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Abstract

To generate data from trained diffusion models, most inference algorithms, such as
DDPM [16], DDIM [30], and other variants, rely on discretizing the reverse SDEs
or their equivalent ODEs. In this paper, we view such approaches as decomposing
the entire denoising diffusion process into several segments, each corresponding to
a reverse transition kernel (RTK) sampling subproblem. Specifically, DDPM uses a
Gaussian approximation for the RTK, resulting in low per-subproblem complexity
but requiring a large number of segments (i.e., subproblems), which is conjectured
to be inefficient. To address this, we develop a general RTK framework that enables
a more balanced subproblem decomposition, resulting in Õ(1) subproblems,
each with strongly log-concave targets. We then propose leveraging two fast
sampling algorithms, the Metropolis-Adjusted Langevin Algorithm (MALA) and
Underdamped Langevin Dynamics (ULD), for solving these strongly log-concave
subproblems. This gives rise to the RTK-MALA and RTK-ULD algorithms for
diffusion inference. In theory, we further develop the convergence guarantees
for RTK-MALA and RTK-ULD in total variation (TV) distance: RTK-ULD
can achieve ϵ target error within Õ(d1/2ϵ−1) under mild conditions, and RTK-
MALA enjoys a O(d2 log(d/ϵ)) convergence rate under slightly stricter conditions.
These theoretical results surpass the state-of-the-art convergence rates for diffusion
inference and are well supported by numerical experiments.

1 Introduction

Generative models have become a core task in modern machine learning, where the neural networks
are employed to learn the underlying distribution from training examples and generate new data points.
Among various generative models, denoising diffusions have produced state-of-the-art performance in
many domains, including image and text generation [13, 2, 27, 28], text-to-speech synthesis [26], and
scientific tasks [33, 36, 5]. The fundamental idea involves incrementally adding noise and gradually
transform the data distribution to a prior distribution that is easier to sample from, e.g., Gaussian
distribution. Then, diffusion models parameterize and learn the score of the noised distributions to
progressively denoise samples from priors and recover the data distribution [35, 31].

Under this paradigm, generating data in denoising diffusion models involves solving a series of
sampling subproblems, i.e., generating samples from the distribution after one-step denoising. To
this end, DDPM [16], one of the most popular sampling methods in diffusion models, has been
developed for this purpose. DDPM uses the Gaussian transition with carefully designed mean and
covariance to approximate the solutions to these sampling subproblems. By sequentially stacking
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a series of Gaussian transitions, DDPM successfully generates high-quality samples that follow
the data distribution. The empirical success of DDPM has immediately triggered various follow-
up work [32, 24], aiming to accelerate the inference process and improve the generation quality.
Alongside rapid empirical research on diffusion models and DDPM-like sampling algorithms [18, 38],
theoretical studies have emerged to analyze the convergence and sampling error of DDPM. In
particular, [20, 23, 8, 7, 3, 9] have established polynomial convergence bounds, in terms of dimension
d and target sampling error ϵ, for the generation process under various assumptions. Previous work
usually assume the score estimation error to construct the sampling analysis [8, 14, 3, 18]. A typical
bound under minimal data assumptions on the score of the data distribution is provided by [8, 3],
which establishes an Õ(dϵ−2) score estimation guarantees to sample from data distribution within
ϵ-sampling error in the Total Variation (TV) distance.

In essence, the denoising diffusion process can be approached through various decompositions of
sampling subproblems, where the overall complexity depends on the number of these subproblems
multiplied by the complexity of solving each one. Within this framework, DDPM can be regarded
as a specific solver for the denoising diffusion process that heavily prioritizes the simplicity of
subproblems over their quantity. In particular, it adopts simple one-step Gaussian approximations
for the subproblems, with O(1) computation complexity, but needs to deal with a relatively large
number—approximately O(dϵ−2)—of target subproblems to ensure the cumulative sampling error
is bounded by ϵ in TV distance. This imbalance raises the question of whether the DDPM-like
approaches stand as the most efficient algorithm, considering the extensive potential subproblem
decompositions of the denoising diffusion process. We therefore aim to:

accelerate the inference of diffusion models via a more balanced subproblem
decomposition in the denoising process.

In this work, we propose a novel framework called reverse transition kernel (RTK) to achieve
exactly that. Our approach considers a generalized subproblem decomposition of the denoising
process, where the difficulty of each sampling subproblem and the total number of subproblems are
determined by the step size parameter η. Unlike DDPM, which requires setting η = ϵ2, resulting in
approximately Õ(1/η) = Õ(1/ϵ2) subproblems, our framework allows η to be feasible in a broader
range. Furthermore, we demonstrate that a more balanced subproblem decomposition can be attained
by carefully selecting η = Θ(1) as a constant, resulting in approximately Õ(1) sampling subproblems,
with each target distribution being strongly log-concave. This nice property further enables us to
efficiently solve the sampling subproblems using well-established acceleration techniques, such as
Metropolis Hasting step and underdamped discretization, without encountering many subproblems.
Consequently, our proposed framework facilitates the design of provably faster algorithms than
DDPM for performing diffusion inference. Our contributions can be summarized as follows.

• We propose a flexible framework that enhances the efficiency of diffusion inference by balancing
the quantity and hardness of RTK sampling subproblems used to segment the entire denoising
diffusion process. Specifically, we demonstrate that with a carefully designed decomposition, the
number of sampling subproblems can be reduced to approximately Õ(1), while ensuring that all
RTK targets exhibit strong log-concavity. This capability allows us to seamlessly integrate a range
of well-established sampling acceleration techniques, thereby enabling highly efficient algorithms
for diffusion inference.

• Building upon the developed framework, we implement the RTK using the Metropolis-Adjusted
Langevin Algorithm (MALA), making it the first attempt to adapt this highly accurate sampler
for diffusion inference. Under slightly stricter assumptions on the estimation errors of the energy
difference and score function, we demonstrate that RTK-MALA can achieve linear convergence
with respect to the sampling error ϵ, specifically O(log(1/ϵ)), which significantly outperforms the
Õ(1/ϵ2) convergence rate of DDPM [8, 3]. Additionally, we consider the practical diffusion model
where only the score function is accessible and develop a score-only RTK-MALA algorithm. We
further prove that the score-only RTK-MALA algorithm can achieve an error ϵ with a complexity
of Õ(ϵ−2/(u−1) · 2u), where u can be an arbitrarily large constant, provided the energy function
satisfies the u-th order smoothness condition.

• We further implement Underdamped Langevin Dynamics (ULD) within the RTK framework. The
resulting RTK-ULD algorithm achieves a state-of-the-art complexity of Õ(d1/2ϵ−1) for both d
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and ϵ dependence under minimal data assumptions, i.e., Lipschitz condition for the ground truth
score function. Compared with the Õ(dϵ−2) complexity guarantee for DDPM, it improves the
complexity with an Õ(d1/2ϵ−1) factor. This result also matches the state-of-the-art convergence
rate of the ODE-based methods [9], though those methods require Lipschitz conditions for both the
ground truth score function and the score neural network.

2 Preliminaries

In this section, we first introduce the notations used in subsequent sections. Then, we present
several distinct Markov processes to demonstrate the procedures for adding noise to existing data and
generating new data. Besides, we specify the assumptions required for the target distribution in our
algorithms and analysis.

Notations. We say a complexity h : R → R to be h(n) = O(nk) or h(n) = Õ(nk) if the complexity
satisfies h(n) ≤ c · nk or h(n) ≤ c · nk[log(n)]k′ for absolute contant c, k and k′. We use the
lowercase bold symbol x to denote a random vector, and the lowercase italicized bold symbol x
represents a fixed vector. The standard Euclidean norm is denoted by ∥ · ∥. The data distribution is
presented as p∗ ∝ exp(−f∗). Besides, we define two Markov processes Rd, i.e.,

{xt}t∈[0,T ] ,
{
x←kη
}
k∈{0,1,...,K} , where T = Kη.

In the above notations, T presents the mixing time required for the data distribution to converge
to specific priors, K denotes the iteration number of the generation process, and η signifies the
corresponding step size. Further details of the two processes are provided below.

Adding noise to data with the forward process. The first Markov process {xt} corresponds
to generating progressively noised data from p∗. In most denoising diffusion models, {xt} is an
Ornstein–Uhlenbeck (OU) process shown as follows

dxt = −xtdt+
√
2dBt where x0 ∼ p∗ ∝ exp(−f∗). (1)

If we denote underlying distribution of xt as pt ∝ exp(−ft) meaning f0 = f∗, the forward OU
process provides an analytic form of the transition kernel, i.e.,

pt′|t(x
′|x) = pt′,t(x

′,x)

pt(x)
=
(
2π
(
1− e−2(t

′−t)
))−d/2

· exp

−
∥∥∥x′ − e−(t

′−t)x
∥∥∥2

2
(
1− e−2(t′−t)

)
 (2)

for any t′ ≥ t, where pt′,t denotes the joint distribution of (xt′ ,xt). According to the Fokker-Planck
equation, we know the stationary distribution for SDE. (1) is the standard Gaussian distribution.

Denoising generation with a reverse SDE. Various theoretical works [20, 23, 8, 7, 3] based on
DDPM [16] consider the generation process of diffusion models as the reverse process of SDE. (1)
denoted as {x←t }. According to the Doob’s h-Transform, the reverse SDE, i.e., {x←t }, follows from

dx←t = (x←t + 2∇ ln pT−t(x
←
t )) dt+

√
2dBt, (3)

whose underlying distribution p←t satisfies pT−t = p←t . Similar to the definition of transition kernel
shown in Eq. (2), we define p←t′|t(x

′|x) = p←t′,t(x
′,x)/p←t (x) for any t′ ≥ t ≥ 0 and name it as

reverse transition kernel (RTK).

To implement SDE. (3), diffusion models approximate the score function ∇ ln pt with a parameterized
neural network model, denoted by sθ,t, where θ denotes the network parameters. Then, SDE. (3) can
be practically implemented by

dxt = (xt + 2sθ,T−kη(xkη)) dt+
√
2dBt for t ∈ [kη, (k + 1)η) (4)

with a standard Gaussian initialization, x0 ∼ N (0, I). Eq. (4) has the following closed solution

x(k+1)η = eη · xkη − 2(1− eη)sθ,T−kη(xkη) +
√
e2η − 1 · ξ and ξ ∼ N (0, I), (5)

which is exactly the DDPM algorithm.
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DDPM approximately samples the reverse transition kernel. DDPM can also be viewed as an
approximated sampler for RTK, i.e., p←t′|t(x

′|x) for some t′ > t. In particular, the update of DDPM
at the iteration k applies the Gaussian-type transition, i.e.,

p(k+1)η|kη(·|x) = N
(
eηx− 2(1− eη)sθ,T−kη(x), (e

2η − 1) · I
)
. (6)

to approximate the distribution p←(k+1)η|kη(·|x) [16]. Specifically, by the chain rule of KL divergence,
the gap between the data distribution p∗ and the generated distribution pT satisfies

KL
(
pT
∥∥p∗) ≤ KL

(
x0

∥∥p←0 )+ K−1∑
k=0

Ex∼pkη

[
KL
(
p(k+1)η|kη(·|x)

∥∥p←(k+1)η|kη(·|x)
)]

, (7)

where K = T/η is the total number of iterations. For DDPM, to guarantee a small sampling error,
we need to use a small step size η to ensure that p(k+1)η|kη is sufficiently close to p←(k+1)η|kη . Then,
the required iteration numbers K = T/η will be large and dominate the computational complexity.
In Chen et al. [8, 10], it was shown that one needs to set η = Õ(ϵ2) to achieve ϵ sampling error in
TV distance (assuming no score estimation error) and the total complexity is K = Õ(1/ϵ2).

Intuition for General Reverse Transition Kernel. As previously mentioned, DDPM approximately
solves RTK sampling subproblems using a small step size η. While this allows for efficient one-step
implementation, it necessitates a large number of RTK sampling problems. This naturally creates a
trade-off between the quantity of RTK sampling problems and the complexity of solving them. To
address this, one can consider a larger step size η, which results in a relatively more challenging RTK
sampling target p←(k+1)η|kη and a reduced number of sampling problems (K = T/η). By examining a
general choice for the step size η, the generation process of diffusion models can be depicted through
a comprehensive framework of reverse transition kernels, which will be explored in depth in the
following section. This framework enables the design of various decompositions for RTK sampling
problems and algorithms to solve them, resulting in an extensive family of generation algorithms for
diffusion models (that encompasses DDPM). Consequently, this also offers the potential to develop
faster algorithms with lower computational complexities, e.g., applying fast sampling algorithms for
sampling the RTK, i.e., p←(k+1)η|kη with a reasonably large η.

General Assumptions. Similar to the analysis of DDPM [8, 7], we make the following assumptions
on the data distribution p∗ that will be utilized in the theory.

[A1] For all t ≥ 0, the score ∇ ln pt is L-Lipschitz.

[A2] The second moment of the target distribution p∗ is upper bounded, i.e., Ep∗

[
∥·∥2

]
= m2

2.

Assumption [A1] is standard one in diffusion literature and has been used in many prior works [4,
10, 20, 9]. Moreover, we do not require the isoperimetric conditions, e.g., the establishment of the
log-Sobolev inequality and the Poincaré inequality for the data distribution p∗ as [20], and the convex
conditions for the energy function f∗ as [4]. Therefore, our assumptions cover a wide range of highly
non-log-concave data distributions. We emphasize that Assumption [A1] may be relaxed only to
assume the target distribution is smooth rather than the entire OU process, based on the technique in
[7] (see rough calculations in their Lemmas 12 and 14). We do not include this additional relaxation
in this paper to clarify our analysis. Assumption [A2] is one of the weakest assumptions being
adopted for the analysis of posterior sampling.

3 General Framework of Reverse Transition Kernel

This section introduces the general framework of Reverse Transition Kernel (RTK). As mentioned in
the previous section, the framework is built upon the general setup of segmentation: each segment
has length η; within each segment, we generate samples according to the RTK target distributions.
Then, the entire generation process in diffusion models can be considered as the combination of a
series of sampling subproblems. In particular, the inference process via RTK is displayed in Alg. 1.

The implementation of RTK framework. We begin with a new Markov process {x̂kη}k=0,1,...,K

satisfying Kη = T , where the number of segments K, segment length η, and length of the entire
process T correspond to the definition in Section 2. Consider the Markov process {x̂kη} as the
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Algorithm 1 INFERENCE WITH REVERSE TRANSITION KERNEL (RTK)

1: Input: Initial particle x̂0 sampled from the standard Gaussian distribution, Iteration number K,
Step size η, required convergence accuracy ϵ;

2: for k = 0 to K − 1 do
3: Draw sample x̂(k+1)η with MCMCs from p̂(k+1)η|kη(·|x̂kη) which approximates the ground-

truth reverse transition kernel, i.e.,

p←(k+1)η|kη(z|x̂kη) ∝ exp (−g(z)) := exp

(
−f(K−k−1)η(z)−

∥x̂kη − z · e−η∥2

2(1− e−2η)

)
. (8)

4: return x̂K .

generation process of diffusion models with underlying distributions {p̂kη}, we require p̂0 = N (0, I)
and p̂Kη ≈ p∗, which is similar to the Markov process {x←kη}. In order to make the underlying
distribution of output particles close to the data distribution, we can generate x̂kη with Alg. 1, which
is equivalent to the following steps:

• Initialize x̂0 with an easy-to-sample distribution, e.g., N (0, I), which is close to pKη .
• Update particles by drawing samples from p̂(k+1)η|kη(·|x̂kη), which satisfies

p̂(k+1)η|kη(·|x̂kη) ≈ p←(k+1)η|kη(·|x̂kη).

Under these conditions, if p̂kη(z) ≈ p(K−k)η(z) , then we have

p̂(k+1)η(z) =
〈
p̂(k+1)η|kη(z|·), p̂kη(·)

〉
≈
〈
p←(k+1)η|kη(z|·), p

←
kη(·)

〉
= p(k+1)η(z)

for any k ∈ {0, 1, . . . ,K}. This means we can implement the generation of diffusion models by
solving a series of sampling subproblems with target distributions p←(k+1)η|kη(·|x̂kη).

The close form of reverse transition kernels. To implement Alg. 1, the most critical problem is
determining the analytic form of RTK p←t′|t(x

′|x) for and t′ ≥ t ≥ 0 which is shown in the following
lemma whose proof is deferred to Appendix B.
Lemma 3.1. Suppose a Markov process {xt} with SDE. 1, then for any t′ > t, we have

p←T−t|T−t′(x|x
′) = pt|t′(x|x′) ∝ exp

−ft(x)−

∥∥∥x′ − x · e−(t′−t)
∥∥∥2

2(1− e−2(t′−t))

 .

The first critical property shown in this Lemma is that RTK pt|t′ is a perturbation of pt with a l2
regularization. This means if the score of pt, i.e., ∇ft, can be well-estimated, the score of RTK,
i.e., ∇ log pt|t′ can also be approximated with high accuracy. Moreover, in the diffusion model,
∇ft = ∇ log pt is exactly the score function at time t, which is approximated by the score network
function sθ,t(x), then

−∇ log pt|t′(x|x′) = ∇ft(x) +
e−2(t

′−t)x− e−(t
′−t)x′

1− e−2(t′−t)
≈ sθ,t(x) +

e−2(t
′−t)x− e−(t

′−t)x′

1− e−2(t′−t)
,

which can be directly calculated with a single query of sθ,t(x). The second critical property of
RTK is that we can control the spectral information of its score by tuning the gap between t′ and t.
Specifically, considering the target distribution, i.e., p(K−k−1)η|(K−k)η for the k-th transition, the
Hessian matrix of its energy function satisfies

−∇2 log p(K−k−1)η|(K−k)η = ∇2f(K−k−1)η(x) +
e−2η

1− e−2η
· I.

According to Assumption [A1], the Hessian ∇2f(K−k−1)η(x) = −∇2 log p(K−k−1)η can be lower
bounded by −LI , which implies that RTK p(K−k−1)η|(K−k)η will be L-strongly log-concave and
3L-smooth when the step size is set η = 1/2 · log(1 + 1/2L). This further implies that the targets
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of all subsampling problems in Alg. 1 will be strongly log-concave, which can be sampled very
efficiently by various posterior sampling algorithms.

Sufficient conditions for the convergence. According to Pinsker’s inequality and Eq. (7), we can
obtain the following lemma that establishes the general error decomposition for Alg. 1.
Lemma 3.2. For Alg 1, we have

TV (p̂Kη, p∗) ≤
√
(1 + L2)d+ ∥∇f∗(0)∥2 · exp(−Kη)

+

√√√√1

2

K−1∑
k=0

Ex̂∼p̂kη

[
KL
(
p̂(k+1)η|kη(·|x̂)

∥∥p←(k+1)η|kη(·|x̂)
)]

for any K ∈ N+ and η ∈ R+.

It is worth noting that the choice of η represents a trade-off between the number of subproblems
divided throughout the entire process and the difficulty of solving these subproblems. By considering
the choice η = 1/2·log(1+1/2L), we can observe two points: (1) the sampling subproblems in Alg. 1
tend to be simple, as all RTK targets, presented in Lemma 3.1, can be provably strongly log-concave;
(2) the total number of subproblems is K = T/η = Õ(1), which is not large. Conversely, when
considering a larger η that satisfies η ≫ log(1 + 1/L), the RTK target will no longer be guaranteed
to be log-concave, resulting in high computational complexity, potentially even exponential in d,
when solving the corresponding sampling subproblems. On the other hand, if a much smaller step
size η = o(1) is considered, the target distribution of the sampling subproblems can be easily solved,
even with a one-step Gaussian transition. However, this will increase the total number of sampling
subproblems, potentially leading to higher computational complexity.

Therefore, we will consider the setup η = 1/2·log(1+1/2L) in the remaining part of this paper. Now,
the remaining task, which will be discussed in the next section, would be designing and analyzing the
sampling algorithms for implementing all iterations of Alg. 1, i.e., solving the subproblems of RTK.

4 Implementation of RTK inner loops

In this section, we outline the implementation of Step 3 in the RTK algorithm, which aims to
solve the sampling subproblems with strong log-concave targets, i.e., p←(k+1)η|kη(·|x̂kη) ∝ exp(−g).
Specifically, we employ two MCMC algorithms, i.e., the Metropolis-adjusted Langevin algorithm
(MALA) and underdamped Langevin dynamics (ULD). For each algorithm, we will first introduce the
detailed implementation, combined with some explanation about notations and settings to describe
the inner sampling process. After that, we will provide general convergence results and discuss them
in several theoretical or practical settings. Besides, we will also compare our complexity results with
the previous ones when achieving the convergence of TV distance to show that the RTK framework
indeed obtains a better complexity by balancing the number and complexity of sampling subproblems.

RTK-MALA. Alg. 2 presents a solution employing MALA for the inner loop. When it is used
to solve the k-th sampling subproblem of Alg. 1, x0 is equal to x̂kη defined in Section 3 and
used to initialize particles iterating in Alg. 2. In Alg. 2, we consider the process {zs}Ss=0 whose
underlying distribution is denoted as {µs}Ss=0. Although we expect µS to be close to the target
distribution p←(k+1)η|kη(·|x0), in real practice, the output particles zS can only approximately follow
p←(k+1)η|kη(·|x0) due to inevitable errors. Therefore, these errors should be explained in order to
conduct a meaningful complexity analysis of the implementable algorithm. Specifically, Alg. 2
introduces two intrinsic errors:

[E1] Estimation error of the score function: we assume a score estimator, e.g., a well-trained
diffusion model, sθ, which can approximate the score function with an ϵscore error, i.e.,
∥sθ,t(z)−∇ log pt(z)∥ ≤ ϵscore for all z ∈ Rd and t ∈ [0, T ].

[E2] Estimation error of the energy function difference: we assume an energy difference
estimator r which can approximate energy difference with an ϵenergy error, i.e.,
|rt(z′, z) + log pt(z

′)− log pt(z)| ≤ ϵenergy for all z, z′ ∈ Rd.

Under these settings, we provide a general convergence theorem for Alg. 2. To clearly convey the
convergence properties, we only show an informal version.
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Algorithm 2 MALA/PROJECTED MALA FOR RTK INFERENCE

1: Input: Returned particle of the previous iteration x0, current iteration number k, inner iteration
number S, inner step size τ , required convergence accuracy ϵ;

2: Draw the initial particle z0 from

µ0(dz)

dz
∝ exp

(
−L∥z∥2 − ∥x0 − e−ηz∥2

2(1− e−2η)

)
.

