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Abstract

We propose a simple estimator based on com-
posite likelihoods for parameter learning in
random field models. The estimator can be
applied to all discrete graphical models such
as Markov random fields and conditional ran-
dom fields, including ones with higher-order
energies. It is computationally efficient be-
cause it requires only inference over tree-
structured subgraphs of the original graph,
and it is consistent, that is, it asymptoti-
cally gives the optimal parameter estimate
in the model class. We verify these concep-
tual advantages in synthetic experiments and
demonstrate the difficulties encountered by
popular alternative estimation approaches.

1. Introduction

Conditional random fields (CRF) (Lafferty et al., 2001;
Sutton & McCallum, 2007a) are among the most pop-
ular statistical models in computer vision. Given an
observation x, a CRF specifies a conditional distribu-
tion p(y|x) over y ∈ Y, where the domain Y is usually
a finite but very large set, such as the set of all pos-
sible binary image labelings. These models have been
applied to a variety of vision tasks, such as image seg-
mentation, scene understanding, and image denoising.

CRFs are typically parameterized by some weight vec-
tor w ∈ Rd, for example to specify the pairwise inter-
actions. The parameterized distribution p(y|x,w) is
most commonly given in terms of an energy function,

p(y|x,w) =
1

Z(x,w)
exp(−E(x,y,w)), (1)

where Z(x,w) =
∑

y∈Y exp(−E(x,y,w)) is the par-
tition function that normalizes the distribution.

While early users have set these parameters man-
ually, much recent research has been devoted to
learn these parameters from annotated training data
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Figure 1. Simplified and schematic visualization of the es-
timation tradeoffs in random field models: exact maxi-
mum likelihood MLE(exact) is statistically efficient but
intractable. Maximum likelihood estimators based on
approximate inference such as naive mean field (NMF),
structured mean field (SMF), or loopy belief propaga-
tion (LBP)—shown as MLE(NMF), MLE(SMF), and
MLE(LBP)—are inconsistent, as is piecewise training.
Stochastic approaches yield families of estimators (CD,
MCMC-based, shaded blue) that can be consistent. Com-
posite likelihoods (MCLE, shaded green), as advocated in
this paper, are deterministic and combine favorable prop-
erties.

{(xn,yn)}n=1,...,N . In this paper we introduce two
novel approximations for parameter learning; one for
pairwise grid-structured graphs commonly encoun-
tered in computer vision problems, and one for general
unstructured graphs. Our proposed methods are spe-
cial cases of the general composite likelihood (Lindsay,
1988). They are simple to implement, computationally
efficient, and provide accurate parameter estimates.
Moreover, our method is the first to provide a compos-
ite likelihood for general unstructured input graphs.
We place our method in a wider context by relating it
to other popularly used methods, shown in Figure 1.
In particular, we expose some of the deficits of learning
approaches based on approximate inference.
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2. Parameter Estimation

In principle, the energy function E : X ×Y ×Rd → R
can be arbitrary, but to encode independence assump-
tions and to remain computable it is chosen such that
it additively decomposes over small subsets of all vari-
ables y, i.e.,

E(x,y,w) =
∑
F∈F

EF (x, yF ,w), (2)

where yF is the subset of variables associated to the
energy function EF and we have a set F indexing
these functions. This decomposition can be repre-
sented graphically by means of factor graphs (Kschis-
chang et al., 2001; Koller & Friedman, 2009). For-
mally a factor graph is given as G = (V,F , E) with a
set V of variable nodes (drawn “©”), a set F of fac-
tor nodes (drawn “�”), and a set E ⊆ V × F of edges
connecting variable and factor nodes. If we denote by
N(F ) = {i ∈ V : (i, F ) ∈ E} the set of variables adja-
cent to a factor F , the so called scope of F , and write
yF := yN(F ), we can directly read the energy func-
tion (2) from the graph (Nowozin & Lampert, 2011).

Approximate inference. In general, computing
Z(x,w) for model (1) is intractable, as is comput-
ing expectations Ey∼p(y|x,w)[·]. While intractable to
compute exactly, they can be approximated using ap-
proximate inference methods. Throughout this pa-
per we use three popular approximate inference meth-
ods: naive mean field (NMF) (Wainwright & Jordan,
2008), structured mean field (SMF) (Bouchard-Côté
& Jordan, 2009; Saul & Jordan, 1995), and loopy
belief propagation (LBP) (Kschischang et al., 2001).
Each method provides an approximate log-partition
function and approximate marginal distributions for
each factor, but the approximation quality can vary
largely for different instances. NMF and SMF pro-
vide a lower bound Z̃(x,w) ≤ Z(x,w) and realizable
marginal distributions by finding a similar distribution
within a tractable set of distributions; LBP is based
on the Bethe free energy approximation of the distri-
bution (Wainwright & Jordan, 2008).

