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Abstract

Many decision-making tasks, where both accuracy and efficiency matter, still
require human supervision. For example, tasks like traffic officers reviewing
hour-long dashcam footage or researchers screening conference videos can benefit
from concise summaries that reduce cognitive load and save time. Yet current
vision-language models (VLMs) often produce verbose, redundant outputs that
hinder task performance. Existing video caption evaluation depends on costly
human annotations and overlooks the summaries’ utility in downstream tasks. We
address these gaps with Video-to-text Information Bottleneck Evaluation (VIBE),
an annotation-free method that scores VLM outputs using two metrics: grounding
(how well the summary aligns with visual content) and utility (how informative it is
for the task). VIBE selects from randomly sampled VLM outputs by ranking them
according to the two scores to support effective human decision-making. Human
studies on LearningPaper24, SUTD-TrafficQA, and LongVideoBench show
that summaries selected by VIBE consistently improve performance—boosting
task accuracy by up to 61.23% and reducing response time by 75.77% compared
to naive VLM summaries or raw video.

1 Introduction

Efficiently extracting relevant information from extensive video is a major bottleneck for human
decision-making, where both accuracy and efficiency matter [|—4]. Tasks demanding human supervi-
sion, such as a traffic officer analyzing hours of dashcam footage to determine fault or a researcher
distilling key insights from a lengthy oral presentation, are often limited by the time and cognitive
load required to process raw video streams. In this work, we aim to improve the quality and brevity
of video summaries to boost human task performance compared to existing vision-language model
(VLM) outputs and raw video, especially for longer clips where summarization offers greater utility.

Existing video caption evaluation metrics, however, rely heavily on reference-based comparisons to
human-annotated summaries [5—8]. These metrics face two main issues. First, these works require
human annotators to watch video clips and write gold-standard captions, which contradicts the goal
of reducing human response time and limits generalization to unseen video clips. Second, they are
oblivious to downstream tasks and fail to measure how well captions support the tasks.

We propose Video-to-text Information Bottleneck Evaluation (VIBE), an annotation-free method
for selecting task-relevant video summaries without model retraining. As shown in Figure 1, VIBE
defines two metrics—grounding and utility scores—based on the information bottleneck principle [9].
It uses pointwise mutual information to quantify how well a summary reflects video evidence and
supports the downstream task. We leverage next-token prediction in VLMs to access the probability
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Figure 1: VIBE for Video-to-Text Summary Selection. Given a video, a task, and VLM-generated
summaries, VIBE ranks the summaries using the proposed grounding and utility scores, which assess
video alignment and task relevance. It selects the summary most conducive to helping human users
achieve higher task accuracy and lower response time compared to watching the full video.

of generating summaries or task answers. By comparing these probabilities with and without key
information, we measure how well one modality (text or video) compensates for missing information
in the other to assess grounding and task relevance, as shown later in Figure 2. Using these scores,
VIBE selects the most decision-supportive summary for humans from randomly sampled VLM
outputs via annotation-free rejection sampling, which filters candidates without human labels for
faster task completion than watching full video clips.

To evaluate VIBE, we conduct between-subjects user studies with 243 participants across three
datasets—LearningPaper24 (self-curated), LongVideoBench [10], and SUTD-TrafficQA [ 1]—
measuring human performance in terms of accuracy, response time, and inverse efficiency score,
the ratio of response time to accuracy [12]. Results show that summaries selected with maximal
utility score improve task accuracy by up to 40%, while those chosen by maximizing grounding
score yield up to 27.6% gains, both on the LongVideoBench dataset. VIBE-selected summaries
also significantly reduce response time compared to raw video. We also observe a strong positive
correlation between utility score and human accuracy, and a strong negative correlation between
summary length and response time per word. These patterns highlight the value of concise, relevant
information for efficient human decision-making.

Contributions. Our contributions are threefold: (a) We identify the need and propose the problem
of annotation-free, task-aware evaluation for video-to-text summarization, improving human response
time and accuracy without relying on gold-standard captions. (b) We propose VIBE, an annotation-
free evaluation framework that combines grounding and utility scores of video clips to rank and select
high-quality summaries from VLM outputs without requiring retraining. (c) We demonstrate through
user studies that VIBE summaries significantly boost humans’ task accuracy by up to 61.23% and
reduce response time by up to 75.77% compared to standard VLM outputs.

Critique and Open Problems. This work reframes the video-to-text evaluation problem through the
lens of human decision support, offering an annotation-free, scalable alternative to costly reference-
based comparisons. VIBE’s ability to score and select summaries without training makes it a practical
plug-in for both closed- and open-source VLMs. Looking ahead, VIBE opens several promising
directions. One is exploring the joint optimization of summary generation and selection through self-
supervised fine-tuning of VLMSs. Another is extending beyond human supervision tasks to investigate
whether task-aware captions can improve VLM performance on downstream reasoning tasks. These
directions point to the broader applicability of VIBE beyond evaluating video summarization.



2 Related Work

Reference-based Video Caption Evaluation. Evaluating video caption quality is crucial for tasks
like video question answering [ 13, 14], text-to-video retrieval [5, 15, 16], and multimodal language
model training. The quality of captions greatly impacts the downstream performance of tasks and
models. While existing benchmarks compare VLM-generated captions to gold-standard references
using metrics like ROUGE [17], BLEU [18], and CIDEr [19], these are costly to curate and focus
solely on captions rather than video context. In contrast, we propose VIBE, a new evaluation metric
that incorporates video context, requires no gold standard, and can be applied to unseen video-
caption pairs. VIBE extends the information-theoretic approach of [20], which uses pointwise mutual
information to assess news summaries for language model tuning. We adapt it for video captions and
examine their effect on human task accuracy and response time.

Human-Centric Evaluation via Response Time and Accuracy. In the context of human-agent
interaction involving natural language [2 1], traditional human evaluations have focused on assessing
summaries based on fluency and informativeness [22, 23], but these methods are often subjective
and hard to scale. To address this, we adopt an extrinsic evaluation approach that measures how
summaries affect human performance on downstream tasks [24, 25]. Specifically, we evaluate
captions based on human response time and accuracy on multiple-choice questions grounded in video
content. To account for the speed-accuracy tradeoff [26], we also report the inverse efficiency score
[12], which normalizes response time by accuracy.

3 Preliminaries

Mutual Information. Our work heavily relies on the concept of mutual information. For the ease
of readers, we briefly introduce it here. Mathematically, for two random variables, X, Z, we can
calculate their mutual information:

I(X;Z2)=E {log M} =E [log PP(AE(J(Z))} , (Mutual Information) e))

where the expectation operator is over the joint probability distribution of X and Z.

Intuitively, mutual information measures the reduction in uncertainty about X after observing Z. It is
zero if and only if X and Z are independent, meaning knowledge of Z provides no information about
X. Higher mutual information indicates stronger dependency between the two variables. In this work,
we leverage mutual information to quantify how much the summaries retain relevant information
from the raw video clips and how well they support the target downstream task.

