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ABSTRACT

We demonstrate that architectures which traditionally are considered to be ill-
suited for a task can be trained using inductive biases from another architecture.
Networks are considered untrainable when they overfit, underfit, or converge to
poor results even when tuning their hyperparameters. For example, plain fully
connected networks overfit on object recognition while deep convolutional net-
works without residual connections underfit. The traditional answer is to change
the architecture to impose some inductive bias, although what that bias is, is un-
known. We introduce guidance, where a guide network guides a target network
using a neural distance function. The target is optimized to perform well and to
match its internal representations, layer-by-layer, to those of the guide; the guide
is unchanged. If the guide is trained, this transfers over part of the architectural
prior and knowledge of the guide to the target. If the guide is untrained, this trans-
fers over only part of the architectural prior of the guide. In this manner, we can
investigate what kinds of priors different architectures place on a fully connected
network. We demonstrate that this method overcomes the immediate overfitting
of fully connected networks on vision tasks, makes plain CNNs competitive to
ResNets, closes much of the gap between plain vanilla RNNs and Transformers,
and can even help Transformers learn tasks which RNNs can perform more easily.
We also discover evidence that better initializations of fully connected networks
likely exist to avoid overfitting. Our method provides a mathematical tool to in-
vestigate priors and architectures, and in the long term, may demystify the dark
art of architecture creation, even perhaps turning architectures into a continuous
optimizable parameter of the network.

1 INTRODUCTION

When creating neural networks, as a community we follow recipes that select among a few architec-
tures known to work for particular tasks (Ren et al., 2021; Cong & Zhou, 2023; Goodfellow et al.,
2014). Architecture is critical. The gains made on tasks like object recognition had to do with
imposing an inductive bias, i.e., a prior, by designing new architectures (Goyal & Bengio, 2022;
Bachmann et al., 2024). Convolutional networks unlocked many vision problems (Krizhevsky et al.,
2012; He et al., 2016a) and the recent advent of the Transformer (Vaswani, 2017; Devlin, 2018;
Achiam et al., 2023) did the same for language. Despite this, finding new architectures and over-
coming the limitations of existing architectures is a dark art. While an architecture imposes some
prior, we often do not fully understand what that prior is. For example, there is discussion about
exactly what the role of residual connections is (Jastrzebski et al., 2017). If we fully understood the
priors that architectures imposed, we could translate between priors and architectures freely — either
by creating the prior we want and then deriving the appropriate architecture or by dispensing with
architectures and imposing the prior directly.

Recent theorems (Poggio & Fraser, 2024) state that for each function which is efficiently Turing
computable, there exists a deep network that can approximate it well. Furthermore, a graph rep-
resenting such a function is compositionally sparse, that is the nodes of the associated Directed
Acyclic graph (DAG) represent constituent functions with a small effective dimensionality. A rea-
sonable conjecture is that neural networks with an architecture which is similar to the DAG of the
unknown target function are especially successful in learning it, as it is the case for convolutional
networks for image recognition and similar tasks. Because we do not understand the relationship
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Figure 1: Guidance between two networks makes untrainable networks trainable. Given a target which
cannot be trained effectively on a task, e.g., a fully connected network which immediately overfits on vision
tasks, we guide it with another network. In addition to the target’s cross-entropy loss, we encourage the network
to minimize the representational similarity between target and guide activations layer by layer. The guide can
be untrained, i.e., randomly initialized. This procedure transfers the inductive biases from the architecture of
the guide to the target. The guide is never updated. The target undergoing guidance no longer immediately
overfits can now be be trained. Here we show an untrained ResNet guiding a deep fully connected network to
perform object classification. The FCN alone overfits, the guided version can now be optimized. It has gone
from untrainable to trainable.

between the kinds of priors on the target functions that different architectures impose, even simple
questions have no known answer, such as, does there exist an initialization of an FCN that makes it
behave like a CNN, though the graphs of the function they represent are fundamentally different?

We introduce a new tool which we term guidance to study this problem. Given a target network,
we guide it with a guide network. In addition to the target’s original loss, the target attempts to
match the representation of its intermediate layers to those of the guide. We use a measure of
representational similarity (Kornblith et al., 2019; Cristianini et al., 2001; Cortes et al., 2012), also
termed a neural distance function, to compute the distance between representations of two arbitrary
layers. Neural distance functions are often used in neuroscience to compare activity in networks and
brains (Schrimpf et al., 2018; Conwell et al., 2021a; Subramaniam et al., 2024). In light of recent
work that shows that networks of very different architectures have internal activity that is extremely
similar to one another (Han et al., 2023; Conwell et al., 2021a;b), we repurpose this distance function
as a means to transfer priors between networks layer by layer.

We make the following contributions:

1. We develop guidance to transfer priors between networks using representational alignment,
investigate one representational alignment method, centered kernel alignment, CKA (Ko-
rnblith et al., 2019), and apply it to several classical problems.

2. Image classification improvements: Deep or wide fully connected networks stop overfitting
when guided by a ResNet. No-skip CNNs close much of the gap with ResNets when guided
by a ResNet.

3. Sequence modeling improvements: RNNs significantly improve their copy and paste ac-
curacy when guided by a Transformer. Transformers increase their parity accuracy when
guided by an RNN. RNNs close much of the gap to a Transformer when guided by one.

4. Many of these gains exist when the guide network only transfers over its priors, not its
knowledge, i.e., the guide is untrained and is never updated.

5. By disconnecting the guide early, we provide evidence for a better initialization regime for
fully connected networks that avoids immediate overfitting.
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Through the transfer of priors across architectures, guidance can serve as a new tool for investigat-
ing the role of architecture and the relationship between priors and architectures. It can also help
discover new initialization methods, for which no known tool exists.

Our work has a number of limitations. We aimed for coverage of many tasks instead of maximal
performance on any one task. This would have required us to carefully tune the hyperparameters
involved. We preferred to show how guidance works in general rather than in cherry picked and
carefully tuned settings. To that end, we also did not optimize networks to convergence, nor did
we attempt to experiment with other optimizers. Once we reproduced a well-known problematic
training phenomenon, we showed that it could be overcome. We consider a network trainable and a
problem to be overcome, when the original problem disappears. For example, successfully training
fully connected networks for object recognition was hopeless because they immediately overfit;
using our guidance method they no longer do so. This does not mean that they are necessarily useful
as object recognizers at present. In the case of fully connected networks, their present performance
with guidance training is too low, but with additional work we believe their performance could be
substantially increased now that their train and test loss are moving in the right direction. In some
cases, by applying guidance, we do see large useful improvements, such as with deep CNNs, RNNs
and Transformers, although much more remains to be exploited there too.

2 RELATED WORK

Representational Distance: Our method builds on several metrics that measure distance between
high-dimensional activations extracted from neural networks or activity in the brain (Klabunde et al.,
2023). Some of these distance metrics make comparisons based on kernel matrices (Kornblith et al.,
2019; Cristianini et al., 2001; Cortes et al., 2012) or relative distances (Kriegeskorte et al., 2008;
Moschella et al., 2022) between sample representations in a set. Others compute linear (Wehbe
et al., 2014; Schrimpf et al., 2018) or orthogonal projections (Beauducel, 2018) from one set of
representations to another. These metrics are designed based on a set of desired invariant properties
such as permutation invariance or invariance to linear transformations.

Such approaches have been commonly applied in neuroscience for measuring representational dis-
tance of activations from networks and activity in the brain to understand which neural networks are
architecturally most similar to the brain (Wehbe et al., 2014; Conwell et al., 2021a; Subramaniam
et al., 2024; Goldstein et al., 2020). Under this context, Han et al. (2023) has shown the inability of
current representational distance metrics — specifically the metric used here, centered kernel align-
ment — to distinguish representations based on architecture. This paper gives the foundation for our
intuition that networks may have similar representations that allow for transferring inductive biases
from one network to another.

Untrainable Networks: This work examines FCNs and plain CNNs for image classification and
RNNS for sequence modeling. Prior work explored similar approaches but performed poorly com-
pared to the guide networks we leverage for improved training.