3: for s = 0 to S − 1 do
4: Draw a sample z̃s from the Gaussian distribution N (zs − τ · sθ(zs), 2τI);
5: if zs+1 ̸∈ B(zs, r) ∩ B(0, R) then
6: zs+1 = zs; ▷ This condition step is only activated for Projected MALA.
7: continue;
8: Calculate the accept rate as

a(z̃s − (zs − τ · sθ(zs)), zs)

=min

{
1, exp

(
rg(zs, z̃s) +

∥z̃s − zs + τ · sθ(zs)∥2 − ∥zs − z̃s + τ · sθ(z̃s)∥2

4τ

)}
;

9: Update the particle zs+1 = z̃s with probability a, otherwise zs+1 = zs.
10: return zS ;

Theorem 4.1 (Informal version of Theorem C.17). Under Assumption [A1]–[A2], for Alg. 1, we
choose

η =
1

2
log

2L+ 1

2L
and K = 4L · log (1 + L2)d+ ∥∇f∗(0)∥2

ϵ2

and implement Step 3 of Alg. 1 with Alg. 2. Suppose the score [E1], energy [E2] estimation errors
and the inner step size τ satisfy

ϵscore = O(ρd−1/2), ϵenergy = O(ρτ1/2), and τ = Õ
(
L−2 · (d+m2

2 + Z2)−1
)
,

and the hyperparameters, i.e., R and r, are chosen properly. We have

TV (p̂Kη, p∗) ≤ Õ(ϵ)+exp
(
O(L(d+m2

2))
)
·
(
1− ρ2

4
· τ
)S

+Õ
(
Ld1/2ϵscore

ρ

)
+Õ

(
Lϵenergy
ρτ1/2

)
(9)

where ρ is the Cheeger constant of a truncated inner target distribution exp(−g(z))1[z ∈ B(0, R)]
and Z denotes the maximal l2 norm of particles appearing in outer loops (Alg. 1).

It should be noted that the choice of η choice ensures the L strong log-concavity of target distribution
exp(−g(z)), which means its Cheeger constant is also L. Although the Cheeger constant ρ in the
second term of Eq. 9 corresponding to truncated exp(−g(z)) should also be near L intuitively, current
techniques can only provide a loose lower bound at an O(

√
L/d)-level (proven in Corollary C.8).

While in both cases above, the Cheeger constant is independent with ϵ. Combining this fact with
an ϵ-independent choice of inner step sizes τ , the second term of Eq. 9 will converge linearly with
respect to ϵ. As for the diameter Z of particles used to upper bound τ , though it may be unbounded in
the standard implementation of Alg. 2, Lemma C.18 can upper bound it with Õ

(
L3/2(d+m2

2)ρ
−1)

under the projected version of Alg. 2.

Additionally, to require the final sampling error to satisfy TV (p̂Kη, p∗) ≤ Õ(ϵ), Eq. 9 shows that
the score and energy difference estimation errors should be ϵ-dependent and sufficiently small, where
ϵscore corresponding to the training loss can be well-controlled. However, obtaining a highly accurate
energy difference estimation (requiring a small ϵenergy) is hard with only diffusion models. To
solve this problem, we can introduce a neural network energy estimator similar to [37] to construct
r(z′, z, t), which induces the following complexity describing the calls of the score estimation.
Corollary 4.2 (Informal version of Corollary C.19). Suppose the estimation errors of score and
energy difference satisfy

ϵscore ≤
ρϵ

Ld1/2
and ϵenergy ≤ ρϵ

L2 · (d1/2 +m2 + Z)
,
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Algorithm 3 ULD FOR RTK INFERENCE

1: Input: Returned particle of the previous iteration x0, current iteration number k, inner iteration
number S, inner step size τ , velocity diffusion coefficient γ, required convergence accuracy ϵ;

2: Initialize the particle and velocity pair, i.e., (ẑ0, v̂0) with a Gaussian type product measure, i.e.,
N (0, e2η − 1)⊗N (0, I);

3: for t = s to S − 1 do
4: Draw noise sample pair (ξzs , ξ

v
s ) from a Gaussian type distribution.

5: ẑs+1 = ẑs + γ−1(1− e−γτ )v̂s − γ−1(τ − γ−1(1− e−γτ ))sθ(ẑs) + ξzs
6: v̂s+1 = e−γτ v̂s − γ−1(1− e−γτ )sθ(ẑs) + ξvt
7: return zS ;

If we implement Alg. 1 with the projected version of Alg. 2 with the same hyperparameter settings as
Theorem 4.1, it has TV (p̂Kη, p∗) ≤ Õ(ϵ) with an O(L4ρ−2 ·

(
d+m2

2

)2
Z2 · log(d/ϵ)) complexity.

Considering the loose bound for both ρ and Z, the complexity will be at most Õ(L5(d + m2
2)

6)
which is the first linear convergence w.r.t. ϵ result for the diffusion inference process.

Score-only RTK-MALA. However, the parametric energy function may not always exist in real
practice. We consider a more practical case where only the score estimation is accessible. In this
case, we will make use of estimated score functions to approximate the energy difference, leading to
the score-only RTK-MALA algorithm. In particular, recall that the energy difference function takes
the following form:

g(z′)−g(z) = − log p(K−k−1)η(z
′)+

∥x0 − z′ · e−η∥2

2(1− e−2η)
+ log p(K−k−1)η(z)−

∥x0 − z · e−η∥2

2(1− e−2η)
.

Since the quadratic term can be obtained exactly, we only need to estimate the energy difference.
Then let f(z) = − log p(K−k−1)η(z) and denote h(t) = f ((z′ − z) · t+ z), the energy difference
g(z′)− g(z) can be reformulated as

h(1)− h(0) =
∑
i=1

h(i)(0)

i!
and h(i)(t) :=

dih(t)

(dt)i
,

where we perform the standard Taylor expansion at the point t = 0. Then, we only need the derives
of hi(0), which can be estimated using only the score function. For instance, the h(1)(t) can be
estimated with score estimations:

h(1)(t) = ∇f((z′ − z) · t+ z) · (z′ − z) ≈ h̃(1)(t) := sθ((z
′ − z) · t+ z) · (z′ − z).

Moreover, regarding the high-order derivatives, we can recursively perform the approximation:
h̃(i+1)(0) = (h̃(i)(∆t) − h̃(i)(0))/∆t. Consider performing the approximation up to u-order
derivatives, we can get the approximation of the energy difference:

r(K−k−1)η(z
′, z) :=

u∑
i=1

h̃(i)(0)

i!
.

Then, the following corollary states the complexity of the score-only RTK-MALA algorithm.

Corollary 4.3. Suppose the estimation errors of the score satisfies ϵscore ≪ ρϵ/(Ld1/2), and the
log-likelihood function of pt has a bounded u-order derivative, e.g.,

∥∥∇(u)f(z)
∥∥ ≤ L, we have a non-

parametric estimation for log-likelihood to make we have TV (p̂Kη, p∗) ≤ Õ(ϵ) with a complexity
shown as follows

Õ
(
L4ρ−3 ·

(
d+m2

2

)2
Z3 · ϵ−2/(u−1) · 2u

)
.

This result implies that if the energy function is infinite-order Lipschitz, we can nearly achieve any
polynomial order convergence w.r.t. ϵ with the non-parametric energy difference estimation.

RTK-ULD. Alg. 3 presents a solution employing ULD for the inner loop, which can accelerate the
convergence of the inner loop due to the better discretization of the ULD algorithm. When it is used
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Results Algorithm Assumptions Complexity

Chen et al. [8] DDPM (SDE-based) [A1],[A2],[E3] Õ(L2dϵ−2)

Chen et al. [9] DPOM (ODE-based) [A1],[A2],[E3], and sθ smoothness Õ(L3dϵ−2)

Chen et al. [9] DPUM (ODE-based) [A1],[A2],[E3], and sθ smoothness Õ(L2d1/2ϵ−1)

Li et al. [23] ODE-based sampler [E3] and estimation error of energy Hessian Õ(d3ϵ−1)

Corollary 4.2 RTK-MALA [A1],[A2],[E1], and [E2] O(L4d2 log(d/ϵ))

Theorem 4.4 RTK-ULD (ours) [A1],[A2],[E3] Õ(L2d1/2ϵ−1)

Table 1: Comparison with prior works for RTK-based methods. The complexity denotes the number of calls
for the score estimation to achieve TV (p̂Kη, p∗) ≤ Õ(ϵ). d and ϵ mean the dimension and error tolerance.
Compared with the state-of-the-art result, RTK-ULD achieves the best dependence for both d and ϵ. Though
RTK-MALA requires slightly stricter assumptions and worse dimension dependence, a linear convergence w.r.t.
ϵ makes it suit high-accuracy sampling tasks.

to solve the k-th sampling subproblem of Alg. 1, x0 is equal to x̂kη defined in Section 3 and used to
initialize particles iterating in Alg. 2. Besides, the underlying distribution of noise sample pair is

(ξzs , ξ
v
s ) ∼ N

(
0,

[
2
γ

(
τ − 2

γ

(
1− e−γτ

))
+ 1

2γ

(
1− e−2γτ

)
1
γ

(
1− 2e−γτ + e−2γτ

)
1
γ

(
1− 2e−γτ + e−2γτ

)
1− e−2γτ

])
.

In Alg. 3, we consider the process {(ẑs, v̂s)}Ss=0 whose underlying distribution is denoted as
{π̂s}Ss=0. We expect the z-marginal distribution of π̂S to be close to the target distribution presented
in Eq. 8. Unlike MALA, we only need to consider the error from score estimation in an expectation
perspective, which is the same as that shown in [8].

[E3] Estimation error of the score function: we assume a score estimator, e.g., a well-trained
diffusion model, sθ, which can approximate the score function with an ϵscore error, i.e.,
Ept ∥sθ,t(z)−∇ log pt(z)∥2 ≤ ϵ2score for any t ∈ [0, T ].

Under this condition, the complexity of RTK-ULD to achieve the convergence of TV distance is
provided as follows, and the detailed proof is deferred to Theorem D.6. Besides, we compare our
theoretical results with the previous in Table 1.
Theorem 4.4. Under Assumptions [A1]–[A2] and [E3], for Alg. 1, we choose

η = 1/2 · log[(2L+ 1)/2L] and K = 4L · log[((1 + L2)d+ ∥∇f∗(0)∥2)2 · ϵ−2]

and implement Step 3 of Alg. 1 with projected Alg. 3. For the k-th run of Alg. 3, we require
Gaussian-type initialization and high-accurate score estimation, i.e.,

π̂0 = N (x0, e
2η − 1)⊗N (0, I) and ϵscore = Õ(ϵ/

√
L).

If we set the hyperparameters of inner loops as follows. the step size and the iteration number as

τ = Θ̃

(
ϵd−1/2L−1/2 ·

(
log

[
L(d+m2

2 + ∥x0∥2)
ϵ2

])−1/2)

S = Θ̃

(
ϵ−1d1/2 ·

(
log

[
L(d+m2

2 + ∥x0∥2)
ϵ2

])1/2
)
.

It can achieve TV (p̂Kη, p∗) ≲ ϵ with an Õ
(
L2d1/2ϵ−1

)
gradient complexity.

5 Conclusion and Limitation

This paper presents an analysis of a modified version of diffusion models. Instead of focusing on the
discretization of the reverse SDE, we propose a general RTK framework that can produce a large class
of algorithms for diffusion inference, which is formulated as solving a sequence of RTK sampling
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subproblems. Given this framework, we develop two algorithms called RTK-MALA and RTK-ULD,
which leverage MALA and ULD to solve the RTK sampling subproblems. We develop theoretical
guarantees for these two algorithms under certain conditions on the score estimation, and demonstrate
their faster convergence rate than prior works. Numerical experiments support our theory.

We would also like to point out several limitations and future work. One potential limitation of
this work is the lack of large-scale experiments. The main focus of this paper is the theoretical
understanding and rigorous analysis of the diffusion process. Implementing large-scale experiments
requires GPU resources and practitioner support, which can be an interesting direction for future
work. Besides, though we provided a score-only RTK-MALA algorithm, the Õ(1/ϵ) convergence
rate can only be achieved by the RTK-MALA algorithm (Alg. 2). However, this faster algorithm
requires a direct approximation of the energy difference, which is not accessible in the existing
pretrained diffusion model. Developing practical energy difference approximation algorithms and
incorporating them with Alg. 2 for diffusion inference are also very interesting future directions.
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A Numerical Experiments

In this section, we conduct experiments when the target distribution p∗ is a Mixture of Gaussian
(MoG) and compare RTK-based methods with traditional DDPM. Specifically, we are considering a
forward process from an MoG distribution to a normal distribution in the following

dxt = −1

2
xtdt+ dBt and x0 ∼ 1

K

K∑
k=1

N (µk, σ
2
k · I),

where K is the number of Gaussian components, µk and σ2
k are the means and variances of the

Gaussian components, respectively. The solution of the SDE follows

xt = x0e
− 1

2 t +
√
1− e−t · ξ where ξ ∼ N (0, I).

Since x0 and ξ are both sampled from Gaussian distributions, their linear combination xt also forms
a Gaussian distribution, i.e.,

xt ∼
1

K

K∑
k=1

N (µke
− 1

2 t, (σ2
ke
−t + 1− e−t) · I).

Then, we have

∇p(xt) =
1

K

K∑
i=1

∇xt

[
1

2
(

1√
2π(σ2

i e
−t + 1− e−t

) · exp(−1

2
(

xt − µie
− 1

2 t

σ2
i e
−t + 1− e−t

)2)

]

=
1

K

K∑
i=1

pi(xt) · ∇xt

[
−1

2
(

xt − µie
− 1

2 t

σ2
ke
−t + 1− e−t

)2

]

=
1

K

K∑
i=1

pi(xt) ·
−(xt − µie

− 1
2 t)

σ2
i e
−t + 1− e−t

.

We can also calculate the score of xt, i.e.,

∇ log p(xt) =
∇p(xt)

p(xt)
=

1/K ·
∑K

i=1 pi(xt) ·

(
−
(
xt−µie

− 1
2
t
)

σ2
i e
−t+1−e−t

)
1/K ·

∑K
i=1 pi(xt)

.

We consider a MoG consisting of 12 Gaussian distributions, each with 10 dimensions, as shown
in Fig. 2 (f). The means of the 12 Gaussian distributions are uniformly distributed along the
circumference of a circle with a radius of one in the first and second dimensions, while the remaining
dimensions are centered at the origin. Each component of the mixture has an equal probability and a
variance of 0.007 across all dimensions.

We evaluate Alg. 1 with unadjust Langevin algorithm (ULA), which leads to RTK-ULA, Alg 2, 3
implementations, and DDPM under the same Number of Function Evaluations (NFE). Specifically,
while DDPM models xη across a sequence of η timesteps spanning from 0 to T in increments of
0.001× T (i.e., [0, 0.001T, 0.002T, . . . , T ]), we execute Alg. 1, 2, and 3 at fewer timesteps within
x[0,0.2T,0.4T,0.6T,0.8T ], and we distribute the NFE uniformly to these timesteps for MCMC. The
experiments are taken on a single NVIDIA GeForce RTX 4090 GPU. We evaluate the sampling
quality using marginal accuracy, i.e.,

Marginal Accuracy(p̂, p) = 1− 0.5× 1

d

d∑
i=1

TV (p̂i, pi),

where p̂i(x) is the empirical marginal distribution of the i-th dimension obtained from the sampled
data, pi(x) is the true marginal distribution of the i-th dimension, and d is the total number of
dimensions.
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Figure 1: (a) Mariginal accuracy of the sampled MoG by different algorithms along NFE. (b-f) The
histograms along a certain direction of sampled MoG by different algorithms. The plots labeled by
‘ULA’, ‘ULD’, ‘MALA’, ‘MALA_ES’ correspond to RTK-ULA, RTK-ULD, RTK-MALA, score-
only RTK-MALA, respectively. The histogram is oriented along the second dimension when the first
dimension is constrained within (0.75, 1.25).

Fig. 1 (a) shows the marginal accuracies of our RTK sampling algorithms and DDPM along NFE. We
observe that all algorithms using RTK converge quickly. Among all RTK algorithms, RTK-MALA
achieves the highest marginal accuracy. Score-only RTK-MALA is worse than RTK-MALA since
the estimated energy contains errors, yet it is still slightly better than RTK-ULD. Along all RTK
algorithms, RTK-ULA demonstrates the lowest performance in terms of marginal accuracy, but it
still outperforms DDPM with a large margin especially when NFE is small.

Fig. 1 (b-f) shows the histograms of sampled MoG by DDPM and RTK-based methods. We observe
that DDPM cannot reconstruct the local structure of MoG. ULA can roughly reconstruct the MoG
structure, but it is still weak in complex regions, specifically around the peaks and valleys. In contrast,
RTK-ULD, score-only RTK-MALA, and RTK-MALA can reconstruct more fine-grained structures
in complex regions.

Fig. 2 (a-e) shows the clusters sampled by DDPM and RTK-based methods. We observe that DDPM
fails to accurately reconstruct the ground truth distribution. In contrast, all methods based on RTK can
generate distributions that closely approximate the ground truth. Additionally, RTK-MALA shows
superior performance in accurately reconstructing the distribution in regions of low probability.

We perform other experiments on various MoG settings.Figure 3 and 4 shows the experiments on a
spiral-shaped and chessboard-shaped MoG as the ground truth distribution, respectively. In these
experiments, we also compared Annealed Langevin Dynamics (ALD) [] with our RTK-based method.
In these figures, we observe that compared to DDPM and ALD, our RTK-based methods achieve
significantly better marginal accuracy when NFE is small. Besides, we find that our RTK-based
methods have a much better estimation on low-probability region. Furthermore, in Figure 5, we
evaluated the methods using the Wasserstein Distance metric, which corresponds to Fréchet Inception
Distance. Our results indicate that our RTK-based methods have a lower Wasserstein Distance
compared to DDPM and ALD, especially when NFE is small.

Furthermore, we conducted experiments on the MNIST dataset, as shown in Figure 6. We first trained
a score model following the typical variance-preserving noise schedule and then compared different
sampling methods using the Fréchet Inception Distance (FID) evaluation criterion. Figure 6 (a)
shows that compared with DDPM, our RTK-based methods achieve better FID scores than DDPM,
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Figure 2: (a-e) Clusters sampled by DDPM, RTK-ULA, RTK-ULD, score-only RTK-MALA, and
RTK-MALA, respectively. (f) Clusters sampled by the ground truth distribution. These 2D clusters
represent the projection of the original 10D data onto the first two dimensions.

(a) (b) (c)

(d) (e) (f) (g)
(h)

Figure 3: (a) Ground truth clusters sampled by a spiral-shaped MoG distribution. (b-g) Clusters
sampled using 205 NFE by DDPM, ALD, ULA, ULD, MALA_ES, and MALA, respectively. (h)
Marginal accuracy of the sampled MoG by different algorithms along NFE.

particularly when NFE is small. Figure 6 (b) shows that our RTK-based methods generate images of
higher quality than DDPM when NFE is small.

Overall, these numerical experiments demonstrate the benefit of the RTK framework for developing
faster algorithms than DDPM in diffusion inference. Besides, experimental results also well support
our theory, showing that RTK-MALA achieves faster convergence than RTK-ULA and RTK-ULD,
even with estimated energy difference via score functions.
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(a) (b) (c)

(d) (e) (f) (g)
(h)

Figure 4: (a) Ground truth clusters sampled by a chessboard-shaped MoG distribution. (b-g) Clusters
sampled using 205 NFE by DDPM, ALD, ULA, ULD, MALA_ES, and MALA, respectively. (h)
Marginal accuracy of the sampled MoG by different algorithms along NFE.

(a) (b)

Figure 5: Wasserstein distance of the sampled MoG by different algorithms along NFE. (a) and (b) are
the Wasserstein distance plot for spiral-shaped and chessboard shaped MoG distribution, respectively.

B Inference process with reverse transition kernel framework

Proof of Lemma 3.1. According to Bayes theorem, the following equation should be validated for
any x ∈ Rd and t′ > t,

pt(x) =

∫
pt|t′(x|x′) · pt′(x′)dx′. (10)

To simplify the notation, we suppose the normalizing constant of pt, i.e.,

Zt :=

∫
exp(−ft(x))dx.

Besides, the forward OU process, i.e., SDE. 1, has a closed transition kernel, i.e.,

pt′|t(x
′|x) =

(
2π
(
1− e−2(t

′−t)
))−d/2

· exp

−
∥∥∥x′ − e−(t

′−t)x
∥∥∥2

2
(
1− e−2(t′−t)

)


Then, we have

pt′(x
′) =

∫
pt(y)pt′|t(x

′|y)dy

=

∫
Z−1t · exp(−ft(y)) ·

(
2π
(
1− e−2(t

′−t)
))−d/2

· exp

−
∥∥∥x′ − e−(t

′−t)y
∥∥∥2

2
(
1− e−2(t′−t)

)
dy.
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(a) (b) (c) (d)

Figure 6: (a) FID of the sampled MNIST data by different algorithms along NFE. (b-d) Sampled
MNIST data by ULD, score-only RTK-MALA, and DDPM respectively, when NFE is 20.

Plugging this equation into Eq. 10, and we have

RHS of Eq. 10 =

∫
pt|t′(x|x′) · pt′(x′)dx′

=

∫
pt|t′(x|x′) ·

∫
Z−1

t · exp(−ft(y)) ·
(
2π
(
1− e−2(t′−t)

))−d/2

· exp

−
∥∥∥x′ − e−(t′−t)y

∥∥∥2
2 (1− e−2(t′−t))

dydx′.

Moreover, when we plug the reverse transition kernel

pt|t′(x|x′) ∝ exp

−ft(x)−

∥∥∥x′ − x · e−(t′−t)
∥∥∥2

2(1− e−2(t′−t))


into the previous equation and have

RHS of Eq. 10 =

∫ exp

(
−ft(x)−

∥∥∥x′−x·e−(t′−t)
∥∥∥2

2(1−e−2(t′−t))

)
∫
exp

(
−ft(x)−

∥x′−x·e−(t′−t)∥2

2(1−e−2(t′−t))

)
dx

·

∫
Z−1t · exp(−ft(y)) ·

(
2π
(
1− e−2(t

′−t)
))−d/2

· exp

−
∥∥∥x′ − e−(t

′−t)y
∥∥∥2

2
(
1− e−2(t′−t)

)
dydx′

= Z−1t · exp(−ft(x)) ·
∫

exp

−

∥∥∥x′ − x · e−(t′−t)
∥∥∥2

2(1− e−2(t′−t))

 ·
(
2π
(
1− e−2(t

′−t)
))−d/2

·


∫ exp

(
−ft(y)−

∥∥∥x′−e−(t′−t)·y
∥∥∥2

2(1−e−2(t′−t))

)
∫
exp

(
−ft(x)−

∥x′−x·e−(t′−t)∥
2(1−e−2(t′−t))

)
dx

dy

dx′

= pt(x) = LHS of Eq. 10.

