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Abstract
We present OxonFair, a new open source toolkit
for enforcing fairness in binary classification.
Compared to existing toolkits: (i) We support
NLP and Computer Vision classification as well
as standard tabular problems. (ii) We support en-
forcing fairness on validation data, making us ro-
bust to a wide range of overfitting challenges. (iii)
Our approach can optimize any measure based on
True Positives, False Positive, False Negatives,
and True Negatives. This makes it easily ex-
tendable and much more expressive than existing
toolkits. It supports 9/9 and 10/10 of the decision-
based group metrics of two popular review papers.
(iv) We jointly optimize a performance objective.
This not only minimizes degradation while en-
forcing fairness, but can improve over the per-
formance of inadequately tuned unfair baselines.
OxonFair is compatible with standard ML toolk-
its including sklearn, Autogluon, and PyTorch
and is available at https://github.com/
oxfordinternetinstitute/oxonfair.

1. Introduction
The deployment of machine learning systems that make de-
cisions about people offers an opportunity to create systems
that work for everyone. However, such systems can lock
in existing prejudices. Limited data for underrepresented
groups can result in ML systems that do not work for them,
while the use of training labels based on historical data can
result in ML systems copying previous biases. As such, it
is unsurprising that AI systems have repeatedly exhibited
unwanted biases towards certain demographic groups in
a wide range of domains including medicine (Wen et al.,
2022; Obermeyer et al., 2019), finance (Hardt et al., 2016;
Martinez & Kirchner, 2021), and policing (Angwin et al.,
2022). Such groups are typically identified with respect
to legally protected attributes, such as ethnicity or gender
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(Barocas et al., 2023; Berk et al., 2021; Hardt et al., 2016).
The field of algorithmic fairness has sprung up in response
to these biases.

Contributions to algorithmic fairness can broadly be split
into methodological and policy-based approaches. While
much methodological work focuses on measuring and en-
forcing (un)fairness, a common criticism from the policy
side is that this work can occur ‘in isolation from policy
and civil societal contexts and lacks serious engagement
with philosophical, political, legal and economic theories of
equality and distributive justice’ (Mittelstadt et al., 2023).

In response to these criticisms, we have developed Oxon-
Fair, a more expressive toolkit for algorithmic fairness. We
acknowledge that people designing algorithms are not al-
ways the right people to decide on policy, and as such we
have chosen to create as flexible a toolkit as possible to
allow policymakers and data scientists with domain knowl-
edge to identify relevant harms and directly alter the sys-
tem behaviour to address them. Unlike existing Fairness
toolkits such as AIF360 (Bellamy et al., 2018), which take a
method-driven approach, and provide access to a wide-range
of methods but with limited control over their behaviour,
we take a measure-based approach and provide one fairness
method that is extremely customizable, and can optimize
user-provided objectives and group fairness constraints.

To do this, we focus on one of the oldest and simplest ap-
proaches to group fairness: per-group thresholding (Kami-
ran et al., 2013; Feldman et al., 2015; Hardt et al., 2016),
which is known to be optimal for certain metrics under a
range of assumptions (Hardt et al., 2016; Corbett-Davies
et al., 2017; Lipton et al., 2018). Our contribution is to make
this as expressive as possible while retaining speed, for the
relatively low number of groups common in algorithmic
fairness. Inherently, any approach that allows a sufficiently
wide set of objectives, and sets per-group thresholds will
be exponential with respect to the number of groups, but
we use a standard trick, widely used in the computation of
measures such as MAP to make this search as efficient as
possible. Accepting the exponential complexity allows us to
solve a much wider-range of objectives than other toolkits,
including maximizing F1 or balanced accuracy, minimizing
difference in precision (Chouldechova, 2017), and guaran-
teeing that the recall is above k% for every group (Mittel-
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stadt et al., 2023). Where groups are unavailable at test time,
we simply use a secondary classifier to estimate group mem-
berships (Menon & Williamson, 2018; Oneto et al., 2019)
and set different thresholds per inferred group to enforce
fairness with respect to the true groups.

Thresholding can be applied to most pretrained ML algo-
rithms, and optimal thresholds can be selected using held-
out validation data unused in training. This is vital for tasks
involving deep networks such as NLP and computer vision,
where the training error often goes to zero, and fairness
methods that balance error rates between groups can not
generalize from constraints enforced on overfitting training
data to previously unseen test data (Zietlow et al., 2022).
While overfitting is unavoidable in vision and NLP tasks, it
is still a concern on tabular data. Section 7 Top-Right, shows
examples of decision trees, random forests (Pedregosa et al.,
2011) and XGBoost (Chen & Guestrin, 2016) trained with
default parameters and obtaining 0 training error on stan-
dard datasets. This causes the Fairlearn reduction method
(Weerts et al., 2023) to fail in enforcing fairness. NLP and
vision are sufficiently challenging that two popular toolkits
Fairlearn and AIF360 do not attempt to work with them. In
contrast, we make use of a recent work (Lohaus et al., 2022)
that showed how a fairness method based on inferred group
thresholds can be compressed into a single-headed network.

2. Related Work
Bias mitigation strategies for classification have been
broadly categorized into three categories (Barocas et al.,
2023; Friedler et al., 2019; Balayn et al., 2021); pre-
processing, in-processing and post-processing (See Ap-
pendix H for further details). Enforcing fairness on vali-
dation data avoids problems caused by the misestimation
of error rates due to overfitting. It has shown particular
promise in computer vision through Neural Architecture
Search (Dutt et al., 2024), adjusting decision boundaries
(Lohaus et al., 2022), reweighting (Wang et al., 2024) and
data augmentation (Zietlow et al., 2022).

2.1. Fairness Toolkits

Most toolkits such as Fairness Measures (Zehlike et al.,
2017), and TensorFlow Fairness Indicators (Xu et al., 2020)
focus on measuring bias and do not support enforcing fair-
ness through bias mitigation. FairML (Adebayo et al., 2016)
and FairTest (Tramer et al., 2017) investigate the associ-
ations between application outcomes (e.g., insurance pre-
miums) and sensitive attributes such as age to highlight
and debug bias. Aequitas (Saleiro et al., 2018) provides
examples of when different measures are (in)appropriate
with support for some bias mitigation methods in binary
classification. Themis-ML (Bantilan, 2018) supports the
deployment of several simple bias mitigation methods such

as relabelling (Kamiran & Calders, 2012), but focuses on
linear models. Friedler et al. (2019) introduce the more
complete Fairness Comparison toolkit where four bias miti-
gation strategies are compared across five tabular datasets
and multiple models (Decision trees, Naı̈ve Bayes, SVM,
and Logistic Regression).

There are two fairness toolkits that support sklearn like
OxonFair. These are the two most popular toolkits: Mi-
crosoft Fairlearn (Weerts et al., 2023) (1.7k GitHub Stargaz-
ers as of May 2024) and IBM AIF360 (Bellamy et al.,
2018) (2.3k Stargazers). AIF360 offers a diverse selec-
tion of bias measures and pre-processing, in-processing and
post-processing bias mitigation strategies on binary classifi-
cation tabular datasets. For mitigation, Fairlearn primarily
offers implementations of (Agarwal et al., 2018; Hardt et al.,
2016) avoiding the use of the term bias, instead considering
fairness through the lens of fairness-related harms (Craw-
ford, 2017) where the goal is to “help practitioners assess
fairness-related harms, review the impacts of different miti-
gation strategies and make trade-offs appropriate to their
scenario”. Lee & Singh (2021) recognized Fairlearn as
one of the most user-friendly fairness toolkits, and critiqued
AIF360 as being the least user-friendly toolkit.

Both AIF360 and Fairlearn contain post-processing methods
that select per-group thresholds. Unlike OxonFair, neither
method uses the fast optimization we propose; both meth-
ods require group information at test time; AIF360 only
supports two groups, but does use cross-validation to avoid
overfitting; Fairlearn does not support the use of validation
data, but does support more than two groups. According to
their documentation, neither toolkit can be applied to NLP
or computer vision.

3. Toolkit interface
The interface of OxonFair decomposes into three parts: (i)
evaluation of fairness and performance for generic classifier
outputs. (ii) evaluating and enforcing fairness for particular
classifiers. (iii) specialist code for evaluating and enforcing
fairness for deep networks.

Code for the evaluation of classifier outputs takes target
labels, classifier outputs, groups, and an optional condi-
tioning factor as input; while code for the evaluation and
enforcement of fairness of a particular classifier, are initial-
ized using the classifier, and from then on take datasets (in
the form of a pandas dataframe (pandas development team,
2020), or a dictionary) as input, and automatically extracts
these factors from them.

The evaluation code provide three functions: evaluate
which reports overall performance of the classifier;
evaluate per group which reports performance per
group of the classifier; and evaluate fairness which
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reports standard fairness metrics. All methods allow the
user to specify which metrics should be reported. We rec-
ommend data scientists focus on evaluate per group
which shows direct harms such as poor accuracy, precision,
or low selection rate for particular groups.