For image classification, small feed-forward networks with 3-5 hidden layers and fewer than 100
units per layer were trained on object recognition datasets (Ma & Khorasani, 2004; Bebis & Pa-
padourakis, 1992; Khasnobish et al., 2012; Oh & Suen, 2002). These efforts prioritized training
fit over generalization performance and achieved low results (Ma & Khorasani, 2004; Bebis & Pa-
padourakis, 1992). Strategies to reduce overfitting, such as topological structure (Schittenkopf et al.,
1997) or early stopping (Caruana et al., 2000), were hindered by complex designs and hyperparam-
eter tuning, leading to poor training fits. Further methods used alignment between thin deep FCNs
and wide shallow FCNs to prevent overfitting, an approach similar to our paper (Romero et al.,
2014). Deep convolutional networks were also applied to image classification (Krizhevsky et al.,
2012; Bengio et al., 1993) but struggled with vanishing gradients, limiting their depth.

In sequence modeling, classical RNNs (Schuster & Paliwal, 1997; Pearlmutter, 1990; Connor et al.,
1994; Hammer, 2000) were constrained by vanishing and exploding gradients (Hochreiter, 1998),
making them unsuitable for long sequence tasks requiring memorization (Graves, 2014). Gradi-
ent flow techniques were developed, but significant progress came from architectures like LSTMs
(Hochreiter, 1997) and transformers (Vaswani, 2017). Transformers, however, have been found un-



Under review as a conference paper at ICLR 2025

trainable on formal language tasks requiring full-sequence reasoning, where RNNs succeed (Bhat-
tamishra et al., 2020).

Model Distillation: Guidance shares a resemblance with model distillation (Hinton, 2015; Gou
et al., 2021; Sanh, 2019; Hsieh et al., 2023). Distillation transfers knowledge from a teacher model
to a student model by introducing a new component to the loss function that enforces the student
model to behave like the teacher model (Kim et al., 2021; Zhou et al., 2021). This usually consists
of penalizing the KL-divergence between the logit predictions of the student and teacher model.

Representation-based distillation (Tian et al., 2019; Chen et al., 2021; Lin et al., 2020) and alignment
techniques have been proposed to improve alignment between two networks. Certain works have
proposed correlation congruence or similarity preserving metrics (Ramos et al., 2023) for aligning
two networks, particularly as a way to do architecture search between CNNs (Bashivan et al., 2019).
Methods have been proposed that use CKA as an alignment approach between representations of
two networks or with representations in the brain with notable improvement in network performance
(Saha et al., 2022; Dapello et al., 2022).

We distinguish guidance from distillation. Guidance can use a smaller untrained guide instead of a
larger trained teacher. This is due to guidance operating over intermediate activations of the network
instead the output of the network probabilities or output features, like distillation does. Guidance
also operates at many levels at the same time, aligning many layers at once. This helps address the
credit assignment problem that gradient descent has when tuning weights early in a network. We
also consider many more networks for guidance than is traditional for distillation including networks
which have very different architectures like Transformers to RNNs. Distillation is usually carried
out between two closely related architectures. We apply guidance to do the opposite.

3 METHODS

Guidance introduces a term in the loss of a target network, N7, to encourage representational align-
ment with a guide network, A’. Only the parameters, 7, of the target are updated — the guide’s
parameters, 6, remain fixed. Per minibatch, representational similarity is computed between the
activations of i“th layer of the guide, A% (#), and activations from a corresponding layer i* of
the target, A7 (§7). We refer to the correspondence between layers of the guide {i”} and layers of
the target {7’} as I. While this correspondence, I, could be complex as any two architectures can
form a guide/target pair, here we choose architectures that make the correspondence obvious as is
discussed later. For example, the stacked RNNs and Transformers have the same number of layers
in our experiments.

The target and guide receive the same input. Per minibatch, we collect activations from intermediate
layers of both networks. Layers of guide network are mapped to layers of the target network; see
Figure 1. We formulate the loss in terms of minimizing the representational dissimilarity, M, i.e.,
the complement of a representational similarity metric, between guide and target activations layer
by layer, summing the results. We only consider the centered kernel alignment, CKA, between
the activations in this publication. Many other possibilities exist. Any representational similarity
function which is differentiable could be used. Efficiency or incremental computation is much more
important than it is in traditional applications since this operation happens for every minibatch. We
discuss details in Appendix C.1.

Given Lr as the original loss of the target network, the guide network’s original loss function is
irrelevant. The guide need not even have been trained on the same task or the same dataset. It need
not even have been trained at all. This latter setting is what allows transferring architectural priors
without transferring knowledge from the guide to the target, as there is none in a randomly initialized
guide. The final loss we optimize, L is:

LO") = Lr(0")+ Y M(AL(6"), A% (69)) (1)
icel

This minimizes a task loss while increasing alignment between the target and guide networks given
the mapping between them. The mapping may be sparse, not every layer needs to be used. This
is important for guidance with transformers or stacked RNNs as will be explained later. We don’t
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incorporate any weight on the layer-wise similarity component of the loss. Note that the guide’s
parameters, 0C, are constants, i.e., the guide is never updated.

Layerwise Mapping We design a simple method for mapping guide layers to target layers as part
of providing supervision. The goal of this method is to make guide and target networks architec-
turally agnostic i.e. we can supervise any target network with any guide network.

As a simple approach, we evenly spread layer computations of our guide network over our target
network. For example, if we consider ResNet-18 and a 50-layer FCN, we would map every convolu-
tional ResNet layer to every second or third linear layer of the FCN. The intuition for this approach
follows from the aim of discovering the same function of the guide network using a target network.
Through the design of evenly spreading layers of our ResNet-18, we are guiding the FCN to find a
function similar to the guide network.

For our mapping, we consider activations from all layers with tunable weights i.e. convolutional,
linear, or LSTM/RNN based layers as well as activations from layer normalizations. For multiple
stacked RNNs, LSTMs, or transformers, we extract feature representations from intermediate layers
in the stack as well. Using all layers is useful for guidance as it provides a strong signal to induce
alignment between the target and guide networks during training. We empirically find that more lay-
ers leads to stronger results. Skipping layers based on non-linear transformations reduces memory
overhead associated with storing representations per batch.

4 EXPERIMENTS

We design several settings with different target and guide networks to thoroughly test our approach.
We include a range of image and sequence modeling tasks. In choosing target networks, we con-
sider a broad range of designs for networks that are not traditionally applied (e.g., a FCN in image
classification).

To systematically evaluate our approach, we

1. Untrainable Architectures: Experiments where the target networks are difficult to train
due to architectural limitations, irrespective of the task. For example, overfitting in deep
FCNs or memory incorporation in RNNs.

2. Untrainable Tasks: Experiments where certain tasks are inherently challenging for spe-
cific architectures, making them untrainable without additional supervision. For example,
sequence classification with transformers.

Tasks We describe the task settings. For an image-based task, we focus on image classification
and use the ImageNet-1K dataset (Deng et al., 2009) for training and testing. We use the splits
defined by the dataset. We report accuracy on the validation set for all experiments.

We consider three sequence modeling tasks to allow for a broader range of architectural settings.
We first consider a task called copy-paste (Graves, 2014). In this task, we generate a sequence of
numbers in the range of 1 — 10. The model is trained to recover the same sequence in the output.
In our setting, we consider sequence lengths that range from 20 to 40 values total (internal sequence
and padding). We generate a copy-paste dataset, sampling sequences containing numbers between
1 and 10. We generate a total of 100,000 examples, training on 80,000 examples, validating on
10, 000 examples, and testing on 10, 000 examples.

We also include the parity task, a binary classification task where a model is fed a bitstring and
outputs 1 when there is an even number of ones in the bitstring and 0 otherwise. We generate a series
of bitstrings with sequence lengths that range from 2 and 50 as done in prior work (Bhattamishra
et al., 2020).

