
Real-Time Whole-Body Control of Legged Robots
with Model-Predictive Path Integral Control

Juan Alvarez-Padilla1, John Z. Zhang2, Sofia Kwok2, John M. Dolan2, and Zachary Manchester2

This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer
be accessible.

Abstract— This paper presents a system for enabling real-
time synthesis of whole-body locomotion and manipulation
policies for real-world legged robots. Motivated by recent
advancements in robot simulation, we leverage the efficient
parallelization capabilities of the MuJoCo simulator to achieve
fast sampling over the robot state and action trajectories. Our
results show surprisingly effective real-world locomotion and
manipulation capabilities with a very simple control strategy.
We demonstrate our approach on several hardware and sim-
ulation experiments: robust locomotion over flat and uneven
terrains, climbing over a box whose height is comparable to the
robot, and pushing a box to a goal position. To our knowledge,
this is the first successful deployment of whole-body sampling-
based MPC on real-world legged robot hardware. Experiment
videos and code can be found at: whole-body-mppi.github.io

I. INTRODUCTION

Building robots that can gracefully traverse difficult ter-
rains and skillfully manipulate objects like humans and
animals has been a long-standing goal in robotics. For a long
time, the topics of robot locomotion [1] and manipulation [2]
have been studied separately. Recent interest in general-
purpose robot agents (i.e. humanoid robots) in both industry
and academia has motivated designing control and planning
algorithms capable of mastering both locomotion and ma-
nipulation skills in the same embodiment [3], [4]. Despite
this rise in interest, general methods capable of producing
whole-body behaviors in real time on real-world quadruped
and humanoid robots have so far remained elusive.

In this paper, we take advantage of the increasing per-
formance of modern-day robotics simulation technology, in
particular, the MuJoCo physics engine [5], to compute real-
time control policies on legged robots using model-predictive
path integral control (MPPI) [6], [7]. Contrary to the common
belief that sampling approaches in high-dimensional tasks are
computationally intractable, especially in real-time scenarios,
we find that MPPI can be surprisingly effective at solving
legged robot locomotion and manipulation tasks with a few
simple design choices. To the best knowledge of the authors,
this work represents the first time sample-based whole-body
control has been successfully deployed on real-world legged
robots.

There are several key design choices in our implemen-
tation: First, we reduce the size of the search space by

1Juan Alvarez-Padilla is with the Department of Electrical
and Computer Engineering, Carnegie Mellon University.
jralvare@andrew.cmu.edu

2John Z. Zhang, Sofia Kwok, John Dolan, and Zachary Manchester
are with the Robotics Institute, Carnegie Mellon University.
johnzhang@cmu.edu, sofiak@andrew.cmu.edu,
jdolan@andrew.cmu.edu, zacm@cmu.edu

Fig. 1. A Unitree Go1 robot pushing a box to a desired location with
MPPI on hardware (top row) and corresponding MuJoCo simulation states
(bottom row) on a single sequence. Contact-rich behaviors like body pushes
and leg kicks emerge in real-time without manual pre-specification or offline
policy training.

sampling over the control points of smooth splines in the
robot’s joint space and then tracking with low-level PD
controllers to produce torque commands. Second, we lever-
age performant multi-threaded robot simulation to achieve
fast real-time sampling and evaluation of simulation roll-
outs. Finally, we identify key controller parameters through
both empirical observations and a set of ablation studies
in controlled simulation environments. Our real-world and
simulation results show that a sampling-based controller
enabled by a modern physics engine can effectively reason
about whole-body contact-rich behaviors during locomotion
and manipulation that are challenging for gradient-based
MPC algorithms. Additionally, different from RL approaches
that require expensive offline training, our controller reasons
about such contact-rich behaviors online in real time.

Our specific contributions include:

1) A system for deploying sampling-based predictive con-
trollers on legged robots in real time.

2) A set of ablation studies demonstrating the importance
of algorithm hyperparameters that impact system per-
formance.

3) A collection of hardware and simulation experiments
demonstrating our system’s capabilities for solving
high-dimensional, contact-rich, whole-body control
problems in real time.

The remainder of this paper is organized as follows:
We first review related works on legged robot control and
MPPI in Section II. Next, we present our system design in
Section III. Then, we describe real-world results and ablation
studies in simulation in Section IV. Finally, we summarize
our conclusions and point to avenues for future research in
Section V.

ar
X

iv
:2

40
9.