The interface FairPredictor(classifier,
validation data, groups) takes an existing
classifier as an input, a validation dataset, and specification
of the groups as an input and returns an object which we
then enforce fairness on by calling .fit(objective,
constraint, value). Internally, the method explores
a wide range of possible thresholds for each group,
membership of which is assumed to be either known or
inferred by an auxiliary classifier.

The resulting FairPredictor has evaluation methods
as described above. When called without arguments,
they report both the performance of the original and the
updated fair classifier on the validation data. In addi-
tion, FairPredictor provides methods predict and
predict proba which make fair predictions and return
scores corresponding to the left-hand side of Equation (1).

Calling fit optimizes the objective – typically a relevant
performance criteria such as accuracy, subject to the require-
ment that the constraint is either greater or less than the
value. If the objective should be minimized or maximized
is inferred automatically, as is the requirement that the con-
straint is less than or greater than the value, but this default
behavior can be user overridden.

This is a relatively minimal interface, but one that is surpris-
ingly expressive. By explicitly optimizing an objective, we
can not just minimize the degradation of the metric as we
enforce fairness, but sometimes also improve performance
over the unfair baseline that is not fully optimized with re-
spect to this metric. Even when optimizing for accuracy,
this can create situations where it looks like some improve-
ments in fairness can be had for free, although generally
this is an artifact of the gap between optimizing log-loss and
true accuracy in training. By formulating the problem as a
generic constrained optimization, and not requiring the con-
straint to be a typical fairness constraint, we leave it open
for enforcing a much broader space of possible objectives.
This can be seen in Section 4.3, where we show how to
enforce minimax fairness (Martinez et al., 2020), maximize
utility (Bakalar et al., 2021) combined with global recall
constraints, and demonstrate levelling-up (Mittelstadt et al.,
2023) by specifying minimum acceptable harm thresholds.
Under the hood, a call to fit generates a Pareto frontier1

and selects the solution that best optimizes the objective
while satisfying the constraint. The frontier can be visual-

1A maximal set of solutions such that for every element in the
set, any solution with a better score w.r.t the objective would have
a worse score with respect to the constraint, and vice versa.

ized with plot frontier.

4. Inference
To make decisions, we assign thresholds to groups.We write
f(x) for the response of a classifier f , on datapoint x, t for
the vector corresponding to the ordered set of thresholds,
and G(x) for the one-hot encoding of group membership.
We make a positive decision if

f(x)− t ·G(x) ≥ 0 (1)

To optimize arbitrary measures we perform a grid search
over the choices of threshold, t.

Efficient grid sampling: We make use of a common trick
for efficiently computing measures such as precision and
recall for a range of thresholds. This trick is widely used
without discussion for efficient computation of the area
under ROC curves, and we have had trouble tracking down
an original reference for it. As one example, it is used by
scikit-learn (Pedregosa et al., 2011). First the datapoints are
sorted by classifier response, then a cumulative sum of the
number of positive datapoints and the number of negatives,
going from greatest response to least is generated. When
picking a threshold between points i and i+1, TP is given by
the cumulative sum of positives in the decreasing direction
up to and including i; FN is the sum of negatives in the same
direction; FP is the total sum of positives minus TP, and TN
is the total sum of negatives minus TN.

We perform this trick per group, and efficiently extract the
TP, FN, FP and TN for different thresholds. These are com-
binatorially combined across the groups and the measures
computed. This two stage decoupling offers a substantial
speed-up. If we write T for the number of thresholds, k for
the number of groups, and n for the total number of data-
points, our procedure is upper-bounded by O(T k+n log n),
while the naı̈ve approach is O(nT k). No other fairness
method makes use of this, and in particular, all the threshold-
based methods offered by AIF360 make use of a naı̈ve grid
search. From the grid sampling, we extract a Pareto frontier
with respect to the two measures. The thresholds that best
optimize the objective while satisfying the constraint are
returned as a solution. If no such threshold exists, we return
the thresholds closest to satisfying the constraint.

4.1. Inferred characteristics

When using inferred characteristics, we offer two pathways
for handling estimated group membership. The first path-
way we consider makes a hard assignment of individuals
to groups, based on a classifier response. The second path-
way explicitly uses the classifier confidence as part of a
per-datapoint threshold. In practice, we find little difference
between the two approaches, but the hard assignment to
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groups is substantially more efficient and therefore allows
for a finer grid search and generally better performance.
However, the soft assignment remains useful for the in-
tegration of our method with neural networks, where we
explicitly merge two heads (a classifier and a group predic-
tor) of a neural network to arrive at a single fair model. For
details of the two pathways see Appendix A.

4.2. Fairness for Deep Networks

We use the method proposed in (Lohaus et al., 2022). Con-
sider a network with two heads f , and g, comprised of single
linear layers, and trained to optimize two tasks on a com-
mon backbone B. Here f is a standard classifier trained to
maximize some notion of performance such as log-loss and
g is another classifier trained to minimize the squared loss2

with respect to a one hot-encoding of group membership.
Any decision f(x) − t · g(x) ≥ 0 can now be optimized
for given criteria by tuning weights w using the process
outlined in the slow pathway. As both f and g are linear
layers on top of a common backbone, we can write them as:

f(x) = wf ·B(x) + bf , g(x) = wg ·B(x) + bg (2)

note that as f(x) is a real number, and g(x) is a vector
wf is a vector and bf a real number, while wg is a matrix
and bg a vector. This means that the decision function
f(x)− t · g(x) ≥ 0 can be rewritten using the identity:

f(x)− t · g(x) = wf ·B(x) + bf − t · wg ·B(x)− t · bg
= (wf − t · wg) ·B(x) + (bf − t · bg)

(3)

This gives a 3 stage process for enforcing any of these
decision/fairness criteria for deep networks.

1. Train a multitask neural network as described above.

2. Compute the optimal thresholds t on held-out valida-
tion data as described in Appendix A.

3. Replace the multitask head with a neuron with weights
(wf − t · wg) and bias (bf − t · bg).

OxonFair has a distinct interface for deep learning. Training
and evaluating NLP and vision frequently involves com-
plex pipelines. To maximize applicability, we assume that
the user has trained a two-headed network as described
above, and evaluated on a validation set. Our constructor
DeepFairPredictor requires: the output of the two-
headed network over the validation set; the ground-truth

2The squared loss is used rather than log-loss so that the output
of g(x) remains close to 0 and 1. With log-loss, the output pre-
sigmoid is more likely to overwhelm confident decisions made by
the original classifier.

labels; and the groups as inputs. fit and the evaluation
functionality can then be called in the same way. Once a
solution is found, the method extract coefficients
can be called to extract the weights from Equation 3.

4.3. Toolkit expressiveness

Out of the box, OxonFair supports all 9 of the decision-
based group fairness measures defined by Verma & Rubin
(2018) and all 10 of the fairness measures from Sagemaker
Clarify (Das et al., 2021). OxonFair supports any fairness
measure (including conditional fairness measures) that can
be expressed per group as a weighted sum of True Positives,
False Positives, True Negatives and False Negatives. Oxon-
Fair does not support notions of individual fairness such as
fairness through awareness (Dwork et al., 2012).

See Appendix B for a discussion of how metrics are imple-
mented and comparison with two review papers. Appendix
C contains details of non-standard fairness metrics, includ-
ing utility optimization (Bakalar et al., 2021); minimax
fairness (Martinez et al., 2020; Diana et al., 2021; Aber-
nethy et al., 2022); minimum rate constraints (Mittelstadt
et al., 2023), Conditional Demographic Parity (Wachter
et al., 2021) and Directional Bias Amplification (Zhao et al.,
2017; Wang & Russakovsky, 2021).

Table 1: A comparison against standard approaches on
CelebA attributes. ERM is the baseline architecture run
without fairness. OxonFair (optimizing for accuracy and
DEO), has better DEO scores than any other fair method.
An extended table 13 shows results for minimax fairness.

ERM Uniconf.
Adv

Domain
Disc.

Domain
Ind.

