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1. Introduction

Multiphoton Microscopy is considered as an effec-
tive biological imaging technique, which has been
widely used for exploring the structure and dynamic
interactions of tissues and was first demonstrated in
a biological application proposed by Denk et al. [1]

in 1990. Compared with other visualizing techniques,
such as magnetic resonance imaging (MRI) [2], opti-
cal coherence tomography (OCT) [3] and positron
emission tomography (PET) [4], the MPM has many
unique advantages, including reduced specimen
photo-bleaching, enhanced penetration depth, and
high resolution without adding exogenous fluoro-
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Multiphoton microscopy (MPM) imaging technique based
on two-photon excited fluorescence (TPEF) and second
harmonic generation (SHG) shows fantastic performance
for biological imaging. The automatic segmentation of cel-
lular architectural properties for biomedical diagnosis
based on MPM images is still a challenging issue. A novel
multiphoton microscopy images segmentation method
based on superpixels and watershed (MSW) is presented
here to provide good segmentation results for MPM
images. The proposed method uses SLIC superpixels in-
stead of pixels to analyze MPM images for the first time.
The superpixels segmentation based on a new distance
metric combined with spatial, CIE Lab color space and
phase congruency features, divides the images into
patches which keep the details of the cell boundaries.
Then the superpixels are used to reconstruct new images
by defining an average value of superpixels as image pix-
els intensity level. Finally, the marker-controlled wa-
tershed is utilized to segment the cell boundaries from the

reconstructed images. Experimental results show that cel-
lular boundaries can be extracted from MPM images by
MSW with higher accuracy and robustness.
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phores into cellular and sub-cellular microstructure of
biological tissue. The MPM imaging technique relies
on two-photon exicted fluorescence (TPEF) and sec-
ond harmonic generation (SHG) signals of biological
tissues and a combination of the two mechanisms can
supply complementary information on structure and
function of tissue. The new challenges for clinical ap-
plications (e.g. histological analyses) of this imaging
technology are the automatic segmentation of cellular
architectural properties on theMPM images.

Image segmentation plays an important role in
biological image analysis for getting important infor-
mation (objects’ size, shape, area, positions, and
other meaningful properties) [5]. The segmentation
results for MPM images are usually not satisfactory
due to the influence of several factors, such as inten-
sity inhomogeneous in different depth, low signal to
noise ratio (SNR) and blurring cellular boundaries
[6, 7] (Figure 1). So far, the most effective ways for
cell segmentation in nonlinear optical images (i.e.,
MPM) are watershed-based and level-set-methods
(LSM) based algorithms [8–11]. The watershed-
based algorithms [11–14] have strong robustness in
recognizing cells with heavily viscous status in uni-
form-illuminated images. However, the details of the
image for the cell boundary are still imprecise, facing
over-segmentation problem. Another approach to
segment MPM image is based on LSM, which inte-
grates whole image features. This method could re-
sist the influence of the noise and distinguish multi-
ple targets from the background simultaneously [9,
15–17]. But the details of the image of viscous cell
whose boundary is fuzzy still couldn’t be recognized
exactly. Other methods such as multi-featured de-
tecting method [7], statistical pixel intensity model
[5], graph-cuts [18], hidden-Markov models [19] and
three-step hierarchical method [10] were published.
Although some of these approaches have a good
performance, most of them were time-consuming,
complex and need initial parameters.

This paper proposes a novel automatic cell seg-
mentation algorithm based on superpixels and wa-
tershed method for MPM images to delineate cell
boundaries. The structure of this paper is as follows:
specimens preparation and image acquisition are in-
troduced in Section 2. Section 3 reviews the SLIC
superpixels technique and illustrates a novel distance

measure and the proposed MSW method for cell
segmentation. Experimental results and discussion
are presented in Section 4. And the paper is con-
cluded in Section 5.

2. Specimens preparation and
image acquisition

2.1 Animal models and specimens
preparation

In this study, the biopsy samples were obtained from
ten ears of five adult New Zealand white rabbits,
and each ear of the rabbits received two punch
wounds of 8 mm diameter from the medial surface
extending deep through the cartilage without pene-
trating the lateral skin. A biopsy sample was col-
lected from the margin of the wound of each rabbit
using a 2 mm diameter biopsy punch. The experi-
mental procedures were endorsed by the Fujian
Medical University and approval of the Animal Care
and Use committee (Fujian Medical University) with
ethics permissions.