Finally, we consider a language modeling task using the WikiText-103 dataset (Merity et al., 2016)
where models must predict the next token given some context. This uses the train, validation and
testing splits defined by the WikiText dataset and for all experiments, we use a context length of 50.
We tokenize the text data using the GPT-2 (Radford et al., 2019) tokenizer.
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Tasks | Guide Networks — Target Networks

Image Classification ResNet-18 5&16132 Il::gﬁ
ResNet-50 Deep ConvNet

Copy-Paste | Transformer RNN

Parity | RNN Transformer

Language Modeling \ Transformer RNN

Table 1: Guide and target networks across tasks. Our network designs include several untrainable target
networks and corresponding trainable guide networks. We focus on FCNs and deep convolutional networks for
image classification and recurrent networks for sequence modeling.

Architectures For all tasks, we describe our target untrainable architectures for each task sepa-
rately as well as the guide networks that are employed to make the untrainable network trainable.
We give an overview in table 1.

Image Classification: We use three target networks: Deep FCN, Wide FCN, and Deep ConvNet.
Deep FCN is a fully-connected network with 50 blocks consisting of feedforward layers followed
by non-linearities. This network is an untrainable architecture, lacking inductive biases to prevent
overfitting and having vanishing gradients. Wide FCN is a fully connected network with 3 blocks
with feedforward layers that have 8192 units. This is categorized as an untrainable task due to a
saturation in the training performance. Deep ConvNet is the same architecture as ResNet-50 (He
etal., 2016a), but without residual connections. This is categorized as an untrainable architecture due
to the vanishing gradient problem. We use two guide networks: ResNet-18 and ResNet-50. ResNet-
18/50 is a deep convolutional network with 18/50 convolutional blocks and residual connections.
We refer to He et al. (2016a). We supervise the Deep FCN and Shallow FCN with ResNet-18 and
supervise the Deep ConvNet with ResNet-50.

Sequence Modeling: For our copy-paste and language modeling tasks, we use a vanilla, 4-layer
RNN as our target network. In copy-paste, architectural and algorithmic limitations make RNNs an
untrainable architecture. For language modeling, vanishing gradients and limited context incorpora-
tion make RNNs an untrainable architecture as the training loss saturates. For the parity task, we use
a 1-layer transformer encoder architecture, similar to prior work (Bhattamishra et al., 2020; Hahn &
Rofin, 2024). For the copy-paste task, we train a guide network, 4-layer transformer decoder model
which achieves 96.90% accuracy. Similarly, for language modeling, we train a 4-layer transformer
decoder guide network with a context window of 50. Our final perplexity is 29.69. For the parity
task, we train a 1-layer vanilla RNN as a guide network which achieves 100% accuracy as reported
by (Bhattamishra et al., 2020).

Training For each setting, we train the base target network and perform an experiment where both
a trained and untrained guide network supervises the base target network. All networks are trained
with either cross-entropy loss or binary cross-entropy loss, although other loss functions could be
applied as well.

When training networks for object detection using ImageNet-1K, we use the Adam (Kingma, 2014)
optimizer. For all sequence modeling tasks, i.e. copy-paste, parity, and language modeling we use
AdamW (Loshchilov, 2017). For language modeling, we also incorporate gradient clipping due to
unstable training with long sequences.

To ensure consistency of comparisons across learning curves, we use a consistent batch size of
256. In general, representational similarity metrics are affected by the number of samples in the
calculation. The more samples, the better the metric approximates representational distance. We
use 256 as a proxy, dependent on GPU memory, although more memory would allow for bigger
batch sizes with potentially better results. Due to the large number of training settings, we employ
several different learning rates. We tune the learning rate carefully for baseline training to ensure
maximal performance of base training. We sweep the parameter across 5 different values and choose
the results with the lowest validation loss. This ensures we are choosing the training with the best
performance.
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Experiment ImageNet Validation Accuracy (1)
ResNet-18 69.41
Untrained ResNet-18 0.10 £ 0.003
ResNet-50 75.99
Untrained ResNet-50 0.10 £ 0.013
Deep FCN 1.65 £0.51
ResNet-18 — Deep FCN 7.50 £1.51
Untrained ResNet-18 — Deep FCN 13.10 £ 0.72
Wide FCN 18.78 £ 0.91
ResNet-18 — Wide FCN 23.79 £ 0.86
Untrained ResNet-18 — Wide FCN 21.76 £ 0.54
Deep ConvNet 54.58 £1.01
ResNet-50 — Deep ConvNet 64.66 + 2.31
Untrained ResNet-50 — Deep ConvNet 55.02 £2.52

Table 2: Guidance improves performance for image classification. Alignment with a ResNet dramatically
improves a deep FCN, particularly with an untrained ResNet. Significant gains are seen with a wide FCN as
well. Deep CNNs without residuals gain only with a trained ResNet. Across all settings, guidance can help
train architectures that were otherwise considered unsuitable.

Experiment Copy-Paste Accuracy (1) Parity Accuracy (1) Language Modeling Perplexity (/)
RNN 14.35 £ 0.01 100 74.68 + 2.81

Untrained RNN — 2.32 +0.41 —

Transformer 96.98 71.98 £ 3.16 29.69

Untrained Transformer 1.04 £ 0.81 — 51948.8 +90.44

RNN — Transformer — 78.49 + 2.16 —

Untrained RNN — Transformer — 70.38 £ 4.17 —

Transformer — RNN 23.27 £ 1.02 — 41.88 +4.52

Untrained Transformer — RNN 42.56 + 1.51 — 45.61 +5.27

Table 3: Guidance improves performance for sequence modeling. RNN performance improves dramatically
when aligning with the representations of a Transformer for copy and paste, as well as for language modeling.
RNNs close most of the gap to Transformers for language modeling. Transformers in turn, improve parity
performance when aligning with an RNN. Guidance is able to transfer priors between networks.

After choosing the optimal learning rate, we then train all networks and settings for 100 epochs with
5 random seeds to compute error bars for our training loss, validation loss, and testing accuracy.
Our error bars are associated with the standard error across each step across all seeds. We choose
the seed-based average test accuracy associated with the epoch with the lowest seed-based average
validation loss.

5 RESULTS

Image Classification Across all our networks, we observe significant improvement from using a
guide network to provide representational guidance; see table 2. We see significant accuracy gains
of 5-10% on validation performance. We also observe significantly better loss curves from a better
fit with the training loss and reduced overfitting with the validation loss. Most interestingly, we
highlight that using a randomly initialized guide network can perform better than using a trained
guide network. For example, the Deep FCN results in the top left of fig. 2 are significantly better
with a randomly initialized ResNet-18 as the guide network instead of a trained ResNet-18. This
trend also occurs with Wide FCN.

We note that this trend is not entirely consistent as indicated by the Deep ConvNet. One potential
explanation is that the architectural prior is the same for both the Deep ConvNet and ResNet-50.
This explanation provides an additional interpretation for the role of residual connections and their
influence on the representation space. This indicates that residual connections must be trained to
have an influence on the representation space. This aligns with prior studies of residual connections
(Jastrzebski et al., 2017; He et al., 2016b).

Sequence Modeling On the copy-paste task, see fig. 2 and table 3, we see significant improve-
ment when using a transformer as our guide network over an RNN target network. Prior work has
observed the difficulty that RNNs have with copy-paste and usually attributes this to a fundamen-
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Figure 2: Training and validation under guidance for all experiments reported in table 1. For every result
in Table 2 and Table 3 we show the training and validation loss with error bars across multiple runs although
these are often too small to see. Note that often the best results occur with the untrained guide.

tal algorithmic limit on the capability of RNNs to memorize input sequences. Our results show a
potential optimization scheme for RNNs that is applicable for sequence memorization. Similar to
prior results with fully connected networks, this result improves when using a randomly initialized
network. We explore this more thoroughly in further analyses but this is likely because optimization
with randomly initialized networks is easier due to the degrees of freedom in CKA.

On the parity task, we similarly see improvement when using an RNN as our guide network over a
transformer model as our target network. This is a complementary result to copy-paste and language
modeling where the guide network was a transformer and our target network was a RNN. This
improves over results from several prior papers that have pointed out fundamental limitations of
transformers to perform certain formal language tasks.

