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ABSTRACT

Real-life applications of deep neural networks are hindered by their unsteady pre-
dictions when faced with noisy inputs and adversarial attacks. The certified radius
in this context is a crucial indicator of the robustness of models. However how
to design an efficient classifier with an associated certified radius? Randomized
smoothing provides a promising framework by relying on noise injection into the
inputs to obtain a smoothed and robust classifier. In this paper, we first show that
the variance introduced by the Monte-Carlo sampling in the randomized smooth-
ing procedure estimate closely interacts with two other important properties of the
classifier, i.e. its Lipschitz constant and margin. More precisely, our work em-
phasizes the dual impact of the Lipschitz constant of the base classifier, on both
the smoothed classifier and the empirical variance. To increase the certified robust
radius, we introduce a different way to convert logits to probability vectors for
the base classifier to leverage the variance-margin trade-off. We leverage the use
of Bernstein’s concentration inequality along with enhanced Lipschitz bounds for
randomized smoothing. Experimental results show a significant improvement in
certified accuracy compared to current state-of-the-art methods. Our novel certifi-
cation procedure allows us to use pre-trained models with randomized smoothing,
effectively improving the current certification radius in a zero-shot manner.

1 INTRODUCTION

Deep neural networks are susceptible to adversarial attacks, which are small, carefully crafted pertur-
bations that lead the model to make erroneous predictions (Szegedy et al., 2013). This vulnerability
is a critical concern in applications requiring high reliability and safety, such as autonomous vehicles
and medical diagnostics. Various defense mechanisms, including certified defenses like Lipschitz
continuity (Cisse et al., 2017; Tsuzuku et al., 2018) and randomized smoothing (RS) (Cohen et al.,
2019), have been proposed to mitigate these risks. Among the metrics used to evaluate these de-
fenses, the certified robust radius serves as an important measure for quantifying model resilience
against adversarial perturbations (Tsuzuku et al., 2018). The certified robust radius measures the
amount of perturbation that can be added to an input x while keeping the stability of the decision y,
i.e the label in a classification task. This essentially acts as a certified measure of robustness for an
individual input. Similarly, the prediction margin M(f(x), y) := max(0, fy(x) −maxk ̸=y fk(x))
acts as an indicator of the confidence of the base classifier f in assigning the label y to the input x.
A larger prediction margin correlates with increased confidence in the prediction, even if the input
incurs some perturbations.

The concept of Lipschitz continuity augments this framework by introducing the Lipschitz constant
which bounds the sensitivity of the base classifier to input perturbations. A smaller Lipschitz con-
stant signifies that the function base classifier exhibits slower variations in its output with respect to
changes in its input: ∥f(x+τ)−f(x)∥ ≤ L(f)∥τ∥. Tsuzuku et al. (2018) gathers these elements to
provide a bound on the certified robust radius that encompasses both the prediction margin and the
Lipschitz constant. This combined measure controls the trade-off between the classifier’s prediction
margin and its sensitivity to input changes. Upon the introduction of RS, Li et al. (2018); Lecuyer
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Figure 1: First, Tsuzuku et al. (2018) proposes a deterministic certificate starting from a Lipschitz
base subclassifier, followed by margin calculation and radius binding. Second, Cohen et al. (2019)
introduces a base subclassifier to create a smoothed subclassifier. The risk factor α is then esti-
mated using the Clopper-Pearson interval to provide a probabilistic certificate. Third, our method
(the Lipschitz-Variance-Margin Randomized Smoothing or LVM-RS) extends a smoothed classifier
constructed with a Lipschitz base classifier composed with a map which transforms logit to proba-
bility vector in simplex. The regularization of the Lipschitz constant is motivated by the Gaussian-
Poincaré inequality in Theorem 1. The empirical variance is applied to the Empirical Bernstein
inequality in Proposition 2 to accommodate for the risk factor α, in the same flavor as in Levine
et al. (2020). The pipeline also ends with a probabilistic certificate, similar to the methodology used
in Cohen et al. (2019)’s certified approach.

et al. (2019); Cohen et al. (2019); Salman et al. (2019); Levine et al. (2020) use the smoothed clas-
sifier obtained by convolving Gaussian density with the base classifier. Salman et al. (2019) proved
that the smoothed classifier exhibits Lipschitz continuity which depends on the Gaussian variance.
RS methods estimate a smoothed classifier by injecting noise on the input. The resulting procedure
is then probabilistic and approximate inference is carried out with Monte-Carlo (MC) methods. To
account for the randomness introduced through MC, one can use an α-coverage confidence interval
(Clopper-Pearson) as in (Cohen et al., 2019; Salman et al., 2019), or concentration inequality (Ho-
effding’s inequality) as in (Lecuyer et al., 2019; Levine et al., 2020) the probability to not predict
the good label i.e. to control the risk induced by the randomness. A shift is thus necessary to lower-
bound the prediction margin, thus yielding a more conservative but also more reliable estimate of the
robust radius. In the last step of traditional classification, the decision usually relies on the argmax
function. This can be seen as a map of the network’s output, putting all the probability mass on one
corner of the simplex. However, in the context of RS, there is a detour: RS or the smoothed classifier
conducts an argmax map on the expectation of the argmax applied to the base and deterministic
classifier.

In this work, we revisit the whole decision process of RS to better leverage and disentangle the
interplay of all these components. We propose to better leverage the margin-variance tradeoff with
alternative simplex maps i.e. function to map logits to probability vector. More importantly, we
investigate how Lipschitz regularity impacts randomized smoothing techniques, emphasizing its
effects on the certified robust radius. The regularity of the smoothed classifier depends on the Lip-
schitz property of the base classifier and the variance of the Gaussian convolution which governs
the induced level of smoothness. Therefore, our research in this domain encompasses following
contributions:

• We use the Gaussian-Poincaré’s inequality to explain the impact of the Lipschitz constant
of the base classifier on MC variance, which ultimately affects its reliability, see Sec-
tion 3.1. This motivates the use of the Empirical Bernstein inequality which integrates
empirical variance to control risk α, see Section 3.2.
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• We introduce the r-simplex for RS procedure which allows for better-suited margins and
Lipschitz constant of smoothed classifier, see Section 3.3. We establish a novel limit on
the Lipschitz constant for the smoothed classifier, detailing its reliance on noise variance,
simplex mass r, and the base classifier’s Lipschitz constant, whilst clarifying the connec-
tion between robustness certificates produced through Randomized Smoothing and the one
from deterministic approaches as in Tsuzuku et al. (2018), see Section 3.4.

• We present the Lipschitz-Variance-Margin Randomized Smoothing (LVM-RS) procedure,
presented in Figure 1, which balances MC variance and decision margin and controlled the
MC empirical variance through the different simplex maps. This procedure demonstrates
state-of-the-art results on the CIFAR-10 and ImageNet datasets, see Section 3.5.

2 BACKGROUND & RELATED WORK

The robustness of machine learning classifiers remains an active area of research, with various strate-
gies being proposed and evaluated. In this section, we describe significant contributions in the do-
mains of Lipschitz-based robust classifiers, randomized smoothing, and the role of margins in the
robustness of classifiers.

2.1 NOTATION

Consider a d-dimensional input data point x ∈ X ⊂ Rd and its associated label y ∈ Y = {1, . . . , c},
where Y encompasses c distinct classes. The (c − 1)-dimensional simplex is defined as ∆c−1 ={
p ∈ Rc | 1⊤p = 1, p ≥ 0

}
, and let s : Rc 7→ ∆c−1 denote the map onto this simplex. Usually, s

corresponds to the softmax or hardmax map. For a logit vector z ∈ Rc, its map on ∆c−1 is denoted
by s(z). This map can use a temperature t such that st(z) := s(z/t). For instance, the hardmax
corresponds for the component k to sk(z) = 1argmaxi zi=k which puts all the mass on the maximum
value coordinate. This map can be obtained through softmax with low temperature t → 0. A
function f : X 7→ Rc is designated as the subclassifier before the map s. The main classifier can
be formulated as F (x) := argmaxk∈Y sk(f(x)), resulting in the predicted label ŷ = F (x). While
F offers predictions for an input x, it doesn’t convey the confidence level associated with these
predictions.