2.2 MPM images acquisition

MPM system was performed on a commercial LSM
510 META (Zeiss, Inc.) coupled to a mode-locked
Ti: sapphire laser operating at 810 nm (Mira 900-F;
Coherent, Inc.). A Plan-Neofluar objective (�40, N.
A. 0.75, Zeiss, Inc.) was used in all experiments for
focusing the excitation beam (average power less
than 5 mW) into the repairing tissue samples and
was also applied to collect the backscattered intrinsic
SHG/TPEF signals. Two independent channels of
the META detector were employed to capture the
high-contrast SHG and TPEF images from the speci-
men: one channel covered the wavelength range
from 430–697 nm for collecting TPEF signals, an-
other channel covered the wavelength range from
398–409 nm for collecting SHG signals. For obtain-
ing large-area images, an optional HRZ 200 fine fo-

Figure 1 Example of three MPM
images at various depths from elas-
tic cartilage of rabbit ears: (A)
2 μm, (B) 14:0 μm, (C) 20:0 μm.
TPEF images (red) are extracted
from 430 nm to 697 nm, while SHG
images (green) were extracted
from 398 nm to 409 nm. And the
excitation wavelength was 810 nm.
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cusing stage (Carl Zeiss) was applied to translate the
motorized x–y scanning stage. Additionally, by chan-
ging the focal plane (Z-level) to image at various
depths, the obtained images (12 sequential 2D images
at depth intervals of 2 μm, the maximum depth was up
to 22 μm) were used for quantitative analysis. All
images (512� 512 pixels) were obtained at 2:56 μs
and 6:4 μmper pixel and each pixel has a 12-bit depth.

3. Image processing

3.1 Superpixel technique

A superpixel is a perceptually meaningful patch of
pixels with same or similar properties (i.e., local in-
tensity, position). For an image, superpixels segmen-
tation is capable of achieving a good performance by
enhancing cell identification and segmentation, espe-
cially in the images of close cell positions, with un-
even background as well as low SNR. In this section,
the foundations of the original simple linear iterative
clustering (SLIC) superpixels algorithm and a novel
distance metric are explained.

3.1.1 Superpixel segmentation algorithm

Recently, superpixels algorithms [20–23] have been
widely used as a crucial preprocessing stage for im-
age segmentation. The SLIC-based method has
shown a great performance in superior boundary re-
call, high computing efficiency, as well as low under-
segmentation error. SLIC algorithm [23] adapts k-
means clustering method to create superpixels by
weighting the 5-D space fL; a; b; x; yg, where L; a; b
are the values of the CIE Lab color space and x; y
represent pixels spatial coordinates. SLIC defined
the parameter K as desired number of superpixels.
Then for a color images in CIE Lab color space with
N pixels, the similar size of each superpixels is N=K.
For approximately sized superpixels, the grid interval
S ¼

ffiffiffiffiffiffiffiffiffiffiffi
N=K

p
was set as the superpixels center. The eu-

clidean distance metric Ds determined the nearest
cluster for each pixel, which is defined in Eq. (1).
Then, each pixel is allocated to the nearest clustering
center. When each pixel has been allocated to the
nearest cluster center, the cluster center is updated
and controlled by the mean LABXY vector of all the
pixels belonging to the cluster. Finally, update steps
will reassign disjoint pixels to nearby superpixels.

Ds ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dist2c þ

Distxy
S

� �2

m2

s
ð1Þ

where Distc is the color distance in CIE Lab color
space and Distxy represents x–y plane distance,
which is represented at Section 3.2. Variable m is de-
fined to compact the superpixels.