Hence, the proof is completed.

Lemma B.1 (Chain rule of TV). Consider four random variables, x, z, x̃, z̃, whose underlying
distributions are denoted as px, pz, qx, qz . Suppose px,z and qx,z denotes the densities of joint
distributions of (x, z) and (x̃, z̃), which we write in terms of the conditionals and marginals as

px,z(x, z) = px|z(x|z) · pz(z) = pz|x(z|x) · px(x)
qx,z(x, z) = qx|z(x|z) · qz(z) = qz|x(z|x) · qx(x).
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then we have
TV (px,z, qx,z) ≤ min

{
TV (pz, qz) + Ez∼pz

[
TV

(
px|z(·|z), qx|z(·|z)

)]
,

TV (px, qx) + Ex∼px

[
TV

(
pz|x(·|x), qz|x(·|x)

)]}
.

Besides, we have
TV (px, qx) ≤ TV (px,z, qx,z) .

Proof. According to the definition of the total variation distance, we have

TV (px,z, qx,z) =
1

2

∫ ∫
|px,z(x, z)− qx,z(x, z)|dzdx

=
1

2

∫ ∫ ∣∣pz(z)px|z(x|z)− pz(z)qx|z(x|z) + pz(z)qx|z(x|z)− qz(z)qx|z(x|z)
∣∣dzdx

≤1

2

∫
pz(z)

∫ ∣∣px|z(x|z)− qx|z(x|z)
∣∣ dxdz +

1

2

∫
|pz(z)− qz(z)|

∫
qx|z(x|z)dxdz

=Ez∼pz

[
TV

(
px|z(·|z), qx|z(·|z)

)]
+TV (pz, qz) .

With a similar technique, we have
TV (px,z, qx,z) ≤ TV (px, qx) + Ex∼px

[
TV

(
pz|x(·|x), qz|x(·|x)

)]
.

Hence, the first inequality of this Lemma is proved. Then, for the second inequality, we have

TV (px, qx) =
1

2

∫
|px(x)− qx(x)|dx

=
1

2

∫ ∣∣∣∣∫ px,z(x, z)dz −
∫
qx,z(x, z)dz

∣∣∣∣dx
≤1

2

∫ ∫
|px,z(x, z)− qx,z(x, z)|dzdx = TV (px,z, qx,z) .

Hence, the proof is completed.

Lemma B.2. For Alg 1, we have

TV (p̂Kη, p∗) ≤
√
(1 + L2)d+ ∥∇f∗(0)∥2 · exp(−Kη)

+

K−1∑
k=0

Ex̂∼p̂kη

[
TV

(
p̂(k+1)η|kη(·|x̂), p←(k+1)η|kη(·|x̂)

)]
for any K ∈ N+ and η ∈ R+.

Proof. For any k ∈ {0, 1, . . . ,K − 1}, let p̂(k+1)η,kη and p←(k+1)η,kη denote the joint distribution of
(x̂(k+1)η, x̂kη) and (x←(k+1)η,x

←
kη), which we write in term of the conditionals and marginals as

p̂(k+1)η,kη(x
′,x) = p̂(k+1)η|kη(x

′|x) · p̂kη(x) = p̂kη|(k+1)η(x|x′) · p̂(k+1)η(x
′)

p←(k+1)η,kη(x
′,x) = p←(k+1)η|kη(x

′|x) · p←kη(x) = p←kη|(k+1)η(x|x
′) · p←(k+1)η(x

′).

Under this condition, we have

TV (p̂Kη, p∗) = TV
(
p̂Kη, p

←
Kη

)
≤ TV

(
p̂Kη,(K−1)η, p

←
Kη,(K−1)η

)
≤ TV

(
p̂(K−1)η, p

←
(K−1)η

)
+ Ex̂∼p̂(K−1)η

[
TV

(
p̂Kη|(K−1)η(·|x̂), p←Kη|(K−1)η(·|x̂)

)]
where the inequalities follow from Lemma B.1. By using the inequality recursively, we have

TV (p̂Kη, p∗) ≤TV (p̂0, p
←
0 ) +

K−1∑
k=0

Ex̂∼p̂kη

[
TV

(
p̂(k+1)η|kη(·|x̂), p←(k+1)η|kη(·|x̂)

)]
=TV (p∞, pKη)︸ ︷︷ ︸

Term 1

+

K−1∑
k=0

Ex̂∼p̂kη

[
TV

(
p̂(k+1)η|kη(·|x̂), p←(k+1)η|kη(·|x̂)

)] (11)

where p∞ denotes the stationary distribution of the forward process. In this analysis, p∞ is the
standard since the forward SDE. 1, whose negative log density is 1-strongly convex and also satisfies
LSI with constant 1 due to Lemma E.9.
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For Term 1. we have

TV (p∞, pKη) ≤
√

1

2
KL
(
pKη

∥∥p∞) ≤√1

2
· exp (−2Kη) ·KL

(
p0
∥∥p∞)

≤
√

(1 + L2)d+ ∥∇f∗(0)∥2 · exp(−Kη)

where the first inequality follows from Pinsker’s inequality, the second one follows from Lemma E.1,
and the last one follows from Lemma E.2. It should be noted that the smoothness of p0 required in
Lemma E.2 is given by [A1].

Plugging this inequality into Eq. 11, we have

TV (p̂Kη, p∗) ≤
√
(1 + L2)d+ ∥∇f∗(0)∥2 · exp(−Kη)

+

K−1∑
k=0

Ex̂∼p̂kη

[
TV

(
p̂(k+1)η|kη(·|x̂), p←(k+1)η|kη(·|x̂)

)]
Hence, the proof is completed.

Corollary B.3. For Alg 1, if we set

η =
1

2
· log 2L+ 1

2L
, K = 4L · log (1 + L2)d+ ∥∇f∗(0)∥2

ϵ2

and

TV
(
p̂(k+1)η|kη(·|x̂), p←(k+1)η|kη(·|x̂)

)
≤ ϵ

K
=

ϵ

4L
·

[
log

(1 + L2)d+ ∥∇f∗(0)∥2

ϵ2

]−1
,

we have the total variation distance between the underlying distribution of Alg 1 output and the data
distribution p∗ will satisfy TV (p̂Kη, p∗) ≤ 2ϵ.

Proof. According to Lemma B.2, we have

TV (p̂Kη, p∗) ≤
√
(1 + L2)d+ ∥∇f∗(0)∥2 · exp(−Kη)

+

K−1∑
k=0

Ex̂∼p̂kη

[
TV

(
p̂(k+1)η|kη(·|x̂), p←(k+1)η|kη(·|x̂)

)]
︸ ︷︷ ︸

Term 2

for any K ∈ N+ and η ∈ R+. To achieve the upper bound TV (p∞, pKη) ≤ ϵ, we only require

T = Kη ≥ 1

2
log

(1 + L2)d+ ∥∇f∗(0)∥2

ϵ2
. (12)

For Term 2. For any x ∈ Rd, the formulation of p←k+1|k(·|x̂) is

p←(k+1)η|kη(x|x̂) = p(K−k−1)η|(K−1)η(x|x̂) ∝ exp

(
−f(K−k−1)η(x)−

∥x̂− x · e−η∥2

2(1− e−2η)

)
,

whose negative log Hessian satisfies

−∇2
x log p←(k+1)η|kη(x|x̂) = ∇2f(K−k−1)η(x) +

e−2η

1− e−2η
· I ⪰

(
e−2η

1− e−2η
− L

)
· I.

Note that the last inequality follows from [A1]. In this condition, if we require(
e−2η

1− e−2η
− L

)
≥ L ⇔ η ≤ 1

2
log

2L+ 1

2L
,
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then we have
e−2η

2(1− e−2η)
· I ⪯ −∇2

x log p←(k+1)η|kη(x|x̂) ⪯
3e−2η

2(1− e−2η)
· I.

To simplify the following analysis, we choose η to its upper bound, and we know for all k ∈
{0, 1, . . . ,K − 1}, the conditional density p←k+1|k(x|x̂) is strongly-log concave, and its score is
3L-Lipschitz. Besides, combining Eq. 12 and the choice of η, we require

K = T/η ≥ log
(1 + L2)d+ ∥∇f∗(0)∥2

ϵ2

/
log

2L+ 1

2L
which can be achieved by

K := 4L · log (1 + L2)d+ ∥∇f∗(0)∥2

ϵ2

when we suppose L ≥ 1 without loss of generality. In this condition, if there is a uniform upper
bound for all conditional probability approximation, i.e.,

TV
(
p̂(k+1)η|kη(·|x̂), p←(k+1)η|kη(·|x̂)

)
≤ ϵ

K
=

ϵ

4L
·

[
log

(1 + L2)d+ ∥∇f∗(0)∥2

ϵ2

]−1
,

then we can find Term 2 in Eq. 11 will be upper bounded by ϵ. Hence, the proof is completed.

Lemma B.4 (Chain rule of KL). Consider four random variables, x, z, x̃, z̃, whose underlying
distributions are denoted as px, pz, qx, qz . Suppose px,z and qx,z denotes the densities of joint
distributions of (x, z) and (x̃, z̃), which we write in terms of the conditionals and marginals as

px,z(x, z) = px|z(x|z) · pz(z) = pz|x(z|x) · px(x)
qx,z(x, z) = qx|z(x|z) · qz(z) = qz|x(z|x) · qx(x).

then we have
KL
(
px,z

∥∥qx,z) =KL
(
pz
∥∥qz)+ Ez∼pz

[
KL
(
px|z(·|z)

∥∥qx|z(·|z))]
=KL

(
px
∥∥qx)+ Ex∼px

[
KL
(
pz|x(·|x)

∥∥qz|x(·|x))]
where the latter equation implies

KL
(
px
∥∥qx) ≤ KL

(
px,z

∥∥qx,z) .
Proof. According to the formulation of KL divergence, we have

KL
(
px,z

∥∥qx,z) =∫ px,z(x, z) log
px,z(x, z)

qx,z(x, z)
d(x, z)

=

∫
px,z(x, z)

(
log

px(x)

qx(x)
+ log

pz|x(z|x)
qz|x(z|x)

)
d(x, z)

=

∫
px,z(x, z) log

px(x)

qx(x)
d(x, z) +

∫
px(x)

∫
pz|x(z|x) log

pz|x(z|x)
qz|x(z|x)

dzdx

=KL
(
px
∥∥qx)+ Ex∼px

[
KL
(
pz|x(·|x)

∥∥qz|x(·|x))] ≥ KL
(
px
∥∥qx) ,

where the last inequality follows from the fact
KL
(
pz|x(·|x)

∥∥p̃z|x(·|x)) ≥ 0 ∀ x.

With a similar technique, it can be obtained that

KL
(
px,z

∥∥qx,z) =∫ px,z(x, z) log
px,z(x, z)

qx,z(x, z)
d(x, z)

=

∫
px,z(x, z)

(
log

pz(z)

qz(z)
+ log

px|z(x|z)
qx|z(x|z)

)
d(x, z)

=

∫
px,z(x, z) log

pz(z)

qz(z)
d(x, z) +

∫
pz(z)

∫
px|z(x|z) log

px|z(x|z)
qx|z(x|z)

dzdx

=KL
(
pz
∥∥qz)+ Ez∼pz

[
KL
(
px|z(·|z)

∥∥p̃x|z(·|z))] .
Hence, the proof is completed.
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Proof of Lemma 3.2. This Lemma uses nearly the same techniques as those in Lemma B.2, while
it may have a better smoothness dependency in convergence since the chain rule of KL divergence.
Hence, we will omit several steps overlapped in Lemma B.2.

For any k ∈ {0, 1, . . . ,K − 1}, let p̂(k+1)η,kη and p←(k+1)η,kη denote the joint distribution of
(x̂(k+1)η, x̂kη) and (x←(k+1)η,x

←
kη), which we write in term of the conditionals and marginals as

p̂(k+1)η,kη(x
′,x) = p̂(k+1)η|kη(x

′|x) · p̂kη(x) = p̂kη|(k+1)η(x|x′) · p̂(k+1)η(x
′)

p←(k+1)η,kη(x
′,x) = p←(k+1)η|kη(x

′|x) · p←kη(x) = p←kη|(k+1)η(x|x
′) · p←(k+1)η(x

′).

Besides, we consider a reference Markov process {x̃k} whose initial marginal distribution and
transition kernels satisfy

x̃0 ∼ p̃0 = p̂0 and p̃(k+1)η|kη(x
′|x) = p←(k+1)η|kη(x

′|x).

Under these conditions, we have

TV (p̂Kη, p∗) ≤ TV (p̂Kη, p̃Kη) + TV (p̃Kη, p∗) .

Since {x̃k} and {x←k } share the same transition kernel, then we have

TV (p̃Kη, p∗) ≤ TV (p̃0, p
←
0 ) ≤

√
1

2
KL
(
p←0
∥∥p̃←0 )

=

√
1

2
KL
(
pKη

∥∥p∞) ≤√(1 + L2)d+ ∥∇f∗(0)∥2 · exp(−Kη),
(13)

where the first inequality follows from the chain rule of TV distance, the second inequality follows
from Pinsker’s inequality, and the last inequality follows from Lemma E.2. Besides, we have

TV (p̂Kη, p̃Kη) ≤
√

1

2
KL
(
p̂Kη

∥∥p̃Kη

)
≤
√

1

2
KL
(
p̂Kη,(K−1)η

∥∥p̃Kη,(K−1)η
)

≤
√

1

2
KL
(
p̂(K−1)η

∥∥p̃(K−1)η)+ 1

2
Ex̂∼p̂(K−1)η

[
KL
(
p̂Kη|(K−1)η(·|x̂)

∥∥p←Kη|(K−1)η(·|x̂)
)]

where the first inequality follows from Pinsker’s inequality, the second and the third inequalities
follow from Lemma B.4. By using this inequality recursively, we have

TV (p̂Kη, p̃Kη) ≤

√√√√1

2
KL
(
p̂0
∥∥p̃0)+ 1

2

K−1∑
k=0

Ex̂∼p̂kη

[
KL
(
p̂(k+1)η|kη(·|x̂)

∥∥p←(k+1)η|kη(·|x̂)
)]

=

√√√√1

2

K−1∑
k=0

Ex̂∼p̂kη

[
KL
(
p̂(k+1)η|kη(·|x̂)

∥∥p←(k+1)η|kη(·|x̂)
)]

(14)
where the equation follows from the definition of process {x̃k}. Therefore, combining Eq. 14 with
Eq. 13, the proof is completed.

Corollary B.5. For Alg 1, if we set

η =
1

2
· log 2L+ 1

2L
, K = 4L · log (1 + L2)d+ ∥∇f∗(0)∥2

ϵ2

and

KL
(
p̂(k+1)η|kη(·|x̂)

∥∥p(K−k−1)η|(K−k)η(·|x̂)) ≤ ϵ2

4L
·

[
log

(1 + L2)d+ ∥∇f∗(0)∥2

ϵ2

]−1
,

we have the total variation distance between the underlying distribution of Alg 1 output and the data
distribution p∗ will satisfy TV (p̂Kη, p∗) ≤ 2ϵ.
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Proof. According to Lemma 3.2, we have

TV (p̂Kη, p∗) ≤
√
(1 + L2)d+ ∥∇f∗(0)∥2 · exp(−Kη)︸ ︷︷ ︸

Term 1

+

√√√√1

2

K−1∑
k=0

Ex̂∼p̂kη

[
KL
(
p̂(k+1)η|kη(·|x̂)

∥∥p←(k+1)η|kη(·|x̂)
)]

︸ ︷︷ ︸
Term 2

(15)

To achieve the upper bound Term 1 ≤ ϵ, we only require

T = Kη ≥ 1

2
log

(1 + L2)d+ ∥∇f∗(0)∥2

ϵ2
. (16)

For Term 2, by choosing

η =
1

2
log

2L+ 1

2L
,

we know for all k ∈ {0, 1, . . . ,K − 1}, the conditional density p←k+1|k(x|x̂) is strongly-log concave,
and its score is 3L-Lipschitz. In this condition, we require

K := 4L · log (1 + L2)d+ ∥∇f∗(0)∥2

ϵ2

when we suppose L ≥ 1 without loss of generality. Then, to achieve Term 2 ≤ ϵ, the sufficient
condition is to require a uniform upper bound for all conditional probability approximation, i.e.,

KL
(
p̂(k+1)η|kη(·|x̂)

∥∥p←k+1|k(·|x̂)
)
≤ ϵ2

K
=

ϵ2

4L
·

[
log

(1 + L2)d+ ∥∇f∗(0)∥2

ϵ2

]−1
.

Hence, the proof is completed.

Remark 1. To achieve the TV error tolerance shown in Corollary B.3, .i.e.,

TV
(
p̂(k+1)η|kη(·|x̂), p←(k+1)η|kη(·|x̂)

)
≤ ϵ

4L
·

[
log

(1 + L2)d+ ∥∇f∗(0)∥2

ϵ2

]−1
,

it requires the KL divergence error to satisfy

TV
(
p̂(k+1)η|kη(·|x̂), p←(k+1)η|kη(·|x̂)

)
≤
√

1

2
KL
(
p̂(k+1)η|kη(·|x̂)

∥∥p←(k+1)η|kη(·|x̂)
)

≤ ϵ2

16L2
·

[
log

(1 + L2)d+ ∥∇f∗(0)∥2

ϵ2

]−2
.

Compared with the results shown in Corollary B.5, this result requires a higher accuracy with an
O(L) factor, which is not acceptable sometimes.
Lemma B.6. Suppose Assumption [A1]-[A2] hold, the choice of η keeps the same as that in
Corollary B.5, and the second moment of the underlying distribution of x̂kη is Mk, then we have

Mk+1 ≤ 2δk
L

+ 16(d+m2
2) + 24Mk.

Proof. Considering the second moment of x̂(k+1)η , we have

Ep̂(k+1)η

[∥∥x̂(k+1)η

∥∥2] =∫ p̂(k+1)η(x) · ∥x∥2dx

=

∫ (∫
p̂kη(y) · p̂(k+1)η|kη(x|y)dy

)
· ∥x∥2dx

=

∫
p̂kη(y) ·

∫
p̂(k+1)η|kη(x|y) · ∥x∥2dxdy.

(17)
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Then, we focus on the innermost integration, suppose γ̂y(·, ·) as the optimal coupling between
p̂(k+1)η|kη(·|y) and p←(k+1)η|kη(·|y). Then, we have∫

p̂(k+1)η|kη(x|y) ∥x∥
2
dx− 2

∫
p←(k+1)η|kη(x|y) ∥x∥

2
dx

≤
∫
γ̂y(x̂,x)

(
∥x̂∥2 − 2 ∥x∥2

)
d(x̂,x) ≤

∫
γ̂y(x̂,x) ∥x̂− x∥2 d(x̂,x)

=W 2
2

(
p̂(k+1)η|kη, p

←
(k+1)η|kη

)
.

(18)

Since p←(k+1)η|kη is strongly log-concave, i.e.,

−∇2
x log p←(k+1)η|kη(x|x̂) = ∇2f(K−k−1)η(x) +

e−2η

1− e−2η
· I ⪰ LI,

the distribution p←(k+1)η|kη also satisfies 1/L log-Sobolev inequality due to Lemma E.9. By
Talagrand’s inequality, we have

W 2
2

(
p̂(k+1)η|kη, p

←
(k+1)η|kη

)
≤ 2

L
·KL

(
p̂k+1|k+ 1

2 ,b

∥∥pk+1|k+ 1
2 ,b

)
:=

2δk
L
. (19)

Plugging Eq 18 and Eq 19 into Eq 17, we have

E
[∥∥x̂(k+1)η

∥∥2] ≤ ∫ p̂kη(y) ·
(
2δk
L

+ 2

∫
p(k+1)η|kη(x|y) ∥x∥

2
dx

)
dy. (20)

To upper bound the innermost integration, we suppose the optimal coupling between p(K−k−1)η and
p←(k+1)η|kη(·|y) is γy(·, ·). Then it has∫

p←(k+1)η|kη(x|y) ∥x∥
2
dx− 2

∫
p(K−k−1)η(x) ∥x∥

2
dx

≤
∫
γy(x

′,x)
(
∥x′∥2 − 2 ∥x∥2

)
d(x′,x) ≤

∫
γy(x

′,x) ∥x′ − x∥2 d(x′,x)

=W 2
2 (p(K−k−1)η, p

←
(k+1)η|kη)

(21)

Since p←(k+1)η|kη satisfies LSI with constant 1/L. By Talagrand’s inequality and LSI, we have

W 2
2 (p(K−k−1)η, p

←
(k+1)η|kη) ≤

2

L
·KL

(
p(K−k−1)η

∥∥p(k+1)η|kη
)

≤ 4

L2
·
∫
p(K−k−1)η(x) ·

∥∥∥∥∥∇ log
p(K−k−1)η(x)

p←(k+1)η|kη(x|y)

∥∥∥∥∥
2

dx

=
4

L2
·
∫
p(K−k−1)η(x) ·

∥∥∥∥e−ηy − e−2ηx

1− e−2η

∥∥∥∥2 dx
≤ 12 ∥y∥2 + 8

∫
p(K−k−1)η(x)∥x∥2dx

≤ 12∥y∥2 + 8(d+m2
2).

where the last inequality follows from the choice of η = 1/2 · log(2L + 1)/2L and the fact
Ep(K−k−1)η

[∥x∥2] ≤ (d+m2
2) obtained by Lemma E.7. Plugging this results into Eq. 20, we have

E
[∥∥x̂(k+1)η

∥∥2] ≤ 2δk
L

+ 16(d+m2
2) + 24 · E

[
∥x̂kη∥2

]
.

C Implement RTK inference with MALA

In this section, we consider introducing a MALA variant to sample from p←k+1|k(z|x0). To simplify
the notation, we set

g(z) := f(K−k−1)η(z) +
∥x0 − z · e−η∥2

2(1− e−2η)
(22)
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and consider k and x0 to be fixed. Besides, we set

p←(z|x0) := p←k+1|k(z|x0) ∝ exp(−g(z))

According to Corollary B.5 and Corollary B.3, when we choose

η =
1

2
log

2L+ 1

2L
,

the log density g will be L-strongly log-concave and 3L-smooth. With the following two
approximations,

sθ(z) ≈ ∇g(z) and rθ′(z, z
′) ≈ g(z)− g(z′), (23)

We left the approximation level here and determined when we needed the detailed analysis. we can
use the following Algorithm to replace Line 3 of Alg. 1.