The confidence level surrounding a classifier’s decision boundary for a particular input x is captured
by the certified radius, denoted as R(f, x). This radius represents the maximum permissible level of
perturbation, ϵ, that can be introduced to input x without altering its classification output to remain
consistent with its true label. A larger certified radius is indicative of a classifier’s robustness against
input perturbations. Its formal expression in the context of the ℓ2-norm is:

R(f, x) := min
ϵ

{
ϵ > 0 | ∃ τ ∈ B2(0, ϵ), argmax

k
fk(x+ τ) ̸= y

}
,

where B2(0, ϵ) = {τ ∈ Rd | ∥τ∥2 ≤ ϵ}.
The local Lipschitz constant w.r.t the ℓ2-norm of a function f over an open set B is defined as
follows:

L(f,B) = sup
x,x′∈B
x ̸=x′

∥f(x)− f(x′)∥2
∥x− x′∥2

. (1)

And if L(f,B) exists and is finite, we say that f is locally Lipschitz over B. If B = X , we note
L(f,X ) = L(f) and call it Lipschitz constant.

2.2 LIPSCHITZ CONTINUITY IN CLASSIFIER DESIGN

The concept of Lipschitz continuity has been recognized for its intrinsic value in designing robust
classifiers. By ensuring that a function possesses a bounded Lipschitz constant, it can be ascertained
that small perturbations in the input don’t result in large variations in the output.
Proposition 1 (Tsuzuku et al. (2018)). Given a Lipschitz continuous subclassifier f for the ℓ2-norm,
and given a perturbation level ε > 0, x ∈ X , and y ∈ Y as the label of x. If the margin M(f(x), y)
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at input x meets the condition M(f(x), y) >
√
2L(f)ε, then for every τ such that ∥τ∥2 ≤ ε, we

have argmaxk fk(x+ τ) = y.

Reworking this proposition, the certified radius for a subclassifier f at x, y can be expressed as:

R1(f, x, y) :=
M(f(x), y)√

2L(f)
. (2)

This inherent property positions Lipschitz continuity as a strong defense mechanism against adver-
sarial attacks. Recent efforts have focused on creating Lipschitz by design classifiers, incorporating
Lipschitz constraints either during the training phase via regularization or through specific architec-
tural designs Tsuzuku et al. (2018); Anil et al. (2019); Trockman & Kolter (2021); Singla & Feizi
(2021b); Meunier et al. (2022); Araujo et al. (2023); Wang & Manchester (2023). Some works
(Araujo et al., 2021; Singla & Feizi, 2021a; Delattre et al., 2023) provide soft Lipschitz constant
regularization of individual layers. Other works consider local Lipschitz around input points, Huang
et al. (2021); Muthukumar & Sulam (2023). However, there is a trade-off between the Lipschitz
of the network and performance for the same level of margins, as depicted in Béthune et al. (2022,
Appendix N). Instead of constraining the Lipschitz constant by design, methods commonly found
in RS strategies, have shown better overall performance to procure certified robustness as they allow
regular neural network architecture to be used.

2.3 RANDOMIZED SMOOTHING

First introduced by Lecuyer et al. (2019) and later developed in Li et al. (2018); Cohen et al. (2019);
Salman et al. (2019) RS’s central philosophy is to convolve the base classifier F with a Gaussian
distribution resulting in an smoothed classifier F̃ with increased robustness against adversarial in-
puts.

F̃ (x) := argmax
k

Pδ∼N (0,σ2I) (F (x+ δ) = k) = argmax
k

Eδ∼N (0,σ2I)[hardmaxk(f(x))] .

For s = hardmax, we define the smoothed sub-classifier f̃ : X 7→ Rc as follows:

f̃k(x) := Eδ∼N (0,σ2I) [sk (f(x+ δ))] ,

and, in this article, F̃ is generalized to any simplex map s:

F̃s(x) = argmax
k

Eδ∼N (0,σ2I) [sk (f(x+ δ))] = argmax
k

f̃k(x) ,

where s corresponds in this context to the hardmax map on the simplex, applied to the base sub-
classifier f through the RS process (Cohen et al., 2019; Salman et al., 2019) 1. We note p = f̃(x)

and suppose p is sorted in decreasing order. Certified radius makes the mapping Φ−1 ◦ f̃k intervene,
where Φ−1 represents the quantile function of the Gaussian distribution. We suppose here that the
classifier F̃s gives the good answer, the certified radius writes as:

R2(p) =
σ

2

(
Φ−1(p1)− Φ−1(p2)

)
. (3)

In most RS approaches, the bound on p2 ≤ 1 − p1 is used, it degrades the certified radius espe-
cially when the smoothing noise σ is high, see Appendix B. RS uses MC method to estimate p by
p̂ = 1

n

∑n
i=1 s(f(x + δi)), where δi are sampled from a Gaussian distribution. As the RS method

is probabilistic, there is a risk α that the method returns the wrong answer (Cohen et al., 2019).
Following Levine et al. (2020), a confidence interval bound or concentration inequality is used to
provide a shift(Sn(p̂k), α, n) such that:

P

(
c⋂

k=1

(p̂k − shift(Sn(p̂k), α, n) ≤ pk ≤ p̂k + shift(Sn(p̂k), α, n))

)
≤ 1− α , (4)

where Sn is the sample variance. Then, the risk-corrected probabilities are obtained

p̄ = (p̂1 − shift(Sn(p̂k), α, n), . . . , p̂2 + shift(Sn(p̂2), α, n), . . . , p̂c + shift(Sn(p̂c), α, n)) ,

1Levine et al. (2020) do not use a simplex map but normalized outputs in [0, 1] for another task.
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supposing that the (p̄k)
c
k=2 are sorted in decreasing order, p̄1 and p̄2 are used to compute the risk

corrected radius R2(p̄) which holds with probability 1− α.

The drawback of RS is the sampling cost, as MC error reduces with 1√
n

with n the number of
samples. To tackle this issue the work of Horváth et al. (2022) leverages an ensemble of classifiers to
reduce the variance and proposes an adaptive sampling procedure to verify whether a target-certified
radius is reached or not. In this work, we also aim to reduce the variance of the MC sampling.

2.4 MARGINS AND CLASSIFIER ROBUSTNESS

The margin, often described as the distance between the decision boundary and the nearest data
instance, serves as a central component of classifier robustness. Larger margins are generally as-
sociated with better generalization capabilities, a main principle behind algorithms such as support
vector machines. In the context of adversarial robustness, margins play a critical role, with several
studies highlighting the relationship between margins and resilience against adversarial perturba-
tions. Efforts to optimize for larger margins, combined with other robustness-enhancing strategies,
have shown promise in strengthening classifier defenses. The work of Béthune et al. (2022) explores
the connection between margin maximization and Lipschitz continuity, and shows how both notions
implement a tradeoff between accuracy and robustness.

While RS and Lipschitz continuity by design have been studied in their distinct capacities, recent
research suggests an inherent synergy between them and the key role of margins. Our work focuses
on the connection between RS and Lipschitz continuity to produce greater robustness.