3.1.2 Distance measure

In SLIC, the distance metric with some properties
was required to generate compact superpixels. Due
to the inhomogeneous intensity, low SNR and blur-
ring cellular boundaries, it was difficult to isolate the
cell from background. We propose a novel distance
measure with three terms for generating highly simi-
lar superpixels, which are color, spatial position and
phase congruency (PC) distance. Figure 2 shows the
details of the proposed new distance measure for
SLIC. At initialization step, seeds are selected on a
regular grid spaced Spixels apart, which are the cen-
ter of grid and set as initial superpixels cluster cen-
ters Ck ¼ ½Lk; ak; bk; xk; yk; pck �T . For each super-
pixel, the similarity of the ith pixel and kth seed, is
computed by the proposed new distance D is de-
fined in Eq. (2). Each pixel is allocated to the near-
est clustering center. Then update task is executed
to adjust the cluster centers according to the mean
½L; a; b; x; y; pc �T vector of all the pixels belonging
to the cluster. Finally, the steps of the SLIC super-

Figure 2 Proposed new distance for SLIC superpixels seg-
mentation.

J. Biophotonics (2016) 3

© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheimwww.biophotonics-journal.org



pixels segmentation method are updated to obtain
good segmentation results.

D ¼ e
Distc
ςð Þ þDistxy

S2m2 þDistPC
ξ

ð2Þ

By defining D in this way, ς, m, and ξ are weights
of each properties which allows us to assign the rela-
tive importance among color similarity, spatial proxi-
mity and PC features. When ς is small, the superpix-
els segmentation results are greatly influenced by
color similarity. When ς is large, the superpixels seg-
mentation results are determined by spatial proxi-
mity or PC features. ς value can be set in the range
(0,1). When the variable m is large, spatial proximity
is more vital and the superpixels are more compact.
When m is small, superpixels segmentation results
are more tightly adhered to the image boundaries
with less regular shape and size. While the CIE
LAB color space is used in this model, m value can
be set in the range (1,40). When the ξ is large, color
similarity is more important and the superpixels has
poor boundary adherence where the object bound-
ary is fuzzy. When the variable ξ is small, the seg-
mentation is mainly based on PC features and spa-
tial similarity that results superpixels is more tightly
adhered to the fuzzy boundaries of the objects. And
the ξ value can be set in range (0,1).

In the first term, Distc tis the CIE Lab color dis-
tance (Eq. (3)) and this term can depress the inter-
nal color of the superpixels to be uniform. The sec-
ond term is a search restriction for compact super-
pixels, and Distxy is the spatial position distance. The
final term is a boundary condition, and DistPC is the
PC distance.

Distc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðLk � LiÞ2 þ ðak � aiÞ2 þ ðbk � biÞ2

q
ð3Þ

Distxy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxk � xiÞ2 þ ðyk � yiÞ2

q
ð4Þ

DistPC ¼ PCðkÞ � PCðiÞ ð5Þ

where l, a, b are the color values in the CIE Lab
color space and x; y are the spatial position. PC is the
phase congruency features which is introduced in
Section 3.1.3. And Distxy and DistPC are necessary to
be normalized in the range from 0 to 1. The maxi-
mum values for normalization is the maximum
values of the local region.

3.1.3 Phase congruency

Phase congruency (PC) [24] method is a vital feature
detection operator in the field of image processing.

There are two main advantages of this operator. It
can detect a wide range of features from images and
remains unchanged against the local intensity of the
images change. When the intensity and contrast
changed, the feature detection results of the phase
congruency method basically keep steady without
adjusting any parameters. PC is redefined as follows:

PCðxÞ ¼
P
u
WðxÞ kAuðxÞ ΔΦuðxÞ � TkP

u
Au þ ε

ð6Þ

where WðxÞ is the weighted function which can de-
value phase congruency at the location where the
spread of frequency response is narrow and is de-
fined at Eq. (7). Au represents the magnitude of the
uth of Fourier component. ΔΦuðxÞ is deviation of
phase. k � k denotes that the enclosed quantity is
equal to itself when its value is positive, and zero
otherwise. T is the estimated noise, and ε is a very
small positive real number and set to be equal to
0.0001.

WðxÞ ¼ 1
1þ eμðc�sðxÞÞ ð7Þ

where μ is a factor which is used to control the
sharpness of the cutoff, cis a constant and sðxÞ repre-
sents the frequency response spread.

sðxÞ ¼ 1
U

P
u

AuðxÞ
AmaxðxÞ þ ε

0
@

1
A ð8Þ

Where U is the total number of the Fourier com-
ponents being used and AmaxðxÞ is AuðxÞ which has
the maximum response at position x.