2.1. Maximum Likelihood

For models of the form (1) we can use maximum likeli-
hood estimation (MLE) to find an estimate of w from
training data. Formally, this can be posed as finding
the maximum aposteriori estimate of the posterior dis-
tribution p(w|{(xn, yn)}n=1,...,N ), given a prior p(w)
on the parameters. This objective—the regularized
likelihood—is defined as follows.

Definition 1 (Maximum Likelihood Estimation)
Given a family of model distributions p(y|x,w)

parametrized by w ∈ Rd, a prior distribution p(w),
and a set of iid fully-observed training samples
{(xn,yn)}n=1,...,N , solve

w∗ = argmax
w∈Rd

φ(w), (3)

φ(w) = log p(w) +

N∑
n=1

log p(yn|xn,w) (4)

= log p(w)−
N∑

n=1

[
E(yn,xn,w) + logZ(xn,w)

]
.

Numerical maximization of φ(w) requires the gradient
in w. The gradient ∇wφ(w) is given by the difference
of energy gradients between the model expectation and
sample expectation, yielding the expression (Koller &
Friedman, 2009)

∇wφ(w) =∇w log p(w)−
N∑

n=1

(
∇wE(yn,xn,w)−

Ey∼p(y|xn,w) [∇wE(y,xn,w)]
)
.

(5)

Consistency. Under technical assumptions (White,
1982) that can be easily satisfied1, the MLE (3) ap-
plied to our discrete models is consistent in the sense
defined by (White, 1982), that is, for almost every se-
quence of samples (xn,yn) from the true distribution,
we have w∗N → ŵ, where w∗N is the estimate obtained
by (3) from all samples up to and including the N ’th
sample, and ŵ is the parameter vector that minimizes
the Kullback-Leibler divergence (Koller & Friedman,
2009) DKL(q(y|x)‖p(y|x,w)) to the true distribution
q(y|x). As the Kullback-Leibler divergence is a natu-
ral divergence measure between distributions, this in-
tuitively means that a consistent estimator eventually
recovers the “best possible” fit to the true distribu-
tion. Inconsistent estimators. If an estimator is
not consistent it is said to be inconsistent. For such
estimators, using more and more training data will not
guarantee a better parameter estimate.

Does consistency matter? In the end, we care
about a high accuracy on unseen test data. A method
that is inconsistent but provides good estimates from
few samples can be preferable over a method that is
consistent but statistically inefficient, i.e. needing a
large number of samples to produce reasonable esti-
mates. That said, consistency is a desired property of

1For the models we consider the only condition that
can be violated is the identifiability condition that ensures
uniqueness of w∗.
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an estimator and the decision to drop it in favor of
something else should be based on empirical evidence.

2.2. Existing Methods and Literature Review

Unfortunately solving (3) is not tractable for all but
the simplest models. Hence we now discuss some of the
many available methods to solve (3) approximately.

Inference-based Likelihood Approximations.
Arguably the most popular method to maximize (4)
is to use the exact likelihood gradient expression (5)
but to approximate Z(xn,w) and the expectation
Ey∼p(y|xn,w)[·] using an approximate inference method
such as loopy belief propagation. Many approximate
inference methods with different tradeoffs exist (Wain-
wright & Jordan, 2008; Koller & Friedman, 2009) but
the effect of approximate inference when used for ap-
proximate parameter estimation is less clear.

The true log-likelihood function (4) is differentiable
and if EF is a linear function in w, then (4) is a concave
function in w (Koller & Friedman, 2009). When using
approximate inference to compute the log-likelihood,
the function is no longer guaranteed to be concave;
it might have multiple modes and can be unbounded.
Worse still, the gradient obtained from approximate
marginals might not be the gradient of any differen-
tiable function, preventing the principled use of line
searches and quasi-Newton optimization methods for
optimizing (4). This makes the optimization practi-
cally challenging, but even if an approximate maxi-
mum likelihood estimator is obtained heuristically it
is typically inconsistent. In Section 3 we will demon-
strate all these artifacts on a small toy experiment.