Unlike the prior tasks, the performance improves when using a trained RNN as the guide network.
This could be due to the wide gap in performance between an untrained RNN and trained RNN on
parity. Trained RNNs achieve 100% on the task and could have meaningful positional information
to complete the parity task. This information is likely crucial to the transformer which has limited
sequence pooling capacity and fewer degrees of freedom unlike an RNN.
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Figure 3: Guidance aligns error consistency. The relationship between the guide networks is mirrored in that
of the guided networks even when the target is entirely unlike the guides initially. This is additional evidence
that guidance doesn’t just improve performance arbitrarily, the target becomes more like the guide.
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Figure 4: Disconnecting the guide early can have long-term effects. We remove the ResNet guide from the
loss function of a Deep FCN after an arbitrary 150 steps. Surprisingly, this has little effect. The Deep FCN
still does not diverge and the training and validation loss still mirror one another. Very likely, an initialization
regime exists for Deep FCNs that prevents overfitting. We now have the tools to investigate this question.

On language modeling, similar to copy-paste, we see significant improvements with the RNN target
network that is guided by a transformer guide network. While performance generally saturates for
the 4-layer RNN, guide network guidance continuously improves the RNN performance by over 30
points for text perplexity for both trained and randomly initialized guide networks. This implies
that information from the transformer can be transferred to the RNN. We see a similar trend with
a randomly initialized transformer as the guide network implying that architectural priors in the
transformer are driving improvement in guided network performance.

Error Consistency Given our guided networks, we can analyze the functional properties of the
guided network to confirm whether networks adopt priors from their guide networks. Using Deep
FCN as our target model, we guide it with a ResNet-18 or a ViT-B-16 (Dosovitskiy, 2020). We
then measure the error consistency (Geirhos et al., 2020) between all of the networks; see fig. 3.
The error consistency between the initial FCNGs is entirely unlike the ResNet-18 or ViT-B. Guidance
creates two FCNs which have the same relationship to one another. The ResNet-18-guided FCN
and ViT-B-guided FCN have the same error consistency with respect to one another as ResNet-18
and ViT-B do. It’s not just that the FCN gets generically better, it adopts a prior from the original
architecture. We provide further details of the error consistency metric in appendix G.
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Network Initialization Is guidance needed throughout training, or is the effect of the guide to
move the target into a regime where the two are aligned and the target can be optimized further
without reference to the guide? The answer to this question can shed light on whether the guide
is telling us that better initializations are likely to exist for the target. To answer this question, we
disconnect the guide from the target after an arbitrary and nominal number of training steps, 150.
We did not investigate what the minimal number of steps needed was.

For FCNss, even this early disconnect avoids overfitting; see fig. 4. Furthermore, while preventing
overfitting, we have lower training loss from guidance, indicating a better fit. This implies that there
likely exists a better initialization for FCNs. In appendix K, we further explore how guidance can be
used to find new initialization schemes in FCNs. In future work, we intend to investigate what the
untrained guide is doing to the FCN weights to prevent validation loss from increasing dramatically.

6 CONCLUSION

We demonstrated that guidance eliminates the failure modes of networks previously considered
unsuitable or ineffective for specific tasks. Aligning with another network overcomes these short-
comings by transferring inductive biases—either architectural and knowledge-based, or solely ar-
chitectural when using an untrained guide. This opens the door to many applications.

Our method can be used to study representational and functional design of neural networks in new
ways to reinforce or reanalyze prior theory of neural network optimization. For example, we can
understand distances between architectural components based on which target networks are easier
to guide with a particular guide network. We also refine this notion to include a narrow channel
through which guidance can occur, the representational similarity. This can serve as a kind of probe.
Different representational similarity methods enforce alignment between different properties of the
activations of networks.

Characterizing architectural priors and untrainable networks can be made more precise using our
methodology. For example, guidance clearly distinguishes between at least three cases. One where
the guide does not help. Another where the architecture of the guide helps, but not the knowledge.
And one where both the architecture and the knowledge of the guide help. These are different
phenomena whose root causes are not understood at present but that could elucidate the relationship
between priors and architectures.

Guidance also proved to be a tool with which to discover the possibility of new initializations. At
the moment, no known method exists to find better initializations for networks. In some cases as
with the FCNs for vision, guidance can be disconnected after a nominal number of steps, but still
goes on to regularize the target network. This strongly implies that an initialization regime for that
target with the same regularization exists. This is all that guidance could do in that case. We now
need tools to go backwards, given networks which are correctly initialized and networks which are
not, discover what that initialization is. This is a much better place to be in. A systematic sweep of
targets and guides to look for better initializations should be carried out.

For some networks, like fully connected ones, we only overcame the initial obstacle. Further re-
search is needed to refine these into effective vision models, as they avoid immediate overfitting.
This may be a matter of scale, optimizers, learning rates, etc. Our results suggest practical appli-
cations by significantly narrowing the performance gap between vanilla stacked RNNs and Trans-
formers, albeit in small-scale experiments. Given that stacked RNNs are equivalent to single-layer
RNNSs, most directly to delayed RNNs (Turek et al., 2020), this implies that complex modifications
to RNNs may be unnecessary for language modeling. In the future, we hope to find methods for
making these networks competitive with their respective guide networks.

Looking into the long-term future, it may be that architecture can be turned into a prior that we add
to the loss of a generic fully-connected network, or any convenient and capable-enough network.
Architecture would lose its prominence and the computational substrate could be disconnected from
the priors we need for learning and inference. Architecture could potentially even be turned into a
parameter to be optimized, rather than a hyperparameter.

10
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A APPENDIX OVERVIEW

We present additional details of guidance, experiments and analysis, as well as additional results.
In Appendix B, we present some limitations of guidance as a method. In Appendix C, we provide
additional details for our guidance approach, with a full explanation of centered kernel alignment.
In Appendix D, we provide additional details on our architectural designs and network training. In
Appendix E, we introduce a new experiment where we feed noise to our guide network rather than
real data and compute representational alignment, leading to similarly improved results. This further
establishes a transfer of a prior rather than knowledge. In Appendix F, we show visualizations of the
representational dissimilarity loss over training to give context of dynamics over training and show
additional explanations for results with trained and randomly initialized guides. In Appendix G,
we provide further explanation of error consistency as a measure of functional similarity between
networks. In Appendix H, we provide test accuracy metrics over training as a complementary of
network performance over training outside of cross-entropy loss.

B METHODOLOGY LIMITATIONS

Our guide network supervision through representational alignment has one primary limitation due
to increased memory usage during training. Due to saving activations across several layers of the
two networks, GPU memory usage increases dramatically. Moreoever, our methodology works
better as batch size increases since this allows for better approximation of representational similarity,
increasing memory usage even more. Furthermore, including more layers for supervision leads to
improved results.

In this paper, we introduce simple techniques to handle memory constraints such as gradient ac-
cumulation and gradient checkpointing (Lin et al., 2017). In practice, more memory optimization
techniques may become necessary to consider larger untrainable networks. Further work could con-
sider using stronger representational alignment strategies to reduce the number of samples necessary
to achieve a strong fit.

C METHODS OVERVIEW

We give an overview of guidance in algorithm 1 and highlight crucial changes to base neural network
training in either red or blue. We use blue to indicate the collection of network activations and red to
indicate the layerwise mapping and representational alignment using a distance metric. This gives
an overview of our layer mapping between the target and guide network. Crucially, we find that
the simplest layer mapping where we evenly distribute guide network layers across target network
layers for supervision obtains strong results.

C.1 CENTERED KERNEL ALIGNMENT
To compare representations, we use a representation similarity metric, M, which corresponds to

centered kernel alignment (CKA) (Kornblith et al., 2019; Cortes et al., 2012; Cristianini et al., 2001)
in our setting. We specifically consider linear CKA.

CKA uses kernel functions on mean-centered representations to compute representational similarity
matrices, which are then compared via the Hilbert-Schmidt Independence Criterion (HSIC). More
specifically, suppose we have two sets of representations R € R?*% and R’ € R?*?2, We first
compute the Gram matrices for each set of representations

K =RR" L=RR" ()

We center the Gram matrices by introducing a matrix, H, where H = I}, — %LllT.