3 THE LIPSCHITZ-VARIANCE-MARGIN TRADEOFF

In this section, we explain why the control of the Lipschitz constant in the subclassifier is crucial
to reduce the MC variance of RS. By applying Bernstein’s inequality, we can decrease variance to
improve the control of risk α, and to further reduce variance, we employ a new simplex mapping
on f , thus defining the LVM-RS procedure. Furthermore, we establish new bounds on the Lipschitz
constant of the smoothed classifier w.r.t the Lipschitz constant of the subclassifier. In the following,
we defer all proofs in the appendix.

3.1 LOW LIPSCHITZ FOR LOW VARIANCE

The concept of Lipschitz continuity plays an important role in the sampling process, which is crucial
for obtaining an accurate estimation of the smoothed classifier f̃ . Specifically, by minimizing the
local Lipschitz constant of a subclassifier s ◦ f , one can reduce its variance. The following theorem
illustrates this relationship for any σ.

Theorem 1 (Gaussian Poincaré inequality (Boucheron et al., 2013)). Let Z = (Z1, . . . , Zn) repre-
sent a vector of i.i.d Gaussian random variables with variance σ2. For any continuously differen-
tiable function h : Rn → R, the variance is given by:

V[h(Z)] ≤ σ2 E
[
∥∇h(Z)∥2

]
.

We use the latter theorem to immediately derive:

Corollary 1. With same hypothesis as Theorem 1, if h exhibits Lipschitz continuity, we have that:

V[h(Z)] ≤ σ2 L(h)2 .

Applying the above corollary to the classifiers {sk◦f}which can be considered differentiable almost
everywhere, it is evident that constraining the Lipschitz constant, L(sk ◦ f), leads to a diminished
variance for sk ◦ f . This, in turn, results in a more precise estimation of E[s(f(x + δ))], as cap-
tured by 1

n

∑n
i=1 s(f(x+ δi)). Lowering the local Lipschitz constraints can significantly attenuate

the variance and improve the certification results, but it can be too restrictive and cause a drop in
performance. To enforce low Lipschitz and reduce performance loss, Cohen et al. (2019) proposed
the injection of Gaussian noise during training, Salman et al. (2019) introduced SmoothAdv, which
involves adversarial training of the smoothed classifier f̃ , to reduce its local Lipschitz constant. The
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work of Pal & Sulam (2023) studied how the noisy training on the sub classifier affects the per-
formance and robustness of the smoothed classifier. Other noteworthy methods include those by
Salman et al. (2020); Carlini et al. (2023), which combine a conventional classifier with a denoiser
diffusion model, ensuring that the resulting architecture remains invariant to Gaussian noise, thereby
giving Lipschitz continuity to the classifier and preserved performance.

3.2 STATISTICAL RISK MANAGEMENT FOR LOW VARIANCE

To leverage low variance, one would need a α confidence interval or an appropriate concentration
inequality in which variance plays a significant role.

The Clopper-Pearson binomial tailored confidence interval can be used to give an exact α coverage
to determine shift defined in Eq. (4), Cohen et al. (2019); Carlini et al. (2023). It is paired with
hardmax simplex map which generates a series of Bernoulli trials during MC sampling.

Lecuyer et al. (2019) and Levine et al. (2020) smoothed scalar outputs between within [0, 1] and
cannot use such interval, we use the same procedure as those works. They rely upon Hoeffding’s
inequality, which also gives exact an α coverage. Another interesting inequality, similar to the
Gaussian-Poincaré, is the sub-Gaussian inequality involving the Lipschtiz constant of sk◦f , Massart
(2007). The issue here is that computing L(sk ◦ f) is NP-hard for common neural networks and
the Lipschitz constant as a bound can overestimate the actual empirical variance. However, those
inequalities have some limitations because they do not account for empirical variance. This is why
we suggest employing the Empirical Bernstein’s inequality when the variance is low to manage the
risk, α, which does factor in the observed empirical variance, it has been mentioned by Lecuyer
et al. (2019).

Proposition 2 (Empirical Bernstein’s inequality (Maurer & Pontil, 2009)). Let Z0, Z1, . . . , Zn be
i.i.d random variables with values between 0 and 1. The risk level is denoted as α ∈ [0, 1]. Then
with probability at least 1− α in vector Z = (Z1, . . . , Zn), we have

EZ0 −
1

n

n∑
i=1

Zi ≤
√

2Sn(Z) log(2/α)

n
+

7 log(2/α)

3(n− 1)
:= shift(Sn(Z), α, n) .

Here, Sn(Z) represents the sample variance 1
n(n−1)

∑
1≤i<j≤n(Zi − Zj)

2. Note that the bound is
symmetric about EZ0.

In our case, we use this inequality with Zi = sk(f(x+ δi)). This inequality offers the flexibility to
smooth various simplex maps s and potentially select one better equipped than hardmax to address
the margin-variance tradeoff. See Fig. 2, for a comparison between Hoeffding’s and Bernstein’s
inequalities.

3.3 HIGH MARGIN AND LOW VARIANCE BY OPTIMAL MAPPING ON R-SIMPLEX

As all the mass is put on one class, hardmax map gives maximal margins on the simplex.
However, it is not Lipschitz continuous, and it can increase variance, as illustrated in Exam-
ple C.1. Conversely, softmax map compresses the margins between classes but its 1−Lipschitz
continuity prohibits variance amplifications. Martins & Astudillo (2016) introduced a novel sim-
plex mapping, 1-Lipschitz and producing margins larger than softmax but lower than hardmax:
sparsemax(z) = argminp∈∆c−1∥p− z∥22. This map promotes sparse values in ∆c−1 compared to
the softmax.

In this work, we introduce the r-simplex ∆c−1
r =

{
p ∈ Rc | 1⊤p = r, p ≥ 0

}
a simplex with total

mass r and the generalized sparsemax which is a 1-Lipschitz mapping towards ∆c−1
r , following the

same proof as in (Laha et al., 2018, Appendix A.5). This new mapping is described in Algo. 1. For
r1 ≤ r2, when most of the logit vectors f(x + δi) are bounded by r1, the mapping to the simplex
∆c−1

r2 with 1-Lipschitz simplex mapping is not going to increase the margin associated to vectors
sr2(f(x+δi)). In this case, it is better to map to the simplex ∆c−1

r1 of lower mass and enjoy a tighter
Lipschitz constant on f̃ or Φ−1 ◦ f̃k. Conversely, when r2 ≥ r1, one can benefit from larger margins
on sr2(f(x+ δi)) in comparison to margins on sr1(f(x+ δi)).
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In addition, we add temperature to simplex mappings: we note st,r the r-simplex map from Rc

to ∆c−1
r for a temperature t. Adjusting the temperature provides a means to interpolate between

softmax and hardmax, or between sparsemax and hardmax. Tuning the temperature allows us to
find an optimized simplex map to answer the variance-margin trade-off, as illustrated in Fig. 3.

3.4 NEW OPTIMAL LIPSCHITZ BOUNDS FOR RS

We derive enhanced bounds on the Lipschitz constant of the smoothed classifier f̃ with the additional
assumption that srk ◦ f or sr ◦ f themselves are Lipschitz continuous. Note that one way to have
sr ◦ f or srk ◦ f Lipschitz continuous is to have s Lipschitz continuous as well. This is not the case
of hardmax simplex map, whereas sparsemax is ideal as it is 1-Lipschitz continuous and conserves
margin as long as the latter is inferior to simplex mass r.