Piecewise training. The idea of piecewise train-
ing (Sutton & McCallum, 2005) is to decompose the
model into tractable subgraphs, learning the weights
for each part separately. This ignores interactions be-
tween parts during learning but is popular in com-
puter vision, such as when a discriminative classifier
is used to learn unary potentials separately (Shotton
et al., 2007). The simplicity has motivated extensions
to the approach; in (Sutton & McCallum, 2007b) the
approach has been made more efficient by using con-
ditioned factors, similar to the pseudolikelihood. Ala-
hari et al. (2010) extend the piecewise training idea to
max-margin training. Piecewise training is simple to
implement and can be effective in practice; in general,
however, piecewise training approaches are inconsis-
tent (Sutton & McCallum, 2005). The spanning tree
approximation of Pletscher et al. (2009) and surrogate
likelihoods (Wainwright & Jordan, 2008) are also re-
lated to piecewise training.

Other objectives and methods. There exist a
number of interesting alternative estimation meth-
ods some of which yield consistent estimators. Score
matching (Hyvärinen, 2005) provides an alternative
tractable objective function to estimate undirected
models. For fully observed estimation the older
method of MCMC-MLE (Descombes et al., 1999)
combines the computational efficiency of deterministic
maximization of an objective function with the asymp-
totic consistency of a sampling-based method. For
partially observed data, contrastive divergence estima-
tors (Hinton, 2002; Carreira-Perpiñán & Hinton, 2005;
He et al., 2004) have become popular recently and at-
tempts to generalize them have been made in the form
of contrastive objectives (Vickrey et al., 2010).

As our methods are based on them, we discuss
pseudo- and composite-likelihoods (Besag, 1977; Lind-
say, 1988) separately and in more detail in Section 4.

2.3. Test-time Prediction

Once an approximation of p(y|x,w) has been obtained
we apply statistical decision theory to solve the struc-
tured prediction task: given a sample x and a struc-
tured loss ∆ : Y × Y → R+, predict f(x) ∈ Y such
that the expected loss Ey∼p(y|x,w)[∆(y, f(x))] is min-
imized. Depending on the structured loss ∆ the pre-
diction function f : X → Y differs; for example, the
0/1-loss ∆(y,y′) = I(y 6= y′) makes the MAP pre-
diction f(x) = argmaxy∈Y p(y|x,w) statistically op-
timal2; the Hamming loss ∆(y,y′) =

∑
i∈V I(yi 6= y′i)

makes the maximum posterior marginal (MPM) pre-
diction rule f(x) = [argmaxyi∈Yi

p(yi|x,w)]i∈V statis-
tically optimal.

In practice the issue of structured prediction in prob-
abilistic models is often ignored and MAP inference
is used without recognizing the implicit assumption of
a 0/1-loss. However, typically the model is misspec-
ified (White, 1982) and the best likelihood-based pa-
rameter estimate in the model class does not yield the
best possible decisions as measured by a more general
loss function (Pletscher et al., 2011). In this case as
shown by Domke (2013) and Pletscher et al. (2011) a
risk minimization approach based on the loss function
of interest yields better predictive performance for the
same class of energy functions.

Structured SVM. An alternative learning ap-
proach is empirical risk minimization in the form of the
structured SVM (Tsochantaridis et al., 2005), recently
popular in computer vision. While having distinct ad-
vantages in terms of tractability, one disadvantage is

2I(pred) = 1 if pred is true, 0 otherwise.
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that there is no known method for risk minimization
in random fields that is consistent – that is, eventually
achieving the best possible generalization error with
respect to the structured loss. In particular, the struc-
tured SVM is known to be inconsistent (McAllester,
2007). This is in contrast to likelihood-based param-
eter estimation, where a large number of consistent
methods are available.

3. A Simple Experiment

To understand the different approximations to the like-
lihood function, we conduct the following simple ex-
periment.

We define a simple pairwise

Figure 3. Grid graph.

d-by-d grid model as shown
for d = 3 in Figure 3. All
variables take one of three
states, Yi = {1, 2, 3} and the
pairwise factors connecting
them are the same through-
out the model. The energies
EF (yi, yj) are defined by the
symmetric table  0 a b

a 0 a
b a 0

 ,
where a = 0.5 and b = 0.7 are fixed constants. The
resulting model is homogeneous without unary inter-
actions and moreover the pairwise interactions are sub-
modular.

We obtain a fixed number ofN samples from the model
distribution and use different estimation methods to
recover the parameters (a, b). Because the objective
function is a function of only two arguments—a and
b—we can visualize it. For maximum likelihood esti-
mation based on exact and approximate inference we
visualize the negative log-likelihood functions in Fig-
ure 2.