K=HKH,L=HLH (3)

We compute the HSIC on the Gram matrices.
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Algorithm 1 Guidance: Guide Network Representational Alignment

Require: Target network; A7 with parameters 67'; Guide network N'“; Dataset D = {(z, y:)}1_1; Repre-
sentational Distance Metric M; Loss function £7
1: forj=1— Ndo
2: # Base training with vanilla loss function
3 outputs < N7 (z;)
4: loss <— L (outputs, y; | 67)
S: # collect layer activations
6 {Al}or_, « activations(N7 (z;))
7
8

{A% Y o_, « activations(NC (z;))
: # Get step size between the number of layers between the two networks for layer mapping.
9: if [ > 1 then

10: step+ (t—1)/(1—1)

11: else

12: step < 1

13: end if

14: # Map the layers and add up layer-wise representational distance
15: total <— 0

16: fori=1—ldo

17: index < min(round(% X step),l — 1)
18: rep < M(Ag:de)o Aiﬁdex)

19: total <— total 4 rep

20: end for

21: loss < loss 4 total

22: end for

HSIC(K,L) =t(K,L) (4)
Finally, we define our linear CKA metric as:
HSIC(K,L
M(R,R') := CKA(K,L) = SIC(K, L) 5)

- VHSIC(K,K) « HSIC(L, L)

In our setting, we consider representational dissimilarity and aim to minimize the dissimilarity be-
tween representations from our target network and guide network. We define this as:

M(R,R)=1—- M(R,R') (6)
Linear CKA ranges from 0 (identical representations) to 1 (very different representations). Because

of this, we take the complement by subtracting the linear CKA from 1 to represent dissimilarity.

D ARCHITECTURE AND TRAINING DETAILS

D.1 ARCHITECTURAL DESIGN DETAILS

For all tasks, we describe our target untrainable architectural designs for each task separately as well
as the guide networks that are employed to make the untrainable network trainable.

D.1.1 IMAGE CLASSIFICATION

Target Networks

Deep FCN: We design a fully-connected network consisting of 50 blocks. Each block contains a
feedforward linear layer, a batch normalization, and a ReLU nonlinear activation. The intermediate
feedforward linear layers contain 2048 units. This network is untrainable due to vanishing gradients
since the network is very deep and due to overfitting.
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Shallow FCN: We design a network similar to Deep FCN but only containing 3 blocks where each
feedforward linear layer contains 8192 units. This network is considered untrainalbe due to a satu-
ration on the training performance.

Deep ConvNet: We design a deep convolutional network with the same architecture as ResNet-
50 (convolutional layers followed by batch normalization) but remove the residual connections.
This makes the network untrainable due to the vanishing gradient problem as observed in He et al.
(2016a), causing saturation of the loss.

Guide Networks

ResNet-18/50: A deep convolutional network with 18/50 convolutional blocks and residual connec-
tions. We refer to He et al. (2016a).

We supervise the Deep FCN and Shallow FCN with ResNet-18 and supervise the Deep ConvNet
with ResNet-50.

D.1.2 CoPY-PASTE

Target Networks

RNN: We design a 4-layer RNN with a hidden dimension of 768 units, followed by a fully connected
layer. In copy-paste, architectural and algorithmic limitations make RNNs an untrainable architec-
ture fortask. Specifically, RNNs must memorize the input sequence which is difficult, particularly
with a padding token. RNNs are generally considered to be unapplicable to the copy-paste task.

Guide Networks

Transformer: We consider a 4 layer transformer decoder architecture with a hidden dimension of
768 units across 12 transformer heads. The transformer is well-suited for copy-paste as the attention
mechanism can act as a routing mechanism for the sequence. We train the transformer guide from
scratch, as with language modeling and achieve 96.90% accuracy on the task.

D.1.3 PARITY

Target Networks

Transformer: Similar to Bhattamishra et al. (2020), we design a 1 layer transformer encoder network
with a hidden dimension of 64 units across 4 attention heads. Transformers have lower accuracy on
formal language tasks that require reasoning over a sequence in comparison to traditional sequence
models (Hahn & Rofin, 2024). Due to the enormous gap in performance and saturation of perfor-
mance, we categorize the transformer as untrainable.

Guide Networks

RNN: We include a 1 layer vanilla RNN with a hidden dimension of 64 units. Similar to Bhat-
tamishra et al. (2020), we achieve 100% accuracy on the task.

D.1.4 LANGUAGE MODELING

Target Networks

RNN: We design a 4 layer vanilla RNN with a hidden dimension of 512 and with a ReLU activation
function. We train this with on sequences with a context length of 50. This makes the network un-
trainable due to problems associated with exploding and vanishing gradients during backpropagation
through time.

Guide Networks:

Transformer: We design a 4 layer transformer decoder network with 16 attention heads and a hidden
dimension of 512. We train the transformer on WikiText with a context length of 50 and achieve a
final test perplexity of 29.69.
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Tasks | Experiment Learning Rate
Deep FCN 1x1074
Wide FCN 1x1074
Deep ConvNet 1x1073
' ' ResNet-18 — Deep FCN 5% 1077
Image Classification | ResNet-18;, — Deep FCN 1x1074
ResNet-18 — Wide FCN 1x1074
ResNet-18; — Wide FCN 1x 104
ResNet-50 — Deep ConvNet 1 x 1073
ResNet-50g — Deep ConvNet 1 x 1073
RNN 1x 1074
Copy-Paste Transformer 1x1074
Transformer — RNN 1x1074
Transformeryg — RNN 1x1074
Transformer 1x 1073
Parity RNN 1x1072
RNN — Transformer 1x 1073
RNNy — Transformer 1x1073
RNN 1x1074
. Transformer 1x1074
Language Modeling Transformer — RNN 1x 1074
Transformer, — RNN 1x 1074

Table 4: Learning rates for network training. For all networks, we sweep over 5 learning rate values before
choosing the learning rate with the lowest validation loss for training. Our training does not use any learning
rate scheduling such as a warm-up scheduler although such techniques may improve results.

D.2 TRAINING

In Table 4, we show the different learning rate settings we converged to in each experiment. For
each experiment, we did a grid search over 5 different learning rate parameters to ensure optimal
learning rate setting. We did careful tuning of all training of target networks to ensure maximum
performance.

For all image classification tasks, we used the Adam optimizer (Kingma, 2014), in-line with prior
work (He et al., 2016a). For all sequence modeling tasks, we use AdamW (Loshchilov, 2017), which
has been useful in training sequence models like RNNs and Transformers (Radford et al., 2019).

The training experiments in this paper were completed across 4 H100s and 4 A100 GPUs for 3
weeks in total. GPU optimization techniques were taken such as gradient accumulation and gradient
checkpointing and some language modeling experiments used mixed-precision training.

E REPRESENTATIONAL REGULARIZATION

We also aim to understand the role of the guide network as in guidance. In all experiments, we
use trained and untrained guide networks and see consistent improvements for training the target
network. The success of untrained networks implies that our training method is not performing
distillation but instead truly transferring a prior from the guide network to the target network. To
more strictly test this theory, we include an experiment where we feed noise to the guide network
instead of the same batch of data fed to the target network as implied by eq. (1).

We apply this experiment to the Deep FCN with an untrained ResNet-18 as the target network. At
each training step, we pass a noisy batch which is sampled from a random Gaussian with mean of 0
and standard deviation of 1. We train for 100 epochs and report the learning curve results in fig. 5.

18



Under review as a conference paper at ICLR 2025

Training Cross-Entropy Loss Validation Cross-Entropy Loss
7.04 ‘ Base Training
Noise-fed ResNet-18
9.01
6.8
8.5
@
@
S
>
8661 8.01
€
w
2
o 7.5
[}
6.4
7.04
621 6.5
0 1000 2000 3000 4000 5000 6000 0 20 40 60 80 100
Training Steps Training Epochs

Figure 5: Feeding noise prevents overfitting. We introduce an additional experiment where we feed noise
to our guide network rather than the same batch during each training step with guide network guidance. We
sample noise from a Gaussian distribution with a mean of 0 and a standard deviation of 1. We find that despite
having no information about the images in the batch, the guide network still provides an inductive bias to
prevent overfitting. While this noise increase the training loss, this shows a true transfer of an inductive bias
that is not driven by pure distillation of similar features.
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Figure 6: CKA representational similarity loss for image classification. We visualize the total CKA dissim-
ilarity loss across all layers across training for image classification. The CKA dissimilarity loss represents the
representational alignment between our guide network and target network. We can observe that for Deep FCN
and Wide FCN, the target network aligns with a randomly initialized network more quickly. This corresponds
with results where randomly initialized guide networks had superior performance to trained guide networks.