OxonFair
DEO

Gender-Independent Attributes

Acc. 93.1 92.7 93.0 92.6 92.8
DEO 16.5 19.6 14.6 7.78 3.21
Gender-Dependent Attributes

Acc. 86.7 86.1 86.6 85.6 85.8
DEO 26.4 25.0 21.9 6.50 3.92
Inconsistently Labelled Attributes

Acc. 83.0 82.5 83.1 82.3 82.1
DEO 21.9 29.1 25.3 17.2 2.36

5. Experimental Analysis
In this section we discuss experimental results from high di-
mensional domains. Tabular results including comparisons
to other toolkits can be found in Appendix D.
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Table 2: Multilingual Twitter dataset: Gender

F1 Bal-Acc. Acc. DEO

Base 40.8 63.2 89.8 21.4
CDA 43.2 64.4 89.8 16.0
DP 37.2 61.7 89.5 17.9
EO 32.0 59.6 89.1 13.2

Dropout 32.2 59.8 88.9 13.8
Rebalance 38.2 62.1 89.5 19.1

OxonFair (Acc.) 34.1 60.7 88.5 8.45
OxonFair (F1) 44.6 69.1 84.7 2.10

OxonFair (Bal. Acc.) 47.1 71.2 84.8 7.33

Table 3: Jigsaw dataset: Religion

F1 Bal. Acc. Acc. DEO

Base 42.1 74.8 75.0 7.33
CDA 40.4 73.8 73.0 8.98
DP 44.5 69.2 85.5 3.68
EO 41.1 68.8 82.2 4.60

Dropout 42.7 74.1 77.0 7.94
Rebalance 39.1 73.7 70.3 9.67

OxonFair (Acc.) 33.7 60.5 89.2 2.36
OxonFair (F1) 44.4 69.5 85.0 3.79

OxonFair (Bal. Acc.) 42.2 74.2 76.1 4.78

5.1. Computer Vision and CelebA

CelebA (Liu et al., 2015): We use the standard aligned
& cropped partitions frequently used in fairness evalua-
tion (Zietlow et al., 2022; Wang et al., 2020). Follow-
ing Ramaswamy et al. (2021), we consider the 26 gender-
independent, gender-dependent and inconsistently labelled
attributes as the target attributes (see Table 10 for details).
Male is treated as the protected attribute. We follow the
setup of Wang et al. (2020) using a Resnet-50 backbone
(He et al., 2016) trained on ImageNet (Deng et al., 2009).
A multitask classification model is trained, replacing the
final fully-connected layer of the backbone with a separate
fully-connected head that performs binary prediction for all
attributes (See Appendix E for methods and full details).
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Pareto Frontier: Blond Hair

Baseline (ERM)
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OxonFair
Domain Discriminative
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Figure 1: The Pareto frontier of min. group recall vs. ac-
curacy on the Blond Hair attribute demonstrates Oxon-
Fair’s superior performance.

CelebA δ = 0.50 δ = 0.75 δ = 0.90

Baseline 89.0 84.5 77.6
Adversarial 87.8 82.4 75.2
Domain-Dep 82.3 76.8 68.6
Domain-Ind 89.2 86.2 79.8
OxonFair 89.9 87.3 81.8

Table 4: Accuracy of fairness methods on 26 CelebA at-
tributes while varying global decision thresholds to increase
the minimum group recall level to δ.

Results: Tables 1 and 11 demonstrate that using OxonFair
as described in section 4.2 generates fairer and more accu-
rate solutions on unseen test data than other fair methods.
Simple approaches such as Domain Independent training
were more effective than adversarial training for enforcing
fairness confirming (Han et al., 2024). Table 4 shows a
novel fairness evaluation motivated by medical use cases
(Mittelstadt et al., 2023; Zong et al., 2023) where practition-
ers might want to correctly identify at least δ% of positive
cases in each group. We evaluate how accuracy changes
if we guarantee that the minimum recall is above δ% for
every group. For OxonFair, we call .fit(accuracy,
recall.min, δ). For other methods, we vary a global
offset to ensure that the minimum recall is at least δ.

5.2. NLP and Toxic Content

We conducted experiments on hate speech detection and tox-
icity classification using two datasets: the Multilingual Twit-
ter corpus (Huang et al., 2020) and Jigsaw (Jigsaw, 2018).
Experiments were performed across five languages and five
demographic factors were treated as the protected groups.
We compare OxonFair with several popular approaches in-
cluding the standard BERT Baseline, Counterfactual Data
Augmentation CDA (Zmigrod et al., 2019), Demographic
Parity DP, Equal Oportunity EO and Dropout regulariza-
tion to enforce fairness, and Rebalance (Feldman et al.,
2015; Li & Vasconcelos, 2019). For full experimental de-
tails, see Appendix F.1. We report scores optimized for
different metrics: Accuracy; F1; and Balanced Accuracy.

Results are shown in Tables 2 and 3. Our observations
indicate that: 1) all debiasing methods improve the equal
opportunity score and help mitigate bias on Twitter, but not
on Jigsaw. 2) our toolkit consistently reduces the difference
in equal opportunity more than any other approach; 3) for
4/6 experiments we actually improve the objective over
the baseline while enforcing fairness, showing the value in
targeting a particular objective. For additional experiments
on multilingual and multi-demographic data, and the Jigsaw
race data, see Appendix F.3, and Appendix F.4.
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6. Conclusion
The key contributions of our toolkit lie in being more ex-
pressive than other approaches, and supporting NLP and
computer vision. Despite this, most of the experiments focus
on the standard definitions of Demographic Parity and Equal
Opportunity. This is not because we agree that they are the
right measures, but because we believe that the best way to
show that OxonFair works is to compete with other meth-
ods in what they do best. On low-dimensional tabular data,
when optimizing accuracy and a standard fairness measure,
it is largely comparable with Fairlearn, but if overfitting
or non-standard performance criteria and fairness metrics
are a concern, then OxonFair has obvious advantages. For
NLP, and computer vision, our approach clearly improves
on existing state-of-the-art. In no small part, this is due
to the observation of (Zietlow et al., 2022), that methods
for estimating or enforcing error-based fairness metrics on
high-capacity models that do not use held-out validation
data can not work.

We hope that OxonFair will free policy-makers and domain
experts to directly specify fairness measures and objectives
that are a better match for the harms that they face. In par-
ticular, we want to call out the measures in fig. 5 as relevant
to medical ML. The question of how much accuracy can we
retain, while guaranteeing that test sensitivity (AKA recall)
is above k% for every group, captures notions of fairness
and clinical relevance in a way that standard fairness no-
tions do not (Mittelstadt et al., 2023). We join growing calls
of Balayn et al. (2023) in encouraging practitioners to be
reflective in their use of fairness toolkits and the associated
harms.

Limitations: We have chosen to optimize as broad a set
of formulations as possible. As a result, for certain met-
rics (particularly equalized odds (Hardt et al., 2016)) the
solutions found are known to be suboptimal; and for oth-
ers (Corbett-Davies et al., 2017) the exponential search is
unneeded. Techniques targeting particular formulations may
be needed to address this. A major driver of unfairness is
a lack of data regarding particular groups. However, this
very absence of data makes it hard for any toolkit to detect
or rectify unfairness.

Broader Impact: OxonFair is a tool for altering the deci-
sions made by ML systems that are frequently trained on
biased data. Care must be taken that fair ML is used as a fi-
nal step after correcting for bias and errors in data collation,
and not as a sticking plaster to mask problems (Balayn et al.,
2023). Indeed, inappropriate uses of fairness can lock in
biases present in training (Wachter et al., 2020). Under the
hood, OxonFair performs a form of positive discrimination,
where we alter scores in response to (perceived) protected

characteristics to rectify particular inequalities3. As such,
there are many scenarios where its use may be inappropriate
for legal or ethical reasons.
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eye: Explicit removal of biases and variation from deep
neural network embeddings. In Proceedings of the Euro-
pean Conference on Computer Vision (ECCV) Workshops,
pp. 0–0, 2018.

Angwin, J., Larson, J., Mattu, S., and Kirchner, L. Ma-
chine bias. In Ethics of data and analytics, pp. 254–264.
Auerbach Publications, 2022.

Bakalar, C., Barreto, R., Bergman, S., Bogen, M., Chern,

3However, see (Lohaus et al., 2022) for how other fairness
methods may also be doing this.

6

https://github.com/autogluon/autogluon-fair/
https://github.com/autogluon/autogluon-fair/
https://proceedings.mlr.press/v162/abernethy22a.html
https://proceedings.mlr.press/v162/abernethy22a.html


OxonFair: A Flexible Toolkit for Algorithmic Fairness

B., Corbett-Davies, S., Hall, M., Kloumann, I., Lam, M.,
Candela, J. Q., et al. Fairness on the ground: Applying
algorithmic fairness approaches to production systems.
arXiv preprint arXiv:2103.06172, 2021.

Balayn, A., Lofi, C., and Houben, G.-J. Managing bias
and unfairness in data for decision support: a survey
of machine learning and data engineering approaches
to identify and mitigate bias and unfairness within data
management and analytics systems. The VLDB Journal,
30(5):739–768, 2021.

Balayn, A., Yurrita, M., Yang, J., and Gadiraju, U. “✓□ fair-
ness toolkits, a checkbox culture?” on the factors that frag-
ment developer practices in handling algorithmic harms.
In Proceedings of the 2023 AAAI/ACM Conference on AI,
Ethics, and Society, pp. 482–495, 2023.

Bantilan, N. Themis-ml: A fairness-aware machine learn-
ing interface for end-to-end discrimination discovery and
mitigation. Journal of Technology in Human Services, 36
(1):15–30, 2018.

