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Abstract
Current methodologies for incremental object detection
(IOD) primarily rely on Faster R-CNN or DETR series de-
tectors; however, these approaches do not accommodate the
real-time YOLO detection frameworks. In this paper, we first
identify three primary types of knowledge conflicts that con-
tribute to catastrophic forgetting in YOLO-based incremen-
tal detectors: foreground-background confusion, parameter
interference, and misaligned knowledge distillation. Subse-
quently, we introduce YOLO-IOD, a real-time Incremen-
tal Object Detection (IOD) framework that is constructed
upon the pretrained YOLO-World model, facilitating incre-
mental learning via a stage-wise parameter-efficient fine-
tuning process. Specifically, YOLO-IOD encompasses three
principal components: 1) Conflict-Aware Pseudo-Label Re-
finement (CPR), which mitigates the foreground-background
confusion by leveraging the confidence levels of pseudo la-
bels and identifying potential objects relevant to future tasks.
2) Importance-based Kernel Selection (IKS), which identi-
fies and updates the pivotal convolution kernels pertinent
to the current task during the current learning stage. 3)
Cross-Stage Asymmetric Knowledge Distillation (CAKD),
which addresses the misaligned knowledge distillation con-
flict by transmitting the features of the student target detec-
tor through the detection heads of both the previous and cur-
rent teacher detectors, thereby facilitating asymmetric distil-
lation between existing and newly introduced categories. We
further introduce LoCo COCO, a more realistic benchmark
that eliminates data leakage across stages. Experiments on
both conventional and LoCo COCO benchmarks show that
YOLO-IOD achieves superior performance with minimal for-
getting. Code: https://github.com/qiangzai-lv/YOLO-IOD.

Introduction
The goal of Incremental Object Detection (IOD) is to con-
sistently acquire new object classes over learning of succes-
sive tasks, while retaining the knowledge of those learned
in the past. While recent works (Mo et al. 2024; Liu et al.
2023) have made significant progress in IOD, most existing
methods are built upon detectors such as Faster R-CNN (Ren
et al. 2015) or DETR (Carion et al. 2020). When these de-
veloped methods are applied to real-time YOLO series de-
tectors (Redmon et al. 2016), they usually suffer significant
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Figure 1: Illustration of the three major knowledge conflicts:
(a) Foreground-background confusion, (b) Parameter inter-
ference and (c) Misaligned knowledge distillation conflict.

drops in generalization performance and struggle to preserve
prior knowledge of previous classes, mainly due to knowl-
edge conflicts across tasks.

In this work, we firstly identify the underlying causes of
forgetting in YOLO-based incremental detectors as three
major types of knowledge conflicts as shown in Fig. 1: 1)
Foreground-background confusion, where unannotated ob-
jects of previous and future tasks are misclassified as back-
ground during training. This problem is critical for YOLO
detectors, which rely on aggressive data augmentation tech-
niques like Mosaic and MixUp that assume accurate anno-
tations. In IOD settings, noise from pseudo labels is ampli-
fied by these augmentations, compromising model perfor-
mance. 2) Parameter interference. This issue arises because
different tasks frequently depend on intersecting parameter
subsets within the model. Updates for new tasks can alter
these shared parameters, thereby potentially disrupting pre-
viously acquired representations and leading to catastrophic
forgetting of earlier tasks. 3) Misaligned knowledge distil-



lation conflict, where the teacher and student models are
optimized for mismatched class distributions, violating the
core assumption in standard knowledge distillation that both
models share consistent learning objectives. YOLO-series
detectors, known for making dense predictions across spa-
tial grids, are significantly affected by this problem.

To overcome above challenges, we propose YOLO-IOD,
a real-time IOD framework that builds upon the pre-trained
YOLO-World (Cheng et al. 2024) model and performs pa-
rameter efficient fine-tuning during each incremental learn-
ing stage. YOLO-IOD comprises three main modules de-
signed to address the identified knowledge conflicts: 1)
Conflict-Aware Pseudo-Label Refinement (CPR), which al-
leviates foreground-background confusion by incorporat-
ing two strategies: Enhanced Pseudo-label Loss, which im-
proves the reliability of supervision from pseudo-labels by
weighting predictions based on their confidence and un-
certainty and Clustered Unknown Pseudo Labeling, which
identifies potential objects from future tasks via performing
open-vocabulary object detection and feature-space cluster-
ing. 2) Importance-based Kernel Selection (IKS), which mit-
igates parameter interference by selecting and fine-tuning
only important task-relevant convolution kernels based on
Fisher-based differential importance estimation. and 3)
Cross-Stage Asymmetric Knowledge Distillation (CAKD),
which resolves misaligned knowledge distillation conflict by
passing cross-stage student features through detection heads
of both old and current teacher detectors, enabling asymmet-
ric distillation across old and new categories.