Information Bottleneck. The information bottleneck (IB) framework extracts relevant information
from input data while compressing irrelevant details. Tishby et al. [9] first introduced it to formalize
the trade-off between accuracy and complexity in learning systems. Later, researchers applied it to
domains such as neuroscience [27], natural language processing [28, 29], and computer vision [30,
]. To ensure clarity, we modify the notation from [9] to align with our later sections, where V' is
the raw video input, T is the summary of the video, and Y is the downstream task of our interest.

We now introduce the IB framework, which seeks to learn a representation 7" that discards sensitive
and irrelevant information from the input V' while preserving information useful for predicting the
target task Y. IB relies on minimizing the mutual information between input V" and a compressed
representation 7', while preserving as much information as possible about a target variable Y:

min I(V;T) -3 I(T;Y) , (Information Bottleneck) 2)
P(t|v) N—— ——
compression informativeness

where I(-; -) denotes mutual information, and 5 > 0 controls the trade-off between compression
and prediction. The optimization variable is the conditional distribution P (¢|v), which defines a
stochastic encoder that maps v € V tot € T. The IB principle in eq. (2) formalizes the trade-
off between compression and prediction. Minimizing I(V';T') encourages stronger compression,
while maximizing I(7T"; Y') promotes the preservation of task-relevant information. The parameter (3
balances these two competing objectives: a higher /3 prioritizes retaining more information about Y,
while a lower [ encourages stronger compression of V.



Researchers use the IB principle to analyze generalization, regularization, and the role of hidden
representations of neural networks [32, 33], where V' is the input of neural networks, 7' is the output
of intermediate layers, and Y is the classification label. It also drives recent advances in representation
learning, where models aim for compact, informative encodings [34, 35].

4 Video-to-Text Information Bottleneck Evaluation (VIBE)
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Figure 2: Computing VIBE Scores via Masked Inference. VIBE estimates grounding and utility
scores using the next-token prediction mechanism of VLMs. The grounding score measures how
well the video helps reconstruct a masked summary, while the utility score captures how much the
summary improves task prediction given a masked video.

We now formally describe our video-to-text information bottleneck evaluation (VIBE) method.
Inspired by the IB formulation in eq. (2), we adapt its two terms for the purpose of evaluating
video-to-text summary quality. We denote the raw video clips that are fed into the VLMs as V/, the
summaries from the VLM response as 7', and the task target we care about as Y. For instance, let
V be a video of a paper presentation, 7" be the summary of the presentation, and the task Y be to
determine the primary area to see if it is of one’s interest.

Grounding Score. In eq. (2), the mutual information I(V'; T') between raw data and representation
is the compression term. In our setting, we reinterpret it as the grounding score, which quantifies how
grounded the textual summary is to the video. The higher this score is, the more closely the summary
is anchored to the video.

However, one cannot access the joint and marginal probability distributions over the occurrences of
video clips or text summaries. Therefore, we can only calculate the empirical mutual information

log ;)g))(ilé,z()z) without the expectation operator to approximate the I(V'; T') term. Literature refers to

the empirical term without the expectation as pointwise mutual information [36], which we denote as
I7(-; ). Unlike mutual information, which must be non-negative as it is the expectation of pointwise
mutual information, pointwise mutual information ranges from [—oo, 0o].

We now explain the approximation technique in VIBE to calculate the grounding score. Recall from
eq. (1), we rewrite pointwise mutual information as:
PTIV) . PIV. Thaste)

I7(V;T) = log ——~ =~ log

. (Grounding Score) 3)
P(T) P(T|Tmasked) g

We condition both the numerator and denominator with 7},.skeq, @ masked version of the text, to
approximate I”(V;T). The approximation holds if T},asked is independent of both the video V'
and the original text 7. Masking key content makes T},,skeq €ffectively uninformative and thus
independent. We put the detailed derivation in Appendix I. Following Jung et al. [20], we use tf-idf
[37] to identify keywords and replace them with a "<MASK>" token. This masking helps ensure that
eq. (3) reflects the true dependency between V' and T, rather than exploiting shortcuts from the text



itself. Thus, the grounding score measures how much the TL;DR remains genuinely grounded in the
video beyond what the masked text alone would suggest.

To compute eq. (3), we run two separate inferences with the same VLM to define the ratio of two
conditional probabilities P(+|-). The first, P(T'|V, Tinasked ), is the product of next-token prediction
probabilities when reconstructing the masked text given both the video and the masked input. The
second, P (7| Tiasked ) is computed similarly but without providing the video. Only by conditioning
on the masked input can we leverage the VLM’s next-token prediction probabilities to estimate these
likelihoods. By dividing these two conditional probabilities and taking the logarithm, we approximate
the pointwise mutual information, allowing us to estimate the grounding score.

Utility Score. The second term in eq. (2), the informativeness term, is the mutual information
I(T;Y) between the representation and the target task. We refer to it as the utility score, which
measures how useful the summary is for solving the downstream task. A higher utility score indicates
that the summary preserves more information relevant to predicting or completing the target task.
Similar to the grounding score, directly computing I(7"; Y) is intractable because we cannot access
the true probability distributions. Again, we approximate it using the pointwise mutual information
with conditional probabilities:

P(Y|T) ~ log P(Y‘Ta Vmaskcd)

P(Y) P(Y‘Vmasked>

Similar to the grounding score in eq. (3), Vinaskea denotes video clips with key information removed
to reduce their direct informativeness about both the summary 7" and the task label Y. To compute
the utility score in eq. (4), we compare two model inferences: one conditioned on both the summary
T and the masked video Vi,asked, and the other on Vi, .skeq alone. Since both use the same masked
visual input, any improvement in predicting ¥ must come from the information provided by 7.
Intuitively, if a summary is useful, it should compensate for the missing content in the masked video
and help recover task-relevant information. Thus, the utility score quantifies how well the summary
restores information necessary for predicting the task, directly measuring the summary’s contribution
to downstream decision-making.

I7(T;Y) = log . (Utility Score) 4)

Rejection Sampling over Grounding and Utility Scores. We now describe how VIBE optimizes
grounding and utility scores to select more informative and task-relevant video-to-text summaries
for humans, as shown in Figure 1. Given multiple summaries 7" sampled from the VLM’s output
distribution P(T'|V'), VIBE selects the candidate that maximizes a weighted sum of the two pointwise
mutual information terms:

arg maxypperpyye IV (V;T) + B I7(T;Y). (TL:DR Selection with VIBE) )

Here, o, 3 are hyperparameters controlling the trade-off between grounding and utility in eq. (5). A
higher o emphasizes alignment with video, favoring summaries that faithfully reflect the video, while
a higher [ prioritizes task relevance, selecting summaries that improve downstream performance.
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Figure 3: Pareto front of VIBE. Summaries selected by VIBE form a Pareto frontier across
different (o, 8) per Equation (5), demonstrating optimal trade-offs between grounding and utility.
In contrast, Naive VLM summaries, author-written TLDRs, and abstracts from OpenReview in
LearningPaper24 fall inside the frontier, indicating suboptimal scores.