This result confirms our intuition about the role of guide network: as a guide on model priors
rather than a pure distillation of information. While the overall cross-entropy loss magnitudes are
higher and the overall accuracy is lower when passing noise to the guide network, our results are
significantly better than applying vanilla training approaches to the Deep FCN.

F REPRESENTATIONAL SIMILARITY LOSS

We can view the representational alignment between the guide and target networks during train-
ing. This allows us to better understand how this representational alignment influences network
performance. We show image classification results in fig. 6 and sequence modeling results in fig. 7.

We notice that across most tasks, reducing representational dissimilarity is easier with activations
from randomly initialized networks rather than trained networks. This provides additional evidence
of representational alignment for inductive bias transfer. We notice that for certain cases, such as
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Figure 7: CKA representational similarity loss for sequence modeling tasks. We visualize the total CKA
dissimilarity loss across all layers across training for all three sequence modeling tasks. The CKA dissimilarity
loss represents the representational alignment between our guide network and target network. We can observe
that for the copy-paste task and language modeling task, the target network aligns with a randomly initialized
network more quickly. This could be because of special properties of RNNs.
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Figure 8: CKA dissimilarity decreases more in earlier network layers than later layers. When we separate
the CKA dissimilarity across layers of the target network, we find that earlier layers optimize more and earlier.
We take two layers from a Deep FCN during guidance with a randomly initialized ResNet-18. The early layer
comes from the 15th FCN block. The later layer comes from the 43rd FCN block. We see that both layers are
eventually optimized but the later layer receives less supervision and has a higher CKA at the end of training.

Parity, the randomly initialized guide network has higher representational dissimilarity loss than the
trained guide network. This is matched with the Parity result in table 3 and fig. 2.

However, we can also observe more inconsistent results with the Deep ConvNet where the untrained
guide network has lower representational dissimilarity loss than the trained guide network, even at
the end of training. One possible explanation that the inductive bias was more similar for Deep Con-
vNet and ResNet-50. This means that trained features are more important for better Deep ConvNet
results and representational alignment with a trained network is important. This result has inter-
esting implications for understanding the role of residual connections. Since untrained ResNet-50
is easier to align with than a trained ResNet-50, this demonstrates that residual connections influ-
ence representation spaces during training. The untrained residual connections have little influence
on the inductive biases of the network or the overall representation space. This demonstrates the
strength of our method as a way to interpret neural network design choices and how they influence
representation and functional aspects of a network.

These results are also potentially indicative of architectural properties of RNNs and FCNs which
match randomly initialized networks more quickly. For instance, one potential explanation is that
RNNs have more degrees of freedom (Bhattamishra et al., 2020) and therefore, only need inductive
guidance rather than trained features. Transformers may require learned features indicating that the
bottleneck for transformers on the parity is not algorithmic but feature-based. Much of the future
work can use these results to design better networks with more informed designs.
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Figure 9: Earlier layers of ResNet-18 and ViT-B are more similar. We analyze the representational similarity
between activations from layers ResNet-18 and ViT-B-16 via CKA. We find that earlier layers are more similar

while later layers have divergent representations. We see that this manifests in distinct error consistency patterns
when ResNet-18 and ViT-B are used as guide networks.

F.1 LAYERWISE ANALYSIS

We provide a deeper analysis of patterns of the representational dissimilarity across different layers
during guidance in fig. 8. We find that earlier layers generally have higher CKA similarities with
their corresponding layer from the guide network and later layers have lower CKA similarities.
Furthermore, these later layers optimize later in the training process.

G ERROR CONSISTENCY

We measure error consistency (x) (Geirhos et al., 2020) between the guided target networks which
indicates the error overlap between two networks based on the accuracy of the networks, i.e. do
the two networks make similar class predictions? The measure first calculates the expected er-
ror overlap. Suppose a; is the accuracy of the first guided network and as is the accuracy of
the second. The expected error overlap is given by cexp = a1 * az + (1 — a1) * (1 — as).
Next, we measure the observed error overlap across each sample in the validation set as cops =
# of samples where both models agree / total trials. Finally, we can write & as:

Cobs — C.
K — obs exp (7)

1 — cexp

x ranges from —1 to 1, where 1 is perfect agreement, —1 is perfect disagreement and 0 is change
agreement. When ~ > 0, this implies that models make consistent error patterns, £ < 0 implies that
models make inverse error patterns, and x =~ 0 implies independent error patterns.

G.1 GUIDE NETWORK REPRESENTATION COMPARISON

We contextualize the findings in error consistency by comparing the representations of the guide net-
works, in this case ResNet-18 and ViT-B-16. We apply a layer mapping between layers of ResNet-
18 and ViT-B-16 and compute the representational similarity over 1000 input images. Results are
shown in fig. 9.

Our findings are useful for error consistency. If models are inheriting inductive biases from their
guide network, then the models would have similar methods to process low-level image features are
indicated by a stronger CKA in earlier layers between the ResNet-18 and ViT-B. This means that
errors will be consistent for low level features but inconsistent for high level features collected in
later layers.
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Figure 10: Testing accuracy improves across guidance for sequence modeling. We visualize the testing
accuracy for sequence modeling as an example to demonstrate that guidance improves accuracy across training
and this improvement is significantly better across training. This allows for another intepretation of the method
outside of cross-entropy loss.
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Figure 11: Distillation does not prevent overfitting. We compare basic distillation (Hinton, 2015) to see
if we can prevent overfitting. We use Deep FCN as our student network. We find that distillation with a
trained ResNet-18 teacher network leads to a small improvement in performance but still has some patterns of
overfitting. Distillation with an untrained ResNet-18 teacher network hurts performance.

H TEST ACCURACY ACROSS TRAINING

We plot accuracies over training as a complement to cross-entropy loss in fig. 10 for the sequence
modeling experiments. We can use these experiments to de-couple our results from properties of
cross-entropy loss that may lead to misleading improvements across training. We find that accuracies
improve consitently across training, supporting the loss curve interpretation that guided training
improves results.

I BASIC DISTILLATION COMPARISON

To show the effectiveness of guidance, we compare it with distillation from Hinton (2015). Dis-
tillation involves transferring knowledge from a performant teacher network to a less performant
student network via maximizing the alignment of the output logits. This encourages the student to
have similar predictions as the teacher network. This occurs via the following loss function. Assume
Q is the logits extracted from the target (student) network and the P is the logits extracted from the
guide (teacher) network.
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Experiment | ImageNet Validation Accuracy (1)
Deep FCN 1.65 £ 0.51
Trained ResNet-18 Teacher 3.45+0.92
Untrained ResNet-18 1.41 4+ 0.66

Table 5: Distillation performs worse than guidance. We include a distillation baseline over the Deep FCN
with ResNet-18 as the teacher network. We find that the accuracy improvement is small with a trained teacher.
And, accuracy decreases with an untrained teacher.

1.0

Base FCN 0.051 0.025 0.0029 0.0013

ResNet-18 Distilled FCN - 0.051 0.26 0.0036 0.0022

ViT-B Distilled FCN - 0.025 0.26 0.0034 0.0019

-0.4
ResNet-18 - 0.0029 0.0036 0.0034
-0.2

ViT-B - 0.0013 0.0022 0.0019

Figure 12: Distillation lowers error consistency. In general, we find that distillation results in error consis-
tency patterns that are less consistent than what is reported with guidance.

Listin = o T2 % KL(O’(Q/T)HO’(P/T)) + (1 — Oz) * ,CCE(Q, y) (8)

where y is the ground truth labels, 7" is the temperature to soften the logits, and « is the weighting
factor between the distillation loss and cross-entropy loss. In this case, KL refers to the Kullback-
Liebler divergence and o corresponds with the softmax function. In practice, we set o to 0.5 and T'
to 2. We continue to track the full cross-entropy loss across training as well.