Barikeri, S., Lauscher, A., Vulić, I., and Glavaš, G. Red-
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Classifier (dataset) Partition Fairlearn OxonFair
Acc EOp Acc EOp

Decision Tree
(Adult)

Train/Val 100% 0% 82% 2.0%
Test 81% 8.8% 81% 1.1%

Random Forest
(Adult)

Train/Val 100% 0% 86% 1.6%
Test 86% 7.5% 86% 3.3%

XGBoost
(myocardial infarction)

Train/Val 100% 0% 90% 0.6%
Test 89% 11.8% 87% 2.9%

Criterion AIF360 Fairlearn OxonFair

Number of methods 10+ 5 1
Adjustible Fairness Criteria × ✓ ✓
Supports 3+ Groups × ✓ ✓
Fairness definitions enforced per method <4 5 14+
Methods needing groups at eval Some 1 No
Supports Utility Functions × × ✓
Supports Tabular Data ✓ ✓ ✓
Supports Computer Vision × × ✓
Supports NLP × × ✓

Figure 2: Left: The need for an objective when enforcing fairness. We evaluate a range of methods with respect to balanced
accuracy and demographic parity (OxonFair generates a frontier of solutions). Only OxonFair and RejectOptimization
optimize balanced accuracy. As we improve the balanced accuracy of fair methods by adjusting classification thresholds
(gray lines) fairness deteriorates. To avoid this, we jointly optimize a fairness measure and an objective. For more examples,
see Figure 4. Right Top: Using validation data in fairness. We compare against Fairlearn using standard algorithms with
default parameters. These methods perfectly overfit and show no unfairness with respect to equal opportunity on the trainset,
but substantial unfairness on test. OxonFair enforces fairness on held-out validation data and is less prone to overfitting.
Right Bottom: A comparison of toolkits. AIF360 offers a large range of tabular methods most of which do not allow
fairness metric selection, Fairlearn offers fewer but more customizable tabular methods. OxonFair offers one method that
can be applied to text, image, and tabular data, while supporting more notions of fairness and objectives.

A. Inferred characteristics
In many situations, protected attributes are not available at test time. In this case, we simply use inferred characteristics to
assign per-group thresholds and adjust these thresholds to guarantee fairness with respect to the true (i.e. uninferred) groups.

When using inferred characteristics, we offer two pathways for handling estimated group membership. The first pathway we
consider makes a hard assignment of individuals to groups, based on a classifier response. The second pathway explicitly
uses the classifier confidence as part of a per-datapoint threshold. In practice, we find little difference between the two
approaches, but the hard assignment to groups is substantially more efficient and therefore allows for a finer grid search and
generally better performance. However, the soft assignment remains useful for the integration of our method with neural
networks, where we explicitly merge two heads of a neural network to arrive at a single fair model.

A.1. Fast pathway

The fast pathway closely follows the efficient grid search for known characteristics. We partition the dataset by inferred
characteristics, and then repeat the trick. However, as the inferred characteristics do not need to perfectly align with the true
characteristics, we also keep track of the true group datapoints belongs to, i.e., for all datapoints assigned to a particular
inferred group, we compute the cumulative sum of positives and negatives that truly belong to each group. This allows
us to vary the thresholds with respect to inferred groups while computing group measures with respect to the true groups.
This can be understood as replacing the decision function (1) with f(x)− t ·G′(x) ≥ 0 where G′ is a binary vector valued
function that sums to 1, but need not correspond to G exactly.

This explicit decoupling of inferred groups from the true group membership allows us to consider partitionings of the
data that do not align with group membership. We found it particularly helpful to include an additional ‘don’t know’
group. By default, any datapoint assigned a score4 from the classifier below 2/3 is assigned to this group, and receives a
different threshold to those datapoints that the classifier is confident about. The improved frontiers are shown in the tabular

4User controllable threshold.
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Figure 3: Left: Summary of the fast path algorithm for inferred attributes (Section 4.1). Groups are noisily estimated using
a classifier. Within each estimated group, we cumulatively sum positive and negative samples that truly belong to each
group. For each pair of thresholds, we select relevant sums from the inferred group and combine them. See Appendix A.1.
Center: Combining two heads (original classifier and group predictor) to create a fair classifier. See Section 4.2. Right:
The output of a second head predicting the protected attribute in CelebA. The pronounced bimodal distribution makes the
weighted sum of the two heads a close replacement for per-group thresholds.

experimental section as OxonFair+, where they offer a clear advantage over our baseline OxonFair.

A.2. Slow pathway

The slow pathway tunes t to optimize the decision process f(x)− t · g(x) ≥ 0, where g is a real vector valued function.
Given the lack of assumptions, no obvious speed-up was possible and we perform a two stage naı̈ve grid-search, first coarsely
to extract an approximate Pareto frontier, and then a finer search over the range of thresholds found in the first stage. This is
then followed by a final interpolation that checks for candidates around pairs of adjacent candidates currently in the frontier.

In situations where g(x) is the output of a classifier and G′(x) its binarization, it is reasonable to suspect that loss of
information from binarization might lead to a drop in performance when we compare the slow pathway with the fast. In
practice, we never found a significant change, and in a like-with-like comparison over a similar number of thresholds
the fast pathway was as likely to be fractionally better as it was to be worse. Moreover, for more than 3 groups the slow
pathway becomes punitively slow, and to keep the runtime acceptable requires decreasing the grid size in a way that harms
performance.

Despite this, we kept the slow pathway as it is directly applicable to deep networks as we describe in the next section. In
practice, when working with deep networks we make use of a hybrid approach, and perform the fast and slow grid searches
before fusing them into a single frontier and then performing interpolation. This allows us to benefit from the better solutions
found by a fine grid search when the output of the second head is near binary (see Figure 3), and robustly carry over to the
slower pathway where its binarization is a bad approximation of the network output.

B. Implementation of Performance and Fairness Measures
To make OxonFair as extensible as possible, we create a custom class to implement all performance and fairness measures.
This means when OxonFair doesn’t support a particular measure, both the objectives and constraints can be readily extended
by the end user.

Measures used by OxonFair are defined as instances of a python class GroupMetrics. Each group measure is specified
by a function that takes the number of True Positives, False Positives, False Negatives, and True Negatives and returns a
score; A string specifying the name of the measure; and optionally a bool indicating if greater values are better than smaller
ones.

For example, accuracy is defined as:

accuracy = gm.GroupMetric(lambda TP, FP, FN, TN: (TP + TN) / (TP + FP + FN + TN),
’Accuracy’)

For efficiency, our approach relies on broadcast semantics and all operations in the function must be applicable to numpy
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Figure 4: We show a full comparison of the methods provided by AIF360 and Fairlearn on the adult dataset with 4 different
choices of metric (accuracy, balanced accuracy, F1, and MCC), while enforcing demographic parity. We follow the design
decisions of (Bellamy et al., 2018) and use a random forest with 100 trees and a minimum leaf size of 20. Only OxonFair
allows the specification of an objective, and for all other methods we try to alter the decision threshold to better optimize the
objective. However, as we improve the objective, we see fairness deteriorates. To avoid this, OxonFair jointly optimize both
a fairness measure and an objective.
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arrays. Having defined a GroupMetric it can be called in two ways. Either:

accuracy(target labels, predictions, groups)

Here target labels and predictions are binary vectors corresponding to either the target ground-truth values, or
the predictions made by a classifier, with 1 representing the positive label and 0 otherwise. groups is simply a vector of
values where each unique value is assumed to correspond to a distinct group.

The other way it can be called is by passing it a single 3D array of dimension 4 by number of groups by k, where k is the
number of candidate classifiers that the measure should be computed over.

As a convenience, GroupMetrics automatically implements a range of functionality as sub-objects.

Having defined a metric as above, we have a range of different objects:

• metric.diff reports the average absolute difference of the method between groups.

• metric.average reports the average of the method taken over all groups.

• metric.max diff reports the maximum difference of the method between any pair of groups.

• metric.max reports the maximum value for any group.

• metric.min reports the minimum value for any group.

• metric.overall reports the overall value for all groups combined, and is the same as calling metric directly

• metric.ratio reports the average over distinct pairs of groups of the smallest value divided by the largest

• metric.per group reports the value for every group.

All of these can be passed directly to fit, or to the evaluation functions we provide.

The vast majority of fairness metrics are implemented as a .diff of a standard performance measure, and by placing a
.min after any measure such as recall or precision it is possible to add constraints that enforce that the precision or recall is
above a particular value for every group.

These classes make it easy to extend OxonFair. To demonstrate the OxonFair’s versatility, Tables 5 and 6 show the metrics
of two reviews and how many can are implemented out of the box by our approach. An example showing how all clarify
metrics can be enforced using inferred groups, and three group labels on compas can be seen in Table 7.

C. Additional Metrics
C.1. Minimax Fairness

Minimax fairness(Martinez et al., 2020; Diana et al., 2021; Abernethy et al., 2022) refers to the family of methods which
minimize the loss of the group where the algorithm performs worst, i.e., they minimize the maximal loss. (Singh et al., 2023)
observed that sufficiently expressive classifiers, such as those considered by this paper, including boosting, random forests,
or deep networks on image and NLP tended to be per group optimal, when the groups do not correspond to the predicted
label. As such they are already minimax optimal and the solutions found by minimax fairness methods are indistinguishable
from those found by empiric risk minimization. This still leaves the case where groups include the label (for example, the
groups may correspond to the product of gender and the variable we are trying to predict, such as sick or not sick). In this
case, as convincingly shown by (Martinez et al., 2020), the solutions found do not correspond to ERM.