Our formulation differs from traditional IB, where compression serves as a regularizer during model
training to mitigate overfitting. In contrast, VIBE does not train a model—it selects a summary.
Overfitting is therefore not a concern, and maximizing both mutual information terms is desirable
to produce summaries that are both useful and faithful. To this end, we consider «, 5 > 0 to jointly
maximize both scores. Then, to explore potential trade-offs between the two scores, we perform a
convex combination sweep over o € {0, 0.05, 0.1, ..., 1.0}, with 8 = 1 — «. Each («, ) pair is
applied consistently across all datasets. This linear scalarization technique, commonly used in multi-
objective optimization [38], produces the convex (“Pareto curve") shown in Figure 3, empirically
revealing the inherent trade-off between grounding and utility scores.

Our results based on grounding and utility scores across sampled summaries from multiple datasets
reveal a consistent trade-off between the two objectives. As shown in Figure 3, summaries selected by
VIBE with varying a and 3 form a Pareto front, capturing the inherent trade-off between the two VIBE
scores. In contrast, randomly sampled summaries (Naive VLM) consistently fall inside this Pareto
curve across datasets, indicating suboptimal grounding and utility. We observe this pattern when
evaluating the two VIBE scores of VLM-generated summaries on tasks from LearningPaper24,
SUTD-TrafficQA, and LongVideoBench. Summaries with high grounding scores tend to mirror
the video content closely but often include redundant or irrelevant details for the task. In contrast,
summaries with high utility scores boost task accuracy and response efficiency but may overlook
important visual context. This trade-off reflects the core tension in the IB framework. By tuning «
and S, VIBE adjusts this balance to match the needs of different downstream applications. We detail
the experimental settings in the next section.

As shown empirically in the experiments, higher utility scores correlate with higher human task
accuracy. Thus, one can use VIBE to select summaries with higher utility scores and present only the
most informative summaries to humans, filtering out less useful ones. Notably, calculating the utility
score requires access to task labels Y, but not gold-standard, human-annotated labels for summary 7'
as in previous works. When task labels are unavailable, VIBE can select summaries based on the
highest grounding score, an unsupervised measure of alignment between the video and the generated
summaries. Although the grounding score alone yields lower human performance than the utility
score, our user study shows it still improves task accuracy compared to unfiltered VLM summaries.

From Evaluation to Real-World Use. VIBE evaluates the quality of summaries only from the
VLM perspective, but its connection to human decision-making performance remains unanswered
solely by the formulation. To bridge this gap, we conduct user studies measuring how different
summary qualities, as evaluated by VIBE, impact human decision-making performance in Section 5.
VIBE relies solely on text generation and next-token probability access, using black-box access to
VLMs like the OpenAl API [39]. It enables VIBE to work with both closed- and open-source VLMs
and scale well to real-world scenarios.

5 Experiment

We conduct user studies across three diverse datasets to evaluate how VIBE-generated summaries
support human decision-making. The study measures participants’ accuracy and response time in
answering questions about video content. Here, we use Qwen2.5-VL-72B-AWQ [40] to evaluate
VIBE for all datasets. A representative qualitative example from the study is provided in Appendix A.
We also show that VIBE works across various VLMs through ablation studies.

5.1 Datasets

For evaluation, we select three datasets varying in domain, duration, and task nature.

LearningPaper24 We introduce LearningPaper24, a curated dataset of 2,287 video presentations
from ICLR 2024 and NEURIPS 2024, filtered based on key criteria: a valid OpenReview ID, an
accessible SlidesLive video, an author-provided TL;DR and abstract, and a clearly defined primary
area. Details on the curation process and dataset statistics are provided in Appendix C. The task
associated with this dataset is to identify the primary area of each paper from 12 options. See
instruction details in Appendix E.



LongVideoBench & SUTD-TrafficQA LongVideoBench [10] features long instructional clips
with QA pairs for extended reasoning, while SUTD-TrafficQA [ 1] contains short traffic clips with
multiple-choice questions on causal and temporal understanding. Participants answer one question
per each LongVideoBench clip; four questions per each SUTD-TrafficQA clip.

Preprocessing In all datasets, we mask text by removing keywords with high tf-idf scores. For
LearningPaper24, which features slide videos, we extract and mask keywords in the slide using
EasyOCR [41]. For the other two datasets, we apply random 1/16 cropping to all video frames. We
use a subset of each dataset for VIBE evaluation and user studies (details provided in Appendix D).

5.2 User Study Design

For each dataset, 10 video stimuli with multiple-choice questions are shown in randomized order. We
adopt a between-subjects design where participants are assigned to one of the four conditions listed
below, and the format in which the stimulus is presented varies by the condition.

Independent Variables. Participants are assigned to one of four conditions. In the Video Only
condition, they watch the original video without text. In the remaining conditions, they view only a
VLM-generated summary: a randomly selected VLM summary (Naive), the top-ranked summary
from k response candidates® by utility score (Max-U) or by grounding score (Max-G).

Dependent Measures. We report three metrics: accuracy, the proportion of correct responses
across 10 stimuli; response time, the time (in seconds) spent reading or watching each stimulus and
answering its corresponding questions; and inverse efficiency score (IES), the ratio of response time
to accuracy, to account for speed—accuracy trade-offs [12].

Hypotheses. We evaluate the following hypotheses: (H1) Participants in the Max-U and Max-G
will achieve higher accuracy than those in Naive VLM. (H2) Participants in the Max-U and Max-G
will respond more quickly than those in the Video Only. (H3) Max-U and Max-G will yield lower
(i.e., more efficient) IES scores than Video Only, reflecting a better speed—accuracy trade-off.

Participants. We recruit 243 participants across three datasets: 92 for LearningPaper24, 82 for
SUTD-TrafficQA, and 69 for LongVideoBench. For LearningPaper24, participants are primarily
CS graduate students or prescreened degree holders on Prolific [42]; participants for the other datasets
are recruited generally. The average age is 37.59 & 11.06 years, with a gender distribution of 63.37%
male, 35.80% female, and 0.82% non-binary. Further details are provided in Appendix F.

5.3 User Study Results and Analysis

We assess statistical significance using the independent t-test, reporting the t-statistic ¢(df) (with
degrees of freedom df), the significance level p, and the effect size measured by Cohen’s d.