As can be seen from the results, using approximate in-
ference methods to obtain an approximate value and
gradient of the log-likelihood function is causing prob-
lems even on this small example with two parameters.
For one, it most often yields inconsistent estimators:
even with more and more training data we can not
recover ŵ. But it also makes optimization more chal-
lenging, namely, i) quasi-Newton methods such as L-
BFGS break down in light of discontinuous gradients
(NMF, SMF), ii) most line search methods rely on the
assumption that the gradient and function values agree
with each other, but this may no longer be the case,
iii) in simple gradient methods the step size selection

is harder to tune for non-convex problems (BP), and
iv) being non-convex, only a local maximizer can be
guaranteed.

4. Structural Likelihood
Approximations

In light of the findings of the previous section, we take
a step back and ask what properties we would like
an ideal estimator to have. These are, 1. Consis-
tency : asymptotic (in N) convergence to the best pos-
sible estimate, 2. Computational efficiency : efficiently
computable, 3. Statistical efficiency : when consistent,
having asymptotically the best possible rate of conver-
gence, 4. Determinism: reproducible and determinis-
tically computable.

Unfortunately, for general discrete graphical models
no estimator satisfying all these properties can ex-
ist (Koller & Friedman, 2009). Therefore, to obtain a
computable estimator we need to give up one or mul-
tiple of these desirable properties. In the following
section we show that by giving up statistical efficiency
we can obtain a practical estimator, in the form of
composite likelihoods, that satisfies the other require-
ments.

4.1. Composite Likelihoods

Composite likelihoods (Lindsay, 1988; Dillon &
Lebanon, 2009) are a family of estimation methods
which we define as follows.

Definition 2 (Composite Likelihood) Given a
set {(Aj , Bj)}j=1,...,k of m-pairs (Aj , Bj) satisfying
Aj , Bj ⊆ V , Aj ∩Bj = ∅, Aj 6= ∅ with weights βj > 0,
the composite likelihood of a fully observed dataset
D = {(x(n),y(n))}n=1,...,N is

c`(w;D) =

N∑
n=1

k∑
j=1

βj log p(y
(n)
Aj
|y(n)Bj

,x(n),w). (6)

The definition depends on “m-pairs”: pairs of disjoint
subsets of V . If these are chosen such that they de-
fine conditional distributions within the model and
Aj contains all variables at least once, then it can
be shown (Dillon & Lebanon, 2009) that maximiz-
ing (6) yields a consistent estimator. Note that when
we choose Aj = {j}, Bj = V \ {j}, βj = 1, we ob-
tain the pseudolikelihood (Besag, 1977) as a special
case. Likewise, for A1 = V , B1 = ∅ we obtain the
exact likelihood. The composite likelihood family is
therefore very general and also includes the inconsis-
tent piecewise training objectives.
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Figure 2. The drawbacks of inference-based likelihood approximations: the leftmost plot shows the true negative log-
likelihood function for 100 samples on a 3-by-3 grid graph. The x/y-axis are the a and b parameter, respectively. The
true parameters are marked by × in each plot, the (local) maximizer by ◦. The three following plots show the approxima-
tions provided by three different approximate inference methods: naive mean field (NMF), structured mean field (SMF),
and sum-product belief propagation (BP). The plots are obtained numerically by evaluation on a 20-by-20 uniformly spaced
mesh. Note that the true negative log-likelihood is convex; this is not the case for the naive mean field approximation which
has a discontinuity arising from multimodality of the mean field objective. Here the structured mean field approximation
yields an (almost) convex function but this is not the case in general. The belief propagation approximation is not convex
but provides a good estimator locally.

Previous works using composite likelihood.
Composite likelihoods have been introduced by Lind-
say (Lindsay, 1988) as a generalization of the pseudo-
likelihood (Besag, 1977). While popular in the statis-
tics community (Varin et al., 2010), they have recently
been used in machine learning (Liang & Jordan, 2008;
Dillon & Lebanon, 2009; Asuncion et al., 2010). In par-
ticular, a stochastic version of (6) has been proposed
by (Dillon & Lebanon, 2009), and a connection to con-
trastive divergence has been pointed out in (Asuncion
et al., 2010).

We now propose two novel composite likelihoods, one
applicable to grid graphs, and the other to general
factor graphs.