Here, we compare OxonFair against minimax fairness. To do this, we define a new performance measure corresponding to
the lowest accuracy over the positive or negative labelled datapoints.

min accuracy = min

(
TP

TP + FP
,

TN

FN + TN

)
(4)

Martinez et al (Martinez et al., 2020) argued that we should seek a Pareto optimal solution that has the highest possible overall
accuracy, subject to the requirement it maximizes the lowest per group accuracy. We can do this in OxonFair by calling
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Table 5: The fairness measures in the review of (Verma & Rubin, 2018). All 9 group metrics that concern the decisions
made by a classifier are supported by OxonFair.

Vema and Rudin(Verma & Rubin, 2018) Metrics OxonFair name Fairlearn
Group fairness or statistical parity demographic parity Yes

Conditional statistical parity
conditional group metrics.

pos pred rate.diff
No

Predictive parity predictive parity No
False positive error rate balance false pos rate.diff Yes
False negative error rate balance false neg rate.diff Yes
Equalized odds equalized odds Yes
Conditional use accuracy equality cond use accuracy No
Overall accuracy equality accuracy.diff No
Treatment equality treatment.diff No
Test-fairness or calibration Not decision based
Well calibration Not decision based
Balance for positive class Not decision based
Balance for negative class Not decision based
Causal discrimination Individual fairness
Fairness through unawareness Individual fairness
Fairness through awareness Individual fairness
No unresolved discrimination Individual fairness
No proxy discrimination Individual fairness
Fair inference Individual fairness

Table 6: The post-training fairness measures in the review of (Hardt et al., 2021). All measures are supported by OxonFair.

Post-training Metrics (Hardt et al., 2021) OxonFair name Fairlearn
Diff. in pos. proportions in predicted labels demographic parity Yes
Disparate Impact disparate impact No
Difference in Conditional Acceptance cond accept.diff No
Difference in Conditional Rejection cond reject.diff No
Accuracy Difference accuracy.diff No
Recall Difference recall.diff Yes
Difference In Acceptance Rates acceptance rate.diff No
Difference in Rejection Rates rejection rate.diff No
Treatment Equality treatment equality No

Conditional Demographic Disparity
conditional group metrics.

pos pred rate.diff
No
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Table 7: Enforcing fairness for all definitions in (Hardt et al., 2021) on COMPAS with inferred attributes. We enforce the
fairness definitions with respect to three racial groups, African American, Caucasian, and Other – consisting of all other
labelled ethnicities. There are a total 350 individuals labelled ‘Other’ in the test set, making most metrics of fairness unstable
and difficult to enforce. Nonetheless, we improve on all metrics. For all metrics except disparate impact, we enforce that the
score on train is below 2.5% and for disparate impact we enforce that the score on train is above 97.5%. XGBoost is used as
the base classifier, and the dataset is split into 70% train and 30% test.

Measure Measure Accuracy Accuracy
(original) (updated) (original) (updated)

Demographic Parity 0.148706 0.097142 0.661345 0.620588
Disparate Impact 0.668305 0.740940 0.661345 0.605042

Difference in Conditional Acceptance Rate 0.231862 0.151159 0.661345 0.642857
Difference in Conditional Rejectance Rate 0.048625 0.025138 0.661345 0.655882

Difference in Accuracy 0.013172 0.006351 0.661345 0.665546
Difference in Recall 0.151210 0.105154 0.661345 0.612185

Difference in Acceptance Rate 0.070072 0.066591 0.661345 0.662605
Difference in Specificity 0.097490 0.064139 0.661345 0.660504

Difference in Rejection Rate 0.050085 0.050215 0.661345 0.661345
Treatment Equality 0.201717 0.105115 0.661345 0.660924

Conditional Demographic Parity 0.673950 0.626471 0.150927 0.073203

fpredictor.fit(gm.min accuracy.min, gm.accuracy, 0) Here min accuracy.min corresponds to
the lowest min accuracy of any group. We use accuracy > 0 as the constraint, as we do not want an active constraint
from preventing us from finding the element of the Pareto frontier (see (Martinez et al., 2020) for frontier details) with
the highest minimum accuracy. Note that the groups used by OxonFair with this loss correspond to the true groups, such
as ethnicity or gender, while the groups used by minimax fairness are the product of these groups with the target labels.
Existing methods for minimax fairness optimize the same loss and have indistinguishable accuracy, only differing in the
speed of convergence(Abernethy et al., 2022). As such, in table 8 we only report results for a variant of (Abernethy et al.,
2022). Similarly, in computer vision (Zietlow et al., 2022), optimized the same objective by iteratively generating synthetic
data for the worst performing group, where groups were defined as the product of ground-truth labels, and sex. We compare
against them in table 14.

XGBoost: adult (sex) Min Accuracy Overall Accuracy

ERM Training 70.3% 90.9%
Minimax Training 85.2% 88.9%

ERM Validation 58.8% 86.9%
Minimax Validation 76.2% 83.9%
OxonFair Validation 79.1% 84.4%

ERM Test 59.6% 86.6%
Minimax Test 77.9% 84.1%
OxonFair Test 80.5% 84.6%

Table 8: Results for XGBoost: Adult (sex)

C.2. Utility Optimization

OxonFair supports the utility-based approach of Bakalar et al. (2021), whereby different thresholds can be selected per
group to optimize a utility based objective. Utility functions can be defined in one line: my utility=gm.Utility([1,
1, 5, 0]. Here, we consider a scenario where an ML system identifies issues that may require interventions. Every
intervention has a cost of 1, regardless of if it was needed, but a missed intervention that was needed has a cost of 5.
Not making an intervention when one was not needed has a cost of 0. The code fpredictor.fit(my utility,
gm.recall, 0.5) minimizes the utility subject to the requirement that the overall recall can not drop below 0.5.
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C.3. Levelling up

One criticism of many methods of algorithmic fairness is that enforcing equality of recall rates (as in equal opportunity)
or selection rates (as in demographic parity) will decrease the recall/selection rate for some groups while increasing it for
others. This behavior is an artifact of trying to maximize accuracy (Mittelstadt et al., 2023) and occurs despite fairness
methods altering the overall selection rate (Goethals et al., 2024a). As an alternative, OxonFair supports levelling up where
harms are reduced to, at most, a given level per group (Mittelstadt et al., 2023). For example, if we believe that black
patients are being disproportionately harmed by a high number of false negatives in cancer detection (i.e., low recall), instead
of enforcing that these properties be equalized across groups, we can instead require that every group of patients has, at
least, a minimum recall score. Depending on the use case, similar constraints can be imposed in with respect to per-group
minimal selection rates, or minimal precision. These constraints can be enforced by a single call, for example, enforcing
that the precision is above 70% while otherwise maximizing accuracy can be enforced by calling: .fit(gm.accuracy,
gm.precision.min, 0.7).
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Figure 5: Levelling-up with OxonFair by imposing a minimum group recall of 0.7 on the Fitzpatrick-17k (Groh et al., 2021)
validation set - fpredictor.fit(gm.accuracy, gm.recall.min, 0.7).

C.4. Conditional Metrics

A key challenge of using fairness in practice is that often some sources of bias are known, and the practitioner is expected to
determine if additional biases exist and to correct for them. For example, someone’s salary affects which loans they are
eligible for, but salary has a distinctly different distribution for different ethnicities and genders. (Chiappa, 2019). Identifying
and correcting fairness here rapidly becomes challenging, when considering the intersection of attributes, many small groups
arise and purely by chance some form of unfairness may be observed (Kearns et al., 2018; Wachter et al., 2021)suggested the
use of a technique from descriptive statistics that (Freedman et al., 2007) had previously applied to the problem of schools
admissions at Berkley (Bickel et al., 1975). In this famous example, every school in Berkley showed little gender bias, but
due to different genders applying at different rates to different schools, and the schools themselves having substantially
different acceptance rate, a strong overall gender bias was apparent.
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Figure 6: Solutions found when enforcing demographic parity with varying rate constraints. See appendix C.5. Left: the
change in precision as we enforce demographic parity. Note that we report precision as it is more informative than accuracy
for low selection rates. Right: The ratio between selection rates (i.e. disparate impact) for different groups. We report the
ratio rather than the difference, as the difference tends to zero as the selection rate also tends to zero. However, as the right
figure shows, this ratio becomes unstable as the rate tends to zero.

(Freedman et al., 2007) observed that you could correct for this bias by computing the per school selection-rate, and
then taking a weighted average, where the weights are given by the total number of people applying to the school. The
resulting selection rates are equivalent to a weighted selection-rate over the whole population, where the weight wi for
an individual i in a particular group and applying to a particular school is wi =

#individuals in school
#individuals in group and school . To enforce this

form of conditional demographic parity in OxonFair, we simply replace the sum of true positives etc. in Section 3, with the
weighted sum. We support a range of related fairness metrics, including conditional difference in accuracy; and conditional
equal opportunity (note that for equal opportunity we replace the numbers used to compute wi with the same counts but
only taking into account those that have positive ground-truth labels). As such metrics can level down (Appendix C.3), we
also support conditional minimum selection rates, and conditional minimum recall.