In this section, we introduce several notations about three transition kernels presenting the standard,
the projected, and the ideally projected implementation of Alg. 2.

Standard implementation of Alg. 2. According to Step 4, the transition distribution satisfies

Qzs
= N (zs − τ · sθ(zs), 2τ) (24)

with a density function
q(z̃s|zs) = φ2τ (z̃s − (zs − τ · sθ(zs))) . (25)

Considering a 1/2-lazy version of the update, we set

T ′zs
(dz′) =

1

2
· δzs(dz

′) +
1

2
·Qzs(dz

′). (26)

Then, with the following Metropolis-Hastings filter,

azs(z
′) = min

{
1,
q(zs|z′)
q(z′|zs)

· exp (−rθ(z′, zs))
}

where azs(z
′) = a(z′−(zs−τ ·sθ(zs)), zs),

(27)
the transition kernel for the standard implementation of Alg, 2 will be

Tzs
(dzs+1) = T ′zs

(dzs+1) · azs
(zs+1) +

(
1−

∫
azs

(z′)T ′zs
(dz′)

)
· δzs

(dzs+1). (28)

Projected implementation of Alg. 2. According to Step 4, the transition distribution satisfies

Q̃zs
= N (zs − τ · sθ(zs), 2τ)

with a density function

q̃(z̃s|zs) = φ2τ (z̃s − (zs − τ · ∇sθ(zs))) .
Considering the projection operation, i.e., Step 5 in Alg 1, if we suppose the feasible set

Ω = B(0, R) and Ωz = B(z, r) ∩ B(0, R)
the transition distribution becomes

Q̃′zs
(A) =

∫
A∩Ωzs

Q̃zs
(dz′) +

∫
A−Ωzs

Q̃zs
(dz′) · δzs

(A).

Hence, a 1/2-lazy version of the transition distribution becomes

T̃ ′zs
(dz′) =

1

2
· δzs(dz

′) +
1

2
· Q̃′zs

(dz′).

Then, with the following Metropolis-Hastings filter,

ãzs
(z′) = min

{
1,
q̃(zs|z′)
q̃(z′|zs)

· exp (−rθ(z′, zs))
}

where ãzs
(z′) = a(z′−(zs−τ ·sθ(zs)), zs),

the transition kernel for the projected implementation of Alg, 2 will be

T̃zs(dzs+1) = T̃ ′zs
(dzs+1) · ãzs(zs+1) +

(
1−

∫
Ω

ãzs(z
′)T̃ ′zs

(dz′)

)
· δzs(dzs+1).
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Ideally projected implementation of Alg. 2. In this condition, we know the accurate g(z)− g(z′)
and ∇g(z). In this condition, the ULA step will provide

Q̃∗,zs = N (zs − τ · ∇g(zs), 2τ) (29)

with a density function
q̃∗(z̃s|zs) = φ2τ (z̃s − (τ · ∇g(zs))) .

Considering the projection operation, i.e., Step 5 in Alg 1, the transition distribution becomes

Q̃′∗,zs
(A) =

∫
A∩Ωzs

Q̃∗,zs
(dz′) +

∫
A−Ωzs

Q̃∗,zs
(dz′) · δzs

(A). (30)

Hence, a 1/2-lazy version of the transition distribution becomes

T̃ ′∗,zs
(dz′) =

1

2
· δzs

(dz′) +
1

2
· Q̃′∗,zs

(dz′). (31)

Then, with the following Metropolis-Hastings filter,

ã∗,zs
(z′) = min

{
1,
q̃∗(zs|z′)
q̃∗(z′|zs)

· exp (− (g(z′)− g(zs)))

}
, (32)

the transition kernel for the accurate projected update will be

T̃∗,zs
(dzs+1) = T̃ ′∗,zs

(dzs+1) · ã∗,zs
(zs+1) +

(
1−

∫
Ω

ã∗,zs
(z′)T̃ ′∗,zs

(dz′)

)
· δzs

(dzs+1). (33)

Lemma C.1. Suppose we have

η =
1

2
log

2L+ 1

2L
,

then the target distribution of the Inner MALA, i.e., p←(z|x0) will be L-strongly log-concave and
3L-smooth for any given x0.

Proof. Consider the energy function g(z) of p←(z|x0), we have

g(z) = f(K−k−1)η(z) +
∥x0 − z · e−η∥2

2(1− e−2η)

whose Hessian matrix satisfies(
e−2η

(1− e−2η)
+ L

)
· I ⪰ ∇2g(z) = ∇2f(K−k−1)(z) +

e−2η

(1− e−2η)
· I ⪰

(
e−2η

(1− e−2η)
− L

)
· I.

Under these conditions, if we have

η ≤ 1

2
log

2L+ 1

2L
⇔ e−2η

1− e−2η
≥ 2L,

which means
3e−2η

2(1− e−2η)
⪰ ∇2g(z) ⪰ e−2η

2(1− e−2η)
.

For the analysis convenience, we set

η =
1

2
log

2L+ 1

2L
,

that is to say g(z) is L-strongly convex and 3L-smooth.
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C.1 Control the error from the projected transition kernel

Here, we consider the marginal distribution of {zs} and {z̃s} to be the random process when Alg. 2
is implemented by the standard and projected version, respectively. The underlying distributions
of these two processes are denoted as zs ∼ µs and z̃s ∼ µ̃s, and we would like to upper bound
TV (µS , µ̃S) for any given x0.

Rewrite the formulation of zS , we have

zS = z̃S · 1 (zS = z̃S) + zS · 1 (zS ̸= z̃S)

where 1(·) is the indicator function. In this condition, for any set A, we have

1 (zS ∈ A) =1 (z̃S ∈ A) · 1 (zS = z̃S) + 1 (zS ∈ A) · 1 (zS ̸= z̃S)

=1 (z̃S ∈ A)− 1 (z̃S ∈ A) · 1 (zS ̸= z̃S) + 1 (zS ∈ A) · 1 (zS ̸= z̃S) ,

which means

−1 (z̃S ∈ A) · 1 (zS ̸= z̃S) ≤ 1 (zS ∈ A)− 1(z̃S ∈ A) ≤ 1 (zS ∈ A) · 1 (zS ̸= z̃S) .

Therefore, the total variation distance between µS and µ̂S can be upper bounded with

TV (µS , µ̃S) ≤ sup
A⊆Rd

|µS(A)− µ̃S(A)| ≤ 1 (zS ̸= z̃S) .

Hence, to require TV (µS , µ̃S) ≤ ϵ/4 a sufficient condition is to consider Pr[zS ̸= z̃S ]. The
next step is to show that, in Alg. 2, the projected version generates the same outputs as that of the
standard version with probability at least 1− ϵ/4. It suffices to show that with probability at least
1 − ϵ/4, projected MALA will accept all S iterates. In this condition, let {z1, z2, . . . ,zS} be the
iterates generated by the standard MALA (without the projection step), our goal is to prove that with
probability at least 1− ϵ/4 all zs stay inside the region B(0, R) and ∥zs − zs−1∥ ≤ r for all s ≤ S.
That means we need to prove the following two facts

1. With probability at least 1− ϵ/8, all iterates stay inside the region B(0, R).

2. With probability at least 1− ϵ/8, ∥xs − xs−1∥ ≤ r for all s ≤ S.

Lemma C.2. Let µS and µ̃S be distributions of the outputs of standard and projected implementation
of Alg. 2. For any ϵ ∈ (0, 1), we set

R ≥ max

{
8 ·
√

∥∇g(0)∥2
L2

+
d

L
, 63 ·

√
d

L
log

16S

ϵ

}
, r ≥ (

√
2 + 1) ·

√
τd+ 2

√
τ log

8S

ϵ

where z∗ is denoted as the global optimum of the energy function, i.e., g, defined in Eq. 22. Suppose
P(∥z0∥ ≥ R/2) ≤ ϵ/4 and set

τ ≤ min

{
d

(3LR+ ∥∇g(0)∥+ ϵscore)2
,
16d

L2R2

}
=

d

(3LR+ ∥∇g(0)∥+ ϵscore)2
,

then we have

TV (µS , µ̃S) ≤
ϵ

4
.

Proof. We borrow the proof techniques provided in Lemma 6.1 of [40] to control the TVD gap
between the standard and the projected implementation of Alg. 2.
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Particles stay inside B(0, R). We first consider the expectation of ∥zs+1∥2 when zs is given, and
have

E
[
∥zs+1∥2

∣∣∣zs] = ∫ ∥z′∥2 Tzs
(dz′)

=

∫
∥z′∥2 ·

[
T ′zs

(dz′) · azs
(z′) +

(
1−

∫
azs

(z̃)T ′zs
(dz̃)

)
δzs

(dz′)

]
= ∥zs∥2 +

∫ (
∥z′∥2 − ∥zs∥2

)
· azs

(z′)T ′zs
(dz′)·

= ∥zs∥2 +
∫ (

∥z′∥2 − ∥zs∥2
)
· azs

(z′) ·
(
1

2
· δzs

(dz′) +
1

2
·Qzs

(dz′)

)
= ∥zs∥2 +

1

2

∫ (
∥z′∥2 − ∥zs∥2

)
·min {q(z′|zs), q(zs|z′) · exp (−rθ(z′, zs))}dz′

≤ 1

2
∥zs∥2 +

1

2

∫
∥z′∥2 · q(z′|zs)dz′,

(34)

where the second equation follows from Eq. 28, the forth equation follows from Eq. 26 and the fifth
equation follows from Eq. 27 and Eq. 25. Note that q(z′|zs) is a Gaussian-type distribution whose
mean and variance are zs − τ · sθ(zs) and 2τ respectively. It means∫

∥z′∥2 · q(z′|zs)dz′ = ∥zs − τ · sθ(zs)∥2 + 2τd. (35)

Suppose z∗ is the global optimum of the function g due to Lemma C.1, we have

∥zs − τ · sθ(zs)∥2 = ∥zs∥2 − 2τ · z⊤s sθ(zs) + τ2 · ∥sθ(zs)∥2

= ∥zs∥2 − 2τ · z⊤s ∇g(zs) + 2τ · z⊤s (sθ(zs)−∇g(zs)) + τ2 · ∥sθ(zs)−∇g(zs) +∇g(zs)∥2

≤ ∥zs∥2 − 2τ ·

(
L ∥zs∥2

2
− ∥∇g(0)∥2

2L

)
+ τ2 · ∥zs∥2 + ∥sθ(zs)−∇g(zs)∥2

+ 2τ2 · ∥∇g(zs)∥2 + 2τ2 · ∥sθ(zs)−∇g(zs)∥2

=
(
1− Lτ + τ2

)
· ∥zs∥2 + τ · ∥∇g(0)∥2 /L+ (1 + 2τ2)ϵ2score + 2τ2 · ∥∇g(zs)∥2

≤
(
1− Lτ + (1 + 36L2) · τ2

)
· ∥zs∥2 + τ · ∥∇g(0)∥2 /L+ 4τ2 · ∥∇g(0)∥2 + (1 + 2τ2)ϵ2score,

(36)
where the first inequality follows from the combination of L-strong convexity of g and Lemma E.3 ,
the second inequality follows from the 3L-smoothness of g The strong convexity and the smoothness
of g follow from Lemma C.1.

Combining Eq. 34, Eq. 35 and Eq. 36, we have

E
[
∥zs+1∥2

∣∣∣zs] ≤(1− Lτ

2
+

1 + 36L2

2
· τ2
)
· ∥zs∥2

+
( τ

2L
+ 2τ2

)
· ∥∇g(0)∥2 + (1 + 2τ2)ϵ2score

2
+ τd.

By requiring ϵscore ≤ τ ≤ L/(2 + 72L2) < 1, we have

E
[
∥zs+1∥2

∣∣∣zs] ≤(1− Lτ

4

)
· ∥zs∥2 +

τ

L
· ∥∇g(0)∥2 + (2 + d)τ.

Suppose a radio R satisfies

R ≥ 8 ·
√

∥∇g(0)∥2
L2

+
d

L
. (37)
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Then, if ∥zs∥ ≥ R/2 ≥ 4
√
∥∇g(0)∥2/L2 + d/L, it has

∥zs∥2 ≥ 16 ·
(
∥∇g(0)∥2

L2
+
d

L

)
≥ 8∥∇g(0)∥2

L2
+

8 · (2 + d)

L

⇔ Lτ ∥zs∥2

8
≥ τ

L
· ∥∇g(0)∥2 + (2 + d)τ

⇔ E
[
∥zs+1∥2

∣∣∣zs] ≤ (1− Lτ

8

)
· ∥zs∥2 .

To prove ∥zs∥ ≤ R for all s ≤ S, we only need to consider zs satisfying ∥zs∥ ≥
4
√
∥∇g(0)∥2/L2 + d/L, otherwise ∥zs∥ ≤ R/2 ≤ R naturally holds. Then, by the concavity

of the function log(·), for any ∥zs∥ ≥ R/2, we have

E
[
log(∥zs+1∥2)|zs

]
≤ logE

[
∥zs+1∥2|zs

]
≤ log(1− Lτ

4
) + log(∥zs∥2) ≤ log(∥zs∥2)−

Lτ

4
.

(38)
Consider the random variable

z̃s := zs − τ · sθ(zs) +
√
2τ · ξ where ξ ∼ N (0, I)

obtained by the transition kernel Eq. 24, Note that ∥ξ∥ is the square root of a χ(d) random variable,
which is subgaussian and satisfies

P
[
∥ξ∥ ≥

√
d+

√
2t
]
≤ e−t

2

for any t ≥ 0. Under these conditions, requiring

τ ≤ (3LR+G+ ϵscore)
−2 · d where G := ∥∇g(0)∥ , (39)

we have

P
[
∥zs+1∥ − ∥zs∥ ≥ 3

√
τd+ 2

√
τt
]
≤ P

[
∥z̃s∥ − ∥zs∥ ≥ 3

√
τd+ 2

√
τt
]

≤ P
[
τ ∥sθ(zs)∥+

√
2τ ∥ξ∥ ≥ 3

√
τd+ 2

√
τt
]
≤ P

[√
2τ∥ξ∥ ≥

√
2τd+ 2

√
τt
]
≤ e−t

2

.
(40)

In Eq. 40, the first inequality follows from the definition of transition kernel Tzs
shown in Eq. 28 and

the second inequality follows from

∥z̃s∥ − ∥zs∥ ≤ τ ∥sθ(zs)∥+
√
2τ ∥ξ∥ .

According to the fact

τ ∥sθ(zs)∥ ≤τ ∥∇g(zs)∥+ τϵscore ≤ τ · (∥∇g(zs)−∇g(0)∥+ ∥∇g(0)∥+ ϵscore)

≤τ · (3L · ∥zs∥+ ∥∇g(0)∥+ ϵscore) ≤
√
τd

(41)

where the second inequality follows from the smoothness of g, and the last inequality follows from
Eq. 39 and ∥zs∥ ≤ R, we have

3
√
τd+ 2

√
τt− τ∥sθ(zs)∥ ≥

√
2τd+ 2

√
τt,

which implies the last inequality of Eq. 40 for all t ≥ 0. Furthermore, suppose ∥zs∥ ≥ R/2, it
follows that

log(∥zs+1∥2)− log(∥zs∥2) = 2 log(∥zs+1∥/∥zs∥) ≤ ∥zs+1∥/∥zs∥ − 1 ≤ 2∥zs+1∥ − 2∥zs∥
R

.

Therefore, we have log(∥zs+1∥2)− log(∥zs∥2) is also a sub-Gaussian random variable and satisfies

P
[
log(∥zs+1∥2)− log(∥zs∥2) ≥ 6R−1

√
τd+ 4R−1t

√
τ
]
≤ exp(−t2). (42)

We consider any subsequence among {zk}Sk=1, with all iterates, except the first one, staying outside
the region B(0, R/2). Denote such subsequence by {ys}S

′

s=0 where ∥y0∥ ≤ R/2 and S′ ≤ S. Then,
we know ys and ys+1 satisfy Eq. 38 and Eq. 42 for all s ≥ 1. Under these conditions, by requiring
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∥z0∥ ≤ R/2 with a probability at least 1− ϵ/16, we only need to prove all points in {ys}S
′

s=0 will
stay inside the region B(0, R) with probability at least 1− ϵ/16.

Then, set Es to be the event that

Es = {∥ys′∥ ≤ R,∀s′ ≤ s} ,

which satisfies Es−1 ⊆ Es. Besides, suppose the filtration Fs = {y0,y1, . . . ,ys}, the sequence{
1(Es−1) ·

(
log(∥ys∥2 + Lsτ/4)

)}
s=1,2,...,S

is a super-martingale, and the martingale difference has a subgaussian tail, i.e., for any t ≥ 0,

P
[
log(∥ys+1∥2) +

L(s+ 1)τ

4
− log(∥ys∥2)−

Lsτ

4
≥ 7R−1

√
τd+ 4R−1t

√
τd

]
≤ P

[
log(∥ys+1∥2) +

L(s+ 1)τ

4
− log(∥ys∥2)−

Lsτ

4
≥ 6R−1

√
τd+ 4R−1t

√
τ +

Lτ

4

]
= P

[
log(∥zs+1∥2)− log(∥zs∥2) ≥ 6R−1

√
τd+ 4R−1t

√
τ
]
≤ exp(−t2),

where the first inequality is established when

Lτ

4
≤

√
τd

R
⇔ τ ≤ 16d

L2R2
and d ≥ 1. (43)

Under these conditions, suppose

u =
6
√
τd

R
+

4t
√
τd

R
⇔ t =

uR

4
√
τd

− 3

2
,

it implies

t2 ≥ R2u2

64τd
− 1

which follows from the fact (a− b)2 ≥ a2/4− b2/3 for all a, b ∈ R. Then, for any u ≥ 0, we have

P
[
log(∥ys+1∥2) +

L(s+ 1)τ

4
− log(∥ys∥2)−

Lsτ

4
≥ u

]
≤ exp

(
−R

2u2

64τd
+ 1

)
≤ 3 exp

(
−R

2u2

64τd

)
,

which implies that the martingale difference is subgaussian. Then by Theorem 2 in [29], for any s,
we have

log(∥ys∥2) +
Lsτ

4
≤ log(∥y0∥2) +

74

R
·
√
sτd log(1/ϵ′)

with the probability at least 1 − ϵ′ conditioned on Es−1. Taking the union bound over all s =
1, 2, . . . , S′ (S′ ≤ S) and set ϵ = 16ϵ′S′, we have with probability at least 1 − ϵ/16, for all
s = 1, 2, . . . , S′, it holds

log(∥ys∥2) ≤2 log(R/2) +
74

R
·
√
sτd log(16S/ϵ)− Lsτ

4

≤2 log(R/2) +
742 · d log(16S/ϵ)

R2L
.

By requiring

R ≥ 63 ·
√
d

L
log

16S

ϵ
⇒ 742 · d log(16S/ϵ)

R2L
≤ 2 log 2, (44)

we have log(∥ys∥2) ≤ log(R2), which is equivalent to ∥ys∥ ≤ R. Combining with the fact that with
probability at least 1− ϵ/16 the initial point y0 stays inside B(0, R/2), we can conclude that with
probability at least 1− ϵ/8 all iterates stay inside the region B(0, R).
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The difference between zs+1 and zs is smaller than r. In this paragraph, we aim to prove
∥zs+1 − zs∥ ≤ r for all s ≤ S. Similar to the previous techniques, we consider

z̃s := zs − τ · sθ(zs) +
√
2τ · ξ where ξ ∼ N (0, I).

According to the transition kernel Eq. 28, it has

P [∥zs+1 − zs∥ ≥ r] ≤P [∥z̃s − zs∥ ≥ r] ≤ P
[
τ∥sθ(zs)∥+

√
2τ∥ξ∥ ≥ r

]
=P
[
∥ξ∥ ≥ r − τ∥sθ(zs)∥√

2τ

]
≤ P

[
∥ξ∥ ≥ r −

√
τd∥√

2τ

]
(45)

where the second inequality follows from the triangle inequality, and the last inequality follows from
Eq. 41 when the choice of τ satisfies Eq. 39. Under these conditions, by choosing

r ≥ (
√
2 + 1) ·

√
τd+ 2

√
τ log(8S/ϵ) ⇔ r −

√
τd√

2τ
≥

√
d+

√
2 ·
√

log(8S/ϵ),

Eq. 45 becomes

P [∥zs+1 − zs∥ ≥ r] ≤ P

[
∥ξ∥ ≥ r −

√
τd∥√

2τ

]
≤ P

[
∥ξ∥ ≥

√
d+

√
2 ·
√
log(8S/ϵ)

]
≤ ϵ

8S
,

which means
P [∥zs+1 − zs∥ ≤ r] ≥ 1− ϵ

8S
.

Taking union bound over all iterates, we know all particles satisfy the local condition, i.e., ∥zs+1 −
zs∥ ≤ r with the probability at least 1− ϵ/8. Hence, the proof is completed.

C.2 Control the error from the approximation of score and energy

Lemma C.3. Under Assumption [A1]–[A2], we set

η =
1

2
log

2L+ 1

2L
and G := ∥∇g(0)∥ .

For any ϵ ∈ (0, 1), we set

R ≥ max

{
8 ·
√

∥∇g(0)∥2
L2

+
d

L
, 63 ·

√
d

L
log

16S

ϵ

}
, r = 3 ·

√
τd log

8S

ϵ
.

Suppose it has

δ

16
:=

3ϵscore
2

·
√
τd log

8S

ϵ
+
τϵ2score

4
+
τ(3LR+G)ϵscore

2
≤ 1

32
and ϵenergy ≤ 1

10
,

we have

(1− δ − 5ϵenergy) · T̃∗,z(Ω′z) ≤ T̃z(Ω′z) ≤ (1 + δ + 5ϵenergy) · T̃∗,z(Ω′z).

for any set A ⊆ B(0, R) and point z ∈ B(0, R).

Proof. Note that the Markov process defined by T̃z(·) and T̃∗,z(·) are 1/2-lazy. We prove the lemma
by considering two cases: z ̸∈ A and z ∈ A.

When z ̸∈ A, we have

T̃z(A) =

∫
A
ãz(z

′)T̃ ′z(dz′) =
1

2

∫
A
ãz(z

′)Q̃′z(dz
′)

=
1

2

∫
A∩Ωz

ãz(z
′)Q̃z(dz

′) =
1

2

∫
A∩Ωz

ãz(z
′)q̃(z′|z)dz′.
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Similarly, we have

T̃∗,z(A) =
1

2

∫
A∩Ωz

ã∗,z(z
′)q̃∗(z

′|z)dz′.