ΔΦuðxÞ ¼ cos ðΦuðxÞ � �ΦðxÞÞ � jsin ðΦuðxÞ � �ΦðxÞÞj
ð9Þ

Where ΦuðxÞ is defined as the local phase of the
Fourier component. And �ΦðxÞ is the average of the
local phase angles.

3.2 Segmentation using superpixel
and watershed

The segmentation method for multiphoton micro-
scopy image using superpixels and watershed
(MSW) is presented, which makes full use of the ad-
vantages of the MSW method for automatic delinea-
tion of cells from MPM images with low SNR, blur-
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ring cell boundaries and inhomogeneous intensity
problems. The flowchart of the algorithm is de-
scribed in Figure 3. The details of steps are as fol-
lows:

Step 1. Preprocess the original MPM image
(512� 512 pixels) with histogram equalization and
Gaussian filtering with σ ¼ 1.

Step 2. Rough Segmentation of the images by SLIC
superpixels algorithm according to the new distance
metric (Eq. (2)) in terms of the colors (Eq. (3)), spa-
tial (Eq. (4)) and phase congruency (Eqs. (5) and
(6)) distribution.

Step 3. Reconstruction of the new image by treating
each superpixel as a unit, and set

Grayi;k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlk2 þ ak2 þ bk

2Þ
q

as each pixel’s value (l,
a, b are the average color values of the superpixel in
the CIE Lab space. k is the kth superpixel, i repre-
sents as the ith pixel of the kth superpixel).

Step 4. Process the reconstructed image by Gaussian
filter. Employ the marker-controlled watershed [25]
to delineate the cell boundaries from the new image.
Use the extended maxima operator to identify
groups of pixels which are significantly higher than
proximal region. Modify the image to force the ex-
tended maxima pixels to be the local minima [26] in
the image. The markers are the local minima of the
gradient of the image. Finally, compute the wa-
tershed transform.

4. Results and discussion

In order to verify the validity of our algorithm, sev-
eral experiments were performed on the MPM
images. Three normal and two regenerated elastic
cartilage specimens at 20-week repair time points
were measured with MPM at various depths (in total
60 images, each group 12 sequences), and one group
of the images is shown in Figure 1. The proposed
algorithm was implemented in the MATLAB 2013a
programming environment and run on a personal
computer with 2.5 GHz Core CPU and 4 GB RAM.

In this paper, the number of superpixels K is set
to be 2000 for each image, the values of ς;m; ξ in
Eq. (2) are set to be 0.09,15 and 0.09, respectively.
The radius parameter of Gaussian filter in the Step 4
is set to be 10, the sigma parameter is half of the
radius. The height parameter for the extended max-
ima operator in the marker-controlled watershed is
set to 8.

4.1 Experimental results of the proposed
algorithm

Segmentation results of elastic cartilage tissue MPM
image are displayed in Figure 4. As shown in Fig-
ure 4(a), the original MPM image shows low SNR,
and the boundaries between cells and tissues around

Figure 3 Flowchart of the pro-
posed MSW segmentation.

Figure 4 Segmentation results of
rabbit elastic cartilage MPM image
at depth Z ¼ 8 μm. (A) the original
image; (B) the segmentation results
of SLIC algorithm with the pro-
posed new distance measure; (C)
the details of the superpixels seg-
mentation result; (D) the recon-
struction based on superpixels; (E)
segmentation result. The blue and
white curves represent the superpix-
els and cells boundaries, respec-
tively.
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are not clear-cut enough to be accurately located by
human eyes. The results of the superpixels segmen-
tation based on SLIC algorithm with new distance
measure are shown in Figure 4(b). In Figure 4(c), it
can be seen that the information of the boundaries
are saved in the superpixels, which is significant for
next reconstruction step. Noises are depressed and
boundaries are enhanced after the reconstruction in
Figure 4(d). Finally, the proposed MSW algorithm
can exactly delineate the cells from the complex
background in Figure 4(e).

4.2 Comparison with other methods

In this section, we compared the MSW method with
two well-known methods (the watershed based and
LSM based segmentation algorithms). The Wa-
tershed and LSM algorithms are commonly used
segmentation methods in nonlinear optical imaging
images [6, 8–11, 17, 25, 27]. In order to perform a
fair comparison, we set the same pre-processing step
for both pixel-based watershed and LSM method,
and superpixel-based MSW method to process the
images.