Theorem 2. Let f : X ⊂ Rd 7→ Rc a subclassifier and f̃(x) = Eδ∼N (0,σ2I)[s
r(f(x + δ))] the

associated smoothed classifier. Suppose that f is element-wise Lipschitz continuous, then

L(f̃k) ≤ L(srk ◦ f) erf

(
r

2
3
2L(srk ◦ f)σ

)
≤ min

{
r√
2πσ2

, L(srk ◦ f)
}

. (5)

Suppose that f is Lipschitz continuous, then

L(f̃) ≤ L(sr ◦ f) erf
(

r

2L(sr ◦ f)σ

)
≤ min

{
r√
πσ2

, L(sr ◦ f)
}

. (6)

It is noteworthy that Eq. (5) enhances the bound on L(f̃k) originally derived in Lemma 1 of Salman
et al. (2019) for r = 1 by a factor of 2. This refinement on the bound was possible by supposing
Lipschitz continuity on the base classifier f . Note that its Lipschitz constant can be arbitrarily
high, so this assumption is quite light: the Lipschitz constant does not play into the derived bound.
These improved bounds can be seamlessly incorporated into subsequent works, such as Pautov et al.
(2022); Franco et al. (2023); Chen et al. (2024).

We observe that randomized smoothing and Lipschitz continuity exhibit a cross-effect on the Lips-
chitz constant of f̃ . We focus on an intermediate regime defined by a specific σ and L(s ◦ f), where
these effects interact in a manner that is mutually beneficial, exceeding the individual impacts of
randomized smoothing or Lipschitz continuity alone.
Proposition 3. The optimal value σ∗ that maximizes the gap between the bounds of Eq. (5) is:

σ∗ =
r

L(srk ◦ f)
√
2π

giving L(f̃k) ≤ erf(
√
π/2) L(srk ◦ f) ≲ 0.79 L(srk ◦ f) . (7)

Similarly, for Eq. (6):

σ∗ =
r

L(sr ◦ f)
√
π

giving L(f̃) ≤ erf(
√
π/2) L(sr ◦ f) ≲ 0.79 L(sr ◦ f) . (8)

For this choice of σ∗, L(srk ◦ f) equals the RS bound (and is exactly the deterministic Lipschitz
constant). Consequently, the combined use of Lipschitz continuity and randomized smoothing re-
duces the Lipschitz constant bound of f̃ by at most 21%. In our framework, given either a Lipschitz
constant (or σ2), one can select the complementary σ2 (or Lipschitz constant) to maximize the syn-
ergistic effects of randomized smoothing and inherent Lipschitz continuity. For this optimal choice,
we obtain a certificate Eq. (2) that is approximately 26% larger than the maximum certification given
by RS or Lipschitz continuity alone.

All previous bounds are derived on the Lipschitz constant of f̃ which can be used for radius R1.
With regards to R2, we have the following result on the local Lipschitz constant of Φ−1 ◦ f̃k :

Theorem 3. Let f̃ : Rd 7→ ∆c−1
r be the smoothed classifier, for an input x ∈ X and B = B2 (x, ϵ),

the local Lipschitz constant of Φ−1 ◦ f̃k is bounded by:

L
(
Φ−1 ◦ f̃k, B

)
≤ r

σ
max

p∈B2(f̃(x), ϵL(f̃))

{
exp

(
−1

2

(
Φ−1(p/r)2 − Φ−1(p)2

))}
.

This result gives a local Lipschitz constant on a ϵ ball around x, in the same flavor as in (Muthukumar
& Sulam, 2023).
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3.5 LVM-RS INFERENCE PROCEDURE

Given a trained base subclassifier f , we choose a simplex mapping s from a set of simplex map S
and a temperature t ∈ [tlower, tupper], defining an ensemble of classifiers {F̃st}:

F̃st(x) = argmax
k

Eδ∼N (0,σ2I)

[
stk(f(x+ δ))

]
= argmax

k
f̃st(x) .

First we generate a test sample of size n0, we obtain estimates p̂st , using Bernstein’s inequality
we obtain the risk corrected p̄st and finally the risk corrected certified radius R2(p̄st). We choose
(s∗, t∗) = argmaxs,t R2(p̄st) to maximize the certified radius. Then a sampling of size n is per-
formed and we evaluate an MC estimate of f̃st∗∗ (x) which gives p̂∗ and associated risk corrected p̄∗.
We return prediction argmaxk p̄

∗
k and associated certified radius R2(p̄

∗). Our approach summed
up in Algo. 2, addresses the trade-off between maximizing margins and reducing variances. The
procedure SampleScores generates scores f(x+ δi) for δi samples fromN (0, σ2I). This stands in
contrast to methods like hardmax, which maximize margin at the cost of increased variance, and
others like sparsemax and softmax, which prioritize reduced variance over margin maximization.

4 EXPERIMENTS

In addition to the two experiments below, we conduct an ablation study in Appendix F.

4.1 CERTIFIED ACCURACY WITH IMPROVED RS LIPSCHITZ BOUND

Table 1: Certified accuracy on CIFAR-10 for different levels of perturbation ϵ, for RS, Lipschitz
deterministic, and ours. The risk is taken as α = 1e−3 and the number of samples n = 104.

Methods
Certified accuracy (ε)

Average time (s)
0.14 0.19 0.25 0.28 0.42 0.5

Lipschitz deterministic 40 33.57 27.18 24.59 13.65 9.15 0.004
Randomized smoothing 47.9 31.99 28.17 27.86 6.42 0.0 0.9

RS with new bound 52.56 46.17 39.09 35.08 21.9 13.53 0.9

To illustrate the gain of having a Lipschitz bound of smoothed classifier which includes information
on the Lipschitz constant of sub classifier, simplex mass r and variance σ2, we compare certified ac-
curacies on the same by design 5-Lipschitz backbone Sandwhich Small from (Wang & Manchester,
2023), trained with noise injection σ = 0.4 and using the same certified robust radius R1 in Eq. (2).
We choose for the smoothing variance σ∗ = r

L(f)
√
π

as explained in Section 3.4. Remark that the
variance used for noise injection to train the 5-Lipschitz sub classifier is close to σ∗ to mitigate a
drop in performance on the smoothed classifier.

Impact of Lipschitz constant We consider the three procedures: Lipschitz deterministic (using
bound on L(f)), the RS (using bound on L(f̃)), and our approach (using bound on L(f̃)). For ours
and RS, we fix r = 3. Results are displayed in Table 1. We see that our procedure gives better-
certified accuracies than RS and Lipschitz deterministic taken alone, indeed both methodologies
provide the same Lipschitz constant for f̃ and f respectively, whereas our method provides an
inferior Lipschitz bound on L(f̃). Note that better results from the random procedure should not be
directly construed as an intrinsic superiority over the deterministic one, as the element of randomness
introduces variability that must be accounted for in the evaluation and large sampling computational
cost. However, it gives a perspective over the performance of the theoretical Lipschitz smoothed
classifier f̃ .

Impact of simplex mass We note that to reduce the Lipschitz constant, one can not only increase
the smoothing noise σ as done traditionally in RS but also reduce r the total mass of the simplex.
We plot the evolutions of certified accuracies for different simplex masses in Fig. 4 with the same
setting as above. We see that classical RS setting i.e. r = 1.0 is one particular choice of robustness
profile among many.
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Table 2: Best certified accuracies across σ ∈ {0.25, 0.5, 1.0} for different levels of perturbation ϵ,
on CIFAR-10, for n = 105 samples and risk α = 1e−3.

Methods
Best certified accuracy (ε)

Average time (s)
0.0 0.25 0.5 0.75 1.0

Carlini et al. (2023) 86.72 74.41 58.25 40.96 29.91 7.10
LVM-RS (ours) 88.49 76.21 60.22 43.76 32.35 7.11

Table 3: Best certified accuracies across σ ∈ {0.25, 0.5, 1.0} for different levels of perturbation ϵ,
on ImageNet, for n = 104 samples and risk α = 1e−3.