In this condition, we consider

2T̃z(A)− 2T̃∗,z(A) =−
∫
A∩Ωz

ã∗,z(z
′)q̃∗(z

′|z)dz′ +
∫
A∩Ωz

ã∗,z(z
′)q̃(z′|z)dz′

−
∫
A∩Ωz

ã∗,z(z
′)q̃(z′|z)dz′ +

∫
A∩Ωz

ãz(z
′)q̃(z′|z)dz′,

which means

T̃z(A)− T̃∗,z(A)

T̃∗,z(A)
=

∫
A∩Ωz

ã∗,z(z
′) · (q̃(z′|z)− q̃∗(z

′|z)) dz′∫
A∩Ωz

ã∗,z(z′)q̃∗(z′|z)dz′︸ ︷︷ ︸
Term 1

+

∫
A∩Ωz

(ãz(z
′)− ã∗,z(z

′)) q̃(z′|z)dz′∫
A∩Ωz

ã∗,z(z′)q̃∗(z′|z)dz′︸ ︷︷ ︸
Term 2

.

(46)

First, we try to control Term 1, which can be achieved by investigating q̃(z′|z)/q̃∗(z′|z) as follows.

q̃(z′|z)
q̃∗(z′|z)

= exp

(
−∥z′ − (z − τ · sθ(z))∥2

4τ
+

∥z′ − (z − τ · ∇g(z))∥2

4τ

)
,

In this condition, we have

q̃(z′|z)
q̃∗(z′|z)

= exp
(
(4τ)−1 ·

(
−∥z′ − z∥2 − 2τ · (z′ − z)

⊤
sθ(z)− τ2 · ∥sθ(z)∥2

+ ∥z′ − z∥2 + 2τ · (z′ − z)
⊤∇g(z) + τ2 · ∥∇g(z)∥2

))
=exp

(
1

2
(z′ − z)⊤ (−sθ(z) +∇g(z)) + τ

4

(
−∥sθ(z)∥2 + ∥∇g(z)∥2

))
.

(47)

It means∣∣∣∣ln q̃(z′|z)
q̃∗(z′|z)

∣∣∣∣ = ∣∣∣∣12(z′ − z)⊤ (−sθ(z) +∇g(z)) + τ

4

(
−∥sθ(z)∥2 + ∥∇g(z)∥2

)∣∣∣∣
≤1

2
∥z′ − z∥ · ∥sθ(z)−∇g(z)∥+ τ

4
· [∥sθ(z) +∇g(z)∥ · ∥sθ(z)−∇g(z)∥]

≤1

2
∥z′ − z∥ · ∥sθ(z)−∇g(z)∥+ τ

4
· ∥sθ(z)−∇g(z)∥2 + τ

2
· ∥∇g(z)∥ · ∥sθ(z)−∇g(z)∥

≤rϵscore
2

+
τϵ2scroe

4
+
τ(3LR+G)ϵscore

2

where the last inequality follows from the fact z′ ∈ B(z, r) ∩ B(0, R)/{z}, z ∈ B(0, R) and

∥∇g(z)∥ = ∥∇g(z)−∇g(0) +∇g(0)∥ ≤ 3L · ∥z∥+G ≤ 3LR+G.

According to the definition of R and r shown in Lemma C.2, we choose

r := 3 ·
√
τ ·
√
d log

8S

ϵ
≥ (

√
2 + 1) ·

√
τd+ 2

√
τ log

8S

ϵ

Under this condition, we require

δ

16
:=

3ϵscore
2

·
√
τd log

8S

ϵ
+
τϵ2score

4
+
τ(3LR+G)ϵscore

2
≤ 1

32
, (48)

then we have

ln

(
1− δ

8

)
≤ ln

q̃(z′|z)
q̃∗(z′|z)

≤ ln

(
1 +

δ

8

)
⇔ 1− δ

8
<

q̃(z′|z)
q̃∗(z′|z)

≤ 1 +
δ

8
,
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and

−δ
8
≤ min

z′∈A∩Ωz

q̃(z′|z)
q̃∗(z′|z)

− 1 ≤ Term 1 ≤ max
z′∈A∩Ωz

q̃(z′|z)
q̃∗(z′|z)

− 1 ≤ δ

8
. (49)

with the definition of Term 1 shown in Eq. 46.

Then, we try to control Term 2 of Eq. 46 and have∫
A∩Ωz

(ãz(z
′)− ã∗,z(z

′)) q̃(z′|z)dz′∫
A∩Ωz

ã∗,z(z′)q̃∗(z′|z)dz′
=

∫
A∩Ωz

(ãz(z
′)− ã∗,z(z

′)) q̃(z′|z)dz′∫
A∩Ωz

ã∗,z(z′)q̃(z′|z)dz′
·
∫
A∩Ωz

ã∗,z(z
′)q̃(z′|z)dz′∫

A∩Ωz
ã∗,z(z′)q̃∗(z′|z)dz′

.

(50)
According to Eq. 49, it has

1− δ

8
≤ min

z′∈A∩Ωz

q̃(z′|z)
q̃∗(z′|z)

≤
∫
A∩Ωz

ã∗,z(z
′)q̃(z′|z)dz′∫

A∩Ωz
ã∗,z(z′)q̃∗(z′|z)dz′

≤ max
z′∈A∩Ωz

q̃(z′|z)
q̃∗(z′|z)

≤ 1 +
δ

8
, (51)

then we can upper and lower bounding Term 2 by investigating ãz(z′)/ã∗,z(z′) as follows

ã∗,z(z
′) =min

{
1, exp (−(g(z′)− g(z))) · q̃∗(z|z

′)

q̃∗(z′|z)

}
,

ãz(z
′) =min

{
1, exp (−rθ(z′, z)) ·

q̃(z|z′)
q̃(z′|z)

}
.

In this condition, for any 0 < δ ≤ 1, we first consider two cases. When

ã∗,z(z
′) = 1 ≤ exp (−(g(z′)− g(z)))· q̃∗(z|z

′)

q̃∗(z′|z)
and ãz(z

′) = exp (−rθ(z′, z))·
q̃(z|z′)
q̃(z′|z)

≤ 1,

we have

exp (−rθ(z′, z)) · q̃(z|z′)
q̃(z′|z)

exp (−(g(z′)− g(z))) · q̃∗(z|z′)
q̃∗(z′|z)︸ ︷︷ ︸

Term 2.1

≤ ãz(z
′)

ã∗,z(z′)
= exp (−rθ(z′, z)) ·

q̃(z|z′)
q̃(z′|z)

≤ 1. (52)

Besides, when

ã∗,z(z
′) = exp (−(g(z′)− g(z)))· q̃∗(z|z

′)

q̃∗(z′|z)
≤ 1 and ãz(z

′) = 1 ≤ exp (−rθ(z′, z))·
q̃(z|z′)
q̃(z′|z)

,

we have

1 ≤ ãz(z
′)

ã∗,z(z′)
=

1

exp (−(g(z′)− g(z))) · q̃∗(z|z′)
q̃∗(z′|z)

≤
exp (−rθ(z′, z)) · q̃(z|z′)

q̃(z′|z)

exp (−(g(z′)− g(z))) · q̃∗(z|z′)
q̃∗(z′|z)︸ ︷︷ ︸

Term 2.1

. (53)

Then, we start to consider finding the range of ln(Term 2.1) as follows

|ln (Term 2.1)| =
∣∣∣∣(−rθ(z′, z) + (g(z′)− g(z))) + ln

q̃∗(z
′|z)

q̃(z′|z)
+ ln

q̃(z|z′)
q̃∗(z|z′)

∣∣∣∣
≤ϵenergy +

∣∣∣∣ln q̃∗(z′|z)q̃(z′|z)

∣∣∣∣+ ∣∣∣∣ln q̃(z|z′)
q̃∗(z|z′)

∣∣∣∣ ≤ ϵenergy +
δ

16
+

∣∣∣∣ln q̃(z|z′)
q̃∗(z|z′)

∣∣∣∣ , (54)

where the last inequality follows from Eq. 48. Besides, similar to Eq. 47, we have

q̃(z|z′)
q̃∗(z|z′)

= exp
(
(4τ)−1 ·

(
−∥z − z′∥2 − 2τ · (z − z′)⊤sθ(z

′)− τ2 · ∥sθ(z′)∥
2

+ ∥z − z′∥2 + 2τ · (z − z′)⊤∇g(z′) + τ2 · ∥∇g(z′)∥2
))

,
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which means∣∣∣∣ln q̃(z|z′)
q̃∗(z|z′)

∣∣∣∣ = ∣∣∣∣12(z − z′)⊤(−sθ(z′) +∇g(z′)) + τ

4

(
−∥sθ(z′)∥

2
+ ∥∇g(z′)∥2

)∣∣∣∣
≤1

2
∥z − z′∥ · ∥sθ(z′)−∇g(z′)∥+ τ

4
· ∥sθ(z′) +∇g(z′)∥ · ∥sθ(z′)−∇g(z′)∥

≤1

2
∥z − z′∥ · ∥sθ(z′)−∇g(z′)∥+ τ

4
· ∥sθ(z′)−∇g(z′)∥2 + τ

2
∥∇g(z′)∥ · ∥sθ(z′)−∇g(z′)∥

≤rϵscore
2

+
τϵ2score

4
+
τ(3LR+G)ϵscore

2
,

where the last inequality follows from the fact z′ ∈ B(z, r) ∩ B(0, R)/{z} and

∥∇g(z′)∥ = ∥∇g(z′)−∇g(0) +∇g(0)∥ ≤ 3L · ∥z′∥+G ≤ 3LR+G.

Combining this result with Eq. 48, we have∣∣∣∣ln q̃(z|z′)
q̃∗(z|z′)

∣∣∣∣ ≤ δ

16
⇔ δ

16
=

3ϵscore
2

·
√
τd log

8S

ϵ
+
τϵ2score

4
+
τ(3LR+G)ϵscore

2
.

Plugging this result into Eq. 54, it has

|ln (Term 2.1)| ≤ δ

8
+ ϵenergy.

By requiring ϵenergy ≤ 0.1, we have

ln

(
1− δ

4
− 2ϵenergy

)
≤ ln (Term 2.1) ≤ ln

(
1 +

δ

4
+ 2ϵenergy

)
⇔ 1− δ

4
− 2ϵenergy ≤ Term 2.1 ≤ 1 +

δ

4
+ 2ϵenergy.

Combining this result with Eq. 52 and Eq. 53, we have

1− δ

4
− 2ϵenergy ≤ az(z

′)

a∗,z(z′)
≤ 1 +

δ

4
+ 2ϵenergy,

which implies∫
A∩Ωz

(ãz(z
′)− ã∗,z(z

′)) q̃(z′|z)dz′∫
A∩Ωz

ã∗,z(z′)q̃(z′|z)dz′
≥ min

z′∈A

ãz(z
′)

ã∗,z(z′)
− 1 ≥ −δ

4
− 2ϵenergy∫

A∩Ωz
(ãz(z

′)− ã∗,z(z
′)) q̃(z′|z)dz′∫

A∩Ωz
ã∗,z(z′)q̃(z′|z)dz′

≤ max
z′∈A

ãz(z
′)

ã∗,z(z′)
− 1 ≤ δ

4
+ 2ϵenergy.

(55)

Plugging Eq. 55 and Eq. 51 into Eq. 50, we have

−δ
3
−5ϵenergy

2
≤
(
−δ
4
− 2ϵenergy

)
·
(
1 +

δ

8

)
≤ Term 2 ≤

(
δ

4
+ 2ϵenergy

)
·
(
1 +

δ

8

)
≤ δ

3
+
5ϵenergy

2
.

(56)
In this condition, combining Eq. 56, Eq. 49 with Eq. 46, we have

− δ + 5ϵenergy
2

≤ T̃z(A)− T̃∗,z(A)

T̃∗,z(A)
≤ δ + 5ϵenergy

2

⇔
(
1− δ + 5ϵenergy

2

)
· T̃∗,z(A) ≤ T̃z(A) ≤

(
1 +

δ + 5ϵenergy
2

)
· T̃∗,z(A).

(57)

Hence, we complete the proof for z ̸∈ A.
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When z ∈ A, suppose there exist some r′ satisfying
Ω′z := B(z, r′) ⊆ A.

We can split A into A− Ω′z and Ω′z . Note that by our results in the first case, we have(
1− δ + 5ϵenergy

2

)
· T̃∗,z(A− Ω′z) ≤ T̃z(A− Ω′z) ≤

(
1 +

δ + 5ϵenergy
2

)
· T̃∗,z(A− Ω′z).

Then for the set Ω′z , we have∣∣∣∣∣ T̃z(Ω′z)− T̃∗,z(Ω′z)
T̃∗,z(Ω′z)

∣∣∣∣∣ =
∣∣∣∣∣∣
(
1− T̃z(Ω− Ω′z)

)
−
(
1− T̃∗,z(Ω− Ω′z)

)
T̃∗,z(Ω′z)

∣∣∣∣∣∣
=

∣∣∣∣∣ T̃∗,z(Ω− Ω′z)− T̃z(Ω− Ω′z)

T̃∗,z(Ω′z)

∣∣∣∣∣ ≤
∣∣∣∣∣ T̃∗,z(Ω− Ω′z)− T̃z(Ω− Ω′z)

T̃∗,z(Ω− Ω′z)

∣∣∣∣∣ ·
∣∣∣∣∣ T̃∗,z(Ω− Ω′z)

T̃∗,z(Ω′z)

∣∣∣∣∣
≤ δ + 5ϵenergy

2
· 2 = δ + 5ϵenergy,

where the last inequality follows from Eq. 57 and the property of 1/2 lazy, i.e.,

T̃∗,z(Ω− Ω′z) ≤ 1 and T̃∗,z(Ω′z) ≥
1

2
.

In this condition, we have
(1− δ − 5ϵenergy) · T̃∗,z(Ω′z) ≤ T̃z(Ω′z) ≤ (1 + δ + 5ϵenergy) · T̃∗,z(Ω′z).

Hence, we complete the proof for z ∈ A.

Corollary C.4. Under the same conditions as shown in Lemma C.3, if we require
ϵenergy ≤ δ/5,

then we have
(1− 2δ) · T̃∗,z(A) ≤ T̃z(A) ≤ (1 + 2δ) · T̃∗,z(A),

for any set A ⊆ B(0, R) and point z ∈ B(0, R).

C.3 Control the error from Inner MALA to its stationary

In this section, we denote the ideally projected implementation of Alg. 2 whose Markov process,
transition kernel, and particles’ underlying distributions are denoted as {z̃∗,s}Ss=0, Eq. 33, and µ̃∗,s
respectively. According to [40], we know the stationary distribution of the time-reversible process
{z̃∗,s}Ss=0 is

µ̃∗(dz) =


e−g(z)∫

Ω
e−g(z′)dz′

dz x ∈ Ω;

0 otherwise.
(58)

Here, we denote Ω = B(0, R) and
Ωz = B(0, R) ∩ B(z, r).

In the following analysis, we default

η =
1

2
log

2L+ 1

2L
.

Under this condition, the smoothness of g is 3L and the strong convexity constant is L.

we aim to build the connection between the underlying distribution of the output particles obtained
by projected Alg 2, i.e., µ̃S , and the stationary distribution µ̃∗ though the process {z̃∗,s}Ss=0. Since
the ideally projected implementation of Alg. 2 is similar to standard MALA except for the projection,
we prove its convergence through its conductance properties, which can be deduced by the Cheeger
isoperimetric inequality of µ̃∗.

Under these conditions, we organize this subsection in the following three steps:

1. Find the Cheeger isoperimetric inequality of µ̃∗.

2. Find the conductance properties of T̃∗.
3. Build the connection between µ̃S and µ̃∗ through the process {z̃∗,s}Ss=0.
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C.3.1 The Cheeger isoperimetric inequality of µ̃∗

Definition 1 (Definition 2.5.9 in [12]). A probability measure µ defined on a Polish space (X ,dis)
satisfies a Cheeger isoperimetric inequality with constant ρ > 0 if for all Borel set A ⊆ X , it has

lim inf
ϵ→0

µ(Aϵ)− µ(A)

ϵ
≥ 1

ρ
µ(A)µ(Ac).

Lemma C.5 (Theorem 2.5.14 in [12]). Let µ ∈ P1(X ) and let Ch > 0. The following are equivalent.

1. µ satisfies a Cheeger isoperimetric inequality with constant Ch.

2. For all Lipschitz f : X → R, it holds that
Eµ |f − Eµf | ≤ 2ρ · Eµ ∥∇f∥ (59)

Remark 2. For a general non-log-concave distribution, a tight bound on the Cheeger constant can
hardly be provided. However, considering the Cheeger isoperimetric inequality is stronger than
the Poincaré inequality, [6] lower bound the Cheeger constant ρ with Ω(d1/2cP ) where cP is the
Poincaré constant of µ̃∗. The lower bound of cP can be generally obtained by the Bakry-Emery
criterion and achieve exp(−Õ(d)). While for target distributions with better properties, ρ can
usually be much better. When the target distribution is a mixture of strongly log-concave distributions,
the lower bound of ρ can achieve 1/poly(d) by [19]. For log-concave distributions, [22] proved that
ρ = Ω(1/(Tr(Σ2))1/4), where Σ is the covariance matrix of the distribution µ̃∗. When the target
distribution is m-strongly log-concave, based on [15], ρ can even achieve Ω(

√
L). In the following,

we will prove that the Cheeger constant can be independent of x0.
Lemma C.6. Suppose µ∗ and µ̃∗ are defined as Eq. 22 and Eq. 58, respectively, where R in µ̃∗ is
chosen as that in Lemma C.2. For any ϵ ∈ (0, 1), we have

1

2
≤
∫
Ω
µ̃∗(dz)∫

Rd µ∗(dz)
≤ 1.

Proof. Suppose µ∗ ∝ exp(−g) and µ̃∗ are the original and truncated target distributions of the inner
loops. Following from Lemma C.13, it has

TV (µ∗, µ̃∗) ≤
ϵ

4
when µ̃∗ is deduced by the R shown in Lemma C.2. Under these conditions, supposing Ω = B(0, R),
then we have

TV (µ̃∗, µ) =

∫
Rd

|µ∗(dz)− µ̃∗(dz)| =
∫
Ω

|µ∗(dz)− µ̃∗(dz)|+
∫
Rd−Ω

µ∗(dz)

=

∫
Ω

∣∣∣∣ exp (−g(z))∫
Rd exp (−g(z′)) dz′

− exp (−g(z))∫
Ω
exp (−g(z′)) dz′

∣∣∣∣dz +

∫
Rd−Ω

exp (−g(z))∫
Rd exp (−g(z′)) dz′

dz.

(60)
Suppose

Z =

∫
Rd

exp (−g(z)) dz and ZΩ =

∫
Ω

exp (−g(z)) dz,

then the first term of RHS of Eq. 60 satisfies∫
Ω

∣∣∣∣ exp (−g(z))∫
Rd exp (−g(z′)) dz′

− exp (−g(z))∫
Ω
exp (−g(z′)) dz′

∣∣∣∣dz
=

(
1∫

Ω
exp (−g(z′)) dz′

− 1∫
Rd exp (−g(z′)) dz′

)
·
∫
Ω

exp (−g(z′)) dz′ = 1− ZΩ

Z

and the second term satisfies∫
Rd−Ω

exp (−g(z))∫
Rd exp (−g(z′)) dz′

dz =

∫
Rd exp (−g(z′)) dz′ −

∫
Ω
exp (−g(z′)) dz′∫

Rd exp (−g(z′)) dz′
= 1− ZΩ

Z
.

Combining all these things, we have

2 ·
(
1− ZΩ

Z

)
≤ ϵ

4
⇒ 1

2
≤ ZΩ

Z
≤ 1

where we suppose ϵ ≤ 1 without loss of generality. Hence, the proof is completed.
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Lemma C.7. Suppose µ∗, µ̃∗ and ϵ are under the same settings as those in Lemma C.6, the variance
of µ̃∗ can be upper bounded by 2d/L.

Proof. According to the fact that µ∗ is a L-strongly log-concave distribution defined on Rd with the
mean vm, which satisfies ∫

Rd

µ(z) ∥z − vm∥2 dz ≤ d

L

following from Lemma E.8. Suppose

Ω = B(0, R), Z =

∫
Rd

exp(−g(z))dz, ZΩ =

∫
Ω

exp(−g(z))dz

where R shown in Lemma C.2, then the variance bound can be reformulated as∫
Ω

exp(−g(z))
Z

∥z − vm∥2 dz +

∫
Rd−Ω

exp(−g(z))
Z

∥z − vm∥2 dz ≤ d

L
,

which implies ∫
Ω

exp(−g(z))
ZΩ

∥z − vm∥2 dz ≤ Z

ZΩ
· d
L

≤ 2d

L
. (61)

Note that the last inequality follows from Lemma C.6. Besides, suppose the mean of µ̃∗ is vm̃, then
we have∫

Ω

exp(−g(z))
ZΩ

· ∥z − vm∥2 dz =

∫
Ω

exp(−g(z))
ZΩ

· ∥z − vm̃ + vm̃ − vm∥2 dz

=

∫
Ω

exp(−g(z))
ZΩ

· ∥z − vm̃∥2 dz + 2 ·
∫
Ω

exp(−g(z))
ZΩ

· ⟨z − vm̃,vm̃ − vm⟩dz

+

∫
Ω

exp(−g(z))
ZΩ

· ∥vm − vm̃∥2 dz

=

∫
Ω

exp(−g(z))
ZΩ

· ∥z − vm̃∥2 dz +

∫
Ω

exp(−g(z))
ZΩ

· ∥vm − vm̃∥2 dz

(62)

Combining Eq. 61 and Eq. 62, the variance of µ̃∗ satisfies∫
Ω

exp(−g(z))
ZΩ

· ∥z − vm̃∥2 dz ≤ 2d

L
.

Hence, the proof is completed.

Corollary C.8. For each truncated target distribution defined as Eq. 58, their Cheeger constant can
be lower bounded by ρ = Ω(

√
L/d).

Proof. It can be easily found that µ̃∗ is log-concave distribution, which means their Cheeger constant
can be upper bounded by ρ = Ω(1/(Tr(Σ))1/2), where Σ is the covariance matrix of the distribution
µ̃∗. Under these conditions, we have

Tr (Σ) =

∫
Ω

exp(−g(z))
ZΩ

· ∥z − vm̃∥2 dz ≤ 2d

L
,

where the last inequality follows from Lemma C.7. Hence, ρ = Ω(
√
L/d) and the proof is completed.

C.3.2 The conductance properties of T̃∗

We prove the conductance properties of T̃∗,z with the following lemma.