Figure 5 shows the segmentation results of the
three algorithms performed on four MPM image
sets. Obviously, the proposed MSW method attained
the best result which has more intact cell contour
and more smooth boundary than the other two
methods. Especially for the normal samples at 16 μm
depth where the original MPM images show inten-
sity inhomogeneity with serious noise impact, the
traditional watershed and LSM method get the im-
proper segmentation results, whereas the proposed
MSW method still obtain satisfactory cell boundary
in the image.

For further illustrates, the proposed MSW meth-
od has a fantastic performance in processing MPM
images. The detailed segmentation results of two
MPM images from a normal elastic cartilage and a
wound healing one are analyzed. From Figures 6–7,
we found that the white contour of our method get
closer to the real cell boundary than the other two
approaches while the Watershed and the LSM meth-
od exit serious over-segmentation and under-seg-
mentation phenomenon. Although there are some
inhomogeneous intensity area in the MPM images
which is shown in Figure 7 D1 and D4 regions, the
MSW performed very well, while the Watershed and
the Level-Set gets the error boundary.

Figure 5 RepresentativeMPM
images in order are from two
normal samples at depth
Z ¼ 10 μm; 16 μm respectively and
two regenerated elastic cartilage
specimens after 20-week repair at
depth Z ¼ 8 μm; 14 μm separately.
Comparisons between the proposed
algorithm and classical algorithm.
First column: the original MPM
images; second column: segmenta-
tion results by the proposed; third
column: segmentation results of the
watershed method; last column:
segmentation results of the LSM.

W. Wu et al.: A novel multiphoton microscopy images segmentation method based6

© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.biophotonics-journal.org



Besides subjective comparison, we also achieve
quantitative verification. In order to evaluate the
performance of our proposed approach, we compute
and compare the automatic segmentation results
with a so-called ground truth, which is manually seg-
mented [10]. And the metrics are calculated by three
scores: accuracy, specificity and sensitivity, which are
defined by

Accuracy ¼ TPþ TN
TPþ FNþ TNþ FP

ð10Þ

Sensitivity ¼ TP
TPþ FN

ð11Þ

Specificity ¼ TN
TNþ FP

ð12Þ

where TP, TN, FP and FN are marked as true posi-
tives, true negatives, false positives and false nega-
tives, respectively. Additionally, for verifying that
our method is robust in different depths which have
different intensity, a total of 60 MPM images are set
as three groups: top, middle and bottom group (Top,
middle and bottom groups represent MPM images
at 0–8 μm, 9–16 μm and 17–24 μm depths, respec-
tively).

The above-described metrics method for the cell
segmentation are implemented; i.e., the Watershed

method, the LSM, and the proposed method are
used for comparison, the validation of the segmenta-
tion results are described in Table 1. The proposed
segmentation method has higher segmentation accu-
racy than the classical Watershed and LSM algo-
rithms. Meanwhile, compared with MSW which uses
a classical distance measure, the proposed method
with new distance measure shows higher perfor-
mance in accuracy, sensitivity and specificity. The
average of CPU times consumed by the proposed
method for 60 images is 31.5 s, and the correspond-
ing CPU time consumed by watershed, LSM and
MSWC are 1.4 s, 28.3 s and 30.2 s, respectively.

4.3 Discussion

The MPM images have low SNR, blurring cell
boundaries, and intensity inhomogeneity problems.
The traditional algorithms had some limitations on
processing MPM images. For example, they were
sensitive to noise and required a high contrast be-
tween objects and background. The watershed-based
algorithm was a simulation that was based on relief
flooding model to find the watershed line. It could
isolate viscous cell from complex background and
had high robustness in inhomogeneous intensity.
However, the method used morphological operation

Figure 6 Representative MPM
images from an intact elastic carti-
lage at depth Z ¼ 10 μm shows de-
tails of segmentation results by
comparing the proposed MSW
method, the watershed and the
LSM approach. The 1st column is
the original MPM images which is
in the 5th 2 μm in MPM image sets
of normal elastic cartilage; the 2nd
column get the segmention results
by the proposed MSW; the 3rd col-
umn is the results of the Wa-
tershed; the last column obtain the
results from the LSM. D1–D3 are
the details of the first line.
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to smooth the image, leading to a decrease of useful
information and poor segmentation results in cell
periphery. The LSM approach was evolving a con-
tour to isolate regions from initial boundary with the
global and local features. It had a good performance
in eliminating influence of noise and low contrast.
But results of viscous cell were debased, and the
globally optimal result was unguaranteed.