Moreover, current IOD benchmarks are not tailored for
practical applications as they divide categories arbitrarily,
disregarding natural co-occurrence of classes, and permit
images to repeat across incremental stages. In practical sit-
uations, certain categories such as cars and pedestrians fre-
quently occur together, whereas others, like cars and boats,
do not. Images overlapping between stages must be strictly
prevented to avoid data leakage. This raises questions about
whether the performance observed on current benchmarks
can effectively translate to real-world applications, particu-
larly for recent IOD methods that depend on pseudo labels.
Therefore, we introduce LoCo COCO, a novel benchmark
designed to eliminate inter-stage image overlap and adhere
to category co-occurrence statistics, offering a more equi-
table and realistic evaluation benchmark for IOD.

Our contributions can be summarized as follows:

• We introduce YOLO-IOD, an integrated and real-time
IOD framework, and pinpoint three causes of forget-
ting: foreground-background confusion, parameter inter-
ference, and misaligned knowledge distillation conflict.

• YOLO-IOD incorporates three innovative modules
aimed at mitigating forgetting, with particular empha-
sis on the dual-teacher CAKD module. This module ad-
dresses the challenge of misaligned knowledge distilla-
tion by channeling the target student detector’s features
through the detection heads of both the former and cur-
rent teacher detectors.

• We introduce LoCo COCO, a practical benchmark de-
signed to remove image overlap between stages and con-

sider category co-occurrence, allowing for a more equi-
table assessment of incremental object detection.

• Extensive experiments on conventional COCO and LoCo
COCO benchmarks under multiple settings show that
our method consistently achieves state-of-the-art perfor-
mance while maintaining real-time inference speed.

Related Works
Incremental Learning
Incremental learning enables models to acquire new infor-
mation without forgetting prior knowledge (Schlimmer and
Granger Jr 1986; Li and Hoiem 2017). Approaches include
rehearsal-based methods, which replay or generate samples
from previous tasks (Rebuffi et al. 2017; Lopez-Paz and
Ranzato 2017; Shin et al. 2017); regularization-based meth-
ods, which constrain important parameters to maintain sta-
bility (Kirkpatrick et al. 2017; Luo et al. 2025; Yang et al.
2023; Wu et al. 2025); architecture-based methods, which
assign task-specific subnetworks (Von Oswald et al. 2019;
Rypeść et al. 2024); and knowledge distillation, which trans-
fers information from past tasks via teacher-student learn-
ing (Tao et al. 2020; Chen and Chang 2023; Asadi et al.
2023). Recently, continual learning with foundation mod-
els have also attracted many interests, including approaches
such as L2P (Wang et al. 2022) CODA-Prompt (Smith et al.
2023) and VPT-NSP2 (Lu et al. 2024).

Incremental Object Detection
Compared to classification, IOD involves more complex sce-
narios and greater challenges due to the requirement of both
localizing and classifying the objects. In IOD, distillation is
particularly effective due to the rich feature representations
and multi-level supervision signals available in detection
frameworks. ERD (Feng, Wang, and Yuan 2022) introduces
elastic response distillation that adaptively transfers knowl-
edge. BPF (Mo et al. 2024) bridges past-future knowledge
through dual teacher models, CL-DETR (Liu et al. 2023)
applies distillation within DETR architectures, emphasiz-
ing reliable predictions from old models. Nevertheless, these
methodologies tackle the issue of knowledge distillation by
selecting only those old task outputs that do not coincide
with new labels to serve as the distillation targets. This strat-
egy is unsuitable for YOLO-style dense predictions. More-
over, this approach can only distill partial knowledge from
teacher models, failing to fully resolve the underlying con-
flict. We propose CAKD which provides cross-stage asym-
metric knowledge distillation by suppressing the responses
of unrelated features with the detection heads.