On H1 (Accuracy). As shown in Table 1 and (al, bl) of Figure 4 (with Max-U in yellow
and Max-G in purple above Naive VLM in pink), both Max-U and Max-G consistently outper-
form the Naive VLM across all datasets, confirming H1. Max-U achieves the largest gains,
with statistically significant improvements over Naive VLM in LearningPaper24 (¢(36) =
2.486,p = 0.009,d = 0.806), LongVideoBench (¢(26) = 3.215,p = 0.002,d = 1.261),
and SUTD-TrafficQA (¢(25) = 3.311,p = 0.001,d = 1.325), likely due to its focus on task-
relevant content that helps users quickly locate key information. However, computing the util-
ity score requires task labels, which may limit its general applicability and scalability. Max-G,
while yielding smaller gains, still significantly outperforms the baseline (e.g., LearningPaper24:
t(33) = 1.750,p = 0.045,d = 0.594; LongVideoBench: ¢(25) = 2.691,p = 0.006,d = 1.077;
SUTD-TrafficQA: ¢(28) = 1.759,p = 0.045,d = 0.667). Crucially, calculating the grounding
score is fully self-supervised and does not require task labels, making it an alternative that still
delivers meaningful accuracy gains.

3k = 5 in this study, and the k responses are generated with various temperatures.



IV Conditions
Video Only Naive Max-G (ours) Max-U (ours)

Acct | 23.50+10.62 2842 +12.68 35.00£7.91 37.89+10.04
LearningPaper24  250-325 RT | |192.73 £108.01 47.48 £20.31 61.13 £39.33 46.69 + 25.06
IES | 9.85 £ 6.63 1.81 £ 1.51 1.85+1.20 1.28 £ 0.66

Acct | 74.44 £14.23 4643 £13.94 59.23+9.17 65.00 + 15.47
LongVideoBench  221-489 RT | | 202.35 £ 87.26 86.50 +63.33 71.93 +35.96 65.86 + 41.34
IES | 293 +1.48 1.83 £1.01 1.25 £ 0.67 1.14 £+ 0.80

Acc T | 82.86+£5.08 7696 £6.89 80471321 84.81+4.65
SUTD-TrafficQA 2-10 RT | | 48.63 £21.30 79.46 42577 80.97 £41.11 137.27 + 81.64
IES | 0.59 £+ 0.27 1.05 £ 0.37 1.01 £0.52 1.66 £ 1.02

Dataset Duration (s) Metric

Table 1: Human performance (mean = standard deviation) across three datasets under different IV
conditions (detailed in Section 5.2). Metrics: Accuracy (Acc, %, higher is better), Response Time
(RT, seconds, lower is better), and Inverse Efficiency Score (IES = RT/Acc, lower is better). Bolded
values indicate the best performance among the IV conditions for each metric.

-@- Video A Naive VLM ’ Max-G (ours Max-U (ours
(al) ( ) ( ) (az) rs(38) =0.684, p <0.001
100

80

60

Accuracy (\%)

-7.5 -5.0 -2.5 0.0 2.5 5.0

o o c|_§_| C A Utility Score I(T; Y)
3) ., 38)=-0.761, p<0.001
50.0 @ A0 @ 4 *
; [VLM (CoT) Accuracy (40%)]

o
Fe—— et ——Em——— A k- b kb bt i i

Accuracy (%)

—
[]

w
o
o
Response Time / Word (s)
=] N
f
o

IS

0.010 0.020 0.030 0.040

1/ Response Time (s7%) 50 100 150

Word Count

(a) LongVideoBench

-@- Video Naive VLM ’ Max-G (ours) Max-U (ours)
(b1) & (b2) ry(38) = 0.399, p=0.011
100 8
60.0 ~ 80 3 8
g o,
<]
a 60 o
° AA * e
3
v
v
<

[
40
o
45.0 08
20 ° o o
° o
LR 2 L X L ® o 0 ° Q ® O
2

g
- § -8 -6 -4 -2 0
® Utility Score I(T; Y)
5 30.0 |® o0 oo 2 L 2 VO
§ =(b3) | (38)- _0.684, p<0.001
I'E'l Ts| ©
[ ] A® ® ¢4 * A A AA o
Sa| o
15.0 ~
[VLM (CoT) Accuracy (10%)] 'E’ 3 °
l—o———@ - ———— k- — - S ——————— ] =
F2 o
o
g1 @
°
20
0.010 0.020 0.030 0.040 ?
x 20 a0 60 80 100 120

1/ Response Time (s7%) Word Count

(b) LearningPaper24

Figure 4: (al, bl) Accuracy versus inverse response time. Each point represents an individual
participant; large markers indicate group means with standard error of the mean. Shaded areas denote
2D kernel density estimates (threshold = 0.45). (a2, b2) Correlation between accuracy and utility
score. (a3, b3) Correlation between response time per word and word count.



On H2 (Response Time). Table 1 shows that both Max-U and Max-G significantly reduce response
times compared to the Video baseline in LearningPaper24 (¢(37) = —5.599,p < .001,d =
—1.794) and LongVideoBench (¢(34) = —4.503, p < .001,d = —1.510). However, this trend does
not extend to SUTD-TrafficQA, where response time shows no consistent improvement. It is not
surprising, as the significantly shorter video durations (2—10 seconds, compared to over 3 minutes
in the other datasets) inherently limit the benefits of summarization. These results align with the
expectation that VIBE is most effective in reducing cognitive load for long video clips.

On H3 (IES). As shown in Table 1, Max-U significantly outperform the Video Only baseline
in LearningPaper24 (¢(37) = —5.458,p < .001,d = —1.749) and LongVideoBench (#(21) =
—3.592,p = .001,d = —1.617), with Max-G showing similar gains (LearningPaper24: ¢(34) =
—4.631, p < .001, d = —1.553; LongVideoBench: ¢(20) = —3.421, p = .001, d = —1.567).
Furthermore, Max-U also outperform Naive VLM (¢(26) = —1.940,p = .032,d = —0.761) in
LongVideoBench. These results highlight VIBE’s effectiveness in settings where processing full
video clips is costly. In contrast, SUTD-TrafficQA shows limited IES improvement: despite Max-U’s
accuracy improvements over Naive VLM and Video Only, the brevity of the clips and the visual
nature of fine-grained actions reduce the benefit of text-based summaries.

Correlation Analyses. We explore the correlation between utility score, grounding score, word
count, and human performance (accuracy and response time) using Spearman’s rank coefficient [43],
which is robust to outliers and non-linear relationships. Full plots are provided in Appendix G. Two
consistent trends hold across datasets: First, utility score positively correlates with accuracy: strongly
in LongVideoBench (rs; = 0.684, p < .001), and moderately in LearningPaper24 (r; = 0.399,
p = .011) and SUTD-TrafficQA (ry; = 0.463, p = .004). Second, word count is strongly negatively
correlated with response time per word (LongVideoBench: ry = —0.761, LearningPaper24:
rs = —0.684, SUTD-TrafficQA: rs = —0.658, all p < .001), implying that longer summaries lead
to faster processing per word, possibly due to reduced engagement and more shallow reading.