We show results in fig. 11 and table 5. Distillation with an trained network can improve performance
but much less than guidance. Distillation with a untrained network reduces performance on average,
although not by a significant amount.

I.1 ERROR CONSISTENCY

We show error consistency performance over distilled networks rather than guided networks in
fig. 12.

J GUIDED NETWORK ANALYSIS AND INTERPRETATION

The results from guidance open many questions in order to explain why untrained guide networks
can be better at improving target network performance. We provide an intuitive explanation as well
as some geometric analysis of guided networks to see if there is a stronger interpretation.

J.1 INTERPRETING GUIDANCE

The current results seem to indicate that guidance is finding a distinction between learned priors and
architectural priors when preventing undesirable features of training target networks. For example, it
seems architectural aspects of CNNs are useful for preventing overfitting in the Deep FCN. Similarly,
memory incorporation improves in an RNN when guiding with a randomly initialized transformer
as seen with improved copy-paste performance.

23



Under review as a conference paper at ICLR 2025

Guided Deep FCN Effective Rank across Layers

7 —— Base Deep FCN
| — Trained ResNet-18 Guided FCN
Untrained ResNet-18 Guided FCN

Effective Rank
N
[

0 10 20 30 40
Layer Index

Guided Deep FCN Intrinsic Dimensionality across Layers

—— Base Deep FCN
—— Trained ResNet-18 Guided FCN
Untrained ResNet-18 Guided FCN

200 +

i
o
=3

-
15
S

Intrinsic Dimensionality

o
o
!

0 10 20 30 40
Layer Index
Figure 13: Explaining guidance using effective rank and intrinsic dimensionality. We compare the geomet-
ric properties of activations associated with target networks guided by untrained and trained guides as well the
base target network. We observe that effective rank and intrinsic dimensionality seem unrelated to performance
obtained by guidance using CKA. Guidance with trained networks leads to higher effective rank and intrinsic

dimensionality than having no guidance. Yet, this property doesn’t connect with findings that untrained guide
networks have better results.

These architectural priors don’t disappear when the guide network is trained but are more difficult to
replicate due to the target network having to replicate both learned and architectural priors, assuming
that the learned prior isn’t as useful for overcoming the gap in performance. It’s likely that some
aspect of the ResNet is useful for preventing overfitting. This could be sparsity, the distribution of
the eigenvalues, etc. We plan to dedicate further work to understanding these distinctions.

J.2 GEOMETRIC ANALYSIS

We aim to understand how guidance with a randomly initialized guide network differs from a trained
guide network. To do so, we compare the representation space of a target network guided by a trained
guide network and a randomly initialized guide network. Our comparisons include (1) effective rank
and (2) intrinsic dimensionality.

Effective rank measures analyzes the capacity of neural network activations by measuring the spread
of singular values. When the singular values are evenly distributed for a given set of activations, this
indicates that fewer directions of the representation space are utilized. Lower effective rank indicates
stronger inductive biases. Effective rank is written as

Effective Rank = exp | — Z pilog(pi) ©)

T;

where p; = s~ are the normalized activations associated with activaitons from a specific network
77

layer.

Intrinsic dimensionality refers to the minimum number of dimensions required to capture the struc-
ture or variability in the input data. It represents the true complexity of the data manifold, ignoring
noise or redundant dimensions. Following Fan et al. (2010), for a given threshold j, the intrinsic di-
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Figure 14: Guidance finds initialization schemes in FCNs. We introduce a stricter experiment for finding
initialization in FCNs where we apply guidance separate from the task loss on noise before applying ImageNet
training. We find that this prevents the overfitting regime and leads to significant improvements in network
performance.

mension is the d € N such that the ratio of explained variance for d dimensions of a /N dimensional
PCA is above f3:

2?21 var(y;)

> (10)
Z;V:1 var(y;)

We measure the effective rank and intrinsic dimensionality for the activations of all linear layers in
our Deep FCN guided by a untrained and trained ResNet-18 guide over 1000 images as well the
trained Deep FCN. We show results in fig. 13. We find that guiding with an untrained guide network
has little effect on effective rank and intrinsic dimensionality. Meanwhile, guiding with a trained
guide leads to increases in effective rank and intrinsic dimensionality. Due to the discrepancy in
results where guidance with an untrained network leads to the best result, this implies that guidance
can’t be explained with effective rank and intrinsic dimensionality.

K FCN INITIALIZATION

In fig. 4, we demonstrated that guidance does not need to be applied at every training step but
can instead stop early. Continuing optimization of the target network on just the task afterwards
prevented overfitting and lead to improved results.

We can introduce a stricter variant of this experiment to further demonstrate a new initialization
scheme for FCNs. Our new experiment involves splitting guidance into two stages. The first stage
involves only optimizing the target network to form representations that are similar to the guide
network using CKA — so we only optimize representational similarity between the target and guide
network. Crucially, we optimize using random noise, sampled from a Gaussian with mean 0 and
standard deviation 1. This is important for network initialization, which should not be data depen-
dent. We optimize the representational similarity for 150 steps.

Afterwards, we optimize the target network independently on the task. We apply this experiment to
the Deep FCN, trained on ImageNet. We optimize the representational similarity with an untrained
ResNet-18 using noise and apply ImageNet optimization afterwards. We find that this prevents
overfitting and leads to an improved performance of the Deep FCN, as shown in fig. 14.

We believe this establishes the potential for new initialization schemes with FCNs.
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L GUIDANCE WITH RSA AND RIDGE REGRESSION

L.1 REPRESENTATIONAL SIMILARITY ANALYSIS

We use the RSA formulation as described in Kriegeskorte et al. (2008). Specifically, RSA constructs
representational dissimilarity matrices (RDMs) for two sets of representations and compares them
using an outer similarity function.

Given two sets of representations, R € RP*d1 gand R’ € RP*92 we first calculate RDMs for each
set of representations using a distance function d. Formally, we define D € R**? as

D; ;= s(Ri, R;) (11

Each row D; corresponds to the distance between the representations of input ¢ and the representa-
tions of all inputs including itself. This is done per-batch, meaning that RSA is sensitive to batch
size.

Given two RDMs D and D’ constructed from sets of representations R and R’ respectively, we
vectorize the RDM matrices using a function v (since the RDMs are symmetric, we only need to
compare the lower triangles), and compute the similarity between the two vectorized RDMs using a
similarity function s.

M(R, R') = s(v(D),v(D")) (12)

As with CKA, we use the complement of the similarity to construct M. In practice, we define d to
be the cosine distance between every pair of inputs and s to be the pearson correlation between the
RDMs as done in previous work (Conwell et al., 2021a).

We apply guidance with RSA to Deep FCN as our target network and ResNet-18 as our guide
network. Similar to our CKA results, we train for 100 epochs with a batch size of 256, as RSA is
sensitive to the number of samples when comparing sets of representations.

L.2 RIDGE REGRESSION

We used similar ridge regression formulation as (Conwell et al., 2021a; Subramaniam et al., 2024)
without cross-validation.

Given two sets of representations, R € R**% and R’ € R®*? we first apply a sparse random
projection on the representations. Since the dimensionality of the representations is prohibitively
large, the projection makes the ridge regression feasible to compute. We refer to the resulting repre-
sentations as P and P’ which correspond to the projected representations R and R’ respectively. P
and P have dimension d, where d is fixed using the Johnson-Lindenstrauss lemma (Johnson et al.,
1986).

Afterwards, we mean-center the representations and apply ridge regressions using the original least-
squared solution as follows. Our goal is to predict the representations P’ using regressors over P.
We first split our representations into a training set i.e. Piyin, Py, and testing set Py, Py Where
the training set contain half the representations and the testing set contains the other half. We first a

set of regressors B as follows:

B = ((Rrain)TRrain + )\Id)_l(PLrain)T tiain (13)

where ) is the ridge penalty, which is a hyperparameter. The coefficients /3 are then used to predict
the held out data where:

-P:/est = Reslﬁ (14)

We measure the cosine similarity between the predicted representations P, and actual representa-
tions Pieg;.