Preliminaries and Benchmark
Problem Definition
In IOD, tasks arrive sequentially in an ordered sequence:
T = {T1, T2, . . . , Tt, . . . , Tn}. Each task Tt aims to learn
a specific set of object categories Ct, and Ci ∩ Cj =
∅, ∀i ̸= j. For each task Tt, a dataset is provided: Dt =
{(X i

t ,Yi
t)}

Nt
i=1, where X i

t denotes the i-th image and Yi
t is

its corresponding annotation. Importantly, the dataset Dt is



Figure 2: Overall architecture of YOLO-IOD. Our method integrates three components to address knowledge conflicts in
IOD: 1) Conflict-aware Pseudo-label Refinement (CPR); 2) Importance-based Kernel Selection (IKS); and 3) Cross-Stage
Asymmetric Knowledge Distillation (CAKD).

annotated only for categories in Ct. That is, objects belong-
ing to C1:t−1 ∪ Ct+1:n are not annotated, even if presented
in the image. During the training of task Tt, only Dt is ac-
cessible. The goal of IOD is to train an object detector Mt

at each stage, such that it can correctly detect objects from
both the current task’s classes Ct and all seen classes C1:t−1.

YOLO-World
Open-vocabulary object detection (OVOD) enables detec-
tors to recognize arbitrary categories guided by textual in-
put. Recent methods such as GLIP (Li et al. 2022), Ground-
ing DINO (Liu et al. 2024), and YOLO-World (Cheng et al.
2024) learn region-text alignment on large-scale vision-
language data. Our method builds upon the pre-trained
YOLO-World model. Images are processed by visual en-
coder fv and category texts by text encoder ft, with features
fused using RepVL-PAN: V,P = fRepVL(fv(I), ft(T ))
where V = {ek}Kk=1 are region-level visual embeddings
and P = {pj}Cj=1 are text prototypes. Classification scores
are computed as sk,j = η · ⟨Norm(ek),Norm(pj)⟩+ ζ.

LoCo COCO Benchmark
In prior IOD benchmark, each stage t typically selects all
images that contain objects of categories Ct from the full
dataset. Real-world images frequently contain objects from
various categories, meaning that a single image will be used
across several training stages. Based on the statistics, each
image appears in an average of 1.84 stages in the 20+20
4 stage setting. This overlap challenges the foundational
premise of continual learning and artificially inflates the ef-
fectiveness of pseudo-labeling methods by allowing detec-

tors to generate pseudo-labels on reused training images.
To address this issue, we introduce a new data partition-

ing protocol named as Low Co-occurrence COCO (LoCo
COCO). We first construct a category co-occurrence ma-
trix A ∈ RN×N , where Aij denotes the number of im-
ages in which categories ci and cj co-occur. This matrix
defines an undirected weighted graph G = (V, E), with
nodes for categories and edge weights given by Aij . We
then perform graph clustering on G to divide the category
set C = {c1, c2, . . . , cn} into n disjoint subsets for n stages.
This ensures that categories frequently co-occur are assigned
to the same task, minimizing inter-task image overlap. After
the above category partitioning, there still exists a portion of
overlap images that contain categories from multiple stages.
For each overlapping image I that spans multiple candidate
category sets, we randomly assign image I to one of the
candidate tasks. This strategy ensures that each image ap-
pears in only one stage, diminishing any data leakage across
stages. Our proposed LoCo COCO benchmark aligns better
with the real-world IOD scenario and eliminates the evalua-
tion bias in pseudo-labeling based IOD methods.