Methods
Best certified accuracy (ε)

Average time (s)
0.0 0.5 1.0 1.5 2 3

Carlini et al. (2023) 79.88 69.57 51.55 36.04 25.53 14.01 6.46
LVM-RS (ours) 80.66 69.84 53.85 36.04 27.43 14.31 7.03

4.2 CERTIFIED ACCURACY WITH LVM-RS

In this experiment, we empirically validate the efficacy of our proposed inference procedure pre-
sented in Algo. 2, highlighting its capability to improve randomized smoothing and achieve certified
accuracy. Central to our approach is the leveraging of the variance-margin tradeoff, which as we
demonstrate, yields state-of-the-art RS results. We further showcase how the procedure enhances
the off-the-shelf state-of-the-art baseline model of Carlini et al. (2023), which utilizes a vision trans-
former coupled with a denoiser for randomized smoothing. We use 50 temperatures ranging from
tlower = 0.01, tupper = 50, and simplex maps S = {sparsemax, softmax,hardmax}. The baseline
consists of the state-of-the-art top performative model of Carlini et al. (2023) which does smoothing
of hardmax of base classifier and uses the Pearson-Clopper confidence interval to control the risk
α.

To compare the baseline with our method, certified accuracies are computed with R2 in the function
of the level of perturbations ϵ, for different noise levels σ = {0.25, 0.5, 1}. Results are presented
in Figure 5 for CIFAR-10 and in Figure 6 for ImageNet. We see that our method increases results,
especially in the case of high σ, in the case of σ ∈ {0.5, 1.0} the overall certified accuracy curve in
the function of ϵ the maximum perturbation is lifted towards higher accuracies. Results are presented
in Table 2 for CIFAR-10 and in Table 3 for ImageNet. Computation was performed on GPU V100,
reported average time is the computational cost of one input x proceeds by RS and LVM-RS, we
see that the computation gap between the two methods is narrow for CIFAR10 but is a bit wider for
ImageNet. Detailed results are presented in Appendix G.

5 CONCLUSION

In this paper, we demonstrate a significant connection between the variance of randomized smooth-
ing and two critical properties of the subclassifier: its Lipschitz constant and its margin. We high-
light the influence of the Lipschitz constant on both the smoothed classifier and the empirical vari-
ance. To improve the certified robust radius, new simplex of mass r and simplex map are introduced
for the subclassifier, which optimally manages the Lipschitz-variance-margin trade-off. Along with
this, we incorporate an advanced Lipschitz bound for the RS, resulting in improved certified accu-
racy compared to the prevailing methods. In addition, our new certification procedure facilitates the
use of pre-trained models in conjunction with randomized smoothing, leading to a direct improve-
ment in the current certification radius. In future research, we plan to integrate LVM-RS with margin
maximization strategies and explore the choice of the simplex mass r.

9



Published as a conference paper at ICLR 2024

REFERENCES

Cem Anil, James Lucas, and Roger Grosse. Sorting out lipschitz function approximation. In Inter-
national Conference on Machine Learning, 2019.

Alexandre Araujo, Benjamin Negrevergne, Yann Chevaleyre, and Jamal Atif. On lipschitz regu-
larization of convolutional layers using toeplitz matrix theory. AAAI Conference on Artificial
Intelligence, 2021.

Alexandre Araujo, Aaron J Havens, Blaise Delattre, Alexandre Allauzen, and Bin Hu. A unified
algebraic perspective on lipschitz neural networks. In International Conference on Learning
Representations, 2023.
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B RELATION BETWEEN CERTIFIED RADII

Using the fact that p2 ≤ 1 − p1 into Eq. (3), Cohen et al. (2019, Section 3.2.2) motivate the use of
certificate R3 for statistical simplicity and saying that f(x + δ) puts most of its weight on the top
class:

R3(p) = σΦ−1(p1) ≤ R2(p) . (9)

For the Carlini et al. (2023) architecture, it is not an optimal choice: in the context of high variance
σ2, the distribution of f̃(x) tends to be closer to a uniform distribution. Thus, the difference between
radii R2 and R3 increases, as shown in Table 4. This effect has been noted in (Voráček & Hein,
2023).

Table 4: Comparison of two certified radii R2 and R3, and Total Variation distance to Uniform
distribution (TVU), for different values of σ. We took a subset of images from the ImageNet test set
with n = 104, α = 0.001, and used Empirical Bernstein’s inequality. If the effect is not visible for
σ < 0.25, we see that as the TVU decreases, the difference between the two radii increases as well.

σ TVU R2(p̄) R3(p̄) R2(p̄)−R3(p̄)

0.25 0.998 5.89 5.89 0.00
0.30 0.996 4.68 4.48 0.20
0.35 0.989 3.68 3.21 0.47
0.40 0.986 2.49 1.97 0.52
0.50 0.976 1.28 0.59 0.69
0.60 0.95 0.56 0.00 0.56
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C SIMPLEX MAPPING

C.1 EXAMPLE ON hardmax

Example. For a random variable X defined over the interval [0, 1], with E[X] = 1
2 and a ”small”

variance Var[X] = σ2 < σ2
max = 1

4 , we define a new random variable as Y = s(X) = 1X> 1
2

.
Then Var[Y ] = σ2

max will be much higher than Var[X] when σ2 is significantly smaller than 1
4 .

Proof. Let us compute E[Y ], since Y is an indicator random variable, we have: E[Y ] = P(Y =
1) = P(X > 1

2 ). Given X is symmetric around 0.5, we find E[Y ] = 0.5. The variance of Y

is given by: V[Y ] = E[Y 2] − (E[Y ])2. Since Y is an indicator variable, Y 2 = Y , and therefore
E[Y 2] = E[Y ] = 0.5. Thus, we have: V[Y ] = 0.5 − 0.25 = 0.25. To claim that V[Y ] has a much
higher variance than V[X], we need to compare 0.25 to σ2. The statement would be true if σ2 is
substantially smaller than 0.25. Given that X is defined over [0, 1] and its mean is 0.5, the variance
of X could range between 0 and 0.25. Therefore, unless X has a variance near this upper bound,
V[Y ] will indeed be much larger.

C.2 ALGORITHM OF GENERALIZED SPARSEMAX

Algorithm 1 generalized sparsemax(z, r)
1: Sort z in decreasing order z1 ≥ · · · ≥ zc
2: Find κ(z) such that

κ(z) = max
k=1...c

k

∣∣∣∣ r + kzk >
∑
j≤k

zj


3: Define

ρ(z) =

(∑
j≤κ(z) zj

)
− r

κ(z)

4: return p such that pi = max(zi − ρ(z), 0)

13



Published as a conference paper at ICLR 2024

D PROOFS FOR LIPSCHITZ BOUNDS FOR RS

D.1 PROOF OF THEOREM 2

For both parts of the proof, we are going to use the following lemmas.

Lemma 1. (Stein’s lemma (Stein, 1981, Lemma 2))
Let σ > 0, let h : Rd 7→ R be measurable, and let h̃(x) = Eδ∼N (0,σ2I)[h(x + δ)]. Then h̃ is
differentiable, and moreover,

∇h̃(x) = 1

σ2
Eδ∼N (0,σ2I)[δh(x+ δ)] .

Stein’s lemma can be easily extended to h : Rd 7→ Rc. We note ∂
∂x h̃(x) the Jacobian matrix of

h̃(x).

Lemma 2. Let σ > 0, let h : Rd 7→ Rc be measurable, and let h̃(x) = Eδ∼N (0,σ2I)[h(x + δ)].
Then h̃ is differentiable, and moreover,

∂h̃(x)

∂x
=

1

σ2
Eδ∼N (0,σ2I)[δh(x+ δ)⊤] .

Proof. We are not going to prove differentiability as it is the same argument as in the proof of
Lemma 1, see (Stein, 1981).