4.2. Criss-cross Likelihood (MXXLE)

The first estimator we propose—named “criss-cross
likelihood” (MXXLE)—is applicable to grid graphs
with 4-neighborhood connectivity, as commonly used
in computer vision. As shown in Figure 4 and 5 we
propose to set Aj corresponding to horizontal and ver-
tical chain-structured subgraphs of the original graph
and Bj = V \ Aj , βj = 1. For a w-×-h graph we
therefore have w + h subgraphs, each being chain-
structured. According to the previous requirements,
maximizing (6) for this choice yields a consistent esti-
mator. Moreover, to compute (6) and its gradient we
only require inference over chains, which is tractable.

4.3. General factor graphs (MCLE)

For general factor graphs that do not follow a grid
structure or contain higher-order interactions the
above construction does not work. Instead we propose
to construct composite likelihood objectives using so
called “very acyclic” (v-acyclic) decompositions of the
graph. The v-acyclic property has originally been pro-
posed for structured mean field inference (Bouchard-
Côté & Jordan, 2009). In essence, a v-acyclic decom-
position is a set of subgraphs that contain blockwise
conditionally independent variables. In (Bouchard-
Côté & Jordan, 2009) the authors assumed a good
v-acyclic decomposition is known and thus provided
no algorithm to obtain a decomposition for a given
graph.

To derive our proposed estimator we first need to ex-
tend the definition of v-acyclicity to higher-order fac-
tor graphs. In (Bouchard-Côté & Jordan, 2009) only
pairwise interactions have been considered and the ex-
tension to the higher-order case was left ambiguous as
there are multiple notions of acyclicity in hypergraphs.

Definition 3 (v-acyclic subgraph) Given a factor
graph G = (V,F , E), a factor graph G′ = (V,F ′, E ′) is
called a v-acyclic subgraph of G, written G′ ⊆vac G,
if,

1. F ′ ⊆ F , E ′ = (V ×F ′) ∩ E, and

2. G′ is acyclic (as an undirected graph), and



Constructing Composite Likelihoods

Figure 4. 3-by-3 grid-structured conditional ran-
dom field with two factor types: unary observa-
tion factors and data-independent pairwise fac-
tors. For large grid graphs computing the likeli-
hood function is intractable.

Figure 5. Crisscross likelihood approximation with six chain-
structured subgraphs: three vertical and three horizontal chains.
Factors and variable nodes drawn as dotted lines are not part of the
component. Variable nodes that become shaded are instantiated
with the observed ground truth.
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Figure 6. Both the exact and the approximate likelihood functions are convex and differentiable. From left to right: ex-
act negative log-likelihood, pseudolikelihood (MPLE), v-acyclic composite likelihood (MCLE), and criss-cross likelihood
(MXXLE).

3. in F ′ at least two factors have been removed from
each cycle in G.

The first two properties merely state that G′ is an
acyclic subgraph of G. The last property is visualized
in Figure 7. Assume we have somehow obtained a v-

Figure 7. Two decompositions: the left decomposition is
not v-acyclic because only one factor has been removed
from the 4-cycle. The right decomposition is v-acyclic.

acyclic subgraph for a given input graph. Then we can
use the connected components within this subgraph to
define a composite likelihood: let Aj be the set of ver-

tices contained in the j’th component and Bj = V \Aj .
Set βj = 1. By constructing the components from the
v-acyclic subgraph we automatically satisfy the condi-
tional distribution assumption and therefore our com-
posite likelihood produces a consistent estimator. The
larger the components Aj , the more interactions be-
tween variables in p(y) are retained, leading to a more
informative composite likelihood (6). We now formal-
ize the problem of how to obtain a v-acyclic subgraph
with large components and then propose a greedy al-
gorithm.

Problem 1 (Maximum v-acyclic subgraph)
Given a factor graph G = (V,F , E) and a weighting
function v : F → R, find

G∗vac = argmax
G′⊆vacG

∑
F∈F

JF ∈ F ′Kv(F ),

where J·K is one if its argument is true, zero otherwise.

The above problem has a straightforward intuitive
meaning: find a v-acyclic subgraph that retains as
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many factors as possible, as measured by the weighting
function.

We tried three different algorithms to solve practical
instances of the maximum v-acyclic subgraph problem;
in the end we found the following simple greedy algo-
rithm is competitive: 1. start with an empty subgraph
(no factors) and order all factors by their weights in
decreasing order, 2. iteratively select the factor with
the largest weight and check whether adding it would
violate v-acyclicity; if it does, discard the factor. If it
does not, add the factor. Figure 8 shows a decompo-
sition obtained by this algorithm on a real instance.