Method
Overall Framework
The proposed YOLO-IOD utilizes the pretrained YOLO-
World as its foundational model. As illustrated in Fig. 2,
YOLO-IOD performs incremental learning through stage-
wise partial fine-tuning, where parameter updates are guided
by importance-based kernel selection. The overall archi-
tecture consists of three components. In the upper-left
part, Conflict-aware Pseudo-label Refinement (CPR) gener-



ates high-quality old task supervision through an enhanced
pseudo-label loss to mitigate foreground-background con-
fusion from previous tasks, while addressing potential
foreground-background confusion on future tasks through
Clustered Unknown Pseudo Labeling. In the lower-left part
of Fig. 2, Importance-based Kernel Selection (IKS) deter-
mines which convolutional kernels to be updated at each
incremental stage, preserving critical knowledge from pre-
vious tasks while allowing partial fine-tuning to new cate-
gories. Finally, Cross-Stage Asymmetric Knowledge Distil-
lation (CAKD) implements two distinct knowledge distil-
lation losses. The first involves comparing the old detector
Mt−1 with the target detector Mt by feeding their respec-
tive dense features into the head of the old detector Mt−1.
The second involves comparing the current detector Mst
(the detector trained on current stage dataset Dt annotated
for categories Ct) with the target detector Mt by utilizing
the dense features within the current detector’s head.

Conflict-Aware Pseudo-Label Refinement
CPR comprises two components. The Enhanced Pseudo-
label Loss leverages confidence-aware supervision along
with entropy regularization for better use of pseudo-labels.
Meanwhile, Clustered Unknown Pseudo Labeling incorpo-
rates open-vocabulary object detection and feature cluster-
ing to offer consistent supervision for objects in future tasks
that are not annotated.

Enhanced Pseudo-label Loss. Traditional pseudo-
labeling methods in IOD rely on confidence thresholds to
select reliable pseudo labels, which introduces confidence-
based selection bias. This bias causes low-confidence cat-
egories to be gradually ignored during training. In addi-
tion, pseudo labels above the threshold are treated uniformly
without considering their actual reliability, resulting in in-
consistent supervision signals.

To address this, we propose an Enhanced Pseudo-label
Loss that treats the confidence score s of each pseudo la-
bel as a soft supervision target, integrating confidence-aware
weighting with entropy regularization:

Lcls
pseudo = −|s− pt|γ log(pt) + λ · (1− s)δ ·H(ŷ), (1)

where pt represents the predicted probability for the pseudo-
labeled class, and H(ŷ) denotes the entropy of the pre-
dicted category distribution. The first term achieves confi-
dence aligned supervision using a focal-style scheme, while
the second term applies adaptive entropy regularization that
scales inversely with confidence scores. This design takes
full advantage of pseudo labels across wide range of con-
fidence scores. Low-confidence pseudo labels provide soft
supervision and are further regularized by the second term
in Eq. (1), which retain uncertainty in the predictions, while
high-confidence labels contribute more stable supervision,
proportional to their reliability.

Clustered Unknown Pseudo Labeling. For the missing
annotations of future task categories, we propose Clustered
Unknown Pseudo Labeling method. We construct a General
Vocabulary Set Vgen comprising 500 common object cat-
egories and 50 abstract super-categories summarized by a
large language model. During each incremental stage, we

apply YOLO-World using Vgen to identify all foreground
objects excluding those with ground-truth annotations. Let
F denote the set of these unannotated foreground predic-
tions by YOLO-World, CF ⊆ Vgen represent the set of cat-
egory labels of F . To convert these predictions into stable
unknown supervision while minimizing conflicts with future
tasks, we perform frequency-weighted K-Means clustering
on the text feature representations ft(·) for CF , where the
weight of each category corresponds to its occurrence fre-
quency in F . The resulting cluster centroids define a set of
unknown super categories U = {u1, u2, . . . , uK}. We then
replace each label in F with its assigned super-category in
U , and substitute their text embeddings with the correspond-
ing cluster centroids during training. This approach trans-
forms the knowledge conflict arising from unannotated fu-
ture task categories into a process of discovering and learn-
ing new classes from the unknown super-categories.

Importance-based Kernel Selection
We utilize an importance based parameter selection mech-
anism to alleviate the parameter conflict in YOLO-IOD.
Specifically, we select and fine-tune only important convo-
lution kernels in each incremental task, minimizing interfer-
ence with the overall parameter distribution. To avoid dis-
rupting critical knowledge from previous tasks, we compute
differential importance by subtracting historical importance
from current task-specific importance.