Lemma C.9 (Lemma 13 in [21]). Let T̃∗,z be a be a time-reversible Markov chain on Ω with
stationary distribution µ̃∗. Fix any ∆ > 0, suppose for any z, z′ ∈ Ω with ∥z − z′∥ ≤ ∆ we

have TV
(
T̃∗,z, T̃∗,z′

)
≤ 0.99, then the conductance of T̃∗,z satisfies ϕ ≥ Cρ∆ for some absolute

constant C, where ρ is the Cheeger constant of µ̃∗.
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In order to apply Lemma C.9, we have known the Cheeger constant of µ̃∗ is ρ. We only need to verify
the corresponding condition, i.e., proving that as long as ∥z−z′∥ ≤ ∆, we have TV

(
T̃∗,z, T̃∗,z′

)
≤

0.99 for some ∆. Recalling Eq. 33, we have

T̃∗,z(dẑ) =T̃ ′∗,z(dẑ) · ã∗,z(ẑ) +
(
1−

∫
Ω

ã∗,z(z̃)T̃ ′∗,z(dz̃)
)
· δz(dẑ)

=

(
1

2
δz(dẑ) +

1

2
· Q̃′∗,z(dẑ)

)
· ã∗,z(ẑ) +

[
1−

∫
ã∗,z(z̃) ·

(
1

2
δz(dz̃) +

1

2
Q̃′∗,z(dz̃)

)]
· δz(dẑ)

=

(
1

2
δz(dẑ) +

1

2
· Q̃′∗,z(dẑ)

)
· ã∗,z(ẑ) +

(
1− 1

2
ã∗,z(z)−

1

2

∫
ã∗,z(z̃) · Q̃′∗,z(dz̃)

)
· δz(dẑ)

=

(
1− 1

2

∫
ã∗,z(z̃) · Q̃′∗,z(dz̃)

)
· δz(dẑ) +

1

2
· Q̃′∗,z(dẑ) · ã∗,z(ẑ)

=

(
1− 1

2

∫
Ωz

ã∗,z(z̃)Q̃∗,z(dz̃)

)
+

1

2
· Q̃∗,z(dẑ) · ã∗,z(ẑ) · 1 [ẑ ∈ Ωz] ,

(63)
where the second inequality follows from Eq. 31 and the last inequality follows from Eq. 30. Then the
rest will be proving the upper bound of TV

(
T̃∗,z, T̃∗,z′

)
, and we state another two useful lemmas as

follows.

Lemma C.10 (Lemma B.6 in [40]). For any two points z, z′ ∈ Rd, it holds that

TV
(
Q̃∗,z(·), Q̃∗,z′(·)

)
≤ (1 + 3Lτ) ∥z − z′∥√

2τ

Proof. This lemma can be easily obtained by plugging the smoothness of g, i.e., 3L, into Lemma B.6
in [40].

Corollary C.11 (Variant of Lemma 6.5 in [40]). Under Assumption [A1]–[A2], we set

η =
1

2
log

2L+ 1

2L
and G := ∥∇g(0)∥ .

If we set

τ ≤ 1

16 · (3LR+G+ ϵscore)2
and r = 3 ·

√
τd log

8S

ϵ

there exist absolute constants c0, such that ϕ ≥ c0ρ
√
τ where ρ is the Cheeger constant of the

distribution µ̃∗.

Proof. By the definition of total variation distance, there exists a set A ⊆ Ω satisfying

TV
(
T̃∗,z(·), T̃∗,z′(·)

)
=
∣∣∣T̃∗,z(A)− T̃∗,z′(A)

∣∣∣ .
Due to the closed form of T̃∗,z shown in Eq. 63, we have

T̃∗,z(A) =

(
1− 1

2

∫
z̃∈Ωz

ã∗,z(z̃)Q̃∗,z(dz̃)

)
+

1

2

∫
ẑ∈A

ã∗,z(ẑ) · 1 [ẑ ∈ Ωz] Q̃∗,z(dẑ)

Under this condition, we have∣∣∣T̃∗,z(A)− T̃∗,z′(A)
∣∣∣ ≤max

ẑ

(
1− 1

2

∫
Ωẑ

ã∗,ẑ(z̃)Q̃∗,ẑ(dz̃)

)
︸ ︷︷ ︸

Term 1

+
1

2

∣∣∣∣∫
ẑ∈A

ã∗,z(ẑ) · 1 [ẑ ∈ Ωz] Q̃∗,z(dẑ)− ã∗,z′(ẑ) · 1 [ẑ ∈ Ωz′ ] Q̃∗,z′(dẑ)

∣∣∣∣︸ ︷︷ ︸
Term 2

.
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Upper bound Term 1. We first consider to lower bound ã∗,ẑ(z̃) in the following. According to
Eq. 32, we have

ã∗,ẑ(z̃) ≥ exp

(
−g(z̃)− ∥ẑ − z̃ + τ∇g(z̃)∥2

4τ
+ g(ẑ) +

∥z̃ − ẑ + τ∇g(ẑ)∥2

4τ

)
,

which means
4 ln ã∗,ẑ(z̃) ≥ τ ·

(
∥∇g(ẑ)∥2 − ∥∇g(z̃)∥2

)
︸ ︷︷ ︸

Term 1.1

−2 · (g(z̃)− g(ẑ)− ⟨∇g(ẑ), z̃ − ẑ⟩)︸ ︷︷ ︸
Term 1.2

+2 · (g(ẑ)− g(z̃)− ⟨∇g(z̃), ẑ − z̃⟩)︸ ︷︷ ︸
Term 1.3

.

Since Term 1.2 and Term 1.3 are grouped to more easily apply the strong convexity and smoothness
of g (Lemma C.1), it has

Term 1.2 ≥ −3L ∥ẑ − z̃∥2 and Term 1.3 ≥ L ∥ẑ − z̃∥2 ≥ 0.

Besides, by requiring τ ≤ 1/3L, we have

Term 1.1 =τ · ⟨∇g(ẑ)−∇g(z̃),∇g(ẑ) +∇g(z̃)⟩
≥ − τ · ∥∇g(ẑ)−∇g(z̃)∥ · ∥∇g(ẑ) +∇g(z̃)∥
≥ − 3Lτ ∥ẑ − z̃∥ · (2 ∥∇g(ẑ)∥+ 3L ∥ẑ − z̃∥) ≥ −3Lτ2 ∥∇g(ẑ)∥2 − 6L ∥ẑ − z̃∥2 .

Therefore,

4 ln ã∗,ẑ(z̃) ≥− 3Lτ2 ∥∇g(ẑ)∥2 − 9L ∥ẑ − z̃∥2 = −3Lτ2 ∥∇g(ẑ)∥2 − 9L
∥∥∥τ · ∇g(ẑ) +√

2τ · ξ
∥∥∥2

≥− 21Lτ2 ∥∇g(ẑ)∥2 − 36Lτ ∥ξ∥2 ,

and

ln ã∗,ẑ(z̃) ≥ −6Lτ2 ∥∇g(ẑ)∥2 − 9Lτ ∥ξ∥2 ≥ −6Lτ2 · (3LR+ ∥∇g(0)∥)2 − 9Lτ∥ξ∥2

where the last inequality follows from

∥∇g(ẑ)∥ ≤ ∥∇g(ẑ)−∇g(0)∥+ ∥∇g(0)∥ ≤ 3LR+ ∥∇g(0)∥ .

Under these conditions, we have

Term 1 ≤1− 1

2
· exp

(
−6Lτ2 (3LR+ ∥∇g(0)∥)2

)
·min

∫
Ωẑ

exp
(
−9Lτ∥ξ∥2

)
· q̃∗,ẑ(z̃)dz̃

=1− 1

2
· exp

(
−6Lτ2 (3LR+ ∥∇g(0)∥)2

)
· Eξ∼N (0,I)

[
exp

(
−9Lτ∥ξ∥2

)]
≤1− 0.4 · exp

(
−6Lτ2 (3LR+ ∥∇g(0)∥)2

)
· exp (−18Lτd) ,

(64)
where the last inequality follows from the Markov inequality shown in the following

Eξ∼N (0,I)

[
exp

(
−9Lτ∥ξ∥2

)]
≥ exp (−18Lτd) · Pξ∼N (0,I)

[
exp

(
−9Lτ∥ξ∥2

)
≥ exp (−18Lτd)

]
=exp (−18Lτd) · Pξ∼N (0,I)

[
∥ξ∥2 ≤ 2d

]
≥ exp (−18Lτd) · (1− exp(−d/2)) .

Then, by choosing

τ ≤ 1

16
√
L · (3LR+ ∥∇g(0)∥)

, (65)

it has 6Lτ2 (3LR+ ∥∇g(0)∥)2 ≤ 1/40. Besides by choosing

τ ≤ 1

L2R2
≤ 1

40 · 18L ·
(√

d+
√

ln 16S
ϵ

)2 ≤ 1

40 · 18L · d
, (66)
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where the last inequality follows from the range of R shown in Lemma C.2, it has 18Ldτ ≤ 1/40.
Under these conditions, considering Eq. 64, we have

Term 1 ≤ 1− 0.5 · min
ẑ∈Ω,z̃∈Ωẑ

∫
Ωẑ

ã∗,ẑ(z̃)Q̃∗,ẑ(dz̃) ≤ 1− 0.4 · e−1/20. (67)

Then, combining the step size choices of Eq. 65, Eq. 66, and Lemma C.2, since the requirement

τ ≤ 1

16
√
L · (3LR+ ∥∇g(0)∥)

, τ ≤ 1

L2R2
and τ ≤ d

(3LR+ ∥∇g(0)∥+ ϵscore)2

can be achieved by
τ ≤ 16−1 · (3LR+ ∥∇g(0)∥+ ϵscore)

−2, (68)
the range of τ can be determined.

Upper bound Term 2. In This part, we use similar techniques as those shown in Lemma 6.5 of [40].
According to the triangle inequality, we have

2 · Term 2 ≤
∫
ẑ∈A

(1− ã∗,z(ẑ)) q̃(ẑ|z)1 [ẑ ∈ Ωz] dẑ +

∫
ẑ∈A

(1− ã∗,z′(ẑ)) q̃(ẑ|z′)1 [ẑ ∈ Ωz′ ] dẑ

+

∣∣∣∣∫
ẑ∈A

(q̃(ẑ|z)1 [ẑ ∈ Ωz]− q̃(ẑ|z′)1 [ẑ ∈ Ωz′ ]) dẑ

∣∣∣∣
≤2 ·

(
1− min

ẑ∈Ω,z̃∈Ωẑ

∫
Ωẑ

ã∗,ẑ(z̃)Q̃∗,ẑ(dz̃)

)
+

∣∣∣∣∫
ẑ∈A

(q̃(ẑ|z)1 [ẑ ∈ Ωz]− q̃(ẑ|z′)1 [ẑ ∈ Ωz′ ]) dẑ

∣∣∣∣︸ ︷︷ ︸
Term 2.1

.

(69)
Then, we upper bound Term 2.1 as follows

Term 2.1 ≤
∣∣∣∣∫

ẑ∈A
1 [ẑ ∈ Ωz′ ] ·

(
q̃(ẑ|z)− q̃(ẑ|z′)

)∣∣∣∣+ ∣∣∣∣∫
ẑ∈A

(1 [ẑ ∈ Ωz]− 1 [ẑ ∈ Ωz′ ]) · q̃(ẑ|z)
∣∣∣∣

≤TV
(
Q̃∗,z(·), Q̃∗,z′(·)

)
+max

{∫
ẑ∈Ωz′−Ωz

q̃(ẑ|z)dẑ,
∫
ẑ∈Ωz−Ωz′

q̃(ẑ|z′)dẑ

}

≤TV
(
Q̃∗,z(·), Q̃∗,z′(·)

)
+max

{∫
ẑ∈Rd−Ωz

q̃(ẑ|z)dẑ,
∫
ẑ∈Rd−Ωz′

q̃(ẑ|z′)dẑ

}
According to the definition, q̃∗,z(·) is Gaussian distribution with mean z − τ∇g(z) and covariance
matrix 2τI , thus we have∫

ẑ∈Rd−Ωz

q̃(ẑ|z)dẑ ≤ Pẑ∼χ2
d

[
ẑ ≥ 1

2
(r − τ ∥∇g(z)∥)2 /τ

]
∫
ẑ∈Rd−Ωz′

q̃(ẑ|z′)dẑ ≤ Pẑ∼χ2
d

[
ẑ ≥ 1

2
(r − τ ∥∇g(z)∥ − ∥z − z′∥)2 /τ

]
.

Then, we start to lower bound
r − τ ∥∇g(z)∥ − ∥z − z′∥ .

Then, we require

∥z − z′∥ ≤ 0.1r and τ ≤ d

35 · (3LR+G)
2 (70)

where the latter condition can be easily covered by the choice in Eq. 68 when d ≥ 3 without loss of
generality. Under this condition, we have

τ ≤ (0.17)2 · d

(3LR+G)2
⇔

√
τ ≤ 0.17

√
d

3LR+G
. (71)
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Since we have

∥∇g(z)∥ = ∥∇g(z)−∇g(0) +∇g(0)∥ ≤ 3L · ∥z∥+G ≤ 3LR+G,

by the smoothness, it has

√
τ ≤ 0.17

√
d

∥∇g(z)∥
⇔ τ ∥∇g(z)∥ ≤ 0.17

√
τd (72)

Plugging Eq. 72 and Eq. 71 into Eq. 70, we have

r − τ ∥∇g(z)∥ − ∥z − z′∥ ≥ 0.9r − 0.17
√
τd ≥

√
6.4τd

where the last inequality follows from the choice of r shown in Lemma C.3, i.e.,

r = 3 ·
√
τd log

8S

ϵ
≥ 3 ·

√
τd.

Under these conditions, we have

max

{∫
ẑ∈Rd−Ωz

q̃(ẑ|z)dẑ,
∫
ẑ∈Rd−Ωz′

q̃(ẑ|z′)dẑ

}
≤ Pẑ∼χ2

d
(∥z∥ ≥ 3.2d) ≤ 0.1.

Then combine the above results and apply Lemma C.10, assume τ ≤ 1/(3L), we have

Term 2.1 ≤ 0.1 + TV
(
Q̃∗,z(·), Q̃∗,z′(·)

)
≤ 0.1 +

√
2/τ · ∥z − z′∥

Plugging the above into Eq. 69, we have

Term 2 ≤
(
1− min

ẑ∈Ω,z̃∈Ωẑ

∫
Ωẑ

ã∗,ẑ(z̃)Q̃∗,ẑ(dz̃)

)
+

1

2
·

(
0.1 +

√
2

τ
· ∥z − z′∥

)
≤
(
1− 0.8 · e−1/20

)
+ 0.05 + (2τ)−1/2 · ∥z − z′∥,

where the second inequality follows from Eq. 67.

After upper bounding Term 1 and Term 2, we have

TV
(
T̃∗,z(·), T̃∗,z′(·)

)
≤1− 0.4 · e−1/20 +

(
1− 0.8 · e−1/20

)
+ 0.05 + (2τ)−1/2 · ∥z − z′∥

≤0.91 + (2τ)−1/2 · ∥z − z′∥ ≤ 0.99

where the last inequality can be established by requiring ∥z − z′∥ ≤
√
2τ . Combining Lemma C.9,

the conductance of µ̃∗ satisfies
ϕ ≥ c0 · ρ

√
2τ .

Hence, the proof is completed.

The connection between µ̃S and µ̃∗. With the conductance of truncated target distribution, we are
able to find the convergence of the projected implementation of Alg. 2. Besides, the gap between
the truncated target µ̃∗ and the true target µ∗ can be upper bounded by controlling R while such an
R will be dominated by the range of R shown in Lemma C.2. In this section, we will omit several
details since many of them have been proven in [40].
Lemma C.12 (Lemma 6.4 in [40]). Let µ̃S be distributions of the outputs of the projected
implementation of Alg. 2. Under Assumption [A1]–[A2], if the transition kernel T̃z(·) is δ-close to
T̃∗,z with δ ≤ min

{
1−

√
2/2, ϕ/16

}
(ϕ denotes the conductance of µ̃∗), then for any λ-warm start

initial distribution with respect to µ̃∗, it holds that

TV (µ̃S , µ̃∗) ≤ λ ·
(
1− ϕ2/8

)S
+ 16δ/ϕ.

Lemma C.13 (Lemma 6.6 in [40]). For any ϵ ∈ (0, 1), set R to make it satisfy

µ (B(0, R)) ≥ 1− ϵ

12
,

and µ̃∗ be the truncated target distribution of µ∗. Then the total variation distance between µ∗ and
µ̃∗ can be upper bounded by TV (µ̃∗, µ∗) ≤ ϵ/4.
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C.4 Main Theorems of InnerMALA implementation

Lemma C.14. Under Assumption [A1]–[A2], we can upper bound G = ∥∇g(0)∥ as

∥∇g(0)∥ ≤ L ·
√

2(d+m2
2) + 3L · ∥x0∥ .

Furthermore, we can reformulate R as

R = 63 ·
√

(d+m2
2 + ∥x0∥2) · log

16S

ϵ

to make it satisfy the requirement shown in Lemma C.3. Then, the range of inner step sizes, i.e., τ ,
will satisfy

τ ≤ Cτ ·
(
L2
(
d+m2

2 + ∥x0∥2
)
· log 16S

ϵ

)−1
,

where the absolute constant Cτ = 2−4 · 3−8 · 7−2.

Proof. To make the bound more explicit, we control R and G in our previous analysis. For G =
∥∇g(0)∥, according to Eq. 22, we have

∇g(z) = ∇f(K−k−1)η(z) +
e−2ηz − e−ηx0

(1− e−2η)
,

which means

∥∇g(0)∥ ≤
∥∥∇f(K−k−1)η(0)∥∥+ ∥∥∥∥ e−ηx0

1− e−2η

∥∥∥∥
≤
∥∥∇f(K−k−1)η(0)∥∥+√ 2L

2L+ 1
· (2L+ 1) · ∥x0∥ ≤

∥∥∇f(K−k−1)η(0)∥∥+ (2L+ 1) · ∥x0∥ .

Besides, we should note f(K−k−1)η is the smooth (Assumption [A1]) energy function of p(K−k−1)η
denoting the underlying distribution of time (K − k− 1)η in the forward OU process. Then, we have∥∥∇f(K−k−1)η(0)∥∥2 =Ep(K−k−1)η

[∥∥∇f(K−k−1)η(0)∥∥2]
≤2Ep(K−k−1)η

[∥∥∇f(K−k−1)η(x)∥∥2]+ 2Ep(K−k−1)η

[∥∥∇f(K−k−1)η(x)−∇f(K−k−1)η(0)
∥∥2]

≤2Ld+ 2L2Ep(K−k−1)η

[
∥x∥2

]
≤ 2Ld+ 2L2 max

{
d,m2

2

}
≤ 2L2(d+m2

2)

(73)
where the first inequality follows from Lemma E.6, and the third inequality follows from Lemma E.7.
Under these conditions, we have

∥∇g(0)∥ ≤ L ·
√

2(d+m2
2) + 3L · ∥x0∥ . (74)

Then, for R defined as

R ≥ max

{
8 ·
√

∥∇g(0)∥2
L2

+
d

L
, 63 ·

√
d

L
log

16S

ϵ

}
,

we can choose R to be the upper bound of RHS. Considering

8 ·
√

∥∇g(0)∥2
L2

+
d

L
≤ 8 ·

√
4L2(d+m2

2) + 18L2∥x0∥2
L2

+ d ≤ 63 ·
√

(d+m2
2 + ∥x0∥2),

then we choose

R = 63 ·
√

(d+m2
2 + ∥x0∥2) · log

16S

ϵ
.

After determining R, the choice of τ can be relaxed to

τ ≤ Cτ ·
(
L2
(
d+m2

2 + ∥x0∥2
)
· log 16S

ϵ

)−1
,
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where the absolute constant Cτ = 2−4 · 3−8 · 7−2, since we have

(3LR+G+ ϵscore)
2 ≤ 9L2R2 + 4G2

≤ 9L2 · 632 ·
(
d+m2

2 + ∥x0∥2
)
· log 16S

ϵ
+ 4

(
4L2 ·

(
d+m2

2

)
+ 18L2∥x0∥2

)
≤ 9 · 632 · L2

(
d+m2

2 + ∥x0∥2
)
· log 16S

ϵ
.

Hence, the proof is completed.

Theorem C.15. Under Assumption [A1]–[A2], for any ϵ ∈ (0, 1), let µ̃∗(z) ∝ exp(−g(z))1[z ∈
B(0, R)] be the truncated target distribution in B(0, R) with

R = 63 ·
√
(d+m2

2 + ∥x0∥2) · log
16S

ϵ
= Õ

(
(d+m2

2 + ∥x0∥2)1/2
)
,

r in Alg. 2 satisfies

r = 3 ·
√
τd log

8S

ϵ
= Õ(τ1/2d1/2)

and ρ be the Cheeger constant of µ̃∗. Suppose µ̃0({∥x∥ ≥ R/2}) ≤ ϵ/16, the step size satisfy

τ ≤ Cτ ·
(
L2
(
d+m2

2 + ∥x0∥2
)
· log 16S

ϵ

)−1
= Õ(L−2 · (d+m2

2 + ∥x0∥2)−1),

the score and energy estimation errors satisfy

ϵscore ≤
c0ρ

32 · 36 ·
√
d log 8S

ϵ

= O(ρd−1/2) and ϵenergy ≤ c0ρ
√
2τ

32 · 5
= O(ρτ1/2),

then for any λ-warm start with respect to µ∗ the output of both standard and projected implementation
of Alg. 2 satisfies

TV (µS , µ∗) =
ϵ

2
+ λ

(
1− c20ρ

2

4
· τ
)S

+ Õ(d1/2ρ−1ϵscore) +O(ρ−1τ−1/2ϵenergy)

Proof. We characterize the condition on the step size τ . Combining Lemma C.2 and Corollary C.11,
it requires the range of τ to satisfy

τ ≤ 16−1 · (3LR+ ∥∇g(0)∥+ ϵscore)
−2.

Under this condition, we have

τ ≤
d log 8S

ϵ

(3LR+G)2
, τ ≤

d log 8S
ϵ

ϵ2score
, and τ ≤

(
722 · ϵ2score · d log

8S

ϵ

)−1
which implies

(3LR+G)ϵscore · τ ≤ ϵscore
√
τ ·
√
d log

8S

ϵ
and ϵ2score · τ ≤ ϵscore

√
τ ·
√
d log

8S

ϵ
.