26



Under review as a conference paper at ICLR 2025

Training Cross-Entropy Loss o5 Validation Cross-Entropy Loss RSA Dissimilarity Loss
. 16 4
7.0 —— Deep FCN
—— Trained ResNet-18 Guide 9.04
—— Untrained ResNet-18 Guide 147
8 681 2 8.5
S S w121
2 2 8.0 3
2669 o — 10
2 g D
o o 73 2
0 n] —~ 84
w w
O 644 © 7.0
(] (9]
61
6.51
6.2
6.0 1 49
0 1000 2000 3000 4000 5000 6000 0 20 40 60 80 100 0 1000 2000 3000 4000 5000 6000
Training Steps Training Epochs Training Steps

Figure 15: Guidance with RSA as the representational similarity metric maintains similar performance
to CKA. We include a further experiment where we change the metric for representational alignment from
CKA to RSA during guidance training. We apply this to the Deep FCN with ResNet-18 as a guide network.
We see that, like CKA, RSA alignment also allows for transferring the prior from ResNet-18. However, unlike
CKA, the untrained guide network only does marginally better than the trained network, potentially indicating
the RSA is better at transferring trained features.
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Figure 16: Guidance with ridge regression as the representational similarity metric improves perfor-
mance over CKA. We change the metric for representational alignment from CKA to ridge regression during
guidance training. We apply this to the Deep FCN with ResNet-18 as a guide network. We see that, like CKA,
ridge regression alignment also allows for transferring the prior from ResNet-18. We find that this improves
over CKA significantly

M(R7 R/) = COSine(P{ésta R:ast) (15)

We apply guidance with RSA to Deep FCN as our target network and ResNet-18 as our guide
network. Similar to our CKA results, we train for 100 epochs with a batch size of 256, as ridge
regression is sensitive to the number of samples when comparing sets of representations. We manu-
ally tune the A hyperparameter, finding that A = 10.0 is optimal for the trained guide network and
A = 100.0 is optimal for the untrained guide network.

L.3 RESULTS

RSA: We see results over the training, validation, and representational dissimilarity loss in fig. 15.
The Deep FCN guided by a trained ResNet-18 achieves an accuracy of //.02% and the Deep FCN
guided by a randomly initialized ResNet-18 achieves an accuracy of 711.74%.

We can first observe that guided training improves over base training as noted in fig. 2 and table 2.
This demonstrates the generality of our approach to other metrics. As long as a representational
similarity metric is differentiable, we can optimize the metric for alignment between two networks
as a method to transfer the prior of one network to another.
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Experiment | CIFAR-10 Test Accuracy (1)
Deep FCN \ 60.58
All layer Guidance 70.15
Last layer Guidance 67.18
Last two layers Guidance 68.03
Last five layers Guidance 67.50
Last ten layers 69.31
First ten layers 79.22
First five layers 79.58
First two layers Guidance 73.34
First layer Guidance 65.11
Multiple Guide Layers | 68.14

Table 6: Guiding earlier layers of deep networks leads to better results. We apply an ablation experiment to
identify which layers lead to stronger improvement when guided. We use a Deep FCN, guided by a randomly
initialized ResNet-18 on CIFAR-10. We find that guiding earlier layers leads to strong improvement, even over
guiding all layers. Guiding any layer leads to an improvement of performance.

We can also observe some minute differences between the results with CKA. Most notably, the
trained guide network has similar performance to the untrained guide network. This is likely be-
cause less information about trained features are present in the RSA metric. RSA measures relative
distance between input instances and imposes a constraint of placing these into relative distances. It
could be possible that fewer degrees of freedom are useful for aligning target network with trained
guides.

Ridge: We see results over the training, validation and representational dissimilarity loss in fig. 16.
The Deep FCN guided by a trained ResNet-18 achieves an accuracy of 9.46% and the Deep FCN
guided by a randomly initialized ResNet-18 achieves an accuracy of 15.69%. Similar to RSA and
CKA, we can see the guided training improves over base training.

Similar to CKA, we observe that randomly initialized guide networks outperform trained guide
networks. Furthermore, performance with ridge regression is better than with CKA. This is finding
is intuitive. Ridge regression generally has more degrees of freedom than other similarity metrics
because of fewer invariances imposed on the metric. This means that the solution search space is
larger, leading to better results. We believe this provides a promising path forward for making target
networks have better performance.

Furthermore, ridge regression has a desirable property because it can be probed. Since we are
mapping representations from our target network to our guide network, we can probe predicted
representations to measure similarity. We can use probing analyses on predicted representations to
see what information the target has inherited from the guide network. This opens up many avenues
for studying guidance in the future.

M ABLATION EXPERIMENTS

We analyze the current design of our layer mapping for guidance by experimenting with the number
of layers used in guidance and whether more complex mappings exist like mapping several layers
of the guide network to a single target network.

We run layer-wise ablation experiments the Deep FCN guided by an untrained ResNet-18 over
CIFAR-10. Similarly, we experiment with RNNs guided by untrained transformers over the copy-
paste task.

In table 6, we first show the effect of guiding over a subset of layers in the Deep FCN, evaluated
over CIFAR-10. We find that earlier layers are much more impactful for a deep network. Intu-
itively, this could be due to guidance providing aiding with the credit assignment problem in deep
networks: gradients don’t propogate properly to earlier layers. However, table 7 shows that later
layers in the RNN are more useful to apply guidance to when improving copy-paste performance.
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Experiment | Copy-Paste Accuracy (1)
RNN \ 14.35
All layer Guidance 42.56
Last layer Guidance 38.19
Last three layers Guidance 42.33
Last two layers Guidance 41.55
First layer Guidance 27.59
First two layers Guidance 28.15
First three layers Guidance 33.93
One guide layer \ 36.11

Table 7: Guidance of later layers improves RNN performance. We apply an ablation experiment over
RNNs trained for copy-paste to see whether guiding certain layers lead to improved performance. We find
that guiding later layers leads to stronger performance overall. Furthermore, RNN layers are guided by several
guide network layers in the transformer such as the linear layer and layer-normalization in the transformer
decoder. Including both of these leads to better results.
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Figure 17: ImageNet classes are barely decodable from a randomly initialized ResNet-18. In order to
assess the performance of our randomly initialized networks, we design a linear decoder to decode ImageNet
classes from all layers of the network. Chance accuracy is 0.1% (1/1000) on the graph above. We find that we
can decode ImageNet classes with an accuracy above chance the accuracy is still very low.

In general, we find that guiding any layer leads to improvements in results generally, showing the
general applicability.

Furthermore, in table 6 and table 7, we consider new methods to map guide network layers to target
network layers. When guiding a Deep FCN with ResNet-18, we only apply a 1-1 layer mapping
for supervision i.e. each Deep FCN layer is guided by only one ResNet-18 layer. From table 6,
introducing multiple sources of supervision from guide network layers by allowing a one-to-many
mapping decreases performance. However, with the RNN, we guide with representations from the
linear layer and layer normalization in the transformer decoder. One could consider that linear layers
are redundant with layer normalization for guidance, so we remove its representations as a potential
supervisory target. We find that this hurts performance, showing that RNNs benefit from multiple
levels of supervision from its guide.

Understanding the dynamics of guidance supervision is interesting and could allow for understand-
ing training dynamics of neural networks or allow us to form cross-architectural relationships.

N LINEAR DECODING

We assess whether object detection is decodable from internal representations of a randomly initial-
ized ResNet-18. A potential explanation for improvements in the target network with an untrained
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guide is the ability to linearly decode the ImageNet classes with significant accuracy at certain layers
of the untrained guide network.

We train a linear decoder with 4000 ImageNet images from the train set and test on 1000 images from
the validation set for each layer. We show results in fig. 17. We find that the linear decoder never
achieves any accuracy greater than 0.8% for any of the layers. Furthermore, later layers contain little
information that is useful to linearly decode ImageNet classes. This means that linearly decodable
information isn’t present in the guide network and this aspect isn’t driving improvements in target
networks.
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