Parameter Importance Estimation. We adopt Fisher In-
formation to quantify parameter importance but define it
at the granularity of convolution kernels to preserve induc-
tive structure and avoid prohibitive storage costs as tasks in-
crease. Given a convolution kernel wk = {wk

j }
dk
j=1 consist-

ing of dk scalar parameters, its Fisher-based importance can
be computed as :

It(w
k) =

dk∑
j=1

 1

Nt

Nt∑
n=1

(
∂ log p(yn | xn; θ)

∂wk
j

)2
 , (2)

where (xn, yn) are training samples from task Tt, and θ
denotes the model parameters. To avoid interference with
previously learned tasks, we compute the differential impor-
tance, where ρ denotes a weighting factor:

∆It(w
k) = It(w

k)− ρ

t−1∑
i=1

Ii(w
k). (3)

We then select the top-K kernels ranked by ∆It(w
k) for

fine-tuning in task Tt, while keeping the rest frozen.

Cross-Stage Asymmetric Knowledge Distillation
As illustrated in Fig. 2, our CAKD module employs a dual-
teacher framework, where the target detector Mt serves as
the student. The first teacher is the old detector Mt−1, which
is dedicated to the previously learned categories C1:t−1 and
primarily attends to the foreground features of C1:t−1, with
its head suppressing responses to unrelated features. The
second teacher is the current detector Mst , whose features
focus on the current stage classes while suppressing features



Setting Method References Baseline AP AP50 AP75 APS APM APL AbsGap RelGap

Upper
Bound

Joint Train NeurIPS 15 Faster R-CNN 40.2 61.6 43.5 23.5 43.9 52.2 - -
Joint Train ICLR 21 Deformable DETR 47.0 66.1 50.9 - - - - -
Joint Train CVPR 24 YOLO-World 54.5 71.3 59.7 37.2 60.1 70.1 - -
Joint Train CVPR 22 GLIP-T 55.2 - - - - - - -
Joint Train ECCV 24 Grounding Dino 57.2 - - - - - - -

40+40

BPF ECCV 24 Faster R-CNN 34.4 54.3 37.3 - - - 5.8 14.4%
RGR∗ CVPR 25 Faster R-CNN 35.6 56.0 38.2 - - - 4.6 11.4%

CL-DETR∗ CVPR 23 Deformable DETR 42.0 60.1 45.9 24.0 45.3 55.6 5.0 10.6%
DCA AAAI 25 Deformable DETR 42.8 58.4 - - - - 4.2 8.9%
SDDGR∗ CVPR 24 Deformable DETR 43.0 62.1 47.1 24.9 46.9 57.0 4.0 8.5%

TLR AAAI 24 GLIP-T 40.4 57.4 43.9 23.3 44.7 54.5 14.8 26.8%
GCD AAAI 25 Grounding Dino 45.7 62.9 49.7 28.4 49.3 60.0 11.5 20.1%
ERD CVPR 22 YOLO-Word(X) 49.9 67.0 54.7 33.5 54.8 64.8 4.6 8.4%
RGR∗ CVPR 25 YOLO-Word(X) 51.5 68.1 56.5 34.1 57.0 66.9 3.0 5.5%
YOLO-IOD Ours YOLO-Word(X) 53.0 69.7 58.1 36.1 58.6 67.0 1.5 2.7%

70+10

BPF ECCV 24 Faster R-CNN 36.2 56.8 38.9 - - - 4 9.9%
RGR∗ CVPR 25 Faster R-CNN 36.6 56.6 39.6 - - - 3.6 8.9%

CL-DETR∗ CVPR 23 Deformable DETR 40.4 58.0 43.9 23.8 43.6 53.5 6.6 14.0%
SDDGR∗ CVPR 24 Deformable DETR 40.9 59.5 44.8 23.9 44.7 54.0 6.1 13.0%
DCA AAAI 25 Deformable DETR 41.3 59.2 - - - - 5.7 12.1%

TLR AAAI 24 GLIP-T 42.9 59.2 45.2 24.3 45.1 54.1 12.3 22.2%
GCD AAAI 25 Grounding Dino 46.7 63.9 50.8 29.7 49.9 61.6 8.5 14.8%
ERD CVPR 22 YOLO-Word(X) 45.6 62.0 50.1 29.9 50.6 60.6 8.9 16.3%
RGR∗ CVPR 25 YOLO-Word(X) 49.1 64.9 53.5 31.2 54.1 64.8 5.4 9.9%
YOLO-IOD Ours YOLO-Word(X) 52.4 68.9 57.4 35.9 58.0 65.6 2.1 3.9%

Table 1: Comparison with methods in single step settings. Replay-based methods are marked with ∗. Results are from original
papers except those YOLO-World based methods which we reproduced using publicly available code. Best results in bold.

of other categories. This cross-stage asymmetric knowledge
distillation design enables the target detector Mt to avoid
misaligned supervision and feature interference between
tasks, while maximally distilling and integrating knowledge
across both old and new categories.