Then, we have

δ =16 ·

[
3ϵscore

2
·
√
τd log

8S

ϵ
+

(3LR+G)ϵscore · τ
2

+
ϵ2score · τ

4

]

≤16 ·

[
3ϵscore

2
·
√
τd log

8S

ϵ
+
ϵscore
2

·
√
τd log

8S

ϵ
+
ϵscore
4

·
√
τd log

8S

ϵ

]

=36ϵscore ·
√
τd log

8S

ϵ
≤ 1

2
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which matches the requirement of Lemma C.3. Under this condition, if we require

ϵscore ≤
c0ρ

32 · 36 ·
√
d log 8S

ϵ

= O(ρd−1/2) and ϵenergy ≤ c0ρ
√
2τ

32 · 5
= O(ρτ1/2),

it makes

δ + 5ϵenergy ≤ 36ϵscore ·
√
τd log

8S

ϵ
+ 5ϵenergy ≤ c0ρ

√
2τ

16
≤ ϕ

16
and satisfies the requirements shown in Lemma C.12.

Then, we are able to put the results of these lemmas together to establish the convergence of Alg. 2.
Note that if µ0 is a λ-warm start to µ∗, it must be a λ-warm start to µ̃∗ since µ̃∗(A) ≥ µ∗(A) for all
A ∈ Ω. Combining Lemma C.2, Lemma C.12 and Lemma C.13, we have

TV (µS , µ∗) ≤TV (µS , µ̃S) + TV (µ̃S , µ̃∗) + TV (µ̃∗, µ∗)

≤ ϵ

4
+

(
λ ·
(
1− ϕ2

8

)S

+
16(δ + 5ϵenergy)

ϕ

)
+
ϵ

4

≤ ϵ

2
+ λ

(
1− c20ρ

2

4
· τ
)S

+ 408ϵscore ·

√
d log 8S

ϵ

c0ρ
+

57ϵenergy
c0ρ

√
τ

=
ϵ

2
+ λ

(
1− c20ρ

2

4
· τ
)S

+ Õ(d1/2ρ−1ϵscore) +O(ρ−1τ−1/2ϵenergy).

After combining this result with the choice of parameters shown in Lemma C.14, the proof is
completed.

Lemma C.16. Under the same assumptions and hyperparameter settings made in Theorem C.15, we
use Gaussian-type initialization

µ0(dz)

dz
∝ exp

(
−L∥z∥2 − ∥x0 − e−ηz∥2

2(1− e−2η)

)
.

If we set the iteration number as

S = Õ
(
Lρ−2 ·

(
d+m2

2

)
τ−1

)
,

the standard and projected implementation of Alg. 2 can achieve

TV (µS , µ∗) ≤
3ϵ

4
+ Õ(d1/2ρ−1ϵscore) +O(ρ−1τ−1/2ϵenergy).

Proof. We reformulate the target distribution µ∗ and the initial distribution µ0 as follows

µ∗(dz)

dz
∝ exp

[
−
(
f(K−k−1)η(z) +

3L∥z∥2

2

)
−

(
∥x0 − e−ηz∥2

2(1− e−2η)
− 3L∥z∥2

2

)]
:= exp (−ϕ(z)− ψ(z)) ,

µ0(dz)

z
∝ exp

[
−L∥z∥2 − 3L∥z∥2

2
−

(
∥x0 − e−ηz∥2

2(1− e−2η)
− 3L∥z∥2

2

)]
= exp

[
−5L∥z∥2

2
− ψ(z)

]
.

Under this condition, we have

µ0(dz)

µ∗(dz)
≤

∫
Rd exp (−ϕ(z′)− ψ(z′)) dz′∫

Rd exp (−5L/2 · ∥z′∥2 − ψ(z′)) dz′
· exp

(
ϕ(z)− 5L∥z∥2

2

)
(75)

Due to Assumption [A1], we have

LI

2
⪯ ∇2f(K−k−1)η(z

′) +
3L

2
= ∇2ϕ(z′) ⪯ 5LI

2
,

which means

ϕ(z) ≤ ϕ(z∗) +
5L

4
· ∥z − z∗∥2 ≤ ϕ(z∗) +

5L∥z∥2

2
+

5L∥z∗∥2

2
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and

exp

(
ϕ(z)− 5L∥z∥2

2

)
≤ exp

(
ϕ(z∗) +

5L∥z∗∥2

2

)
. (76)

Since the function ϕ(z) is strongly log-concave, it satisfies

∇ϕ(z) · z ≥ L∥z∥2

4
− ∥∇ϕ(0)∥

L
and ϕ(z) ≥ L∥z∥2

16
+ ϕ(z∗)−

∥∇ϕ(0)∥2

2L

due to Lemma E.3 and Lemma E.4. Under these conditions, we have∫
exp [−ϕ(z′)− ψ(z′)] dz′ ≤ exp

(
−ϕ(z∗) +

∥∇ϕ(0)∥2

2L

)
·
∫

exp

[
−L∥z

′∥2

16
− ψ(z′)

]
dz′

= exp

(
−ϕ(z∗) +

∥∇ϕ(0)∥2

2L

)
·
∫

exp

[
−23L∥z′∥2

16
− ∥x0 − e−ηz′∥2

2(1− e−2η)

]
dz′

(77)
Besides, we have∫

exp

[
−5L∥z′∥2

2
− ψ(z′)

]
dz′ =

∫
exp

[
−L∥z′∥2 − ∥x0 − e−ηz′∥2

2(1− e−2η)

]
dz′,

which implies ∫
exp

[
−5L∥z′∥2

2
− ψ(z′)

]
dz′ ·

∫
exp

[
−7L∥z′∥2

16

]
dz′

≥
∫

exp

[
−23L∥z′∥2

16
− ∥x0 − e−ηz′∥2

2(1− e−2η)

]
dz′

(78)

Plugging Eq. 76, Eq. 77 and Eq. 78 into Eq. 75, we have

µ0(dz)

µ̃∗(dz)
≤ exp

(
5L∥z∗∥2

2
+

∥∇ϕ(0)∥2

2L

)
·
∫

exp

[
−7L∥z′∥2

16

]
dz′. (79)

Due to the strong convexity of ϕ, it has

∥z∗∥2 ≤ 4∥∇ϕ(0)−∇ϕ(z∗)∥2

L2
=

4∥∇ϕ(0)∥2

L2

and
∥∇ϕ(0)∥2 =

∥∥∇f(K−k−1)η(0)∥∥2 ≤ 2L2(d+m2
2)

where the inequality follows from Eq. 73. Combining with the fact∫
exp

[
−7L∥z′∥2

16

]
dz′ =

(
16π

7L

)d/2

,

Eq. 79 can be relaxed to

λ ≤ max
z

µ0(dz)

µ̃∗(dz)
≤ exp

(
22L · (d+m2

2)
)
·
(
16π

L

)d/2

= exp
(
O(L(d+m2

2))
)

which is independent on ∥x0∥. Then, In order to ensure the convergence of the total variation distance
is smaller than ϵ, it suffices to choose τ and S such that

λ

(
1− c20ρ

2

4
· τ
)S

≤ ϵ

4
⇔ S = O

(
log(λ/ϵ)

ρ2τ

)
= Õ

(
Lρ−2 ·

(
d+m2

2

)
τ−1

)
,

where the last two inequalities follow from Theorem C.15. Hence, the proof is completed.

Theorem C.17. Under Assumption [A1]–[A2], for Alg. 1, we choose

η =
1

2
log

2L+ 1

2L
and K = 4L · log (1 + L2)d+ ∥∇f∗(0)∥2

ϵ2
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and implement Step 3 of Alg. 1 with projected Alg. 2. For the k-th run of Alg. 2, we use Gaussian-type
initialization

µ0(dz)

dz
∝ exp

(
−L∥z∥2 − ∥x̂k − e−ηz∥2

2(1− e−2η)

)
.

If we set the hyperparameters as shown in Lemma C.16, it can achieve

TV (p̂Kη, p∗) ≤ ϵ+ Õ(Ld1/2ρ−1ϵscore) +O(τ̂−1/2 · L2(d1/2 +m2 + Z)ρ−1ϵenergy)

with a gradient complexity as follows

Õ
(
L4ρ−2τ̂−1 ·

(
d+m2

2

)2
Z2
)

for any τ̂ ∈ (0, 1) where Z denotes the maximal l2 norm of particles appearing in outer loops
(Alg. 1).

Proof. According to Lemma B.3, we know that under the choice

η =
1

2
ln

2L+ 1

2L
,

it requires to run Alg. 2 for K times where

K = 4L · log (1 + L2)d+ ∥∇f∗(0)∥2

ϵ2
.

For each run of Alg. 2, we require the total variation error to achieve

TV
(
p̂(k+1)η|kη(·|x̂), p←(k+1)η|kη(·|x̂)

)
≤ ϵ

4L
·

[
log

(1 + L2)d+ ∥∇f∗(0)∥2

ϵ2

]−1
+ Õ(d1/2ρ−1ϵscore) +O(ρ−1τ

−1/2
k ϵenergy).

Combining with Lemma C.16, we consider a step size

τk =Cτ ·

(
L2
(
d+m2

2 + ∥x̂k∥2
)
· log

48LS log (1+L2)d+∥∇f∗(0)∥2
ϵ2

ϵ

)−1
· τ̂

=Õ(L−2 · (d+m2
2 + ∥x̂k∥2)−1 · τ̂)

where τ ′ ∈ (0, 1), to solve the k-th inner sampling subproblem. Then, the maximum iteration number
will be

S = Õ
(
L3ρ−2τ̂−1 ·

(
d+m2

2

)2 · ∥x̂k∥2
)
.

This means that with the total gradient complexity

K · S = Õ
(
L4ρ−2τ̂−1 ·

(
d+m2

2

)2
Z2
)

where Z denotes the maximal l2 norm of particles appearing in outer loops (Alg. 1), we can obtain

TV (p̂Kη, p∗) ≤ϵ+ Õ(Kd1/2ρ−1ϵscore) +O(KL(d+m2
2 + Z2)1/2τ̂−1/2ρ−1ϵenergy)

=ϵ+ Õ(Ld1/2ρ−1ϵscore) +O(τ̂−1/2 · L2(d1/2 +m2 + Z)ρ−1ϵenergy).

Hence, the proof is completed.

Lemma C.18. Suppose we implement Alg. 2 with its projected version, we have

Z2 ≤ Õ
(
L3(d+m2

2)
2ρ−2

)
.

where Z denotes the maximal l2 norm of particles appearing in outer loops (Alg. 1)
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Proof. Suppose we implement Alg. 2 with its projected version, where each update will be projected
to a ball with a ratio r shown in Lemma C.2. Under these conditions, we have

∥x̂K∥2 =

∥∥∥∥∥x̂0 +

K∑
i=1

(x̂i − x̂i−1)

∥∥∥∥∥
2

≤ (K + 1) ∥x̂0∥2 + (K + 1) ·
K∑
i=1

∥x̂i − x̂i−1∥2

For each i ∈ {1, 2, . . .K}, we have

∥x̂i − x̂i−1∥2 = ∥zS − z0∥2 ≤ (S + 1) ·
S∑

j=1

∥zj − zj−1∥2 ≤ 2S · r2.

Follows from Lemma C.16, it has

S · r2 = O
(
log(λ/ϵ)

ρ2τ

)
· Õ (τd) = Õ

(
d log(λ/ϵ)

ρ2

)
= Õ

(
L(d+m2

2)
2ρ−2

)
.

Then, we have

Z2 ≤ O(K2) · Õ
(
L(d+m2

2)
2ρ−2

)
= Õ

(
L3(d+m2

2)
2ρ−2

)
,

Hence, the proof is completed.

C.5 Control the error from Energy Estimation

Corollary C.19. Suppose the diffusion model sθ satisfies

∥ŝθ(x, t) +∇ log pt(x)∥∞ ≤ ρϵ

Ld1/2
,

and another parameterized model l̂θ̂(x, t) is used to estimate the log-likelihood of pt(x) satisfying∥∥∥l̂θ′(x, t) + log pt(x)
∥∥∥
∞

≤ ρϵ

L2 · (d1/2 +m2 + Z)
.

If we implement Alg. 1 with the projected version of Alg. 2, it has

TV (p̂Kη, p∗) ≤ Õ(ϵ)

with the following gradient complexity

Õ
(
L4ρ−2 ·

(
d+m2

2

)2
Z2
)
.

Proof. Since we have highly accurate scores and energy estimation, we can construct sθ and rθ′
(shown in Eq. 23) for the k-th inner loop as follows

sθ(z) = ŝθ(z, (K − k − 1)η) +
e−2ηz − e−ηx̂k

1− e−2η

rθ′(z, z
′) = l̂θ′(z, (K − k − 1)η) +

∥x̂k − e−η · z∥2

2(1− e−2η)

−

(
l̂θ′(z

′, (K − k − 1)η) +
∥x̂k − e−η · z′∥2

2(1− e−2η)

)
.

Under these conditions, we have

ϵenergy ≤ ρϵ

L2 · (d1/2 +m2 + Z)
and ϵscore ≤

ρϵ

Ld1/2
.

Plugging these results into Theorem C.17 and setting τ̂ = 1/2, we have

TV (p̂Kη, p∗) ≤ Õ(ϵ)

with the following gradient complexity

Õ
(
L4ρ−2 ·

(
d+m2

2

)2
Z2
)
.
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Corollary C.20. Suppose the score estimation is extremely small, i.e.,

∥ŝθ(x, t) +∇ log pt(x)∥∞ ≪ ρϵ

Ld1/2
,

and the log-likelihood function of pt has a bounded 3-order derivative, e.g.,∥∥∥∇(3)f(z)
∥∥∥ ≤ L,

we have a non-parametric estimation for log-likelihood to make we have TV (p̂Kη, p∗) ≤ Õ(ϵ) with

Õ
(
L4ρ−3 ·

(
d+m2

2

)2
Z3 · ϵ

)
.

gradient calls.

Proof. Combining the Alg. 2 and the definition of ϵenergy shown in Lemma C.4, we actually require
to control

ϵenergy := (g(z̃s)− g(zs))− rθ(z̃s, zs)

for any s ∈ [0, S − 1]. Then, we start to construct rθ(z̃s, zs). Since we have

g(z̃s)− g(zs) = f(K−k−1)η(z̃s) +
∥x0 − z̃s · e−η∥

2

2(1− e−2η)
− f(K−k−1)η(zs)−

∥x0 − zs · e−η∥
2

2(1− e−2η)
,

we should only estimate the difference of the energy function f(K−k−1)η which will be presented as
f for abbreviation. Besides, we define the following function

h(t) = f ((z̃s − zs) · t+ zs) ,

which means

h(1)(t) :=
dh(t)

dt
= ∇f ((z̃s − zs) · t+ zs) · (z̃s − zs)

h(2)(t) :=
d2h(t)

(dt)2
= (z̃s − zs)

⊤∇2f ((z̃s − zs) · t+ zs) (z̃s − zs)

Under the high-order smoothness condition, i.e.,∥∥∇3f(z)
∥∥ ≤ L

where ∥ · ∥ denotes the nuclear norm, then we have

|h(1)− h(0)| ≤
2∑

i=1

h(i)(0)

i!
+
L · ∥z̃s − zs∥3

3!
≤

2∑
i=1

h(i)(0)

i!
+
Lr3

3!
.

It means we need to approximate h(i) with high accuracy.

For i = 1, the ground truth h(1)(0) is

h(1)(0) =
dh(t)

dt
= ∇f (zs) · (z̃s − zs)

we can approximate it numerically as

h̃(1)(0) := sθ(zs) · (z̃s − zs)

since we have score approximation. Then it has

δ(1)(0) = h(1)(0)− h̃(1)(0) ≤ ∥∇f(zs)− sθ(zs)∥ · ∥z̃s − zs∥ ≤ ϵscore · r. (80)

Then, for i = 2, we obtain the ground truth h(2)(0) by

h(1)(t)− h(1)(0) =

∫ t

0

h(2)(τ)dτ = th(2)(0) +

∫ t

0

h(2)(τ)− h(2)(0)dτ,

which means

h(2)(0) =
h(1)(t)− h(1)(0)

t
+

1

t
·
∫ t

0

h(2)(τ)− h(2)(0)dτ.
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If we use the differential to approximate h(2)(0), i.e.,

h̃(2)(0) :=
h̃(1)(t)− h̃(1)(0)

t
,

we find the error term will be

δ(2)(0) =
∣∣∣h(2)(0)− h̃(2)(0)

∣∣∣ = ∣∣∣∣2δ(1)t +
1

t
·
∫ t

0

h(2)(τ)− h(2)(0)dτ

∣∣∣∣ . (81)

If we use smoothness to relax the integration term, we have∣∣∣h(2)(τ)− h(2)(0)
∣∣∣ ≤ ∥∥∇2f ((z̃s − zs) · τ + zs)−∇2f(zs)

∥∥ · ∥z̃s − zs∥2 ≤ Lτ · ∥z̃s − zs∥3 ,

which means

1

t
·
∫ t

0

h(2)(τ)− h(2)(0)dτ ≤ L ∥z̃s − zs∥3

t
·
∫ t

0

τdτ ≤ tLr3

2
. (82)

Combining Eq. 80, Eq. 81 and Eq. 82, we have

δ(2)(0) ≤ 2ϵscorer

t
+
Lr3t

2
,

which means the final energy estimation error will be∣∣∣∣∣h(1)− h(0)−

(
h̃(1)(0) +

h̃(1)(t)− h̃(1)(0)

2t

)∣∣∣∣∣
≤ δ(1)(0)

1
+
δ(2)(0)

2
+
Lr3

3!
= ϵscore · r︸ ︷︷ ︸

Term 1

+
1

2
·
(
2ϵscorer

t
+
Lr3t

2

)
︸ ︷︷ ︸

Term 2

+
Lr3

6
.

(83)

Considering ϵscore is extremely small (compared with the output performance error tolerance ϵ), we
can choose t depending on ϵscore, e.g., t =

√
ϵscore, to make Term 1 and Term 2 in Eq. 83 diminish.

Under this condition, the term Lr3/6 will dominate RHS of Eq. 83. Besides, we have

r = 3 ·
√
τd log

8S

ϵ
= Õ(τ1/2d1/2),

then we have

ϵenergy = O(Lr3) = O(Ld3/2τ3/2) = Õ
(
L−2d3/2

(
d+m2

2 + ∥x̂k∥2
)−3/2

τ̂3/2
)

where the last equation follows from the choice of τ shown in Theorem C.15. Then, plugging this
result into Theorem C.17 and considering ϵscore ≪ ϵ, we have

TV (p̂Kη, p∗) ≤ϵ+ Õ(Ld1/2ρ−1ϵscore) +O(τ̂−1/2 · L2(d1/2 +m2 + Z)ρ−1ϵenergy)

≤Õ(ϵ) + Õ
(
τ̂(d1/2 +m2 + Z)ρ−1

)
with a gradient complexity as follows

Õ
(
L4ρ−2τ̂−1 ·

(
d+m2

2

)2
Z2
)
.

Then, by choosing
τ =

ϵρ

d1/2 +m2 + Z
,

we have TV (p̂Kη, p∗) ≤ Õ(ϵ) with

Õ
(
L4ρ−3 ·

(
d+m2

2

)2
Z3 · ϵ

)
.

Hence, the proof is completed.
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Remark 3. If we consider more high-order smooth, i.e.,∥∥∥∇(u)f(z)
∥∥∥ ≤ L,

with similar techniques shown in Corollary C.20, we can have the following bound, i.e.,

ϵenergy = O(Lru)

when ϵscore is extremely small. Under this condition, since it has

r = 3 ·
√
τd log

8S

ϵ
= Õ(τ1/2d1/2),

we have

ϵenergy = O(Lru) = O(Ldu/2τu/2) = Õ
(
L−u+1du/2

(
d+m2

2 + ∥x̂k∥2
)−u/2

τ̂u/2
)
= Õ(L−u+1τ̂u/2).

Then, plugging this result into Theorem C.17 and considering ϵscore ≪ ϵ, we have

TV (p̂Kη, p∗) ≤ϵ+ Õ(Ld1/2ρ−1ϵscore) +O(τ̂−1/2 · L2(d1/2 +m2 + Z)ρ−1ϵenergy)

=Õ(ϵ) + Õ
(
τ̂ (u−1)/2L−u+3(d1/2 +m2 + Z)ρ−1

)
=Õ(ϵ) + Õ

(
τ̂ (u−1)/2(d1/2 +m2 + Z)ρ−1

)
where we suppose L ≥ 1 in the last equation without loss of generality. Then, by supposing

τ̂ =
ϵ2/(u−1)ρ

d1/2 +m2 + Z

we have TV (p̂Kη, p∗) ≤ Õ(ϵ) with

Õ
(
L4ρ−3 ·

(
d+m2

2

)2
Z3 · ϵ−2/(u−1) · 2u

)
where the last 2u appears since the estimation of high-order derivatives requires an exponentially
increasing call of score estimations.

D Implement RTK inference with ULD

In this section, we consider introducing a ULD to sample from p←k+1|k(z|x0). To simplify the
notation, we set

g(z) := f(K−k−1)η(z) +
∥x0 − z · e−η∥2

2(1− e−2η)
(84)

and consider k and x0 to be fixed. Besides, we set

p←(z|x0) := p←k+1|k(z|x0) ∝ exp(−g(z))

According to Corollary B.5 and Corollary B.3, when we choose

η =
1

2
log

2L+ 1

2L
,

the log density g will be L-strongly log-concave and 3L-smooth.

For the underdamped Langevin dynamics, we utilize a form similar to that shown in [39], i.e.,

dẑt = v̂tdt

dv̂t = −γv̂tdt− sθ(ẑsτ )dt+
√
2γdBt

(85)

with a little abuse of notation for t ∈ [sτ, (s+ 1)τ). We denote the underlying distribution of (ẑt, v̂t)
as π̂t, and the exact continuous SDE

dzt = vtdt

dvt = −γvtdt−∇g(zt)dt+
√
2γdBt
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has the underlying distribution (zt,vt) ∼ πt. The stationary distribution of the continuous version is
defined as

π←(z,v|x0) ∝ exp

(
−g(z)− ∥v∥2

2

)
where the z-marginal of π←(·|x0) is p←(·|x0) which is the desired target distribution of inner loops.
Therefore, by taking a small step size for the discretization and a large number of iterations, ULD will
yield an approximate sample from p←(·|x0). Besides, in the analysis of ULD, we usually consider
an alternate system of coordinates

(ϕ, ψ) := M(z,v) := (z, z +
2

γ
v),

their distributions of the continuous time iterates πMt and the target in these alternate coordinates
πM, respectively. Besides, we need to define log-Sobolev inequality as follows

Definition 2 (Log-Sobolev Inequality). The target distribution p∗ satisfies the following inequality

Ep∗

[
g2 log g2

]
− Ep∗ [g

2] logEp∗ [g
2] ≤ 2CLSIEp∗ ∥∇g∥

2

with a constant CLSI for all smooth function g : Rd → R satisfying Ep∗ [g
2] <∞.