C.5. Fairness under constrained capacity

When deploying fairness in practice, we may be capacity limited. For example, as in fig. 5 we may use the output of a classi-
fier for detecting cancer to schedule follow-up appointments. In such a case, you might wish that the recall is high for each
demographic group, but be constrained by the number of available appointments. Calling .fit(gm.recall.min,
gm.pos pred rate, 0.4, greater is better const=False) will maximize the recall on the worst-off
group subject to a requirement that no more than 40% of cases are scheduled follow-up appointments.

In general, maximizing the group minimum of any measure that is monotone with respect to the selection rate, while enforcing
a hard limit on the selection rate will enforce equality with respect to that measure (e.g. optimizing gm.recall.min will
result in equal recall a.k.a. equal opportunity, while maximizing gm.pos pred rate.min will result in demographic
parity), while also enforcing the selection rate constraints. See (Goethals et al., 2024b) for proof and a discussion of the
issues arising, and (Kwegyir-Aggrey et al., 2023) for an alternate approach.

As such, calling .fit(gm.recall.min, gm.pos pred rate, k, greater is better const = False) will en-
force equal opportunity at k% selection rate, and .fit(gm.pos pred rate.min, gm.pos pred rate, 0.4,
greater is better const = False) will enforce demographic parity at k% selection rate.
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C.6. Directional Bias Amplification Metric Derivation for OxonFair

We also support a variant of Bias Amplification, as defined by Wang et al. (Wang & Russakovsky, 2021).

Closely following the notation of Wang et al. (Wang & Russakovsky, 2021), let A be the set of protected demographic
groups: for example, A = {male, female}. Aa for a ∈ A is the binary random variable corresponding to the presence of the
group a; thus P (Awoman = 1) can be empirically estimated as the fraction of images in the dataset containing women. Let
Tt with t ∈ T similarly correspond to binary target tasks. Let Âa and T̂t denote model predictions for the protected group a
and the target task t, respectively.

BiasAmp→ =
1

|A||T |
∑

a∈A,t∈T
yat∆at + (1− yat)(−∆at)

yat = 1 [P (Aa = 1, Tt = 1) > P (Aa = 1)P (Tt = 1)]

∆at =


P (T̂t = 1|Aa = 1)− P (Tt = 1|Aa = 1)
if measuring Attribute → Task Bias

P (Âa = 1|Tt = 1)− P (Aa = 1|Tt = 1)
if measuring Task → Attribute Bias

(5)

Of which, the Attribute → Task Bias is relevant here.

Each component can be written as a function of the global True Positives, False Positives etc., and the per group True
Positives, and as such it can be optimized by our framework, albeit, not by using a standard group metrics. However, this
metric is gamable, and consistently underestimating labels in groups where they’re over-represented and vice versa would
be optimal, but undesirable behavior that leads to a negative score.

Instead, we consider the absolute BiasAmp:

|BiasAmp|→ =
1

|A||T |
∑

a∈A,t∈T
|yat∆at + (1− yat)(−∆at)|

=
1

|A||T |
∑

a∈A,t∈T
|∆at|

(6)

We can decompose |∆at| into the appropriate form for a GroupMetric (see appendix B) as follows:

∆at = P (T̂t = 1|Aa = 1)− P (Tt = 1|Aa = 1) (7)

∆at =
TP + FN

TP + TN + FP + FN
− TP + FP

TP + TN + FP + FN
(8)

|∆at| =
∣∣∣∣ FN − FP

TP + TN + FP + FN

∣∣∣∣ (9)

This will give a per group estimate of the absolute bias amplification, and calling its .average method will give the
absolute bias amplification over all groups.

D. Tablular Data Experiments
For tabular data, we compare with all group fairness methods offered by AIF360, and the reductions approach of Fairlearn.
OxonFair is compatible with any learner with an implementation of the method predict proba consistent with scikit-
learn (Pedregosa et al., 2011) including AutoGluon (Erickson et al., 2020) and XGBoost (Chen & Guestrin, 2016). A
comparison with Fairlearn and the group methods from AIF360 on the adult dataset can be seen in figures 7 and 4 using
random forests. This follows the setup of (Bellamy et al., 2018): we enforce fairness with respect to race and binarize the
attribute to white vs everyone else (this is required to compare with AIF360), 50% train data, 20% validation, and 30% test,
and a minimum leaf size of 20. With this large leaf size, all errors on train, validation, and test are broadly comparable, but
our approach of directly optimizing an objective and a fairness measure leads us to outperform others.
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#Groups Accuracy Dem. Par. Time

OxonFair 5 86.6 2.5% 0.7+55.7s
Fairlearn 5 86.5 3.8% 33.2s

OxonFair 4 86.5 1.2% 0.7+0.93s
Fairlearn 4 86.3 2.0% 33.3s

OxonFair 3 86.6 1.5% 0.7+0.078s
Fairlearn 3 86.6 1.0% 25.4s

OxonFair 2 86.7 1.1% 0.7+0.05s
Fairlearn 2 87.0 2.0% 19.4s

Figure 7: Left: Results on Compas. Right: Runtime Comparison for Fairlearn Reductions and OxonFair on Adult using a
Macbook M2. To alter the groups, we iteratively merge the smallest racial group with ‘Other’, reducing the search space.
For both methods, we enforced demographic parity over a train set consisting of 70% of the data. Despite the exponential
complexity of our approach, we remain faster until we reach 5 groups. The 0.7+ indicates the seconds to train XGBoost.

Figure 7 top right shows the importance of being able to use a validation set to balance errors. Using sklearn’s default
parameters we overfit to adult, and as the classifier is perfect on the training set, all fairness metrics that match error rates are
trivially satisfied (Wachter et al., 2020; Zietlow et al., 2022). The same behavior can be observed using XGBoost on the
medical dataset (Golovenkin et al., 2020) when enforcing equal opportunity with respect to sex5. In general, tabular methods
need not overfit, and tuning parameters carefully can allow users to get relatively good performance while maintaining error
rates between training and test.

Figure 7 left shows Equal Opportunity on the COMPAS dataset. To show that OxonFair can also work in low-data regimes
where we have insufficient data for validation, we enforce fairness on the training set. As before, we binarize race to allow
the use of AIF360. We drop race from the training data, and use inferred protected attributes to enforce fairness. Here
OxonFair generates a frontier that is comparable or better than results from existing toolkits, and OxonFair+ (see section A),
further improves on these results. See Figure 7 right for a comparison with Fairlearn varying the groups.

E. Computer Vision Experiments

Table 9: Hyperparameter details for the CelebA experiment.

Hyperparameter Value/Range

Learning Rate 0.0001
Batch Size 32
Dropout Rate 0.5
Backbone Resnet-50
Weight Decay 0
Optimizer Adam (Kingma & Ba, 2014)
Epochs 20

E.1. Methods

We extensively used the codebase of Wang et. al (Wang et al., 2020) to conduct comparative experiments6.

5This dataset is carefully curated and balanced. To induce unfairness we altered the sampling and dropped half the people recorded as
male and that did not have medical complications across the entire dataset.

6https://github.com/princetonvisualai/DomainBiasMitigation
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Table 10: CelebA Attribute-level information from Ranaswamy et al. (Ramaswamy et al., 2021). The columns are target
attribute name, percentage of positive samples, skew. For example, Earrings has a skew of 0.97 towards g=− 1, that is,
97% of positive Earrings samples have gender expression label g=− 1 (Female)

Attribute type Attribute statistics
Inconsistently labeled Positive Skew

BigLips 24.1% 0.73 g=−1
BigNose 23.6% 0.75 g=1
OvalFace 28.3% 0.68 g=−1
PaleSkin 4.3% 0.76 g=−1

StraightHair 20.9% 0.52 g=−1
WavyHair 31.9% 0.81 g=−1

Gender-dependent Positive Skew
ArchedBrows 26.6% 0.92 g=−1
Attractive 51.4% 0.77 g=−1
BushyBrows 14.4% 0.71 g=1
PointyNose 27.6% 0.75 g=−1
RecedingHair 8.0% 0.62 g=1

Young 77.9% 0.66 g=−1
Gender-independent Positive Skew

Bangs 15.2% 0.77 g=−1
BlackHair 23.9% 0.52 g=1
BlondHair 14.9% 0.94 g=−1
BrownHair 20.3% 0.69 g=−1
Chubby 5.8% 0.88 g=1
EyeBags 20.4% 0.71 g=1
Glasses 6.5% 0.80 g=1
GrayHair 4.2% 0.86 g=1

HighCheeks 45.2% 0.72 g=−1
MouthOpen 48.2% 0.63 g=−1
NarrowEyes 11.6% 0.56 g=−1
Smiling 48.0% 0.65 g=−1
Earrings 18.7% 0.97 g=−1

WearingHat 4.9% 0.70 g=1
Average 24.1% 0.73

• Empirical Risk Minimization (ERM) (Vapnik, 1999): Acts as a baseline in our experiments where the goal is to
minimize the average error across the dataset without explicitly considering the sensitive attributes.