10
46

9v
1 

 [
cs

.R
O

] 
 1

6 
Se

p 
20

24

whole-body-mppi.github.io


EKF

PD

user specified goal, cost
MoCap

MPPI

100 Hz

IMU, encoders

500 Hz

20 kHz

state

100 Hz

Unitree Go1

joint targets

500 Hz

τ encoders

position, orientation

Fig. 2. System diagram for deploying the MPPI policy on a Unitree Go1 robot. Joint target controls (u) are sampled at the evenly distributed knot points
(black dots) and represented as a cubic spline over the planning horizon. A cost from each sample is evaluated based on the user-specified goal (yellow
ball) and cost function. The first control from the control sequence with the lowest total cost (opaque orange line) is applied to the robot and repeated
in a receding-horizon fashion. The robot’s state is estimated using an EKF from motion-captured position and orientation, robot onboard IMU, and joint
encoder measurements.

II. BACKGROUND AND RELATED WORK

This section reviews related algorithms for legged robot lo-
comotion and manipulation and relevant literature on MPPI.

A. Locomotion and Manipulation for Legged Robots

Current algorithms for legged robot locomotion and ma-
nipulation generally fall into two categories: gradient-based
model-predictive control (MPC) [8]–[11] and gradient-free
reinforcement learning (RL) [12]–[15]. MPC policies lever-
age first or second-order gradient information from the
model to achieve real-time policy optimization without any
offline computation. Despite the obvious pitfalls of relying
on simplified models, MPC has been a staple for real-world
deployment of legged robots and demonstrates impressive
generalization to different robots and surprising robustness to
model mismatch, even on challenging terrains. However, due
to real-time and onboard computation requirements for these
algorithms, simplified models are often employed and only
contacts between the feet and the terrain are considered [11],
[16], preventing these model-based policies from taking
full advantage of the robot’s dynamics and leveraging full-
body contact to solve complicated locomotion or manip-
ulation tasks. Existing approaches for model-based loco-
manipulation require introducing manually designed task-
specific contact pairs to the model [17], [18], significantly
limiting generalization capabilities when facing new tasks.

On the other hand, simulation-based RL has shown im-
pressive progress in recent years thanks to improved sim-to-
real transfer via domain randomization techniques [12], [14]
and efficient parallel simulation on modern hardware [19]–
[21]. The fundamental difference between simulation-based
RL and MPC is that RL attempts to learn a neural network
policy offline through large-scale trial-and-error in simula-
tion. In this offline policy optimization regime without real-
time computation constraints, it is standard to train policies
by simulating whole-body robot dynamics and collision
geometries from all parts of the robot and its environment,

enabling discovery of non-trivial contact modes while solv-
ing complicated locomotion and manipulation tasks [22],
[23]. In the online setting, the optimized policy network can
be evaluated at real-time rates on onboard computers [14],
[15]. Compared to online MPC, one downside of this offline
policy optimization approach is the significant computation
and time required to find performant reward functions and
hyperparameters for each task.

In this paper, we aim to combine the benefits of both
online MPC and simulation-based RL by solving whole-
body motion-planning and control problems in real time by
directly sampling over whole-body dynamics and collision
models, without any offline policy optimization.

B. Model-Predictive Path Integral Control

Model-predictive path integral (MPPI) control is a
gradient-free sampling-based algorithm often applied to real-
time motion planning and control. MPPI samples N control
trajectories from a multivariate Gaussian distribution ut ∼
N (µt,Σt), where µt is the mean at time t and Σt is the
covariance matrix. Each control trajectory is then simulated
to compute a corresponding state trajectory, and a cost
function is evaluated for each state-input trajectory sample.
The control input to the system is then calculated through
the exponentially weighted average of the samples based on
their cost:

ωn =
exp

(
−Ln−Lmin

λ

)∑N
n=1 exp

(
−Ln−Lmin

λ

) , (1)

µt =

N∑
n=1

ωnut, (2)

where Ln represents the cost of the n-th trajectory, ωn

denotes the corresponding trajectory weight, and λ is the
temperature parameter that determines the controller’s sen-
sitivity to differences in trajectory cost. A lower value of



Fig. 3. Keyframes from the Unitree Go1 robot climbing up and down a box of its own height with the MPPI policy on hardware (top row) and
corresponding MuJoCo states (bottom row). The robot is tasked to reach the consecutive goals (yellow spheres) specified in the task.