Remark 4. Log-Sobolev inequality is a milder condition than strong log-concavity. Suppose p
satisfies m-strongly log-concavity, it satisfies 1/m LSI, which is proved in Lemma E.9.

Definition 3 (Poincaré Inequality). The target distribution p satisfies the following inequality

Ex∼p

[
∥g(x)− Ex∼p[g(x)]∥2

]
≤ CPIEp ∥∇g∥2

with a constant CPI for all smooth function g : Rd → R satisfying Ep∗ [g
2] <∞.

In the following, we mainly follow the idea of proof shown in [39], which provides the convergence
of KL divergence for ULD, to control the error from the sampling subproblems.

Lemma D.1 (Proposition 14 in [39]). Let πMt denote the law of the continuous-time underdamped
Langevin diffusion with γ = c

√
3L for c ≥

√
2 in the (ϕ, ψ) coordinates. Suppose the initial

distribution π0 has a log-Sobolev (LSI) constant (in the altered coordinates) CLSI(π
M
0 ), then {πMt }

satisfies LSI with a constant that can be uniformly upper bounded by

CLSI(π
M
t ) ≤ exp

(
−
√

2L

3
· t

)
· CLSI(π

M
0 ) +

2

L
.

Lemma D.2 (Adapted from Proposition 1 of [25]). Consider the following Lyapunov functional

F(π′, π←) := KL
(
π′
∥∥π←)+ Eπ′

[∥∥∥∥M1/2∇ log
π′

π←

∥∥∥∥2
]
, where M =

[
1

12L
1√
6L

1√
6L

4

]
⊗ Id.

For targets π← ∝ exp(−g) which are 3L-smooth and satisfy LSI with constant 1/L, let γ = 2
√
6L.

Then the law πt of ULD satisfies

∂tF(πt, π
←) ≤ −

√
L

10
√
6
· F(πt, π

←).

Lemma D.3 (Variant of Lemma 4.8 in [1]). Let π̂t denote the law of SDE. 85 and πt denote the law
of the continuous time underdamped Langevin diffusion with the same initialization, i.e., π̂0 = π0. If
γ ≍

√
L and the step size τ satisfies

τ = Õ
(
L−3/2d−1/2T−1/2

)
then we have

χ2(π̂T ∥πT ) ≲ L3/2dτ2T + ϵ2scoreL
−1/2T
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Proof. The main difference of this discretization analysis is whether the score ∇ log pt can be exactly
obtained or only be approximated by sθ . Therefore, in this proof, we will omit various steps the same
as those shown in [1].

We consider the following difference

GT :=
1√
2γ

S−1∑
s=0

∫ (s+1)τ

sτ

⟨∇g(zt)− sθ(zsτ ),dBt⟩

− 1

4γ

S−1∑
s=0

∫ (s+1)τ

sτ

∥∇g(zt)− sθ(zsτ )∥2 dt.

From Girsanov’s theorem, we obtain immediately using Itô’s formula

EπT

[(
dπ̂T
dπT

)2
]
− 1 =E [exp (2GT )]− 1 =

1

2γ
EπT

S−1∑
s=0

[∫ (s+1)τ

sτ

exp(2Gt) ∥∇g(zt)− sθ(zsτ )∥2
]

≤ 1

γ
·
S−1∑
s=0

∫ (s+1)τ

sτ

√
E [exp(4Gt)] · E

[
∥∇g(zt)− sθ(zsτ )∥4

]
dt

≤ 4

γ

S−1∑
s=0

·
∫ (s+1)τ

sτ

√
E [exp(4Gt)] · E

[
∥∇g(zt)−∇g(zsτ )∥4

]
dt

+
4ϵ2score
γ

S−1∑
s=0

∫ (s+1)τ

sτ

√
E [exp(4Gt)]dt

According to Corollary 20 of [39], we have

E [exp(4Gt)] ≤

√√√√E

[
exp

(
16

γ

S−1∑
s=0

∫ (s+1)τ∧t

sτ

∥∇g(zr)− sθ(zsτ )∥2 dr

)]

≤

√√√√E exp

[
32

γ
·
S−1∑
s=0

(∫ (s+1)τ∧t

sτ

∥∇g(zr)−∇g(zsτ )∥2 dr +
∫ (s+1)τ∧t

sτ

ϵ2scoredr

)]

=exp

(
16tϵ2score

γ

)
·

√√√√E exp

[
32

γ
·
S−1∑
s=0

∫ (s+1)τ∧t

sτ

∥∇g(zr)−∇g(zsτ )∥2 dr

]

≤3 ·

√√√√E exp

[
32

γ
·
S−1∑
s=0

∫ (s+1)τ∧t

sτ

∥∇g(zr)−∇g(zsτ )∥2 dr

]
,

(86)
where the last inequality can be established by requiring

ϵscore = O
(
γ1/2T−1/2

)
⇒ 16tϵ2score

γ
≤ 1

since exp(u) ≤ 1 + 2u for any u ∈ [0, 1].

With similar techniques utilized in Lemma 4.8 of [1], we know that if

γ ≍
√
3L, τ ≲

γ1/2

6L · d1/3T 1/2(logS)1/2
, and T ≳

√
3L

L
=

√
3

L
,

it holds that

E exp

[
32

γ
·
S−1∑
s=0

∫ (s+1)τ∧t

sτ

∥∇g(zr)−∇g(zsτ )∥2 dr

]
≤ exp

(
O
(
L3/2dτ2T logS

))
.

Furthermore, for
τ ≲ L−3/2d−1/2T−1/2(logS)−1/2,
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it has
sup

t∈[0,T ]

E [exp(4Gt)] ≲ 1.

Then, still with similar techniques utilized in Lemma 4.8 of [1], we have√
E
[
∥∇g(zt)−∇g(zsτ )∥4

]
≤ (3L)2

√
E
[
∥zt − zsτ∥4

]
≲ L2dτ2.

In summary, we have

EπT

[(
dπ̂T
dπT

)2
]
− 1 ≲

L2dτ2T

γ
+
ϵ2scoreT

γ
,

and the proof is completed.

Corollary D.4. Under the same assumptions and hyperparameter settings made in Lemma D.3. If
the step size τ and the score estimation error ϵscore satisfies

τ = Θ̃
( ϵ

L3/4d1/2T 1/2

)
and ϵscore = O

(
T−1/2ϵ

)
Then we have χ2(π̂T ∥πT ) ≲ ϵ2.

Proof. We can easily obtain this result by plugging the choice of τ and ϵ into Lemma D.3. Noted
that we suppose L ≥ 1 without loss of generality.

Theorem D.5 (Variant of Theorem 6 in [39]). Under Assumption [A1]–[A2], for any ϵ ∈ (0, 1), we
require Gaussian-type initialization and high-accurate score estimation, i.e.,

π̂0 = N (0, e2η − 1)⊗N (0, I) and ϵscore = Õ(ϵ).

If we set the step size and the iteration number as

τ = Θ̃

(
ϵd−1/2L−1/2 ·

(
log

[
L(d+m2

2 + ∥x0∥2)
ϵ2

])−1/2)

S = Θ̃

(
ϵ−1d1/2 ·

(
log

[
L(d+m2

2 + ∥x0∥2)
ϵ2

])1/2
)
.

the marginal distribution of output particles p̂T will satisfy KL
(
p̂T
∥∥p←(·|x0)

)
≤ O(ϵ2).

Proof. Consider the underlying distribution of the twisted coordinates (ϕ, ψ) for SDE. 85, the
decomposition of the KL using Cauchy–Schwarz:

KL
(
π̂MT

∥∥πM) = ∫ log
π̂MT
πM

dπ̂MT = KL
(
π̂MT

∥∥πMT )+ ∫ log
πMT
πM

dπ̂MT

=KL
(
π̂MT

∥∥πMT )+KL
(
πMT

∥∥πM)+ ∫ log
πMT
πM

d(π̂MT − πMT )

=KL
(
π̂MT

∥∥πMT )+KL
(
πMT

∥∥πM)+√χ2
(
π̂MT ∥πMT

)
× varπMT

(
log

πMT
πM

)
.

(87)
Using LSI of the iterations via Lemma D.1, we have

varπMT

(
log

πMT
πM

)
≤ CLSI(π

M
T ) · EπMT

[∥∥∥∥∇ log
πMT
πM

∥∥∥∥2
]
≲

1

L
· EπMT

[∥∥∥∥∇ log
πMT
πM

∥∥∥∥2
]
.

Then, we start to upper bound the relative Fisher information. Since πM = M#π
←(·|x0), then

πM(ϕ, ψ) ∝ π←(M−1(ϕ, ψ)|x0).

Therefore, we have
∇ log πM = (M−1)⊤∇ log π←(·|x0) ◦M−1,
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and similarly for ∇ log πMT . This yields the expression

EπMT

[∥∥∥∥∇ log
πMT
πM

∥∥∥∥2
]
= EπT

[∥∥∥(M−1)⊤∇ log
πT
π←

∥∥∥2] . (88)

According to the definition of M, we have

M−1(M−1)⊤ =

[
1 −γ/2

−γ/2 γ2/2

]
.

For any c0 > 0 and

M :=

[
1

12L
1√
6L

1√
6L

4

]
⊗ Id,

we have

LM− c0M−1(M−1)⊤ =

[
1/4− c0

√
3L(1/

√
2 + c0

√
2)√

3L(1/
√
2 + c0

√
2) 3L(4− c0)

]
.

The determinant is

3L ·

[(
1

4
− c0

)
· (4− c0)−

(
1√
2
+ c0

√
2

)2
]
> 0

for c0 > 0 sufficiently small, which means that

M−1(M−1)⊤ ⪯ c−10 LM.

Therefore, Eq. 88 becomes

EπMT

[∥∥∥∥∇ log
πMT
πM

∥∥∥∥2
]
≲ 3L · EπT

[∥∥∥M1/2∇ log
πT
π←

∥∥∥2] .
According to Lemma D.2, the decay of the Fisher information requires us to set

T ≳ L−1/2 · log
[
ϵ−2 ·

(
KL
(
π0
∥∥π←)+ Eπ0

(∥∥∥M1/2∇ log
π0
π←

∥∥∥2))] , (89)

which yields KL
(
πMT

∥∥πM) ≤ ϵ2. Besides, we can easily have

Eπ0

(∥∥∥M1/2∇ log
π0
π←

∥∥∥2) ≲
1

3L
· FI

(
π0
∥∥π←) = 1

3L
· Eπ0

(∥∥∥∇ log
π0
π←

∥∥∥2) .
According to the definition of LSI, we also have

KL
(
π0
∥∥π←) ≤ CLSI

2
· FI

(
π0
∥∥π←) = 1

2L
· Eπ0

(∥∥∥∇ log
π0
π←

∥∥∥2) .
Recall as well that this requires γ ≍

√
3L in SDE. 85. For the remaining KL

(
π̂MT

∥∥πMT ) and
χ2
(
π̂MT ∥πMT

)
in Eq. 87, we invoke Lemma D.3 with the value T = Sτ specified and desired

accuracy ϵ, , which consequently yields

τ = Θ̃
( ϵ

L3/4d1/2T 1/2

)
and S = Θ̃

(
T 3/2L3/4d1/2

ϵ

)
. (90)

Under this condition, we start to consider the initialization error. Suppose we have π0 = N (0, e2η −
1)⊗N (0, I), which implies

FI
(
π0
∥∥π←) ≲Eπ0

[∥∥∥∥∇f(K−k−1)η(z)−∇f(K−k−1)η(0) +∇f(K−k−1)η(0)−
e−ηx0

1− e−2η

∥∥∥∥2
]

≤3L2Eπ0 [∥z∥2] + 3
∥∥∇f(K−k−1)η(0)∥∥2 + 3e−2η

(1− e−2η)2
· ∥x0∥2

=3L2 ·
(
e2η − 1

)
+ 3

∥∥∇f(K−k−1)η(0)∥∥2 + 3e−2η

(1− e−2η)2
· ∥x0∥2
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Following the η setting, i.e.,

η =
1

2
log

2L+ 1

2L
⇔ e2η =

2L+ 1

2L
,

which yields
FI
(
π0
∥∥π←) ≲L+

∥∥∇f(K−k−1)η(0)∥∥2 + L2∥x0∥2

≲L+ L2(d+m2
2) + L2∥x0∥2

(91)

where the inequality follows from Eq. 73. Therefore, combining Eq. 91, Eq. 90 and Eq. 89, we have

T 1/2 ≳ L−1/4 ·
(
log

[
L(d+m2

2 + ∥x0∥2)
ϵ2

])1/2

≳ L1/4 ·

log

Eπ0

(∥∥∇ log π0

π←

∥∥2)
Lϵ2

1/2

,

which implies

τ = Θ̃

(
ϵd−1/2L−1/2 ·

(
log

[
L(d+m2

2 + ∥x0∥2)
ϵ2

])−1/2)

S = Θ̃

(
ϵ−1d1/2 ·

(
log

[
L(d+m2

2 + ∥x0∥2)
ϵ2

])1/2
)
.

In this condition, the score estimation error is required to be

ϵscore = O
(
γ1/2T−1/2 · ϵ

)
= Õ

(
ϵ/
√
L
)
.

Hence, the proof is completed.

Theorem D.6. Under Assumption [A1]–[A2], for Alg. 1, we choose

η =
1

2
log

2L+ 1

2L
and K = 4L · log (1 + L2)d+ ∥∇f∗(0)∥2

ϵ2

and implement Step 3 of Alg. 1 with projected Alg. 3. For the k-th run of Alg. 3, we require
Gaussian-type initialization and high-accurate score estimation, i.e.,

π̂0 = N (0, e2η − 1)⊗N (0, I) and ϵscore = Õ(ϵ).

If we set the hyperparameters as shown in Lemma D.5, it can achieve TV (p̂Kη, p∗) ≲ ϵ with an
Õ
(
L2d1/2ϵ−1

)
gradient complexity.

Proof. According to Corollary B.5, we know that under the choice

η =
1

2
ln

2L+ 1

2L
,

it requires to run Alg. 3 for K times where

K = 4L · log (1 + L2)d+ ∥∇f∗(0)∥2

ϵ2
.

For each run of Alg. 3, we require the KL divergence error to achieve

KL
(
p̂(k+1)η|kη(·|x̂)

∥∥p←(k+1)η|kη(·|x̂)
)
≤ ϵ2

4L
·

[
log

(1 + L2)d+ ∥∇f∗(0)∥2

ϵ2

]−1
.

Combining with Theorem D.5, we consider a step size

τk =Õ
(
L−1d−1/2ϵ · (log

[
L2 · (d+m2

2 + ∥x̂k∥2)
]
)−1/2

)
then the iteration number will be

Sk = Õ
(
L1/2d1/2ϵ−1 · (log

[
L2 · (d+m2

2 + ∥x̂k∥2)
]
)1/2

)
.

For an expectation perspective, we have

Ep̂kη

[
log(L2∥x̂k∥2)

]
≤ log

[
Ep̂kη

(∥x̂k∥2)
]
= Õ(L)

where the last inequality follows from Lemma B.6. This means that with the total gradient complexity

K · S = Õ
(
L2d1/2ϵ−1

)
Hence, the proof is completed.
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E Auxiliary Lemmas

Lemma E.1 (Theorem 4 in [34]). Suppose p ∝ exp(−f) defined on Rd satisfies LSI with constant
µ > 0. Along the Langevin dynamics, i.e.,

dxt = −∇f(x)dt+
√
2dBt,

where xt ∼ pt, then it has

KL
(
pt
∥∥p) ≤ exp (−2µt) ·KL

(
p0
∥∥p) .

Lemma E.2. Suppose p ∝ exp(−f) defined on Rd satisfies LSI with constant µ > 0 where f is
L-smooth, i.e.,

∥∇f(x′)−∇f(x)∥ ≤ L ∥x′ − x∥ .
If p0 is the standard Gaussian distribution defined on Rd, then we have

KL
(
p0
∥∥p) ≤ (1 + 2L2)d+ 2 ∥∇f(0)∥2

µ
.

Proof. According to the definition of LSI, we have

KL
(
p0
∥∥p) ≤ 1

2µ

∫
p0(x)

∥∥∥∥∇ log
p0(x)

p(x)

∥∥∥∥2 dx =
1

2µ

∫
p0(x) ∥−x+∇f(x)∥2 dx

≤µ−1 ·
[∫

p0(x)∥x∥2dx+

∫
p0(x)∥∇f(x)−∇f(0) +∇f(0)∥2dx

]
≤µ−1 ·

[
(1 + 2L2)

∫
p0(x)∥x∥2dx+ 2 ∥∇f(0)∥2

]
=
(1 + 2L2)d+ 2 ∥∇f(0)∥2

µ

where the third inequality follows from the L-smoothness of f∗ and the last equation establishes
since Ep0 [∥x∥2] = d is for the standard Gaussian distribution p0 in Rd.

Lemma E.3 (Variant of Lemma B.1 in [40]). Suppose f : Rd → R is a m-strongly convex function
and satisfies L-smooth. Then, we have

∇f(x) · x ≥ m ∥x∥2

2
− ∥∇f(0)∥2

2m

where x∗ is the global optimum of the function f .

Proof. According to the definition of strongly convex, the function f satisfies

f(0)− f(x) ≥ ∇f(x) · (0− x) +
m

2
· ∥x∥2 ⇔ ∇f(x) · x ≥ f(x)− f(0) +

m

2
· ∥x∥2 .

Besides, we have

f(x)− f(0) ≥ ∇f(0) · x+
m

2
· ∥x∥2 ≥ m

2
· ∥x∥2 − m

2
· ∥x∥2 − ∥∇f(0)∥2

2m
= −∥∇f(0)∥2

2m
.

Combining the above two inequalities, the proof is completed.

Lemma E.4 (Lemma A.1 in [40]). Suppose a function f satisfy

∇f(x) · x ≥ m∥x∥2

2
− ∥∇f(0)∥

2m
,

then we have

f(x) ≥ m

8
∥x∥2 + f(x∗)−

∥∇f(0)∥2

4m
.
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Lemma E.5 (Lemma 1 in [17]). Consider the Ornstein-Uhlenbeck forward process

dxt = −xtdt+
√
2dBt,

and denote the underlying distribution of the particle xt as pt. Then, the score function can be
rewritten as

∇x ln pt(x) = Ex0∼qt(·|x)
e−tx0 − x

(1− e−2t)
,

qt(x0|x) ∝ exp

(
−f∗(x0)−

∥x− e−tx0∥
2

2 (1− e−2t)

)
.

(92)

Lemma E.6 (Lemma 11 in [34]). Assume p ∝ exp(−f) and the energy function f is L-smooth.
Then

Ex∼p

[
∥∇f(x)∥2

]
≤ Ld

Lemma E.7 (Lemma 10 in [8]). Suppose that Assumption [A1]–[A2] hold. Let {xt}t∈[0,T ] denote
the forward process, i.e., Eq. 1, for all t ≥ 0,

E
[
∥x∥2

]
≤ max

{
d,m2

2

}
.

Lemma E.8. Suppose q is a distribution which satisfies LSI with constant µ, then its variance satisfies∫
q(x) ∥x− Eq̃ [x]∥2 dx ≤ d

µ
.

Proof. It is known that LSI implies Poincaré inequality with the same constant, i.e., µ, which means
if for all smooth function g : Rd → R,

varq (g(x)) ≤
1

µ
Eq

[
∥∇g(x)∥2

]
.

In this condition, we suppose b = Eq[x], and have the following equation∫
q(x) ∥x− Eq [x]∥2 dx =

∫
q(x) ∥x− b∥2 dx

=

∫ d∑
i=1

q(x) (xi − bi)
2
dx =

d∑
i=1

∫
q(x) (⟨x, ei⟩ − ⟨b, ei⟩)2 dx

=

d∑
i=1

∫
q(x) (⟨x, ei⟩ − Eq [⟨x, ei⟩])2 dx =

d∑
i=1

varq (gi(x))

where gi(x) is defined as gi(x) := ⟨x, ei⟩ and ei is a one-hot vector ( the i-th element of ei is 1
others are 0). Combining this equation and Poincaré inequality, for each i, we have

varq (gi(x)) ≤
1

µ
Eq

[
∥ei∥2

]
=

1

µ
.

Hence, the proof is completed.

Lemma E.9 (Variant of Lemma 10 in [11]). Suppose − log p∗ is m-strongly convex function, for any
distribution with density function p, we have

KL
(
p
∥∥p∗) ≤ 1

2m

∫
p(x)

∥∥∥∥∇ log
p(x)

p∗(x)

∥∥∥∥2 dx.
By choosing p(x) = g2(x)p∗(x)/Ep∗

[
g2(x)

]
for the test function g : Rd → R and Ep∗

[
g2(x)

]
<

∞, we have

Ep∗

[
g2 log g2

]
− Ep∗

[
g2
]
logEp∗

[
g2
]
≤ 2

m
Ep∗

[
∥∇g∥2

]
,

which implies p∗ satisfies 1/m-log-Sobolev inequality.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and precede the (optional) supplemental material. The checklist does NOT
count towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We have clear claim that we improve the diffusion inference by RTK
framework.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: We discussed the limitation in section 5.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used
by reviewers as grounds for rejection, a worse outcome might be that reviewers
discover limitations that aren’t acknowledged in the paper. The authors should use
their best judgment and recognize that individual actions in favor of transparency play
an important role in developing norms that preserve the integrity of the community.
Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: See Section 4 A1, A2, E1, E2, E3 for Assumptions. Proof are provided in the
Appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the
main experimental results of the paper to the extent that it affects the main claims and/or
conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: See our Appendix.

Guidelines:
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all
submissions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient
instructions to faithfully reproduce the main experimental results, as described in
supplemental material?

Answer: [Yes]

Justification: We have detailed information in the Appendix to reproduce the emprical
results.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits,
hyperparameters, how they were chosen, type of optimizer, etc.) necessary to understand
the results?
Answer: [Yes]
Justification: See the Appendix for more information.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: We just have illustrative empirical result about the trend and generated samples.
Not claims for accuracy or error from the empiral side.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars,

confidence intervals, or statistical significance tests, at least for the experiments that
support the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the
computer resources (type of compute workers, memory, time of execution) needed to
reproduce the experiments?
Answer: [Yes]
Justification: See appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
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• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Conducted
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special

consideration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: It is a theoretical paper. No societal impact is visible in a short term.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: No real data in this paper.
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Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: No real data are used.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: Only synthetic data are used with detailed instructions.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
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Answer: [NA]
Justification: NA.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main
contribution of the paper involves human subjects, then as much detail as possible
should be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: NA.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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