Therefore, we proposed a novel method based
on superpixels and watershed approach to segment
the MPM images. Superpixels technique is used in
MPM images segmentation for the first time with
taking advantage of spatial constraint information

and increasing the granularity of the clustering. A
new distance metric is utilized for controlling and
generating superpixels, which consists of spatial, CIE
Lab color space and phase congruency features.
Phase congruency is frequency features that supply
much clear-cut edge information, so the proposed
MSW have a good performance in keeping the de-
tails of the cell boundaries and avoiding the influ-
ences of noise, inhomogeneous intensity as well as
fuzzy cellular boundaries. Then the original image is
reconstructed and each pixels of image is replaced
with the average value of superpixels. Finally, the
cell boundaries are segmented from the recon-

Figure 7 Details comparison of
Segmentation results by the pro-
posed MSW method, the wa-
tershed and the LSM method. The
1st column is the original images
which is representative MPM
images from an regenerated elastic
cartilage at depth Z ¼ 2 μm; sec-
ond column get the segmentation
results by the proposed MSW;
third column is the results of the
Watershed; the last column obtain
the results from the LSM. The D1–
D4 is the details of the first line.

Table 1 Comparison of the segmentation accuracy (sensitivity/specificity) of cell segmentation methods (%).

Group Watershed LSM MSWC Proposed

Top* 89.5(93.0/85.9) 84.8(76.3/93.2) 95.4(95.3/95.5) 96.5(96.5/96.4)
Middle* 89.1(93.1/89.4) 86.0(80.0/92.3) 94.7(94.1/95.2) 95.7(95.3/96.0)
Bottom* 85.1(86.0/84.1) 80.2(68.5/95.3) 94.1(92.6/95.7) 95.7(94.6/97.0)
Total 88.2(91.2/85.0) 84.0(75.5/93.4) 94.1(94.2/95.4) 96.0(95.6/96.4)

* Top, middle and bottom groups represent MPM images at 0–8 μm, 9–16 μm and 17–24 μm depths, respectively. Abbrevia-
tion: MSWC, MSW with a classical distance measure.
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structed MPM images with the marker-controlled
watershed method. MSW effectively utilizes both ad-
vantages of SLIC superpixels and watershed meth-
ods by combing them in MPM images analysis, and
consider global and local features of image. There-
fore, we demonstrate an optimized algorithm, which
has perfect performance in delineating the cells from
MPM images, with better details of the cell bound-
aries and higher robustness.

5. Conclusion

In this paper, the superpixels segmentation method
was employed for MPM images analysis for the first
time. The MSW method segments the cell boundary
automatically and is motivated by both SLIC super-
pixels and the marker-based watershed method.
Firstly, a novel distance metric with spatial and CIE
Lab color space and phase congruency features was
utilized to improve the superpixels segmentation.
Then the image was reconstructed based on super-
pixels for the next processing. Finally, the marked-
controlled watershed method was employed to iso-
late cells from complex background. The proposed
method has been tested for MPM images of elastic
cartilage tissue with a great improvement for inten-
sity inhomogeneity, blurred cell boundaries, viscous
cell and low SNR problem. On the basis of that, we
envision that the MSW method would potentially
serve as an effective segmentation method for MPM
images.

Acknowledgements This work was supported in main by
the program for Changjiang Scholars and Innovative Re-
search Team in University (No. IRT_15R10), and the Na-
tional Natural Science Foundation of China (No.
81101110, No. 61210016) and the Science and Technology
Project of Fujian Province (No. 2015J01300).

Author biographies Please see Supporting Information
online.

References

[1] W. Denk, J. H. Strickler, and W. W. Webb, Science
248, 73–76 (1990).

[2] D. Le Bihan, Magnetic Resonance Quarterly 7, 1–30
(1991).

[3] J. F. De Boer, B. Cense, B. H. Park, M. C. Pierce, G.
J. Tearney, and B. E. Bouma, Optics Letters 28, 2067–
2069 (2003).