Algorithm 1 MPPI Control Algorithm
Require: Initial state x0, control parameters (µ0,Σ0), num-

ber of samples N , time horizon T , temperature param-
eter λ

Ensure: Optimal control input u
1: Initialize control trajectory mean µt and covariance Σt

2: Initialize sample trajectory cost Ln = 0
3: for each sample n = 1, . . . , N do
4: for each timestep t = 0, 1, . . . do
5: Sample action sequence: ut ∼ N (µt,Σt)
6: Simulate forward for T timesteps using un

7: Compute the resulting cost and add it to Ln

8: end for
9: end for

10: Compute weights ωn for each sample using Equation 1
11: Update control trajectory mean µt using Equation 2
12: Select the control input for the system: u = µt[0]
13: Apply control input u
14: Shift control mean: µt ← shifted(µt)

λ increases the influence of the best-performing trajectory,
while a higher value distributes the weight more uniformly
across all samples [6]. Finally, the process is repeated in a re-
ceding horizon approach. MPPI is summarized in Algorithm
1.

Driven by significant advancements in parallel computa-
tion on modern GPUs and its downstream effects on mas-
sively parallel simulation, MPPI has seen growing popularity
and success in recent years [7], [24]. In off-road autonomous
driving [7], [24] domains where environment dynamics are
difficult to model analytically, MPPI naturally incorporates
learned black-box models from real-world data thanks to its
derivative-free nature, which is difficult for gradient-based
MPC. However, so far, MPPI is mainly successfully deployed
in low-dimensional control tasks (e.g., driving and drone
flight) due to the curse of dimensionality for sampling-based
algorithms.

Recent work [25] proposes a simple yet effective modifi-
cation better scale MPPI to higher-dimensional tasks (e.g.,
quadruped locomotion or dexterous manipulation): sample
over the control points of a polynomial spline and calculate
the remaining controls via spline interpolation. While this
approach yielded impressive behaviors in simulation [25],
closing the sim-to-real gap in real-world systems remains
an open problem. Alternatively, [26] deploys MPPI on a

quadruped robot by learning a sampling distribution offline
but only considers a kinodynamic robot model with foot
contacts. Our work considers the whole-body dynamics and
collision model, enabling automatic planning over contact
strategies while solving locomotion and manipulation tasks
without offline precomputation.

Rather than innovating over the MPPI algorithm itself,
our work instead focuses on the system-level considerations
and integration necessary to deploy this sampling-based
control strategy on real-world legged robots that are high-
dimensional, highly agile, and must reason about making
and breaking contact with the environment.

III. SAMPLING-BASED MPC FOR LEGGED ROBOTS

This section discusses key implementation details and
design considerations for deploying sampling-based MPC on
real-world legged robot hardware. A diagram of the overall
system is illustrated in Fig. 2.

A. MuJoCo Physics Engine

Robotics simulators are increasingly accessible and per-
formant. In particular, Drake [27] and Dojo [28] focus on
physical accuracy for algorithm verification and model-based
control but pay the price of high computation costs and
cannot generate simulation data at scale. Isaac [20] and
MuJoCo [5], [21] provide mature parallel implementations
and, as a result, have become popular choices for data-hungry
algorithms like RL. For sampling-based MPC, the simula-
tor of choice must generate large numbers of simulation
samples in parallel while providing fast enough individual
rollouts to close the real-time feedback control loop. With
this consideration in mind, we use the MuJoCo physics
engine and parallelize the rollouts on a multi-core CPU.
While Isaac and MJX [21] (MuJoCo on GPU or TPU)
are capable of simulating hundreds to thousands of parallel
rollouts compared to dozens for the CPU-based MuJoCo, the
individual rollout speeds are insufficient to close the real-
time feedback loop. In practice, we find that 30-50 parallel
rollouts in MuJoCo on a high-end CPU with strong per-
core performance (e.g. recent Intel Core-i9) are sufficient to
solve the locomotion and manipulation tasks considered in
this paper.

B. Representing Controls as a Cubic Spline

Directly sampling in the robot joint space can be chal-
lenging for MPPI, especially when planning over medium
to long horizons. Following [25], we reduce the size of



the search space by sampling over spline control points
and interpolating using a cubic spline (Fig. 2). This spline
representation also provides the added benefit of smoothing
the controls. While it is possible to use zeroth-order or linear
interpolation, we find that cubic splines perform the best
in practice and focus on this representation in this paper.
Similarly, in many applications, one can further reduce the
search space by sampling over a reduced action space. in Sec.
IV-E, we investigate the impact of sampling representation
on control performance.

