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Abstract001

The tumor microenvironment, composed of diverse002

interacting cells, plays a pivotal role in cancer pro-003

gression by influencing tumor growth, immune eva-004

sion, and therapeutic outcomes. In this ongoing005

work, we propose the use of interactive graph vi-006

sualizations as a versatile tool for exploring and007

analyzing biological data to unravel cell communi-008

cation patterns in the tumor microenvironment and009

identify graph representations of the multiplex data,010

which can subsequently be leveraged by graph neu-011

ral networks to contextualize cell interactions with012

patient outcomes.013

1 Introduction014

Developments in immunotherapy have transformed015

cancer treatment by activating a patient’s immune016

system to recognize and target cancer cells [1–3].017

However, the variability in patient responses has018

driven interest in understanding the underlying019

mechanism of these therapies more deeply. The tu-020

mor microenvironment (TME) plays a critical role021

in cancer progression, as it consists of a number of022

different cells which influence the tumor growth and023

immune response, by e.g. allowing cancer cells to024

evade immune detection or regulating their prolifer-025

ation rate [4–6]. To improve therapeutic outcomes026

and identify cancer biomarkers that can be used for027

early cancer detection, a better understanding of028

the TME and its how cells communicate with each029

other is essential.030

Developments in spatial omics and imaging tech-031

nologies enable spatial profiling of gene and protein032

expression in tissue which allows for an unprece-033

dented resolution of cells in terms of functional-034

ity [7]. With the ability to measure a large number035

of expressed proteins or genes per cell in the TME,036

the complexity of this data grows rapidly, making037

manual data inspection very challenging. There-038

fore, computational tools for analyzing this highly039
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complex data, as well as visualization tools for data 040

exploration and result interpretations are required. 041

In this ongoing work, we propose to use interactive 042

graph visualization tools such as Gephi to qualita- 043

tively assess cell classification approaches which lack 044

annotated ground truth labels and visualize cell com- 045

munities in the TME to identify patterns of cell-cell 046

interaction. Which can then be leveraged not only 047

for visualization, but also for training Graph Neu- 048

ral Network (GNN), enabling the model to learn 049

relationships in the graph. This integration bridges 050

visualization with graph-based learning for more 051

interpretable downstream analysis. 052

2 Related Work 053

Recent studies targeted to study cell interactions 054

in tissue have exploited graph visualization tools. 055

Karimi et al. used graph visualization tools for 056

protein-protein interaction analysis in pancreatic 057

Ductal adenocarcinoma [8]. So-called topological 058

tumor graphs were derived from H&E stained whole 059

slide images and combined with omic data to an- 060

alyze melanoma histology in [9]. Cellular graphs 061

were also proposed by Wang et al. to model the 062

TME, alongside population graphs, capturing inter- 063

patient similarities given their respective cellular 064

graphs were proposed to study patterns in breast 065

tumor microenvironments [10]. Protein interactions 066

and networks were studied using graphs within the 067

tumor in prostate cancer [11] and Rohail et al. pro- 068

posed graph theoretical concepts to understand the 069

TME of hematolymphoid cancer in H&E stained 070

histological images [12]. 071

3 Data 072

We analyze imaging mass cytometry (IMC) data, 073

which detects up to 50 protein markers at subcellular 074

resolution using metal-tagged antibodies and time- 075

of-flight mass spectrometry. This dataset, derived 076

from stained breast cancer tissue sections, provides 077

spatially resolved, high-dimensional single-cell data 078

to capture the phenotypic diversity of the TME. 079
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4 Methodology080

Spatial analysis of IMC data typically involves cell081

segmentation, using tools like Mesmer [13] for nu-082

cleus and cell segmentation, followed by cell classi-083

fication to identify recurring spatial patterns. Cell084

classification remains challenging due to staining085

variability, imaging differences, and limited anno-086

tated ground truth data. Examples of such methods087

are MAPS [14] and ASTIR [15], however different088

maker panels targeted to study particular cell (sub-089

)types are not necessarily captured well or at all by090

existing methods.091

We apply a weighted Gaussian mixture model and092

logical rules based on expected biomarker combina-093

tions to achieve hierarchical cell type annotations094

across four levels of granularity in breast cancer tis-095

sue microarray images, with a focus on immune cells096

and fibroblasts.097

4.1 Graph Construction098

We argue that interactive graph visualizations can099

be useful in various ways.100

I.) Classification Assessment101

A bipartite graph can evaluate classification quality102

by linking cell labels to expressed biomarkers, with103

edges indicating biomarker expression in specific104

cell types (figure 2). This visualization intuitively105

reveals which biomarkers are associated with each106

cell type, enabling an easily interpretable quality107

check to ensure alignment with biological patterns108

and highlighting potential classification issues.109

II.) Cell Niche Detection110

Cell niches can be visualized as a graph where nodes111

represent cell types and edges indicate neighboring112

cell types, capturing cell communities and their in-113

teractions. This approach helps identify significant114

communities in specific subpopulations or patient115

groups for further statistical analysis.116

III.) Protein Expression in Cell Niche En-117

vironments118

By combining these approaches, we link cell-119

biomarker bipartite graphs with cell neighborhood120

data to map biomarkers to entire cell communities.121

This reveals unique biomarker expression patterns122

within communities and their biological significance.123

IV.) Cell Subtype Discovery A graph of124

biomarkers, with edges indicating co-expression and125

thickness reflecting frequency, can reveal patterns126

that define cell subtypes (figure 1). Analyzing127

strongly connected clusters in this graph helps iden-128

tify distinct cell subtypes.129

5 Implementation130

The graphs were made using the Python library131

networkx [16] and the open-source software gephi132

Figure 1. Co-occurrence graph of biomarkers. Edge
thickness is proportional to co-occurrence frequency.

Cancer Cells
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Figure 2. Bipartite graph of nodes; which represent
either cells or biomarkers, with edges indicating the
presence of a given biomarker within a cell.

[17]. The graphs are displayed following a force at- 133

las layout, keeping the connected nodes closer and 134

pushing away unconnected ones, highlighting exist- 135

ing clusters and communities in the graph. Defining 136

the graphs with networkx enable the direct use of 137

GNN implementations (such as Pytorch-Geometric), 138

streamlining further analysis. 139

Gephi makes it easy to share visualizations 140

through web pages or Gephi files, requires no Python 141

expertise, and supports interactive exploration, mak- 142

ing it ideal for interdisciplinary groups. 143

6 Conclusions 144

Interactive graph visualizations simplify complex 145

biological data, revealing cell interactions and 146

biomarker patterns in the tumor microenvironment. 147

Combined with tools like Gephi and graph neural 148

networks, they enable deeper insights and connec- 149

tions to patient outcomes. 150
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