The distillation process operates by passing student neck
features Fneck

student to teachers’ detection heads, generating
cross stage post-head features. The detection head com-
prises classification and regression components: the regres-
sion head outputs bounding box positions for each anchor,
while the classification head produces image encodings sub-
jected to Region-Text Matching with text embeddings to
yield classification logits.

We apply distillation loss globally across the feature map.
To suppress noisy or background regions and focus on the
most informative and reliable predictions, we introduce a
focal weight wfocal(p) = maxj logitteacher(p, j) for each spa-
tial location p, emphasizing foreground-likely areas based
on teacher’s maximal confidence.

The classification distillation loss measures the L2 dis-
tance between teacher and student image-region encodings
at each location, weighted by the focal factor:

Lcls kd =
∑
p

∥Eteacher(p)−Estudent cross(p)∥22 ·wfocal(p), (4)

where Eteacher(p) and Estudent cross(p) denote the region-level
feature embeddings from the teacher and student models, re-
spectively. Similarly, the regression distillation loss operates
over all positions in the feature map, with the background-
suppressing effect achieved via wfocal(p):

Lreg kd =
∑
p

LIoU(bboxteacher(p), bboxstudent cross(p))·wfocal(p),

(5)
where bboxstudent(p) and bboxteacher(p) are the predicted
bounding boxes from the student and teacher models at loca-
tion p. The overall distillation objective is the weighted sum
of these two parts:

LCAKD = αLcls kd + β Lreg kd. (6)

Experiments
Experiment Setup
Datasets and Metrics. To evaluate our approach, we uti-
lize the MS COCO 2017 (Lin et al. 2014) datasets with
protocols established in prior studies (Mo et al. 2024; Kim
et al. 2024). We also evaluate on the proposed LoCo COCO
benchmark to provide more realistic assessment. We use
standard COCO metrics: mAP across IoU thresholds 0.5-
0.95, mAP@0.5, and mAP@0.75. We also report AbsGap



Method Detector
40-10 40-20 20-20 10-10

T3 T5 RelGap T2 T3 RelGap T2 T4 RelGap T4 T8 RelGap

CL-DETR∗ Deformable DETR - 28.1 40.2% - 35.3 24.8% - 34.2 27.2% - 24.4 48.1%
SDDGR∗ Deformable DETR 40.6 36.8 21.7% 42.5 41.1 12.5% - - - - - -
DCA Deformable DETR 41.1 37.2 20.8% 42.7 40.3 14.2% - - - - - -

TLR GLIP-T - 30.2 45.2% - 37.3 32.4% - - - - - -
GCD Grounding Dino - 40.2 29.7% - 44.0 23.0% - - - - - -
ERD YOLO-Word(X) 47.3 37.9 30.4% 50.0 46.4 14.8% 55.1 44.1 19.1% 46.9 32.0 41.2%
RGR∗ YOLO-Word(X) 48.2 44.8 17.8% 51.0 48.6 10.8% 56.2 48.1 11.7% 52.3 43.4 20.3%
Ours YOLO-Word(X) 51.8 50.6 7.1% 52.9 51.9 4.8% 58.3 51.7 5.1% 56.8 49.7 8.8%

Table 2: Incremental results (AP, %) under multi-step settings. Results for 20-20, 10-10, and all YOLO-World based methods
are reproduced using publicly available code. Methods using example-replay are marked with ∗. Best results in bold.