C. State Estimation

We estimate the full state of the robot (global position,
attitude, joint angles, body angular velocity, and joint ve-
locities) by fusing position and attitude measurements from
a motion-capture system (100 Hz), onboard IMU (500 Hz),
and onboard joint encoders (500 Hz) with an EKF running
at 500 Hz, Fig. 2. Specifically, we take body velocity
estimation from the single-rigid body EKF [11] and fuse
it with the motion-capture measurements. Different from
standard locomotion policies [11], [15] focusing on body-
velocity estimation and tracking, precise global states are key
to correctly resetting the MuJoCo simulation. Admittedly,
a mismatched model between planning (whole-body, soft
contact) and estimation (single-rigid body, hard contact) is
not ideal and can degrade real-world performance. We find
that this mismatch can be minimized with estimator tuning
(especially the height of the robot, as it directly relates to
planned contact forces during locomotion) and plan to further
investigate estimation algorithms using MuJoCo dynamics in
the future.

IV. EXPERIMENTS AND RESULTS

In this section, we present results demonstrating the ca-
pabilities of our sampling-based MPC implementation on a
variety of tasks and describe the implementation details of
the hardware system. In particular, we highlight the ability of
our system to generate emergent whole-body contacts in real
time while solving challenging locomotion and manipulation
tasks without any contact pre-specification or offline policy
optimization. Experiment videos and code can be found on
our project website:

whole-body-mppi.github.io

A. Hardware Implementation

We run MPPI on a workstation computer equipped with
an Intel i9-12900KS CPU and 64 GB of memory. This
workstation is connected to the robot via Ethernet and
communicates using ROS. All hardware experiments are
run on a Unitree Go1 quadruped robot. Across all hard
experiments, we update the MPPI policy at 100 Hz, discretize
the dynamics at 0.01 s, plan over a 0.4 s horizon (T = 40
timesteps), and roll out 30 samples. For contact simulation
in MuJoCo, we use the default parameters for the contact
model and rely on the linearized friction cone for speed. We
refer the interested reader to our website for a full list of
hyperparameters for each task. We publish joint targets from

Fig. 4. Go1 robot walking in a clockwise hexagon trajectory under small
to moderate model mismatch and external disturbance. More transparent
robots represent earlier keyframes.

MPPI to the robot that are tracked using the Go1’s onboard
low-level PD controller at 20 kHz.

B. Walking on Flat Terrain

We first verify our implementation on a flat terrain loco-
motion task. The walking task cost function tracks a state
and control reference:

Lwalk =

T∑
t=0

[
(xref − xt)

TQ(xref − xt)+

(uref(t)− ut)
TR(uref(t)− ut)

]
, (3)

where xt and ut are the state and control of the robot at
index t, respectively. xref includes the desired robot position
and attitude. uref(t) represents the joint targets of a walking
gait based on the Raibert heuristic [29]. Although we observe
various locomotion gaits emerge by setting a time-invariant
uref to the standing pose and a goal position for the robot,
we find the walking policy is significantly more robust when
tracking a gait reference. Finally, Q and R are diagonal
weight matrices on states and controls.

We successfully deploy the MPPI walking policy by
trotting in place and walking to various user-specified way-
points (Fig. 4). Our policy is robust to moderate external
disturbances and unmodeled terrain mismatch.

C. Locomotion Over Challenging Terrains

In more challenging locomotion scenarios, we model the
terrain geometry in MuJoCo and set waypoints for the
robot to track. We successfully deploy the MPPI policy on
hardware to climb up a box of up to 0.24 m tall — roughly
the height of the robot when standing (Fig. 3). Although we
use the same trotting gait reference as when walking on flat
ground, we observe the robot leverage unplanned motions
such as jumps and contacts with the body to traverse the tall
obstacle.

D. Box Pushing

Next, we showcase the whole-body contact planning ca-
pabilities of our MPPI policy to push a 3.5 kg box of size
0.36m×0.36m×0.36m, Fig. 1. In addition to the locomotion
cost on the robot, we add an ℓ1-norm cost for the position

whole-body-mppi.github.io
whole-body-mppi.github.io


Fig. 5. Top-down view of real-world box trajectories (magenta and grey
lines) from 10 trials of the Go1 robot pushing the box (black square) into the
goal area (dashed circle) that is placed in front (left) and front-right (right)
of the original box position. More transparent boxes represent earlier in the
trajectory. Magenta lines represent runs where the box successfully reaches
the target area while the grey lines indicate otherwise.

of the box: Lbox = Qbox∥x̄box − xbox∥1, where x̄box and xbox
are the target and current positions of the box. The total cost
function for this task is:

Lbox push = Lwalk + Lbox (4)

Note that while the box orientation feedback is important for
planning, we do not penalize the orientation for this task.
As a simple heuristic to encourage robot-box interaction, we
place the goal for the robot at the center of the box but do
not specify when or how the robot should interact with the
object in any way.