∂

∂x
h̃(x) =

∂

∂x

(
1

(2πσ2)d/2

∫
Rd

h(t) exp

(
− 1

2σ2
∥x− t∥2

)
dt

)
=

1

(2πσ2)d/2

∫
Rd

∂

∂x

(
exp

(
− 1

2σ2
∥x− t∥2

))
h(t)⊤dt

=
1

(2πσ2)d/2

∫
Rd

∂

∂x

(
exp

(
− 1

2σ2
∥x− t∥2

))
h(t)⊤dt

=
1

(2πσ2)d/2

∫
Rd

t− x

σ2
exp

(
− 1

2σ2
∥x− t∥2

)
h(t)⊤dt ,

with a change of variable and definition of expectation, we get the result.

Lemma 3. For L ≥ 0, r ≥ 0, let h : Rd 7→ [0, r] be defined as follows:

h(x) =
1

2
sign(x1)min{r, 2L|x1|}+

r

2
,

where sign is the sign function with the convention sign(0) = 0. Then, h is L-Lipschitz continuous.

Proof. To show that h is L-Lipschitz continuous, we need to demonstrate that for all x, y ∈ Rd:

|h(x)− h(y)| ≤ L∥x− y∥2 .

We write x = (x1, . . . , xd) and y = (y1, . . . , yd). In the following cases, only the first coordinate is
going to intervene. We consider three cases:

Case 1: x1 = 0 and y1 = 0.

In this case, sign(x1) = 0, sign(y1) = 0, and h(y) = h(x) = r
2 for any x.

Thus, |h(x)− h(y)| = 0 ≤ L∥x− y∥2.

Case 2: x1 ̸= 0 and y1 = 0 (without loss of generality same as x1 = 0 and y1 ̸= 0).

In this case, h(x) is given by:

h(x) =
1

2
sign(x1)min{r, 2L|x1|}+

r

2
,
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and h(y) is given by:
h(y) =

r

2
.

Now, let’s consider the difference |h(x)− h(y)|:

|h(x)− h(y)| =
∣∣∣∣12 sign(x1)min{r, 2L|x1|}+

r

2
− r

2

∣∣∣∣ .
If 2L|x1| ≤ r, then min{r, 2L|x1|} = 2L|x1| and the expression becomes:∣∣∣∣12(2Lx1) +

r

2
− r

2

∣∣∣∣ = L|x1| ≤ L∥x− y∥2 .

If 2L|x1| > r, then min{r, 2L|x1|} = r and the expression becomes:∣∣∣∣12 sign(x1)r +
r

2
− r

2

∣∣∣∣ = r

2
≤ L|x1| ≤ L∥x− y∥2 .

In both cases, |h(x) − h(y)| ≤ L∥x − y∥2, therefore, in the case where x1 ̸= 0 and y1 = 0,
|h(x)− h(y)| is L-Lipschitz. Same result goes for x1 = 0 and y1 ̸= 0.

Case 3: x1 ̸= 0 and y1 ̸= 0.

Without loss of generality, assume |x1| ≥ |y1|. Consider

|h(x)− h(y)| = 1

2
|sign(x1)min{r, 2L|x1|} − sign(y1)min{r, 2L|y1|}| .

Let’s consider two sub-cases:

Sub-case 3a: If 2L|x1| ≤ r, then min{r, 2L|x1|} = 2L|x1|.
Sub-case 3b: If 2L|x1| > r, then min{r, 2L|x1|} = r.

Similarly, for |y1|, we have min{r, 2L|y1|} = 2L|y1| if 2L|y1| ≤ r and min{r, 2L|y1|} = r if
2L|y1| > r.

In both sub-cases, we can write:

|h(x)− h(y)| = 1

2
|2Lx1 − 2Ly1| = L|x1 − y1| ≤ L∥x− y∥2 .

Therefore, h is L-Lipschitz continuous.

Theorem (1st part). Let f : Rd 7→ [0, r] a Lipschitz continuous classifier and f̃(x) =
Eδ∼N (0,σ2I)[f(x+ δ)] the associated smoothed classifier. Then,

L(f̃) ≤ L(f) erf

(
r

2
3
2L(f)σ

)
.

Proof. For ease of notation we note L = L(f) , we are interested in the following:

J(σ, L) = sup
h:L(h)=L

sup
x∈Rd

∥∇h̃(x)∥2 = sup
h:L(h)=L

sup
x∈Rd

sup
v∈Rd:∥v∥=1

v⊤∇h̃(x) .

First, we will derive an upper bound on J(σ, L). Consider any x ∈ Rd, any h Lipschitz continuous
s.t h(x) ∈ [0, r], and any v ∈ Rd with ∥v∥ = 1. Any δ ∈ Rd can be decomposed as δ = δ⊥ + δ̃,
where δ̃ = (vT δ)v and δ⊥ ⊥ v. Let δ′ = δ⊥ − δ̃. That is, δ′ is the reflection of the vector δ
with respect to the hyperplane that is normal to v. If δ ∼ N (0, σ2I), then δ′ ∼ N (0, σ2I) because
N (0, σ2I) is radially symmetric. Moreover, vT δ′ = −vT δ. Hence,

Eδ∼N (0,σ2I)[v
⊤δh(x+ δ)] = Eδ∼N (0,σ2I)[v

⊤δ′h(x+ δ′)] = −Eδ∼N (0,σ2I)[v
⊤δh(x+ δ′)] .
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Using the above, we have the following, using Stein’s Lemma 1:

v⊤∇h̃(x) = 1

σ2
Eδ∼N (0,σ2I)[v

T δh(x+ δ)]

=
1

2σ2
Eδ∼N (0,σ2I)[v

T δ(h(x+ δ)− h(x+ δ′))]

≤ 1

2σ2
Eδ∼N (0,σ2I)[|vT δ| |(h(x+ δ)− h(x+ δ′))|]

(i)

≤ 1

2σ2
Eδ∼N (0,σ2I)[|vT δ|min{r, 2L|vT δ|}]

(ii)
=

1

2σ2
Eδ∼N (0,σ2I)[|δ1|min{r, 2L|δ1|}]

(iii)
=

1

2σ2
Ez∼N (0,σ2)[|z|min{r, 2L|z|}] ,

where (i) follows from the Lipschitz assumption on h and the fact that ∥δ − δ′∥ = ∥2δ̃∥ =
∥2(vT δ)v∥ = 2|vT δ| and that |h(x + δ) − h(x + δ′)| ≤ r, (ii) follows by choosing the canon-
ical unit vector v = (1, 0, . . . , 0) because the previous expression does not depend on the direction
of v, and (iii) follows by simply rewriting the expression in terms of z.

Now, we will derive a lower bound on J(σ, L). For this, we choose a specific h̄ ∈ [0, r] as h̄(x) =
1
2 sign(x1)min{r, 2L|x1|}+r/2, with sign(0) = 0. Using Lemma 3, we have that h̄ is L-Lipschitz.
We choose a specific x = 0 and specific unit vector v0 = (1, 0, . . . , 0). For this choice, note that
h̄(0) = r/2 and v⊤0 δ = δ1. Then,

J(σ, L) ≥ v⊤0 ∇˜̄h =
1

σ2
Eδ∼N (0,σ2I)[v

⊤
0 δh̄(δ)

⊤]

=
1

2σ2
Eδ∼N (0,σ2I)[|δ1|min{r, 2L|δ1|}] + 0

=
1

2σ2
Ez∼N (0,σ2)[|z|min{r, 2L|z|}] .