Key Takeaways. Max-U and Max-G outperform Naive VLMs in accuracy, response time, and
inverse efficiency score, with Max-U providing the most significant improvements, especially for
longer video clips. Max-G, though offering smaller gains, remains a self-supervised alternative that
improves accuracy without task labels. The benefits of summarization are less pronounced in shorter
video clips, like those in SUTD-TrafficQA, where brief durations limit gains. Correlation analyses
show the VIBE utility scores align with higher accuracy, while longer summaries tend to increase
unit response time, highlighting the importance of concise, relevant information.

5.4 Ablation over VLM Variants

VIBE scores can inherit bias from the underlying VLMs due to their training data and conditional
probability estimates used in mutual information computation. To assess robustness under such
model-induced bias, we compare VLMs of varying size and source. As shown in Appendix B,
different backbones produce consistent IB score trends and scales. This consistency suggests that
lightweight models can efficiently verify outputs from larger ones. To further reduce bias, one can
evaluate a single summary using multiple VLMs—an ensemble-style strategy aligned with mixture-
of-experts [44, 45] and model selection techniques [46]. This reflects the intuition that good outputs
are often hard to generate, but easy to verify.

Limitations. Despite being training-free, VIBE requires multiple VLM inferences for grounding
score evaluation, with the number of masked tokens influencing inference steps. Its pointwise mutual
information estimate may be biased by two main factors: (a) the text and video masking strategy,
and (b) the conditional probability modeling of the VLMs. For (a), the tf-idf score we use to select
keywords for text masking requires hyperparameter tuning, and the optimal masking strategy remains
an open question. For (b), VLMs introduce bias through their training data and modeling assumptions
in computing eq. (5). Using separate models for generation and evaluation, as discussed in Section 5.4,
can help mitigate this bias.



6 Conclusion

In this work, we introduce VIBE, an annotation-free framework for evaluating and selecting video-to-
text summaries to support human decision-making. Unlike traditional caption evaluation metrics that
rely on human-written references, VIBE uses information-theoretic scores—utility and grounding—to
assess how well a summary supports a downstream task and aligns with video evidence. This enables
scalable, task-aware summary selection without the need for retraining or annotations. Through a
large-scale user study spanning three diverse datasets, we show that summaries selected by VIBE
significantly improve both task accuracy and response time, especially for longer video clips where
information overload is more likely.

Acknowledgement

This work was supported in part by the National Science Foundation grants No. CNS-1836900,
2148186, the Office of Naval Research (ONR) under Grant No. N00014-22-1-2254, N00014-24-1-
2097, the Defense Advanced Research Projects Agency (DARPA) contract FA8750-23-C-1018, and
DARPA ANSR: RTXCW2231110. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not necessarily reflect the views of the
National Science Foundation.

10



References

(1]

(2]
(3]

(4]

(51

(6]

(7]

(8]

(9]

[10]

[11]

[12]
[13]
[14]
[15]

[16]

[17]

[18]

[19]

[20]

S. Amershi, D. Weld, M. Vorvoreanu, et al. “Guidelines for Human-Al Interaction”. In:
Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems. CHI
’19. Glasgow, Scotland Uk: Association for Computing Machinery, 2019, pp. 1-13. ISBN:
9781450359702.

A. Holzinger. “Interactive machine learning for health informatics: when do we need the
human-in-the-loop?” In: Brain informatics 3.2 (2016), pp. 119-131.

D. Xin, L. Ma, J. Liu, et al. “Accelerating Human-in-the-loop Machine Learning: Challenges
and Opportunities”. In: Proceedings of the Second Workshop on Data Management for End-To-
End Machine Learning. DEEM’ 18. Houston, TX, USA: Association for Computing Machinery,
2018. 1SBN: 9781450358286.

A. Holzinger, K. Zatloukal, and H. Miiller. “Is human oversight to Al systems still possible?”
In: New Biotechnology 85 (2025), pp. 59-62. ISSN: 1871-6784.

J. Xu, T. Mei, T. Yao, and Y. Rui. “Msr-vtt: A large video description dataset for bridging
video and language”. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. 2016, pp. 5288-5296.

X. Wang, J. Wu, J. Chen, et al. “VaTeX: A Large-Scale, High-Quality Multilingual Dataset for
Video-and-Language Research”. In: The IEEE International Conference on Computer Vision
(ICCV). Oct. 2019.

W. Chai, E. Song, Y. Du, et al. “AuroraCap: Efficient, Performant Video Detailed Captioning
and a New Benchmark™. In: The Thirteenth International Conference on Learning Representa-
tions. 2025.

M. Monfort, S. Jin, A. Liu, et al. “Spoken moments: Learning joint audio-visual representations
from video descriptions”. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 2021, pp. 14871-14881.

N. Tishby, F. C. Pereira, and W. Bialek. The information bottleneck method. 2000. arXiv:
physics/0004057 [physics.data-an].

H. Wu, D. Li, B. Chen, and J. Li. “Longvideobench: A benchmark for long-context interleaved
video-language understanding”. In: Advances in Neural Information Processing Systems 37
(2024), pp. 28828-28857.

L. Xu, H. Huang, and J. Liu. “Sutd-trafficqa: A question answering benchmark and an efficient
network for video reasoning over traffic events”. In: Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition. 2021, pp. 9878-9888.

J. T. Townsend and F. G. Ashby. Stochastic modeling of elementary psychological processes.
CUP Archive, 1983.

D. Xu, Z. Zhao, J. Xiao, et al. “Video Question Answering via Gradually Refined Attention
over Appearance and Motion”. In: ACM Multimedia. 2017.

Y. Zhong, J. Xiao, W. Ji, et al. Video Question Answering: Datasets, Algorithms and Challenges.
2022. arXiv: 2203.01225 [cs.CV].

P-h. Li, Y. Yang, M. Omama, et al. “Any2Any: Incomplete Multimodal Retrieval with Confor-
mal Prediction”. In: arXiv preprint arXiv:2411.10513 (2024).

M. Omama, P.-h. Li, and S. P. Chinchali. “Exploiting Distribution Constraints for Scalable
and Efficient Image Retrieval”. In: The Thirteenth International Conference on Learning
Representations. 2025.

C.-Y. Lin. “Rouge: A package for automatic evaluation of summaries”. In: Text summarization
branches out. 2004, pp. 74-81.

K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu. “Bleu: a method for automatic evaluation
of machine translation”. In: Proceedings of the 40th annual meeting of the Association for
Computational Linguistics. 2002, pp. 311-318.

R. Vedantam, C. Lawrence Zitnick, and D. Parikh. “Cider: Consensus-based image descrip-
tion evaluation”. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. 2015, pp. 4566-4575.

J. Jung, X. Lu, L. Jiang, et al. “Information-Theoretic Distillation for Reference-less Summa-
rization”. In: First Conference on Language Modeling. 2024.