We set the box 1m in front of the quadruped and ask the
robot to manipulate the box to two different goal locations:
1) directly 1m forward and 2) 1m forward and 0.75m to
the right from the original box position, Fig. 1. We define
a trial as a success and stop the run if the position of the
box is within 0.3m from the goal at any time. In the first
scenario, we complete the task 9 out of 10 times. In the
second, more challenging, scenario, we complete the task 6
out of 10 times. In this scenario, the robot must horizontally
manipulate the box, requiring more sophisticated interactions
between the robot body, leading to a larger sim-to-real gap.
Box trajectories can be found in Fig. 5. Experiment videos
can be found on our website and in the supplementary video.

Interestingly, from online sampling in the robot action
space, we observe emergent contact interactions between the
robot and the box, such as body or shoulder pushes and leg
kicks to move the box to the goal position.

E. Ablation Studies

We investigate the effects of key MPPI hyperparameters on
overall task performance in a controlled simulation setting.
Note that it is nearly impossible to discuss a single hyper-
parameter’s impact on overall system performance without
the task or other parameters. Our goal is to provide an
intuitive understanding of the tradeoffs when making de-
sign decisions. For all experiments, we fix the remaining
hyperparameter to the default values presented above. In
controlled MuJoCo and Gazebo simulation environments, we

Direct Zeroth-Order Linear Cubic

0

10

20

30

40

50

C
os

t

Trotting
Box Climb

×106

Fig. 6. Policy rollout costs (lower is better) with different sampling
representation for MPPI on trotting forward (blue) and box-climb (purple)
tasks in MuJoCo. Directly sampling controls over the prediction horizon
(Direct) performs significantly worse than sampling spline control points
and interpolating. Cubic interpolation (ours) outperforms zeroth-order and
linear interpolation in both tasks.

slow down simulation to match the policy update frequency
to avoid real-time computation-related issues.

1) Sampling representation: We first look into the choice
of sampling representation in MPPI on two tasks: walking
forward and climbing up a box in MuJoCo (Fig. 6). Un-
surprisingly, directly sampling robot joint targets over the
entire prediction horizon is unable to sufficiently explore
the optimization landscape given fixed samples compared to
compressed sampling representations. Among interpolation
schemes, higher-order polynomials generally produce better
results, especially on a challenging task like climbing up a
box. Given that we choose to sample four points along each
trajectory, a cubic polynomial is the highest order possible.
We leave higher-order interpolation in the presence of added
knot points for future work.

The remaining ablations are performed on the walking task
alone in both MuJoCo and sim-to-sim transfer to Gazebo:

2) Control frequency: Similar to other MPC algorithms,
the controller update frequency is critical for deploying MPPI
on legged robots. While the conventional wisdom of “faster is
better” still applies in this context, we find that performance
plateaus after ∼ 100 Hz in Gazebo and ∼ 150 Hz in MuJoCo
(Fig. 7). We believe this is due to our choice of sampling
over joint targets and relying on low-level PD controllers at
much higher frequencies to compute torques. In practice, we
find ∼ 100 Hz to be sufficient on hardware.

3) Temperature: Temperature λ is a key parameter in
the MPPI algorithm. Lower λ means added weight on the
best-performing predicted rollout during the exploration, and
higher λ means otherwise. Similar to our experience on
hardware, we find in our ablation that λ =∼ 0.1 produces
the best behaviors, Fig. 7.