• Adversarial Training with Uniform Confusion (Alvi et al., 2018): The goal is to learn an embedding that maximizes
accuracy whilst minimizing any classifier’s ability to recognize the protected class. The uniform confusion loss from
Alvi et al. (Alvi et al., 2018) is used following the implementation of (Wang et al., 2020).

• Domain-Discriminative Training (Wang et al., 2020): Domain information is explicitly encoded and then the
correlation between domains and class labels is removed during inference.

• Domain-Independent Training (Wang et al., 2020): Trains a different classifier for each attribute where the classifiers
do not see examples from other domains.

• OxonFair + Multi-Head (Lohaus et al., 2022): Described in Section 4.2. N − 1 heads are trained to minimize
the logistic loss over the target variable, where N is the total number of attributes. A separate head minimizes the
squared loss over the protected attribute. Fairness is enforced on validation data with two separate optimization criteria.
OxonFair-DEO calls fpredictor.fit(gm.accuracy, gm.equal opportunity, 0.01) to enforce
Equal Opportunity. OxonFair-MGA calls fpredictor.fit(gm.accuracy, gm.min.accuracy.min,
0).
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Table 11: We report mean scores over the 14 gender independent labels (Ramaswamy et al., 2021) of CelebA. Single task
methods and FairMixup scores in the second and third blocks are from Zietlow et al. (Zietlow et al., 2022). ERM indicates
the baseline architecture run without fairness. OxonFair (optimizing for accuracy and DEO), has better accuracy and DEO
scores than any other fair method.

ERM
multitask Domain Disc. Domain

Indep.
Uniconf.

Adv.
OxonFair

DEO
ERM

single task
Debiasing

GAN Regularized g-SMOTE
Adaptive g-SMOTE ERM FairMixup

Acc. 93.07 92.96 92.63 92.71 92.75 92.47 92.12 91.05 92.56 92.64 92.74 88.46
DEO 16.47 14.61 7.78 19.63 3.21 12.54 9.11 3.77 14.28 15.11 7.97 3.58

Table 12: Comparing accuracy of fairness methods while varying minimum recall level thresholds, δ.

CelebA - 26 Attributes δ = 0.50 δ = 0.75 δ = 0.85 δ = 0.90 δ = 0.95

Baseline (ERM) 89.0 84.5 80.6 77.6 72.7
Adversarial 87.8 82.4 78.2 75.2 69.3
Domain-Dependent 82.3 76.8 72.4 68.6 62.2
Domain-Independent 89.2 86.2 82.9 79.8 74.4
OxonFair 89.9 87.3 84.4 81.8 76.9

Table 13: Extended Version of Table 1. Performance Comparison of Different Algorithmic Fairness Methods on the CelebA
Test Set. Results monitor the mean Accuracy, Difference in Equal Opportunity (DEO) and the Minimum Group Minimum
Label Accuracy across the attributes.

ERM Uniconf.
Adv (Alvi et al., 2018)

Domain
Disc. (Wang et al., 2020)

Domain
Ind. (Wang et al., 2020)

OxonFair
DEO

OxonFair
MGA

Gender-Independent Attributes

Acc. 93.1 92.7 93.0 92.6 92.8 90.9
Min grp. min acc. 64.1 72.3 76.5 71.2 72.3 85.8
DEO 16.5 19.6 14.6 7.78 3.21 3.52
Gender-Dependent Attributes

Acc. 86.7 86.1 86.6 85.6 85.8 82.3
Min grp. min acc. 43.4 53.7 59.6 53.8 52.5 78.5
DEO 26.4 25.0 21.9 6.50 3.92 3.96
Inconsistently Labelled Attributes

Acc. 83.0 82.5 83.1 82.3 82.1 79.2
Min grp. min acc. 36.1 43.0 50.2 42.7 44.3 69.5
DEO 21.9 29.1 25.3 17.2 2.36 4.86

Table 14: Performance comparison of Baseline, Adaptive g-SMOTE, g-SMOTE, OxonFair-DEO, and OxonFair-MGA on
the training set. Reported are the means over the 32 labels from Zietlow et al. (2022).

4 Protected Groups ERM Adaptive g-SMOTE g-SMOTE OxonFair-DEO OxonFair-MGA

Full Training Set Acc.
Min. grp. acc.

DEO

90.49
61.74
24.70

85.77
68.06
12.27

87.27
61.84
21.91

89.21
54.20
3.93

86.18
78.48
5.58
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Figure 8: A comparison of the Pareto frontier on validation and test data when enforcing two fairness measures (DEO and
Min Group Min Label Acc) for the Wearing Earrings attribute in CelebA whilst monitoring model accuracy.
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Gender Country Ethnicity Age

English 41200/7008/6927 44487/7744/7639 40731/6954/6845 39003/6628/6608
Polish 11782/1461/1446 2218/489/471 8567/1199/1235 8610/1199/1235
Spanish 2240/407/410 2299/436/439 2244/407/410 2249/407/410
Portuguese 1408/150/163 1105/198/197 1377/150/163 1389/150/163
Italian 2730/350/369 3769/514/516 2706/348/368 2676/349/368

Table 15: Multilingual Twitter corpus train/val/test statistics.

original DEO updated DEO original Acc. updated Acc.

English 5.13 3.19 84.0 84.2
Polish 21.4 10.1 89.6 85.8
Spanish 9.39 1.64 69.8 67.3
Portuguese 17.3 1.29 60.7 52.1
Italian 7.77 0.42 75.6 77.5

Figure 9: Multilingual Experiment.

original DEO updated DEO original Acc. updated Acc.

Gender 21.4 8.45 89.6 88.5
Country 10.2 8.32 81.4 82.2
Ethnicity 8.56 4.92 83.1 82.7
Age 12.5 6.02 82.1 80.5

Figure 10: Demographic Experiments.

0.00 0.02
Equal Opportunity

0.65

0.70

0.75

0.80

0.85

Ac
cu

ra
cy

Gender

0.00 0.05 0.10
Equal Opportunity

0.70

0.75

0.80

Ac
cu

ra
cy

Country

0.00 0.05 0.10
Equal Opportunity

0.65

0.70

0.75

0.80

0.85

Ac
cu

ra
cy

Ethnicity

0.0 0.1 0.2
Equal Opportunity

0.65

0.70

0.75

0.80

0.85

Ac
cu

ra
cy

Age

Frontier
Original predictor
Updated predictor

Figure 11: Demographics frontier plot.

F. NLP Experiments
F.1. Experimental Details

We employ a BERT-based model architecture (Devlin et al., 2018), augmented with an additional head to simultaneously
predict demographic factors (see Section 4.2. During training, we utilize the standard cross-entropy loss for the primary
prediction task and a mean squared error loss for the demographic predictions, aggregating these to compute the overall
loss. We ensure data consistency by excluding entries with missing demographic information. To facilitate easy comparison
with different models, we select the Polish language for the multilingual Twitter corpus, noted for its high DEO score, to
demonstrate how various models can reduce this score. We also conducted our experiment on the Jigsaw data. Unlike the
multilingual Twitter corpus, the Jigsaw religion dataset contains three groups: Christian, Muslim, and others. The entire
model, including the BERT backbone, is fine-tuned for 10 epochs using an initial learning rate of 2× 10−5, following the
original BERT training setup. All experiments are conducted on an NVIDIA A100 80GB GPU.

F.2. Methods

We compare OxonFair with the following approaches. Base reports results of the standard BERT model(Devlin et al., 2018).
CDA (Counterfactual Data Augmentation) (Zmigrod et al., 2019; Dinan et al., 2019; Webster et al., 2020; Barikeri et al.,
2021; Meade et al., 2021) rebalances a corpus by swapping bias attribute words (e.g., he/she) in a dataset based on a given
dictionary. DP (Demographic Parity) uses regularization(Zafar et al., 2017; Han et al., 2024) to enforce DP. EO (Equal
Opportunity(Hardt et al., 2016)) uses the regularization of (Zafar et al., 2017; Han et al., 2024) to enforce EO. Dropout
(Webster et al., 2020; Meade et al., 2021) is used as a regularization technique (Srivastava et al., 2014) for bias mitigation
and improving small group generalization. Rebalance (Feldman et al., 2015; Li & Vasconcelos, 2019) method resamples
the minor groups to the same sample size as other groups to mitigate bias.
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F.3. Hate Speech Detection Task

We follow the methodology outlined in (Huang et al., 2020) to conduct the hate speech detection task using our tool.
Variables such as age and country in the multilingual Twitter corpus are binarized using the same method as described in
(Huang et al., 2020). The data splits for training, development, and testing are shown in Table 15.

Multilingual Experiment. To demonstrate the capability of our proposed tool in handling multilingual scenarios, we
conduct experiments across five languages: English, Polish, Spanish, Portuguese, and Italian and the results are shown
in Figure 9. Observations from the results indicate that: 1) Our model improves equal opportunity performance with
minimal sacrifice to the main task performance. 2) The datasets in Polish and Portuguese show higher equal opportunity,
indicating more severe bias compared to other languages, yet our proposed method effectively enhances performance in
these conditions.