11


https://arxiv.org/abs/physics/0004057
https://arxiv.org/abs/2203.01225

[21]

[22]

[23]
[24]
[25]
[26]
[27]

(28]

[29]

[30]

[31]
[32]

[33]

[34]

[35]
[36]
[37]

[38]
[39]

[40]
[41]
[42]

[43]
[44]

[45]

S. Chen, D. Fried, and U. Topcu. “Human-agent cooperation in games under incomplete
information through natural language communication”. In: International Joint Conference on
Artificial Intelligence, Human-Centred Al (2024).

A. Belz and E. Reiter. “Comparing automatic and human evaluation of NLG systems”. In:
11th conference of the european chapter of the association for computational linguistics. 2006,
pp- 313-320.

Y. Graham, T. Baldwin, A. Moffat, and J. Zobel. “Can machine translation systems be evaluated
by the crowd alone”. In: Natural Language Engineering 23.1 (2017), pp. 3-30.

A. Nenkova, K. McKeown, et al. “Automatic summarization”. In: Foundations and Trends®
in Information Retrieval 5.2-3 (2011), pp. 103-233.

X. Pu, M. Gao, and X. Wan. “Is summary useful or not? an extrinsic human evaluation of text
summaries on downstream tasks”. In: arXiv preprint arXiv:2305.15044 (2023).

R. P. Heitz. “The speed-accuracy tradeoff: history, physiology, methodology, and behavior”.
In: Frontiers in neuroscience 8 (2014), p. 150.

M. Kleinman, T. Wang, D. Xiao, et al. “A cortical information bottleneck during decision-
making”. In: bioRxiv (2023).

P. West, A. Holtzman, J. Buys, and Y. Choi. “Bottlesum: Unsupervised and self-supervised
sentence summarization using the information bottleneck principle”. In: arXiv preprint
arXiv:1909.07405 (2019).

C. Zhang, X. Zhou, Y. Wan, et al. “Improving the adversarial robustness of NLP models by
information bottleneck”™. In: arXiv preprint arXiv:2206.05511 (2022).

Gordon, Greenspan, and Goldberger. “Applying the information bottleneck principle to unsu-
pervised clustering of discrete and continuous image representations”. In: Proceedings Ninth
IEEE International Conference on Computer Vision. 2003, 370-377 vol.1.

N. Tishby and N. Zaslavsky. “Deep learning and the information bottleneck principle”. In:
2015 IEEE Information Theory Workshop (ITW). 2015, pp. 1-5.

K. Kawaguchi, Z. Deng, X. Ji, and J. Huang. “How does information bottleneck help deep
learning?” In: International Conference on Machine Learning. PMLR. 2023, pp. 16049-16096.
Z. Goldfeld and Y. Polyanskiy. “The information bottleneck problem and its applications in
machine learning”. In: IEEE Journal on Selected Areas in Information Theory 1.1 (2020),
pp. 19-38.

S. Mai, Y. Zeng, and H. Hu. “Multimodal Information Bottleneck: Learning Minimal Sufficient
Unimodal and Multimodal Representations”. In: IEEE Transactions on Multimedia 25 (2023),
pp. 4121-4134.

R. Islam, H. Zang, M. Tomar, et al. “Representation Learning In Deep RL Via Discrete
Information Bottleneck™. In: AISTATS 2023. May 2023.

G. Bouma. “Normalized (pointwise) mutual information in collocation extraction”. In: Pro-
ceedings of GSCL 30 (2009), pp. 31-40.

G. Salton and C. Buckley. “Term-weighting approaches in automatic text retrieval”. In: Infor-
mation Processing & Management 24.5 (1988), pp. 513-523. 1SSN: 0306-4573.

S. P. Boyd and L. Vandenberghe. Convex optimization. Cambridge university press, 2004.

OpenAl. OpenAl Python Library. https : // github . com/ openai / openai - python.
Accessed: 2025-04-28. 2025.

S. Bai, K. Chen, X. Liu, et al. Qwen2.5-VL Technical Report. 2025. arXiv: 2502 . 13923
[cs.cCV].

JaidedAl. EasyOCR: Ready-to-use OCR with 80+ supported languages. https://github.
com/JaidedAI/Easy0CR. Accessed: 2025-05-15. 2020.

S. Palan and C. Schitter. “Prolific. ac—A subject pool for online experiments”. In: Journal of
Behavioral and Experimental Finance 17 (2018), pp. 22-27.

C. Spearman. “The proof and measurement of association between two things.” In: (1961).

I. Ong, A. Almahairi, V. Wu, et al. “RouteLLM: Learning to Route LLMs from Preference
Data”. In: The Thirteenth International Conference on Learning Representations. 2025.

Y. Zhou, T. Lei, H. Liu, et al. “Mixture-of-experts with expert choice routing”. In: Advances in
Neural Information Processing Systems 35 (2022), pp. 7103-7114.

12


https://github.com/openai/openai-python
https://arxiv.org/abs/2502.13923
https://arxiv.org/abs/2502.13923
https://github.com/JaidedAI/EasyOCR
https://github.com/JaidedAI/EasyOCR

[46] P-h.Li, O. S. Toprak, A. Narayanan, et al. Online Foundation Model Selection in Robotics.
arXiv:2402.08570 [cs]. Feb. 2024.

[47] Z. Chen, W. Wang, Y. Cao, et al. Expanding Performance Boundaries of Open-Source Multi-
modal Models with Model, Data, and Test-Time Scaling. 2025. arXiv: 2412.05271 [cs.CV].

[48] J. Zhu, W. Wang, Z. Chen, et al. InternVL3: Exploring Advanced Training and Test-Time
Recipes for Open-Source Multimodal Models. 2025. arXiv: 2504.10479 [cs.CV].

13


https://arxiv.org/abs/2412.05271
https://arxiv.org/abs/2504.10479

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: Yes.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See the last page in the main paper. There is a section of limitations.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer:

14



Justification: We do not have theoretical results in this work. We cited all previous theoretical
work we gained insights from.
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» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: We provide all details in the appendix and the main paper.
Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: Refer to the supplemental material for code.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: See the user study section and appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: See the user study section and appendix.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.
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It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: The setup is mentioned in the Appendix H.
Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

 The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Yes, we do.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: Yes.
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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14.

15.

16.

Answer: [Yes]
Justification: Yes, we will provide comments and datasets to reproduce our results.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [Yes]
Justification: Yes. Please refer to Appendix E.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [Yes]
Justification: Yes, we do have the IRB’s approval.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]
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Justification: Yes, we use VLMs as a part of our proposed method.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

A Qualitative Result

To illustrate differences across summary generation methods, we present a qualitative example. In
Table 3, each condition—Naive, Max-U, Max-G, and CoT—produces a distinct response based on
the same video input (keyframe thumbnails shown in Figure 5). For better comparison, we also
provide the original TL;DR and abstract from the authors on OpenReview in Table 2. We highlight
key terms derived from OpenReview metadata and tf-idf analysis by masking them in gray.