4) Prediction horizon: Planning or prediction horizon
plays a key role in MPC policies, especially in the absence

whole-body-mppi.github.io


100 200

1

1.5

·106

Control Frequency (Hz)

C
os

t
MuJoCo
Gazebo

0 0.1 0.2 0.3

·106

Temperature λ

20 40 60 80 100

·106

Prediction Horizon (timesteps)
20 40 60 80 100

·106

Number of samples

Fig. 7. Sim-to-sim policy rollout costs while varying key MPPI hyperparameters in both MuJoCo (blue) and Gazebo (red) simulation environments. The
means and standard deviations are computed from 10 different random seeds for each setting. Black dotted lines denote the default parameters we deploy
on hardware.

of a good estimate of the cost-to-go. For standard MPC
algorithms, longer prediction horizons are generally preferred
as they often replace the need for an accurate cost-to-
go estimate. Surprisingly, we find that the MPPI policy
performs best with a 40 − 50 timestep horizon (Fig 7). We
hypothesize that the fixed number of samples prevents our
MPPI policy from sufficiently exploring the longer-horizon
planning problem, leading to poor performance.

5) Number samples: Generally, more samples are pre-
ferred in sampling-based optimization algorithms, usually
at the expense of more computation. To our surprise, the
cost plateaus at ∼ 40 samples for the quadruped walking
task, even if more time is allowed to compute the policy
in simulation. Our practical experience with the real robot
also indicates that limited computing is much better spent
on achieving a ∼ 100 Hz policy than additional sample
evaluations during agile locomotion.

Offline Whole-Body Gradient-Free
Training Contact

MPC No No No
RL Yes Yes Yes
MPPI (ours) No Yes Yes

TABLE I
COMPARISON OF FEATURES ACROSS MPC [8]–[11], [17], [18],

RL [12]–[15], [19], [22], [23], AND MPPI

F. Comparisons to RL and MPC

We qualitatively compare our MPPI policy against current
MPC and RL algorithms for legged robots in Table I. MPC
policies generally do not require offline policy training as
they leverage model gradients for real-time policy optimiza-
tion. However, it is computationally intractable to include
legged robot whole-body dynamics and collision models
during real-time MPC policy evaluation. Simulation-based
RL offers a gradient-free alternative that optimizes a neural
network policy offline by collecting data using full-body
dynamics and contact information in simulation. The MPPI
policy (ours) is, so far, the only class of policy that can
achieve policy optimization with whole-body dynamics and
contact models without any offline training and can be fast
enough to run directly in real time on legged robot hardware.

V. CONCLUSIONS AND FUTURE WORK

We present the first deployment of whole-body sampling-
based MPC on real-world legged robots. By leveraging a per-
formant and easily parallelizable modern robotics simulation
engine, we can generate real-time contact-rich, whole-body
motion plans that were previously only possible through
manual pre-specification or offline policy training.

A. Limitations

Sampling-based MPC, and MPC in general, are fun-
damentally myopic, which means they can not see and
therefore reason about interactions beyond the prediction
horizon. Complementing sampling-based MPC with a global
planner can enable solution of complicated long-horizon
tasks. Additionally, these methods can only plan for what the
simulator can simulate. Many important physical properties
such as fluids [30], soft materials [31], or complicated
contact and friction interactions [32] between objects cannot
be accurately or efficiently simulated by common robotics
physics engines.

B. Future Work

Several important future research directions remain: First,
we believe closing the sim-to-real and real-to-sim loop by
estimating contact and friction parameters online can sig-
nificantly improve real-world policy performance. Second,
improving upon our baseline MPPI controller by sampling
from more sophisticated distributions or over different model
parameters can enable better performance in real-world set-
tings. Finally, we plan to integrate the robot hardware system
with the MJPC interactive software [25]. This can empower
users to change task parameters and cost terms and observe
changes to robot behavior in real time, enabling much more
efficient and intuitive task design and cost tuning for model-
based controllers.

ACKNOWLEDGMENTS

The authors thank Taylor Howell for assistance with
MuJoCo and Mitchell Fogelson, Swaminathan Gurumurthy,
and Jon Arrizabalaga for valuable feedback and discussions
on experiment design.



REFERENCES

[1] A. Ruina, S. Collins, R. Tedrake, and M. Wisse, “Efficient bipedal
robots based on passive-dynamic walkers,” Science, vol. 307, no. 5712,
pp. 1082–1085, 2005.

[2] M. T. Mason and J. K. Salisbury, Robot Hands and the Mechanics of
Manipulation. Cambridge, MA: MIT Press, May 1985.

[3] T. He, Z. Luo, X. He, W. Xiao, C. Zhang, W. Zhang, K. Kitani,
C. Liu, and G. Shi, “Omnih2o: Universal and dexterous human-
to-humanoid whole-body teleoperation and learning,” arXiv preprint
arXiv:2406.08858, 2024.

