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Abstract

The tumor microenvironment, composed of diverse
interacting cells, plays a pivotal role in cancer pro-
gression by influencing tumor growth, immune eva-
sion, and therapeutic outcomes. In this ongoing
work, we propose the use of interactive graph vi-
sualizations as a versatile tool for exploring and
analyzing biological data to unravel cell communi-
cation patterns in the tumor microenvironment and
identify graph representations of the multiplex data,
which can subsequently be leveraged by graph neu-
ral networks to contextualize cell interactions with
patient outcomes.

1 Introduction

Developments in immunotherapy have transformed
cancer treatment by activating a patient’s immune
system to recognize and target cancer cells [1-3].
However, the variability in patient responses has
driven interest in understanding the underlying
mechanism of these therapies more deeply. The tu-
mor microenvironment (TME) plays a critical role
in cancer progression, as it consists of a number of
different cells which influence the tumor growth and
immune response, by e.g. allowing cancer cells to
evade immune detection or regulating their prolifer-
ation rate [4-6]. To improve therapeutic outcomes
and identify cancer biomarkers that can be used for
early cancer detection, a better understanding of
the TME and its how cells communicate with each
other is essential.

Developments in spatial omics and imaging tech-
nologies enable spatial profiling of gene and protein
expression in tissue which allows for an unprece-
dented resolution of cells in terms of functional-
ity [7]. With the ability to measure a large number
of expressed proteins or genes per cell in the TME,
the complexity of this data grows rapidly, making
manual data inspection very challenging. There-
fore, computational tools for analyzing this highly
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complex data, as well as visualization tools for data
exploration and result interpretations are required.

In this ongoing work, we propose to use interactive
graph visualization tools such as Gephi to qualita-
tively assess cell classification approaches which lack
annotated ground truth labels and visualize cell com-
munities in the TME to identify patterns of cell-cell
interaction. Which can then be leveraged not only
for visualization, but also for training Graph Neu-
ral Network (GNN), enabling the model to learn
relationships in the graph. This integration bridges
visualization with graph-based learning for more
interpretable downstream analysis.

2 Related Work

Recent studies targeted to study cell interactions
in tissue have exploited graph visualization tools.
Karimi et al. used graph visualization tools for
protein-protein interaction analysis in pancreatic
Ductal adenocarcinoma [8]. So-called topological
tumor graphs were derived from H&E stained whole
slide images and combined with omic data to an-
alyze melanoma histology in [9]. Cellular graphs
were also proposed by Wang et al. to model the
TME, alongside population graphs, capturing inter-
patient similarities given their respective cellular
graphs were proposed to study patterns in breast
tumor microenvironments [10]. Protein interactions
and networks were studied using graphs within the
tumor in prostate cancer [11] and Rohail et al. pro-
posed graph theoretical concepts to understand the
TME of hematolymphoid cancer in H&E stained
histological images [12].

3 Data

We analyze imaging mass cytometry (IMC) data,
which detects up to 50 protein markers at subcellular
resolution using metal-tagged antibodies and time-
of-flight mass spectrometry. This dataset, derived
from stained breast cancer tissue sections, provides
spatially resolved, high-dimensional single-cell data
to capture the phenotypic diversity of the TME.

040
041
042
043
044
045
046
047
048
049
050
051
052

053

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071

072

073
074
075
076
o77
078
079

NLDL
#18



NLDL
#18

080

081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097

098

099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129

130

131
132

NLDL 2026 Abstract Submission #18.

4 Methodology

Spatial analysis of IMC data typically involves cell
segmentation, using tools like Mesmer [13] for nu-
cleus and cell segmentation, followed by cell classi-
fication to identify recurring spatial patterns. Cell
classification remains challenging due to staining
variability, imaging differences, and limited anno-
tated ground truth data. Examples of such methods
are MAPS [14] and ASTIR [15], however different
maker panels targeted to study particular cell (sub-
Jtypes are not necessarily captured well or at all by
existing methods.

We apply a weighted Gaussian mixture model and
logical rules based on expected biomarker combina-
tions to achieve hierarchical cell type annotations
across four levels of granularity in breast cancer tis-
sue microarray images, with a focus on immune cells
and fibroblasts.

4.1 Graph Construction

We argue that interactive graph visualizations can
be useful in various ways.

I.) Classification Assessment
A bipartite graph can evaluate classification quality
by linking cell labels to expressed biomarkers, with
edges indicating biomarker expression in specific
cell types (figure 2). This visualization intuitively
reveals which biomarkers are associated with each
cell type, enabling an easily interpretable quality
check to ensure alignment with biological patterns
and highlighting potential classification issues.

IL.) Cell Niche Detection
Cell niches can be visualized as a graph where nodes
represent cell types and edges indicate neighboring
cell types, capturing cell communities and their in-
teractions. This approach helps identify significant
communities in specific subpopulations or patient
groups for further statistical analysis.

II1.) Protein Expression in Cell Niche En-
vironments
By combining these approaches, we link cell-
biomarker bipartite graphs with cell neighborhood
data to map biomarkers to entire cell communities.
This reveals unique biomarker expression patterns
within communities and their biological significance.

IV.) Cell Subtype Discovery A graph of
biomarkers, with edges indicating co-expression and
thickness reflecting frequency, can reveal patterns
that define cell subtypes (figure 1). Analyzing
strongly connected clusters in this graph helps iden-
tify distinct cell subtypes.

5 Implementation

The graphs were made using the Python library
networkx [16] and the open-source software gephi
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Figure 1. Co-occurrence graph of biomarkers. Edge
thickness is proportional to co-occurrence frequency.
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Figure 2. Bipartite graph of nodes; which represent
either cells or biomarkers, with edges indicating the
presence of a given biomarker within a cell.

[17]. The graphs are displayed following a force at-
las layout, keeping the connected nodes closer and
pushing away unconnected ones, highlighting exist-
ing clusters and communities in the graph. Defining
the graphs with networkx enable the direct use of
GNN implementations (such as Pytorch-Geometric),
streamlining further analysis.

Gephi makes it easy to share visualizations
through web pages or Gephi files, requires no Python
expertise, and supports interactive exploration, mak-
ing it ideal for interdisciplinary groups.

6 Conclusions

Interactive graph visualizations simplify complex
biological data, revealing cell interactions and
biomarker patterns in the tumor microenvironment.
Combined with tools like Gephi and graph neural
networks, they enable deeper insights and connec-
tions to patient outcomes.
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