RLHF: Where we're af

t

Framework Human choice model First

 Weworkinthe MDP frame (A, 5, T,R)
o The agent observes everything, but
e The human evaluator observes partially

S
[14)

E]hwkl

3F|3F

Results | | solution Proof of concept: Modeling beliefs improves!

<] ]

Figure 5: Keyframe thumbnails from the qualitative example SlidesLive talk. The correct answer is
(I) Human-Al Interaction and Ethics (Privacy, Fairness & Safety), while the VLM prediction is (F)
Reinforcement Learning & Robotics.

Type Paper Summary

TL;DR We study the challenges that arise when learning reward functions with human feedback
from partial observations

Abstract  Past analyses of reinforcement learning from human feedback ( RLHF ) assume that the

human evaluators fully observe the environment. What happens when human feedback is
based only on partial observations? We formally define two failure cases: deceptive inflation
and overjustification. Modeling the human as Boltzmann-rational w.r.t. a belief over trajectories,
we prove conditions under which RLHF is guaranteed to result in policies that deceptively
inflate their performance, overjustify their behavior to make an impression, or both. Under
the new assumption that the human’s partial observability is known and accounted for, we

then analyze how much information the feedback process provides about the return function.

‘We show that sometimes, the human’s feedback determines the return function uniquely up
to an additive constant, but in other realistic cases, there is irreducible ambiguity. We propose

exploratory research directions to help tackle these challenges and experimentally validate
both the theoretical concerns and potential mitigations, and caution against blindly applying
RLHF in partially observable settings .

Table 2: Author-provided TL;DR and abstract on OpenReview.
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Condition Summary Response

Naive This paper explores the challenges of partial observability in reinforcement learning from
human feedback, focusing on deceptive inflation and overjustification in Al systems .

Max-U This research investigates challenges in ensuring Al safety and addressing partial
observability through advanced frameworks in human - machine interactions and
reinforcement learning.

Max-G The presentation discusses the challenges of partial observability in reinforcement
learning from human feedback, focusing on deceptive inflation and overjustification in Al
systems .

CoT

The slides discuss challenges in reinforcement learning from human feedback , particularly
focusing on partial observability and the issues of deceptive inflation and overjustification.
The content delves into the framework of Markov Decision Processes (MDPs) and the human
choice model, which are central to reinforcement learning. The presentation also addresses
safety problems and alignment concerns, which are critical in the context of human-
Al interaction. Given the focus on reinforcement learning and the interaction between Al
and human evaluators, the most suitable area for this paper is one that encompasses both

reinforcement learning and the ethical considerations of human- Al interaction.

Table 3: Responses under each condition for the qualitative example, keywords from OpenReview
and tf-idf masked in grey.

B Ablation Study on Evaluating with Various VLMs

VIBE (ours) $¢ Naive VLM ¥ TLDR (OpenReview) [l Abstract (OpenReview)
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(a) Qwen-2.5-72B-AWQ (b) InternVL-2.5-8B-MP0O (c) InternVL-3-38B

Figure 6: VIBE generalizes to various VLMs. Summaries selected by VIBE form a Pareto frontier
not only across various (¢, 3) but also across various VLMs from different sources.

We conduct an ablation study to examine how different VLM variants affect the reliability of VIBE.
Specifically, we compare QwenVL-2.5-72B-AWQ [40] (used in the main paper) with InternVL2.5-
8B-MPO [47] and InternVL3-38B [4&]. These models vary in size, architecture, and pretraining
sources. We apply VIBE to the same set of summaries to compute their utility and grounding scores.
Results in Figure 6 show consistent VIBE score trends across models, indicating that smaller or
alternate VLMs yield similar evaluation signals while reducing inference cost and potential bias.
Notably, various VLMs give similar ranges of both utility and grounding scores. The consistency
across models further supports the generalizability of VIBE as a training-free framework.

C LearningPaper24 Dataset Curation

We source the dataset from the public PaperCopilot PaperLists repository, which indexes all accepted
papers at ICLR 2024 and NEURIPS 2024. To ensure data quality and completeness, we apply the
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following filtering criteria: (1) the paper must have a valid OpenReview ID to guarantee access to full
metadata and public reviews; (2) the associated SlidesLive presentation video must be accessible and
playable, verified via a headless browser; (3) a TL;DR summary must be present on OpenReview;
and (4) a primary area must be specified. After applying these filters, we retain 2,287 entries from an
initial set of 2,556.

Infrastructure, Benchmarks &

Others Evaluation (77, 3.0%)
(129, 5.0%)
Graph-Based & q
7% Representatiol
Probabilistic & Causal Neurosymbolic pLearning
Methods Learning (89, 3.5%)
(149, 5.8%) (95,73:75%)

Learning Theory
(334, 13.1%)

Human-Al Interaction Optimization

&'11553‘55/3) A A
Na_tural Lang.uage.
V|san§al:-'lnuilr::;modal Reinforcement Learning Applications to
(463, 18.1%) & Robotics Sciences & Engineering
! (260, 10.2%) (254, 9.9%)

Figure 7: Distribution of papers in LearningPaper24 by consolidated primary area.

OpenReview’s primary areas are often too specific or overlapping, so we remap them into 12 broader
and semantically coherent categories. For example, “self-supervised learning” and “representation
learning for vision” become Representation Learning, while “probabilistic methods” and “causal
inference” are grouped as Probabilistic & Causal Methods. The final taxonomy is shown in Figure 7.
The final dataset includes the following required fields: OpenReview ID, SlidesLive talk ID and URL,
TL;DR, abstract, and primary area.

D VIBE Masking and Evaluation

We now report how we select data to calculate the VIBE score in Figure 3. We further select 10
stimuli for our user study.

LearningPaper24 We randomly sample 80 papers each from ICLR 2024 and NeurIPS 2024
following the curation process in Appendix C. For each presentation, we generate 5 VLM responses
and 1 CoT response. We compute the tf-idf score separately for each of the six response corpora. We
discard words and phrases (n-grams with range 1-3) appearing in over 10% of responses and retain
only those with tf-idf scores above 0.0025. We also leverage the keywords of papers provided by
the authors on OpenReview for masking. We uniformly sample 20 frames from each video as VLM
input, with or without random cropping applied.

SUTD-TrafficQA  We randomly sample 100 video clips from the dataset. For each video clip, we
generate 5 VLM responses and 1 CoT response. All responses, including CoT, form the corpus for
tf-idf computation. We discard words and phrases (n-grams with range 1-3) appearing in over 30%
of responses and retain only those with tf-idf scores above 0.01. We uniformly select 20 frames from
each video as the input of VLM with or without random cropping. We uniformly sample 20 frames
from each video as VLM input, with or without random cropping applied.