[4] NVIDIA, “Foundation model set to supercharge nvidia
isaac robotics platform,” https://nvidianews.nvidia.com/news/
foundation-model-isaac-robotics-platform, 2024, accessed: 2024-09-
12.

[5] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for
model-based control,” in 2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems. IEEE, 2012, pp. 5026–5033.

[6] G. Williams, A. Aldrich, and E. A. Theodorou, “Model predictive
path integral control: From theory to parallel computation,” Journal
of Guidance, Control, and Dynamics, vol. 40, no. 2, pp. 344–357,
2017.

[7] G. Williams, N. Wagener, B. Goldfain, P. Drews, J. M. Rehg, B. Boots,
and E. A. Theodorou, “Information theoretic mpc for model-based
reinforcement learning,” in 2017 IEEE International Conference on
Robotics and Automation (ICRA), 2017, pp. 1714–1721.

[8] A. L. Bishop, J. Z. Zhang, S. Gurumurthy, K. Tracy, and Z. Manch-
ester, “Relu-qp: A gpu-accelerated quadratic programming solver for
model-predictive control,” in 2024 IEEE International Conference on
Robotics and Automation (ICRA), 2024, pp. 13 285–13 292.

[9] S. Le Cleac’h, T. A. Howell, S. Yang, C.-Y. Lee, J. Zhang, A. Bishop,
M. Schwager, and Z. Manchester, “Fast contact-implicit model predic-
tive control,” IEEE Transactions on Robotics, vol. 40, pp. 1617–1629,
2024.

[10] S. Kuindersma, F. Permenter, M. Fallon, A. Valenzuela, H. Dai,
R. Deits, T. Koolen, P. Marion, and R. Tedrake, “Optimization-based
locomotion planning, estimation, and control design for the atlas
humanoid robot,” in Autonomous Robots, vol. 40, no. 3. Springer,
2016, pp. 429–455.

[11] G. Bledt, M. J. Powell, B. Katz, J. Di Carlo, P. M. Wensing, and
S. Kim, “Mit cheetah 3: Design and control of a robust, dynamic
quadruped robot,” in 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2018, pp. 2245–2252.

[12] J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter,
“Learning quadrupedal locomotion over challenging terrain,” Science
Robotics, vol. 5, no. 47, 2020.

[13] J. Hwangbo, J. Lee, A. Dosovitskiy, D. C. Bellicoso, V. Tsounis,
V. Koltun, and M. Hutter, “Learning agile and dynamic motor skills
for legged robots,” in Science Robotics, vol. 4, no. 26, 2019.

[14] X. Cheng, K. Shi, A. Agarwal, and D. Pathak, “Extreme parkour with
legged robots,” in 2024 IEEE International Conference on Robotics
and Automation (ICRA), 2024, pp. 11 443–11 450.

[15] G. B. Margolis and P. Agrawal, “Walk these ways: Tuning
robot control for generalization with multiplicity of behavior,”
in Proceedings of The 6th Conference on Robot Learning, ser.
Proceedings of Machine Learning Research, K. Liu, D. Kulic, and
J. Ichnowski, Eds., vol. 205. PMLR, 14–18 Dec 2023, pp. 22–31.
[Online]. Available: https://proceedings.mlr.press/v205/margolis23a.
html

[16] J. Z. Zhang, S. Yang, G. Yang, A. L. Bishop, S. Gurumurthy, D. Ra-
manan, and Z. Manchester, “Slomo: A general system for legged robot
motion imitation from casual videos,” IEEE Robotics and Automation
Letters, vol. 8, no. 11, pp. 7154–7161, 2023.

[17] A. Rigo, Y. Chen, S. K. Gupta, and Q. Nguyen, “Contact optimization
for non-prehensile loco-manipulation via hierarchical model predictive
control,” in 2023 IEEE International Conference on Robotics and
Automation (ICRA), 2023, pp. 9945–9951.

[18] F. De Vincenti and S. Coros, “Centralized model predictive control for
collaborative loco-manipulation,” in Proceedings of Robotics: Science
and Systems (RSS), Daegu, Republic of Korea, July 10–14 2023.

[19] N. Rudin, D. Hoeller, P. Reist, and M. Hutter, “Learning to walk
in minutes using massively parallel deep reinforcement learning,”
in Proceedings of the 5th Conference on Robot Learning, ser.
Proceedings of Machine Learning Research, A. Faust, D. Hsu, and
G. Neumann, Eds., vol. 164. PMLR, 08–11 Nov 2022, pp. 91–100.
[Online]. Available: https://proceedings.mlr.press/v164/rudin22a.html

[20] V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey, M. Mack-
lin, D. Hoeller, N. Rudin, A. Allshire, A. Handa, and G. State,
“Isaac gym: High performance gpu-based physics simulation for robot
learning,” 2021.