Combining the upper and lower bounds, we have the following equality:

J(σ, L) =
1

2σ2
Ez∼N (0,σ2)

[
min

{
r|z|, 2Lz2

}]
. (10)

We will now compute the above expression exactly:

1

2σ2
Ez∼N (0,σ2)

[
min

{
r|z|, 2Lz2

}]
=

1

2σ2

∫ r
2L

− r
2L

1√
2πσ2

exp

(
−z2

2σ2

)
2Lz2dz

− 1

2σ2

∫ − r
2L

−∞

r√
2πσ2

exp

(
−z2

2σ2

)
zdz

+
1

2σ2

∫ +∞

r
2L

1√
2πσ2

exp

(
−z2

2σ2

)
zdz

=
1

σ2

∫ r
2L

− r
2L

1√
2πσ2

exp

(
−z2

2σ2

)
Lz2dz +

e−
r

8L2σ2

2
3
2
√
π |σ|

+
e−

r
8L2σ2

2
3
2
√
π |σ|

= L erf

(
r

2
3
2Lσ

)
− e−

r
8L2σ2

√
2
√
π |σ|

+
e−

r
8L2σ2

2
3
2
√
π |σ|

+
e−

r
8L2σ2

2
3
2
√
π |σ|

= L erf

(
r

2
3
2Lσ

)
.
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Remark 1. Jensen’s inequality gives the following simple upper bound on J(σ, L):

J(σ, L) =
1

2σ2
Ez∼N (0,σ2)

[
min

{
r|z|, 2Lz2

}]
≤ min

{
Ez∼N (0,σ2)[r|z|/2σ2],Ez∼N (0,σ2)[Lz

2/σ2]
}

≤ min

{
r√
2πσ2

, L

}
.

Hence, J(σ, L) is no worse than the Lipschitz constant of the original classifier f , or its Gaussian
smoothed counterpart without the Lipschitz assumption, the latter bound is twice smaller than the
previous original derivation in (Salman et al., 2019, Appendix A).

Theorem (2nd part). Let f : Rd 7→ ∆c−1
r a Lipschitz continuous classifier and h̃(x) =

Eδ∼N (0,σ2I)[f(x+ δ)] the associated smoothed classifier. Then,

L(f̃) ≤ L(f) erf

(
r

2
3
2L(f)σ

)
.

Proof. We also note here L = L(f) and use the same notation as in the previous proof. Here
h : Rd 7→ ∆c−1, we have to consider a bound on the maximum singular value of the Jacobian,

J(σ, L) = sup
h:L(h)=L

sup
x∈Rd

sup
v∈Rd:∥v∥=1
u∈Rc:∥u∥=1

v⊤
∂

∂x
h̃(x)u .

As in the previous proof, we will derive an upper bound on J(σ, L). Consider any x ∈ Rd, any h
L-Lipschitz continuous s.t h(x) ∈ ∆c−1

r , and any v ∈ Rd with ∥v∥ = 1, u ∈ Rc with ∥u∥ = 1.

Any δ ∈ Rd can be decomposed as δ = δ⊥ + δ̃, where δ̃ = (vT δ)v and δ⊥ ⊥ v. Let δ′ = δ⊥ − δ̃.
That is, δ′ is the reflection of the vector δ with respect to the hyperplane that is normal to v. If
δ ∼ N (0, σ2I), then δ′ ∼ N (0, σ2I) because N (0, σ2I) is radially symmetric. Moreover, vT δ′ =
−vT δ. Hence,

Eδ∼N (0,σ2I)[v
⊤δh(x+ δ)⊤u] = Eδ∼N (0,σ2I)[v

⊤δ′h(x+ δ′)⊤u] = −Eδ∼N (0,σ2I)[v
⊤δh(x+ δ′)⊤u] .

Using the above, we have the following, using extended Stein’s Lemma 2:

v⊤
∂

∂x
h̃(x)⊤v =

1

σ2
Eδ∼N (0,σ2I)[v

T δh(x+ δ)⊤u]

=
1

2σ2
Eδ∼N (0,σ2I)[v

T δ(h(x+ δ)− h(x+ δ′)⊤u)]

≤ 1

2σ2
Eδ∼N (0,σ2I)[|vT δ| |(h(x+ δ)− h(x+ δ′))⊤u|]

(i)

≤ 1

2σ2
Eδ∼N (0,σ2I)[|vT δ|min{r

√
2, 2L|vT δ|}]

(ii)
=

1

2σ2
Eδ∼N (0,σ2I)[|δ1|min{r

√
2, 2L|δ1|}]

(iii)
=

1

2σ2
Ez∼N (0,σ2)[|z|min{r

√
2, 2L|z|}] ,

where (i) follows from the Lipschitz assumption on h and the fact that ∥δ − δ′∥ = ∥2δ̃∥ =
∥2(vT δ)v∥ = 2|vT δ| and that |(h(x+δ)−h(x+δ′))⊤u| = ∥(h(x+δ)−h(x+δ′))⊤u∥ ≤ ∥h(x+
δ) − h(x + δ′)∥∥u∥ ≤ r

√
2, (ii) follows by choosing the canonical unit vector v = (1, 0, . . . , 0)

because the previous expression does not depend on the direction of v, and (iii) follows by simply
rewriting the expression in terms of z.

Now, we will derive a lower bound on J(σ, L). For this, we choose a specific h̄ ∈ [0, r]c as
h̄1(x) = sign(x1)min{ r

√
2

2 , L|x1|} + r
√
2

2 , with sign(0) = 0 and h̄i(x) = 0 for i ∈ {2, . . . c}.
Using Lemma 3 h̄1 is L-Lipschitz and hi are 0-Lipschitz for i ∈ {2, . . . c}, thus h̄ is L-Lipschitz.
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a specific x = 0 and specific unit vectors ū = (1, 0, . . . , 0), v̄ = (1, 0, . . . , 0). For this choice, note
that h̄1(0) = r

√
2/2 and v̄⊤δ = δ1. Then,

J(σ, L) ≥ v̄⊤
∂

∂x
˜̄h(0)ū =

1

σ2
Eδ∼N (0,σ2I)[v̄

⊤δh̄(δ)⊤ū]

=
1

2σ2
Eδ∼N (0,σ2I)[|δ1|min{r

√
2, 2L|δ1|}] + 0

=
1

2σ2
Ez∼N (0,σ2)[|z|min{r

√
2, 2L|z|}] .

Combining the upper and lower bounds, we have the following equality:

J(σ, L) =
1

2σ2
Ez∼N (0,σ2)

[
min

{
r
√
2|z|, 2L(h)z2

}]
. (11)

We will now compute the above expression exactly:
1

2σ2
Ez∼N (0,σ2)

[
min

{√
2|z|, 2Lz2

}]
=

1

2σ2

∫ r√
2L

− r√
2L

1√
2πσ2

exp

(
−z2

2σ2

)
2Lz2dz

− 1

2σ2

∫ − r√
2L

−∞

1√
2πσ2

exp

(
−z2

2σ2

)
zdz

+
1

2σ2

∫ +∞

r√
2L

1√
2πσ2

exp

(
−z2

2σ2

)
zdz

=
1

σ2

∫ 1√
2L

− r√
2L

1√
2πσ2

exp

(
−z2

2σ2

)
Lz2dz +

e−
r

4L2σ2

2
3
2
√
π |σ|

+
e−

r
4L2σ2

2
3
2
√
π |σ|

= L erf
( r

2Lσ

)
− e−

r
4L2σ2

√
2
√
π |σ|

+
e−

r
4L2σ2

2
3
2
√
π |σ|

+
e−

r
4L2σ2

2
3
2
√
π |σ|

= L erf
( r

2Lσ

)
.

Remark 2. For h : Rd 7→ ∆c−1 a Lipschitz classifier, Jensen’s inequality gives the following simple
upper bound on J(σ, L):

J(σ, L) =
1

2σ2
Ez∼N (0,σ2)

[
min

{
r
√
2|z|, 2Lz2

}]
≤ min

{
Ez∼N (0,σ2)[r

√
2|z|/2σ2],Ez∼N (0,σ2)[Lz

2/σ2]
}

≤ min

{
r√
πσ2

, L

}
.