Figure 8. The superpixel segmentation of the image is used
to define a pairwise graphical model, whose edges are
shown in white (left). A v-acyclic decomposition of this
graph, obtained by our algorithm, is shown (right). We use
it to define the tractable and consistent composite likeli-
hood approximation. Note that here the absence of an
edge in the decomposition does not mean the interaction is
ignored but that it is approximated. This is in contrast to
popular piecewise training approaches (Sutton & McCal-
lum, 2005; Pletscher et al., 2009; Alahari et al., 2010).

When learning the parameters of a model we do not
know reasonable weights v(F ) to assign to each fac-
tor. In that case we simply retain as many factors as
possible by setting all weights to one.

We now evaluate our two proposed estimators MXXLE
for grid graphs and MCLE for general graphs.

5. Experiments and Results

We first revisit the simple experiment we used earlier.
As a second experiment we use a more difficult syn-
thetic task.

5.1. Revisiting the Simple Experiment

The experiment of Section 3 showed that good approx-
imate inference does not automatically lead to good
approximate estimators. Figure 6 shows the results of
pseudolikelihood, our v-acyclic composite likelihood,
and the criss-cross likelihood evaluated on the same
experiment.

On this small experiment all three estimators do not
exhibit the problems encountered earlier. In particu-
lar, the approximate negative log-likelihood functions
are continuous, differentiable, and convex, and the es-
timated parameter vector is accurate.

5.2. Synthetic Estimation Efficiency
Experiment

To understand the estimation accuracy of our pro-
posed estimator we perform the following experiment
on synthetic data. We create a 5-by-5 synthetic
grid graph with 4-neighborhood connectivity. Each
variable takes one of three states {1, 2, 3} and there
are no unary energy terms. The pairwise energies
Ei,j(yi, yj) = wi,j(yi, yj) = wi,j(yj , yi) are specific to
each edge and symmetric; we sample wi,j(yi, yj) ∼
N (0, 1/6), but set wi,j(1, 1) = 0 to ensure the param-
eters are identifiable. For this fixed model, we obtain
a set of N samples from the model using careful Gibbs
sampling.3 From the sample set we attempt to recover
the generating parameters ŵ.
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Figure 9. Estimation accuracy ‖w∗
n − ŵ‖/‖ŵ‖ of different

estimators for a synthetic grid graph with random inter-
actions. The sample count ranges from 50 to 5000 and
the plots show the average and standard deviation of 10
replications for the same model.
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Figure 10. Estimator runtime to achieve an objective func-
tion gradient norm of 10−6 or smaller.

Figure 9 and 10 show the estimation accuracy and

3We use a single-site random sweep Gibbs sampler with
5000 burn-in sweeps and an inter-sample spacing of 100
sweeps.
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runtime of our proposed MCLE and MXXLE estima-
tors versus two popularly used estimators: pseudo-
likelihood (MPLE) (Besag, 1977) and naive piece-
wise (NPW) (Sutton & McCallum, 2005) estimators.
The differences between MCLE and MXXLE are very
small, but both estimators show a clear improvement
in the accuracy of recovering ŵ over the MPLE and
NPW estimators. The MPLE estimator has a high
variance. Regarding runtime MPLE is the fastest,
MCLE requires about the same time as the piecewise
estimator, and MXXLE is twice as expensive again.

6. Conclusion

We introduced a new method to construct compos-
ite likelihood estimators for general discrete graphical
models. Our method is simple and deterministic and
it combines favorable properties such as consistency
and convexity.

There are two limitations of the proposed method: it
does not apply to densely connected models, or to la-
tent variable models. In densely connected models the
proposed v-acyclic decomposition will eventually de-
generate to the pseudo-likelihood approximation be-
cause there exist no v-acyclic decompositions except
for the trivial one of removing all pairwise and higher-
order factors. For latent variable models where we
learn from partially observed instances the likelihood
approximations no longer work; it is unclear whether
composite likelihoods can be extended to this case, and
what properties would continue to hold. For a recent
discussion, see (Varin et al., 2010).

As models for many high-level computer vision tasks
become more sophisticated and data-driven we believe
that progress in parameter estimation is essential for
these rich models to be successful. While there is no
shortage of published estimation methods, to the best
of our knowledge there are only very limited compar-
ative studies examining their effectiveness.

The proposed estimators are available in the grante
library at http://www.nowozin.net/sebastian/

grante/. The library also includes a more recent
exact solver for the maximum v-acyclic subgraph
problem.
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