Demographic Experiments. To demonstrate our tool’s ability to address various demographic factors in text, we conducted
experiments focusing on age, country, gender, and ethnicity, with results detailed in Figure 10 and Figure 11. The outcomes
reveal that our tool effectively improves equal opportunities across all demographic factors, underscoring its capability to
handle general debiasing scenarios.

Christian Other Muslim

Train 22845/1892 3783/554 9527/2390
Valid 5681/470 946/148 2425/578
Test 2944/251 604/78 1119/319

Table 16: Jigsaw religion data.

Black Asian

Train 6718/2811 2187/246
Valid 1684/698 547/61
Test 841/364 284/25

Table 17: Jigsaw race data.

F.4. Toxicity Classification Task

We also evaluate toxicity classification using the Jigsaw toxic comment dataset (Jigsaw, 2018), which has been transformed
into a Kaggle challenge. To demonstrate the ability of OxonFair to handle multiple protected groups, we consider religion as
the protected attribute and evaluate performance across three groups: Christian, Muslim, and Other. Owing to the limitted
dataset size, all samples labelled as a religion that was neither Christian nor Muslim were merged into Other and unlabeled
samples were discarded. The statistics for this dataset are shown in Table 16, where each cell displays the count of negative
and positive samples, respectively. The experimental results are discussed in the main paper.

For the Jigsaw dataset, we follow the setup of (Chuang & Mroueh, 2021), selecting race as the protected attribute. We
focus on the subset of comments identified as Black or Asian, as these two groups exhibit the largest gap in the probability
of being associated with toxic comments. The data statistics are shown in Table 17 where each cell displays the count of
negative and positive samples, respectively. The experimental results, presented in Table 18, demonstrate that our proposed
tool outperforms all other models.

F1 score Balanced Accuracy Accuracy Equal Opportunity

Base 53.4 68.9 72.1 23.7
CDA (Zmigrod et al., 2019) 52.7 68.2 76.4 7.65
DP (Zafar et al., 2017) 47.4 64.6 72.6 4.35
EO (Hardt et al., 2016) 47.1 64.5 73.2 5.85
Dropout (Webster et al., 2020) 52.4 68.0 72.0 12.7
Rebalance (Feldman et al., 2015) 51.7 67.5 74.4 5.57
OxonFair (Accuracy) 37.5 60.8 77.7 2.10
OxonFair (F1) 52.8 68.5 69.2 11.9
OxonFair (Balanced Accuracy) 52.7 68.5 68.5 0.41

Table 18: Jigsaw dataset: Race (w groups: Black, Asian).
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G. Comparison Table Information
In this section, we provide further details on the information from Figure 7. While all approaches have many fairness
definitions that can be computed, very few can be enforced via bias mitigation. As a minimum, OxonFair supports enforcing
the methods from tables 5 and 6 (eliminating duplicates give the number 14 in the table). In addition to this, it supports a
wide range of metrics that aren’t used in the literature, for example minimizing the difference in balanced accuracy, F1 or
MCC between groups, e.g., by using balanced accuracy.diff as a constraint. It also supports the definitions set
out in Appendix C, including minimax notions; absolute bias amplification; and enforcing for minimum rates per group in
recall, or precision, or sensitivity actively promoting levelling-up (Mittelstadt et al., 2023).

G.1. FairLearn Methods Support

Fairlearn provides an overview of the supported bias mitigation algorithms and supported fairness constraints in their
documentation7. The number of performance and fairness objectives supported are dependent on the method.

Methods supported include ExponentiatedGradient and GridSearch that provide a wrapper around the reductions approach to
fair classification of Agarwal et al. (Agarwal et al., 2018). Supported fairness definitions for classification are Demographic-
Parity, Equalized Odds, True Positive Rate Parity, False Positive Rate Parity and Error Rate Parity. For postprocessing the
ThresholdOptimizer approach of Hardt et al. (Hardt et al., 2016) is supported. The adversarial approach of (Zhang et al.,
2018) is also supported and can enforce fairness based on Demographic Parity and Equalized Odds. The CorrelationRemover
method provides preprocessing functionality to remove correlation between sensitive features and non-sensitive features
through linear transformations. It should be emphasized that Fairlearn also provides an interface for defining custom
Moments for fairness and objective optimization, however, as of the current version 0.10 no documentation or examples are
provided for doing so.

G.2. AIF360 Methods Support

AIF360 provides support for a wide variety of methods89 that enforce fairness, many of which overlap with Fairlearn. We
consider group fairness approaches.

Preprocessing algorithms include DispirateImpactRemover (Feldman et al., 2015), LFR (Zemel et al., 2013), Optimized
Pre-processing (Calmon et al., 2017), Reweighting (Kamiran & Calders, 2012) and FairAdapt (Plečko & Meinshausen, 2020).
Inprocessing algorithms include AdversarialDebiasing (Zhang et al., 2018), PrejudiceRemover (Kamishima et al., 2012),
Exponentiated GradientReduction and GridSearchReduction (Agarwal et al., 2018). Postprocessing approaches include
CalibratedEqOddsPostprocessing (Pleiss et al., 2017), EqOddsPostprocessing (Hardt et al., 2016), RejectOptionClassification
(Kamiran & Calders, 2012).

H. Bias Mitegation Stratagies
Pre-processing algorithms improve fairness by altering the dataset in an attempt to remove biases such as disparate impact
(Feldman et al., 2015) before learning a model itself. Popular pre-processing approaches include simply re-weighting
samples in the training data to enhance fairness (Kamiran & Calders, 2012), optimizing this process by learning probabilistic
transformations (Calmon et al., 2017), or by generating synthetic data (Chakraborty et al., 2021; Ramaswamy et al., 2021;
Zmigrod et al., 2019).

In-processing / In-training methods mitigate bias by adjusting the training procedure. Augmenting the loss with fair
regularizers (Zafar et al., 2017; Lohaus et al., 2020) is common for logistic regression and neural networks. (Agarwal
et al., 2018) iteratively alters the cost for different datapoints to enforce fairness on the train set. Approaches based on
adversarial training typically learn an embedding that reduces an adversary’s ability to recover protected groups whilst
maximizing predictive performance (Zhang et al., 2018; Madras et al., 2018; Zhao et al., 2019; Kim et al., 2019). Other
popular approaches include Disentanglement (Tartaglione et al., 2021; Sarhan et al., 2020), Domain Generalization (Sagawa
et al., 2019; Cha et al., 2021; Foret et al., 2020), Domain-independence (Wang et al., 2020) and simple approaches such

7https://FairLearn.org/main/user_guide/mitigation/index.html
8https://aif360.readthedocs.io/en/stable/modules/algorithms.html
9https://aif360.readthedocs.io/en/stable/modules/sklearn.html
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as up-sampling or reweighing minority groups during training. Notably, in the case of high-capacity models in medical
computer-vision tasks, a recent benchmark paper by Zong et al. (Zong et al., 2023) discovered that state-of-the-art in-
processing methods do not significantly improve outcomes over training without considering fairness at all. A comprehensive
benchmark study of in-processing methods in domains outside of healthcare is provided by Han et al. (Han et al., 2024).

Post-processing methods aim to enforce fairness by using thresholds or randomization to adjust the predictions of a
trained model based on the protected attributes (Hardt et al., 2016; Pleiss et al., 2017). Post-processing methods are typically
model-agnostic and can be applied to any model that returns confidence scores.

I. Limitations and Broader Impact
Limitations: We have chosen to optimize as broad a set of formulations as possible. As a result, for certain metrics
(particularly equalized odds (Hardt et al., 2016)) the solutions found are known to be suboptimal; and for others (Corbett-
Davies et al., 2017) the exponential search is unneeded. Techniques targeting particular formulations may be needed to
address this. A major driver of unfairness is a lack of data regarding particular groups. However, this very absence of data
makes it hard for any toolkit to detect or rectify unfairness.

Broader Impact: We reiterate the findings of Balayn et al., who note that fairness toolkits can act as a double-edged sword
(Balayn et al., 2023). Open source toolkits can enable wider adoption of the assessment and mitigation of bias and fairness
related harms. However, if misused, these toolkits can create a flawed certification of algorithmic fairness, endangering
false confidence in flawed methodologies (Lee & Singh, 2021; Watkins et al., 2022). We join growing calls in encouraging
practitioners to be reflective in their use of fairness toolkits (Bakalar et al., 2021). Specifically, we urge practitioners to
adopt a harms first approach to fairness and be reflective in their measurement and enforcement of fairness.

OxonFair is a tool for altering the decisions made by ML systems that are frequently trained on biased data. Care must be
taken that fair ML is used as a final step after correcting for bias and errors in data collation, and not as a sticking plaster to
mask problems (Balayn et al., 2023). Indeed, inappropriate uses of fairness can lock in biases present in training (Wachter
et al., 2020). Under the hood, OxonFair performs a form of positive discrimination, where we alter scores in response to
(perceived) protected characteristics to rectify particular inequalities. As such, there are many scenarios where its use may
be inappropriate for legal or ethical reasons.
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