Method Baseline 40 + 40 70+10 40-20
AP AP50 AP75 CoGap AP AP50 AP75 CoGap AP AP50 AP75 CoGap

RGR Faster R-CNN 35.0 55.7 37.2 0.6% 34.6 54.7 37.4 2.0% 32.5 52.3 35.0 1.8%
CL-DETR Deformable DETR 40.9 58.8 43.8 1.1% 39.6 56.0 41.2 1.8% 33.6 50.1 36.4 1.7%
GCD Grounding Dino 44.7 61.4 48.7 1.0% 44.8 61.6 48.7 1.9% 42.4 58.0 46.2 1.6%
Ours YOLO-Word(X) 52.2 68.7 57.3 0.8% 50.7 67.0 55.6 1.7% 50.9 66.9 55.7 1.0%

Table 3: IOD results on LoCo COCO in single and multi-phase setting. All results are reproduced using publicly available code
from their papers. CoGap denotes the AP gap compared to original COCO partition.

(absolute mAP Gap) and RelGap (relative mAP Gap) com-
pared to joint training to quantify catastrophic forgetting.

Implementation Details. Our method is implemented
on YOLO-World (X). We use batch size 16 on 4 RTX
3090 GPUs with learning rates of 2 × 10−5 (backbone)
and 2 × 10−4 (neck and head). Training uses an AdamW
(Loshchilov and Hutter 2017) optimizer for 20 epochs with
mosaic augmentation disabled after epoch 10. In the IKS
module, the proportion of selected kernels K is set to 20%
during the base stage and 12% during incremental stage.

Comparison with State-of-the-Art Methods
We assess our method under both single-step and multi-
step IOD settings on COCO. We compare YOLO-IOD with
recent state-of-the-art methods, including two-stage detec-
tors (BPF, RGR), DETR-based approaches (CL-DETR, SD-
DGR (Kim et al. 2024), DCA (Zhang et al. 2025)), and ap-
proaches built upon open-vocabulary models ( TLR (Zhang
et al. 2024), GCD (Wang, Wang, and Lin 2025)). Addi-
tionally, we reproduce classic response-based distillation
method ERD and recent generative replay method RGR on
the YOLO-World architecture for further comparison.

Single-Step Incremental Setting. We first evaluate per-
formance under the 40+40 and 70+10 settings, where 40
and 10 classes are added. As shown in Tab. 1, YOLO-IOD
achieves consistent performance improvements over previ-
ous methods. Specifically, under the 40+40 configuration,
our method surpasses the previous best approach RGR by
1.5 in AP, with AbsGap of only 1.5, and dramatically re-
duces the relative performance gap to joint training from
5.5% to 2.7%. Under the 70+10 setting, YOLO-IOD out-

performs RGR by 3.3% in AP and achieves a remarkably
low RelGap of 3.9% compared to the upper bound, while
maintaining strong performance across all metrics. Note that
RGR is a type of generative replay-based method, whereas
our method requires no replay at all.

Multi-Step Incremental Setting. To better reflect real-
world scenarios where new categories are continually intro-
duced, we augment our multi-phase evaluation (40-10, 40-
20) with the longer 20-20 and 10-10 settings, incrementally
adding 20 or 10 classes per stage respectively until all 80 are
learned. These longer configurations are especially impor-
tant for evaluating incremental detectors in realistic deploy-
ment scenarios. As shown in Tab. 2, our method consistently
achieves the best performance in these long-term setups,
with improvement over RGR from 3.3% to 6.3% AP. No-
tably, under the challenging 10-10 setting with 8 incremental
phases, YOLO-IOD demonstrates exceptional performance,
achieving only 8.8% RelGap at the final stage and substan-
tially outperforming RGR (20.3% RelGap) and CL-DETR
(48.1% RelGap). The results indicate that YOLO-IOD can
be successfully tailored for real-world scenarios demanding
continuous adjustment to emerging object classes by ade-
quately addressing knowledge conflicts.