[21] DeepMind, “Mujoco mjx documentation,” https://mujoco.readthedocs.
io/en/stable/mjx.html, 2023, accessed: 2024-09-12.

[22] D. Hoeller, N. Rudin, D. Sako, and M. Hutter, “Anymal parkour:
Learning agile navigation for quadrupedal robots,” Science Robotics,
vol. 9, no. 88, p. eadi7566, 2024.

[23] Y. Ji, G. B. Margolis, and P. Agrawal, “Dribblebot: Dynamic legged
manipulation in the wild,” in 2023 IEEE International Conference on
Robotics and Automation (ICRA), 2023, pp. 5155–5162.

[24] G. Williams, P. Drews, B. Goldfain, J. M. Rehg, and E. A. Theodorou,
“Aggressive driving with model predictive path integral control,” in
2016 IEEE International Conference on Robotics and Automation
(ICRA), 2016, pp. 1433–1440.

[25] T. Howell, N. Gileadi, S. Tunyasuvunakool, K. Zakka, T. Erez, and
Y. Tassa, “Predictive Sampling: Real-time Behaviour Synthesis with
MuJoCo,” arXiv preprint arXiv:2212.00541, 2022.

[26] J. Carius, R. Ranftl, F. Farshidian, and M. Hutter, “Constrained
stochastic optimal control with learned importance sampling: A path
integral approach,” The International Journal of Robotics Research,
vol. 41, no. 2, pp. 189–209, 2022.

[27] R. Tedrake and the Drake Development Team, “Drake: Model-based
design and verification for robotics,” 2019. [Online]. Available:
https://drake.mit.edu

[28] T. Howell, S. Le Cleac’h, J. Bruedigam, Z. Kolter, M. Schwager,
and Z. Manchester, “Dojo: A differentiable physics engine for
robotics,” arXiv preprint arXiv:2203.00806, 2022. [Online]. Available:
https://arxiv.org/abs/2203.00806

[29] M. H. Raibert and H. B. Brown, “Dynamically stable legged locomo-
tion,” 1983.

[30] J. H. Lee, M. Y. Michelis, R. Katzschmann, and Z. Manchester,
“Aquarium: A fully differentiable fluid-structure interaction solver
for robotics applications,” in 2023 IEEE International Conference on
Robotics and Automation (ICRA), 2023, pp. 11 272–11 279.

[31] M. Li, Z. Ferguson, T. Schneider, T. Langlois, D. Zorin, D. Panozzo,
C. Jiang, and D. M. Kaufman, “Incremental potential contact:
Intersection- and inversion-free, large-deformation dynamics,” ACM
Transactions on Graphics (TOG), vol. 39, no. 4, 2020.

[32] R. Elandt, E. Drumwright, M. Sherman, and A. Ruina, “A pressure
field model for fast, robust approximation of net contact force and
moment between nominally rigid objects,” in 2019 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS), 2019,
pp. 8238–8245.

https://nvidianews.nvidia.com/news/foundation-model-isaac-robotics-platform
https://nvidianews.nvidia.com/news/foundation-model-isaac-robotics-platform
https://proceedings.mlr.press/v205/margolis23a.html
https://proceedings.mlr.press/v205/margolis23a.html
https://proceedings.mlr.press/v164/rudin22a.html
https://mujoco.readthedocs.io/en/stable/mjx.html
https://mujoco.readthedocs.io/en/stable/mjx.html
https://drake.mit.edu
https://arxiv.org/abs/2203.00806

	Introduction
	Background and Related Work
	Locomotion and Manipulation for Legged Robots
	Model-Predictive Path Integral Control

	Sampling-based MPC for Legged Robots
	MuJoCo Physics Engine
	Representing Controls as a Cubic Spline
	State Estimation

	Experiments and Results
	Hardware Implementation
	Walking on Flat Terrain
	Locomotion Over Challenging Terrains
	Box Pushing
	Ablation Studies
	Sampling representation
	Control frequency
	Temperature
	Prediction horizon
	Number samples

	Comparisons to RL and MPC

	Conclusions and Future Work
	Limitations
	Future Work

	References