[4] G. Muehllehner and J. S. Karp, Physics in Medicine
and Biology 51, R117 (2006).

[5] A. Calapez and A. Rosa, Image Processing, IEEE
Transactions on 19, 2408–2418 (2010).

[6] K. Mkrtchyan, D. Singh, M. Liu, V. Reddy, A. Roy-
Chowdhury, and M. Gopi, Image Processing (ICIP),
2011 18th IEEE International Conference (2011),
pp. 2165–2168.

[7] A. Medyukhina, T. Meyer, M. Schmitt, B. F. Romeike,
B. Dietzek, and J. Popp, Journal of Biophotonics 5,
878–888 (2012).

[8] E. Meijering, Signal Processing Magazine, IEEE 29,
140–145 (2012).

[9] M. Liu, A. Chakraborty, D. Singh, R. K. Yadav, G.
Meenakshisundaram, G. V. Reddy, and A. Roy-
Chowdhury, Molecular Plant 4, 922–931 (2011).

[10] A. Medyukhina, T. Meyer, S. Heuke, N. Vogler, B.
Dietzek, and J. Popp, Applied Optics 52, 6979–6994
(2013).

[11] M. Liu, and P. Xiang, Pattern Recognition, (Springer,
2014), pp. 382–391.

[12] E. Glory, and R. F. Murphy, Developmental Cell 12,
7–16 (2007).

[13] Q. Li, X. Zhou, Z. Deng, M. Baron, M. Teylan, Y.
Kim, and S. T. Wong, Biomedical Imaging: From
Nano to Macro, 2009. ISBI’09. IEEE International
Symposium (2009), pp. 1255–1258.

[14] K. Mkrtchyan, A. Chakraborty, and A. K. Roy-
Chowdhury, Biomedical Imaging (ISBI), IEEE 10th
International Symposium (2013), pp. 672–675.

[15] T. Cervinka, Tampereen Teknillinen Yliopisto. Julkai-
su-Tampere University of Technology. Publication;
(2014), p. 1236.

[16] H. Hu, G. Chen, Y. Liu, and P. Wang, Image and Sig-
nal Processing (CISP), 6th International Congress
(2013), pp. 588–592.

[17] O. Dzyubachyk, W. Van Cappellen, J. Essers, W. J.
Niessen, and E. Meijering, Medical Imaging, IEEE
Transactions on 29, 852–867 (2010).

[18] E. Decenciere, E. Tancrède-Bohin, P. Dokládal,
S. Koudoro, A. M. Pena, and T. Baldeweck, Skin Re-
search and Technology 19, 115–124 (2013).

[19] D. A. Dombeck, A. N. Khabbaz, F. Collman, T. L.
Adelman, and D. W. Tank, Neuron 56, 43–57 (2007).

[20] J. Wang, and X. Wang, Pattern Analysis and Machine
Intelligence, IEEE Transactions on 34, 1241–1247
(2012).

[21] A. Levinshtein, A. Stere, K. N. Kutulakos, D. J. Fleet,
S. J. Dickinson, and K. Siddiqi, Pattern Analysis and
Machine Intelligence, IEEE Transactions on 31, 2290–
2297 (2009).

[22] C. Çiğla, Image Processing (ICIP), 2010 17th IEEE In-
ternational Conference (2010), pp. 3013–3016.

[23] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and
S. Susstrunk, Pattern Analysis and Machine Intelli-
gence, IEEE Transactions on 34, 2274–2282 (2012).

Table 2 CPU times consuming of automatical segmen-
tation methods (s).

Size Watershed LSM MSWC MSW

512 × 512 1.4 28.3 30.2 31.5

J. Biophotonics (2016) 9

© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheimwww.biophotonics-journal.org



[24] P. Kovesi, Videre: Journal of Computer Vision Re-
search 1, 1–26 (1999).

[25] X. Yang, H. Li, and X. Zhou, Circuits and Systems I:
Regular Papers, IEEE Transactions on 53, 2405–2414
(2006).

[26] P. Soille, Image and Vision Computing 18, 1025–1032
(2000).

[27] G. Chen, H. Lui, and H. Zeng, Quantitative Imaging
in Medicine and Surgery 5, 17 (2015).

W. Wu et al.: A novel multiphoton microscopy images segmentation method based10

© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.biophotonics-journal.org