Evaluation on LoCo COCO
We evaluate both recent methods and our YOLO-IOD on the
more realistic LoCo COCO benchmark, as shown in Tab. 3.
Compared to the original COCO benchmark, all methods
experience an AP drop of 0.6% to 2.0% on LoCo COCO.
which indicates the impact of data leakage in previous in-
cremental settings. Despite this, YOLO-IOD consistently



Model Pseudo Label CPR IKS CAKD
COCO(70-10) COCO(40-10)

1-70 71-80 1-80 1-40 41-50 51-60 61-70 71-80 1-80

(a) ✓ 49.1 43.4 48.4 46.5 33.3 37.9 56.0 41.2 44.3
(b) ✓ ✓ 51.0 45.4 50.3 49.9 36.6 42.7 58.2 41.2 47.3
(c) ✓ ✓ ✓ 52.4 45.2 51.5 52.8 36.9 43.6 57.8 43.6 49.1
(d) ✓ ✓ 51.6 45.3 50.8 53.0 36.9 42.6 58.0 43.9 49.2
(e) ✓ ✓ ✓ ✓ 53.4 45.4 52.4 54.5 38.3 44.6 58.9 44.6 50.6

Table 4: Investigation on the effectiveness of the main components in our method, measured in AP%.

Figure 3: Ablation study within the CAKD module on the
COCO 20-20 incremental setting.

Figure 4: Ablation of kernel selection ratio K in IKS on
COCO 20-20 incremental setting.

achieves strong performance across all incremental scenar-
ios, demonstrating robustness even when inter-stage image
overlap is removed. Specifically, YOLO-IOD outperforms
the prior best method GCD, by 7.5, 5.9, and 8.5 AP in the
40+40, 70+10, and 40+20 settings, respectively. These re-
sults highlight both the practical value of YOLO-IOD for re-
alistic continual detection and the necessity of LoCo COCO
as a practical evaluation benchmark for IOD.

Ablation Study
Effectiveness of Main components. As shown in Tab. 4, we
progressively add modules to demonstrate their individual
contributions in 70-10 and 40-10 settings. Starting from the
standard pseudo-labeling baseline, which achieves 48.4%
AP on 70-10 and 44.3% on 40-10, adding CPR significantly
improves performance to 50.3% and 47.3%, respectively,
demonstrating its effectiveness in mitigating foreground-
background confusion. Incorporating IKS further boosts re-
sults to 51.5% AP for 70-10 and 49.1% for 40-10, high-

lighting the value of selective parameter updating. Notably,
when CAKD is applied individually, AP rises from 48.4%
to 50.8% in 70-10 and from 44.3% to 49.2% in 40-10,
showcasing its strong distillation capability. When CAKD
is combined with the previous modules, further gains can
be obtained, raising AP from 51.5% to 52.4% in 70-10 and
from 49.1% to 50.6% in 40-10. These results confirm that
all three components CPR, IKS, and CAKD work synergis-
tically, each contributing significant performance improve-
ments and jointly addressing fundamental knowledge con-
flicts. Consequently, the complete YOLO-IOD framework
achieves superior results.

Ablation Study on CAKD. As shown in Fig. 3, we com-
pare three CAKD variants: using only the old teacher de-
tector, only the current teacher detector, and the full dual-
teacher. In early stages, the Current-Only variant performs
better by facilitating fast adaptation to new categories. As
tasks accumulate, the Old-Only variant becomes more effec-
tive at preserving prior knowledge, reflecting the shift from
plasticity to stability. The full CAKD consistently achieves
the best results, validating the advantage of asymmetric dis-
tillation that combines both knowledge sources.

Impact of IKS Kernel Selection Ratio K. As depicted
in Fig. 4, smaller ratios (e.g., 5%) restrict the adaptation of
the model, while larger ratios (e.g., 20%) induce forgetting
due to excessive updating of parameters. We observed that
when setting K = 12% it achieves the optimal trade-off,
underscoring the significance of regulating the amount of
parameters to be updated in the IOD.

Conclusions
This study introduces YOLO-IOD, a novel real-time
IOD framework that leverages the pretrained YOLO-
World model. By effectively addressing the challenges
of foreground-background confusion, parameter interfer-
ence, and misaligned knowledge distillation through the de-
ployment of three well-designed modules: Conflict-Aware
Pseudo-Label Refinement, Importance-based Kernel Selec-
tion, and Cross-Stage Asymmetric Knowledge Distillation,
YOLO-IOD achieves an optimal balance between retaining
prior knowledge and acquiring the ability to detect novel cat-
egory objects. Furthermore, we present LoCo COCO bench-
mark, which successfully mitigates data leakage and aligns
category partitions with real-world co-occurrences. YOLO-
IOD shows outstanding performance on both conventional
COCO benchmark and LoCo COCO benchmark under var-
ious single-step and multiple-step settings.
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