the stop word list, which500

can be found in the above references. To ease the501

kNN evaluation part, we fix the number of clos-502

est neighborhoods K=7 rather than dynamically503

selecting the optimal K. We compute the integrated504

weighting PIDF as the product of PCF and IDF,505

and compare with the IDF weighting for each term506

frequency. Using the TF-PIDF and TF-IDF, we507

obtain the bag-of-words vector representation of508

each document and take their L2 normalization,509

and then compute the document pairwise distance510

following the standard kNN procedures. Again our511

main goal here is to assess if the proposed PCF512

weighting is effective and can help improve the513

classical TF-IDF method. Also we want to evalu-514

ate the entropy based approach and see if it fails as515

we expected.516

Logistic Regression based Classification: In 517

this setting we simply replace the simple kNN with 518

a standard logistic regression model instead. In 519

the experiments we use the Sklearn package imple- 520

mentation with default settings. Here we have two 521

goals to evaluate. First we need to evaluate if the 522

models have performance improvement when the 523

2B features are included, compared with the mod- 524

els using only the TF-PIDF features. So we can 525

assess if 2B features are effective for the document 526

classification task. Second we want to evaluate 527

the PCF weighting effect on the ECIB and BTF 528

features both separately and jointly. 529

Here the data preprocessing is identical to the 530

kNN classification settings above. We mainly con- 531

sider three types of features in the experiment, 532

namely the TF-PIDF features, binary term features 533

(BTF) and the ECIB features. 534

6 Results 535

kNN based Classification Experiments: In Fig- 536

ure 1 we can visually observe that the TF-PIDF 537

based kNN model uniformly outperformed the 538

classical TF-IDF based kNN across all seven 539

datasets and the improvement is quite substantial 540

for most cases with an average overall error reduc- 541

tion 22.9%. Noticeably the R8 dataset achieves 542

the most 53.4% error reduction. Compared with 543

HOFFT, the TF-PIDF achieves even more error 544

reduction with the average of 26.5%. These uni- 545

form improvement can be explained as the PCF 546

weighting does effectively leverage the certainty 547

and common similarity of class label distributions 548

across the corpus at a term level. For a term, the 549

more PCF it has the better prediction capacity it has. 550
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Figure 4: t-SNE on R8 data

For example, the different news groups in Ng20551

actually share many non-stop words in common552

and some groups are very relevant. The learned553

similarity information about one group is helpful at554

predicting a relevant group. We also observe only555

slight improvement on the Twitter and BBC sport556

datasets which might be simply due to the small557

sample sizes. The Twitter has 3115 samples and558

BBCsport has only 737 samples, which are quite559

small compared with other datasets. Additionally,560

the Twitter sentiment dataset has three class labels561

consisting of positive, neutral and negative. The562

extreme polarity of the classes is often consistent563

with the fact that relatively less common descrip-564

tion words are shared across the classes.565

PCF and NCF Comparison: To compare the566

performance of TF-PIDF and TF-NIDF with the567

baseline TF-IDF, we did another experiment, where568

the datasets with no given train/test splits are re-569

sampled fifty times. The result is reported in Figure570

2. We observed that the TF-PIDF is consistently 571

effective on reducing the errors compared with TF- 572

IDF while the entropy based approach TF-NIDF 573

completely fails in reducing the errors as expected. 574

This clearly shows that our proposal of Troenpy 575

does bring additional value beyond the classical 576

Shannon entropy for machine learning classifica- 577

tion tasks. 578

t-SNE: We also use the popular t-SNE by 579

(van der Maaten and Hinton, 2008) to visualize 580

the TF-IDF and TF-PIDF classification effect on 581

the R8 dataset. In Figure 4, the TF-PIDF appears 582

to cluster relatively closer for each class labels and 583

clusters are relatively separated from other cluster 584

groups. 585

Word Moving Distance Methods: In the exper- 586

iments a modern Optimal Transport (OT) based 587

Word Moving Distance (WMD) approach HOFTT 588

performs poorly compared with the TF-PIDF 589
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weighting on all dataset except on R8 dataset, on590

which it is also outperformed by TF-PIDF em-591

ploying the additional 2B features. However we592

are also aware another advanced WMD method593

Wasserstein-Fisher-Rao(WFR) developed by Wang594

et al. (2020), which uses the Fisher-Rao metric for595

the unbalanced optimal transport problem. The596

reported result of WFR is comparable to our pro-597

posed methods across the datasets. Unfortunately598

there are some version mismatch for some datasets599

as well as slightly different sampling procedure600

for datasets with no pre-specified train-test splits,601

so we did not include the corresponding result in602

our figures. Note also that the general Sinkhorn603

based algorithms for such OT optimization prob-604

lems have relatively high computational complexity605

and so they are quite expensive on computational606

cost. While the proposed weighting scheme and607

ECIB features can be obtained in a single scan of608

the data and the time complexity is linear, they are609

fast and a lot cheaper on computational cost.610

Logistic Regression based Experiments: In Fig-611

ure 1 we observed the following: (1) for the same612

TF-PIDF feature set, the logistic regression model613

uniformly outperforms the kNN approach across614

all datasets. This is not surprised as the logistic615

regression optimizes the term coefficients for op-616

timal fitting the data while the kNN is rigid as617

given. (2) adding the 2B features of binary term618

frequency (BTF) and expected class information619

bias (ECIB) further significantly reduces the er-620

rors on most datasets. Compared with TF-IDF, the621

average error reduction is 35%. Compared with622

HOFFT, the error reduction reaches 43.4%. For623

the BBC dataset we observed a relatively large er-624

ror increase, and we hypothesize that this may be625

due to the very small test sample size of the dataset.626

In Figure 3 we reported the results of using BTF627

and ECIB features in the logistic regression set-628

ting. We observed the following. Both BTF and629

ECIB features are quite effective when used indi-630

vidually alone. ECIB performs better than BTF on631

all datasets except on the dataset of 20 Newsgroup,632

where they are relatively close. Simply combining633

the two features together not necessarily always im-634

proves the performance, instead it leads to slightly635

more errors on a couple of the datasets. We also636

observe that applying the PCF weighting helps on637

majority of the cases. Visually the left three bars638

of light color represent 2B features without PCF639

weighting while the right three bars of darker color640

represent corresponding features with PCF weight- 641

ing applied. 642

7 Discussion 643

The current work first proposed a new information 644

measurement of certainty and an associated weight- 645

ing scheme leveraging the document label informa- 646

tion, and further demonstrated its effectiveness on 647

several popular benchmark datasets of English text 648

documents. For documents without label informa- 649

tion available, the current proposal cannot apply 650

directly. However, a few unsupervised tasks often 651

can be reformulated into popular self-supervised 652

problems. The only difference from the above su- 653

pervised setting is that the labels and features are 654

from the same space, and we can apply the devel- 655

oped methods to process without much difference. 656

A detailed illustration and explanation is given in 657

another project elsewhere. In modern NLP com- 658

munity distributed representations of word vectors 659

are widely used in language models for various 660

tasks. The proposed troenpy and the weighting 661

schemes can actually be integrated into neural net- 662

work based language models and can further im- 663

prove the performance. 664

For image processing with pixels values in the 665

typical range [0,255] or other continuous data fea- 666

tures such as speech acoustic waveforms and gene 667

expression data etc, straightly applying the above 668

weighting schemes does not work. A natural strat- 669

egy is to first quantize the data and try to apply 670

similar idea in the discrete scenarios. We will in- 671

vestigate this elsewhere. 672
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