LongVideoBench We sample 150 video clips, each 30 to 500 seconds long, from categories
["E20", "E2E", "030", "S2A", "S2E", "S20", "S0S"]. For each clip, we generate 5 VLM
responses and 1 CoT response. All responses form the tf-idf corpus. We discard words and phrases
(n-grams with range 1-3) appearing in more than 50% of responses and keep only those with tf-idf
scores above 0.006. We uniformly select 20 frames from each video as the input of VLM with or
without random cropping. We use the LongVideoBench package to obtain 32 frames, which is also
uniformly sampling the video, from each video as VLM input, with or without random cropping
applied.
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E User Study Instruction and Interfaces

All participants provide informed consent before participation and are compensated at a rate consistent
with Prolific guidelines and institutional standards. The user interface is presented in Figure 8. Below
are the instructions provided to participants for each dataset. Text in parentheses indicates variations
between video and text conditions.

©$600+$12.00/hr  ®30mins 210 places 7= Survey  Includes in-study screening Learn more

In this study, you will be asked to:

Task: Watch 10 short talk videos and, after each one, select the research area you think it belongs to from a list of 12 options.
Verification: Complete a brief CAPTCHA to confirm you are a human participant.

Duration: Approximately 30 minutes.

[« ion: You will be d according to the rate listed on Prolific.

Devices you can use to take this study:
(2) Desktop (1) Mobile (1) Tablet

You will also need:

Audio
(a) Video Only

5300+ $12.00/hr @ 15mins 40 places = Survey  Includes in-study screening Learn more

In this study, you will be asked to:

Task: Read 10 paper summaries and, after each one, select the research area you think it belongs to from a list of 12 options.
Verification: Complete a brief CAPTCHA to confirm you are a human participant.

Duration: Approximately 15 minutes.

C You will be ¢ according to the rate listed on Prolific.

Devices you can use to take this study:

@ Desktop @ Mobile @ Tablet
(b) Text-based (Naive, Max-U, Max-G, CoT)

Figure 8: Prolific recruitment interfaces for LearningPaper24 dataset showing video condition
(top) and text conditions (bottom). Similar interfaces are used for the other two datasets.

Instructions for LongVideoBench

In this study, you will (watch/read) 10 (short videos/short summaries) featuring a variety of everyday
content. Topics may include:

* Cooking

* STEM education

¢ Art and creativity

* Daily vlogs and lifestyle scenes
After each (video/summary), you will answer one multiple-choice question to assess your recall and

understanding of the content.
Please avoid leaving the page idle, as we are also measuring your response time.

Instructions for SUTD-TrafficQA

In this study, you’ll (watch/read) 10 (short videos/sets of descriptions) of real traffic videos, which
may involve an accident.

After each (video/description), you’ll answer 4 multiple-choice questions. These questions may
involve:

¢ Understanding what happened in the video
* Considering what might have happened under different conditions
» Reflecting on your own interpretation or reasoning

Please avoid leaving the page idle, as we are also measuring your response time.




Instructions for LearningPaper24

In this study, you will (watch/read) 10 (short research talk videos/paper summaries).
For each (video/summary), select the research area you think it belongs to from:

(A) Learning Theory

(B) Representation Learning

(C) Generative Models

(D) Optimization

(E) Probabilistic & Causal Methods

(F) Reinforcement Learning & Robotics

(G) Graph-Based & Neurosymbolic Learning

(H) Natural Language, Vision & Multimodal Learning

(I) Human-AlI Interaction and Ethics (Privacy, Fairness & Safety)

(J) Applications to Sciences & Engineering

(K) Infrastructure, Benchmarks & Evaluation

(L) Others

Please avoid leaving the page idle, as we are also measuring your response time.

F Participant Recruitment and Demographics

Table 4 summarizes demographic information for participants recruited across the three datasets.

Dataset # Participants  Gender Distribution Age (years)
LearningPaper24 92 70.65% male, 28.26% female, 1.09% non-binary  32.86 4 8.03
SUTD-TrafficQA 82 59.76% male, 40.24% female 40.67 + 12.69
LongVideoBench 69 57.97% male, 40.58% female, 1.45% non-binary  40.22 £ 12.40
Total 243 63.37% male, 35.80% female, 0.82% non-binary  37.59 £ 11.06

Table 4: Demographic breakdown of participants by dataset.

Participants were assigned to IV conditions as shown in Table 5. In addition to the four primary
conditions—Max-U, Max-G, Naive, and Video Only (see Section 5.2)—each dataset also includes a
group evaluating Chain-of-Thought (CoT) responses. CoT responses are excluded from the scatter
plots in the main text due to their fundamentally different generation process: unlike other conditions,
CoT has access to answer options of the task, making direct comparisons unfair and potentially
misleading. However, we include CoT responses in the correlation analyses, as their grounding and
utility scores remain valid for assessing alignment with human performance.

Dataset Max-U Max-G Naive VideoOnly CoT
LearningPaper24 19 16 19 20 18
SUTD-TrafficQA 14 17 15 16 20
LongVideoBench 15 14 15 10 15

Table 5: Number of participants per IV condition across datasets.

G Additional User Study Plots

Figure 9 presents the full set of scatter plots and Spearman correlation results for all datasets. The
left panels show scatter plots of accuracy versus inverse response time, while the right panels
display correlations between accuracy and utility score, response time and utility score, accuracy and
grounding score, response time and grounding score, accuracy and word count, and response time
per word and word count.
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H Computation Resource

All experiments were conducted on four NVIDIA RTX 6000 Ada GPUs (48GB VRAM) using the
vLLM backend. The system was equipped with an Intel(R) Xeon(R) Gold 6346 CPU @ 3.10GHz,
featuring 64 cores (x86_64, 64-bit). This setup handled all models—Qwen-2.5-72B-AWQ, InternVL-
2.5-8B-MPO, and InternVL-3-38B—efficiently for both generation and evaluation.

I Derivation of Mutual Information Approximation

We derive the case where the approximation holds under the stated assumption, starting from the
right-hand side of Eq. 3 and Eq. 4. Since both approximations follow nearly identical steps, we
present the derivation of grounding score as an example:

P(T | V, Tmasked)

1 .
8 P(T | Tmasked)

Since Tnasked 1S @ masked sentence with all keywords removed, we assume it contains no information
and is independent from any other random variables. Thus, we can rewrite the expression as:

P(T |V, Tinasked) _ log P(T,V, Timasked) /P (V, Tinasked)

P(T | Tinasked) P (T, Thasked) /P (Timasked)
P(Tv V) | P(Tmasked)/(P(V) ) P(Trnasked))

P(T) - P(Tmasked)/P(Timasked)
P(T,V)/P(V)
P(T)

P(T|V)

P(T)

log

= log

= log
= log

All steps follow from Bayes’ theorem and the assumption of independence.
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Figure 9: Scatter plots and Spearman correlations across all datasets. Trendlines shown for p < 0.05.
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