Hence, J(σ, L) is no worse than the Lipschitz constant of the original classifier h, or its Gaussian
smoothed counterpart without the Lipschitz assumption, the latter bound is

√
2 times bigger than

the bi-class case with L(h̃k).

D.2 PROOF OF PROPOSITION 3

Proposition. The optimal value σ∗ that maximizes the gap between the bounds of Eq. (5) is:

σ∗ =
r

L(srk ◦ f)
√
2π

giving L(f̃k) ≤ erf(
√
π/2) L(srk ◦ f) ≲ 0.79 L(srk ◦ f) .

Similarly, for Eq. (6):

σ∗ =
r

L(sr ◦ f)
√
π

giving L(f̃) ≤ erf(
√
π/2) L(sr ◦ f) ≲ 0.79 L(sr ◦ f) .
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Proof. For γ ≥ 0, we seek σ∗ that maximizes the gap between the bounds of Eq. (5) with respect to
σ:

σ∗ = argmax
σ>0

{
min

{
γ,

r√
2πσ2

}
− γ erf

(
r

23/2γσ

)}
.

To find the value of σ∗ that maximizes the given function, we’ll determine the critical points. Let

g(σ) = min

{
γ,

r√
2πσ2

}
− γ erf

(
r

23/2γσ

)
.

Let’s start by setting the two functions inside the min function equal to each other and solving for
σ:

γ =
r√
2πσ2

⇒ σ2 =
r

γ22π

⇒ σ =
r

γ
√
2π

.

This is the point of intersection, hence the value of σ where the two functions inside the min change
dominance. For that value, g( r

γ
√
2π

) = γ(1− erf(
√
π
2 )) .

Now, for σ < r
γ
√
2π

, g(σ) = γ − γ erf
(

r
23/2γσ

)
.

Let’s differentiate g(σ) in the this first region:

g′(σ) = 0− d

dσ

[
γ erf

(
r

23/2γσ

)]
= γ

r

23/2γ

2√
π
exp

(
−
(

r

23/2γσ

)2
)

=
r√
2π

exp

(
−
(

r

23/2γσ

)2
)

.

The supremum is obtained for σ → 0, and the associated limit value for g(σ) is 0.

For the second region, σ > r
γ
√
2π

, g(σ) = r√
2πσ2

− γ erf
(

r
23/2γσ

)
. Supremum is obtained for

σ → r
γ
√
2π

as g is a decreasing function of σ. The associated limit value for g(σ) is γ(1−erf(
√
π
2 )).

Finally, taking γ = L(srk ◦ f), σ∗ = r
L(srk◦f)

√
2π

gives maximum value for g on all domain.

We get a similar result σ∗ = r
L(sr◦f)

√
π

for L(sr ◦ f).

D.3 PROOF OF THEOREM 3

In the previous section, we derived a new radius for the smoothed classifier h̃ but usually RS ap-
proaches use the Lipschitz constant of the function Φ−1 ◦ h̃ and its associated certified radius.

Here we suppose that h̃ : Rd 7→ ∆c−1
r , how does it changes the Lipschitz constant of Φ−1 ◦ h̃ ?

Lemma 4. Let h̃ : Rd 7→ ∆c−1
r be the smoothed classifier and Φ−1 the gaussian quantile function.

For an input x ∈ X , the ℓ2-norm of the gradient of Φ−1 ◦ h̃k is bounded by:

∥∇Φ−1 ◦ h̃k(x)∥2 ≤
r

σ
exp

(
−1

2

(
Φ−1(h̃k(x)/r)

2 − Φ−1(h̃k(x))
2
))

.

Proof. In the same manner as the proof of Salman et al. (2019), let us assume that σ = 1.
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∥∇Φ−1 ◦ h̃k(x)∥2 = sup
v∈Rd:∥v∥=1

v⊤∇Φ−1(h̃k(x))

= sup
v∈Rd:∥v∥=1

v⊤∇h̃k(x)

Φ′(Φ−1(h̃k(x)))

Using that expression, we can derive an upper bound on the Lipschitz constant of Φ−1 ◦ h̃k.

The denominator Φ′(Φ−1(h̃k(x))) =
1√
2π

exp
(
− 1

2

(
Φ−1(h̃k(x))

2
))

.

By Stein’s Lemma, we can express the numerator as

v⊤∇h̃k(x) = Eδ∼N (0,I)[v
⊤δhk(x+ δ)] .

We need to bound this quantity with the constraint that Eδ∼N (0,I)[hk(x+δ)] = p and hk(x) ∈ [0, r],
it sums to following problem, with hk(x+ z) = g(z):

sup
g

v∈Rd:∥v∥=1

Eδ∼N (0,I)

[
v⊤δg(x)

]
(12)

s.t g(x) ∈ [0, r] and Eδ∼N (0,I) [g(x)] = p .

We can solve it for g′ = g/r:

sup
g′

v∈Rd:∥v∥=1

rEδ∼N (0,I)

[
v⊤δg′(x)

]
s.t g′(x) ∈ [0, 1] and Eδ∼N (0,I) [g

′(x)] = p/r .

We recognize problem solved in (Salman et al., 2019, Appendix A, Lemma 2), which has for solution
g′

∗
(z) = 1v⊤z>Φ−1(p/r). Thus the problem (12) has for solution g∗(z) = r1v⊤z>Φ−1(p/r).

Plugging g∗ in the numerator we obtain

Eδ∼N (0,I)[v
⊤δg∗(δ)] = r EZ∼N (0,1)[Z 1Z>Φ−1(p/r)]

=
r√
2π

∫ ∞

−Φ−1(p/r)

t exp−t2/2dt

=
r√
2π

exp

(
−1

2
Φ−1(h̃k(x)/r)

2

)
.

Finally,

∥∇Φ−1 ◦ h̃k(x)∥2 ≤ r exp

(
−1

2
(Φ−1(h̃k(x)/r)

2 − Φ−1(h̃k(x))
2)

)
.

To obtain the result for any σ, we can apply the result to h̃k(x/σ) and this implies that

∥∇Φ−1 ◦ h̃k(x)∥2 ≤
r

σ
exp

(
−1

2
(Φ−1(h̃k(x)/r)

2 − Φ−1(h̃k(x))
2)

)
.

Using previous Lemma 4 we derive the following Theorem,

Theorem. Let h̃ : Rd 7→ ∆c−1
r be the smoothed classifier and Φ−1 the gaussian quantile function.

For an input x ∈ X , and B = B2

(
h̃(x), ϵL(h̃)

)
the ℓ2-norm of the local Lipschitz constant of

Φ−1 ◦ h̃k is bounded by:

L
(
∇Φ−1 ◦ h̃k, B

)
≤ r

σ
max
p∈B

{
exp

(
−1

2

(
Φ−1(p/r)2 − Φ−1(p)2

))}
.
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E LVM-RS ALGORITHM

Algorithm 2 LVM-RS (f , σ, x, n0, n)
1: scores n0← SampleScores(f, x, n0, σ) // validation set, dimension n0 × c
2: scores n← SampleScores(f, x, n, σ) // certification set, dimension n× c
3: for temperature t ∈ [tlower, tupper]
4: for simplex map s ∈ S
5: p̄st =

1
n0

∑n0

i=1 s
t(scores n0[i, :])− shift(Sn0(s

t(scores n0)), α, n0) // dimension c

6: (s∗, t∗) = argmaxs,t R2(p̄st)

7: p̄∗ = 1
n0

∑n0

i=1 s∗
t∗(scores n[i, :])− shift(Sn(s∗

t∗(scores n)), α, n) // dimension c

8: return prediction argmaxk p̄
∗
k and certified radius R2(p̄

∗)

We recall that RS produces the smoothed classifier F̃ starting from sub classifier f , and for all
x ∈ X , it outputs a certified radius R = R(F̃ , x) and a prediction F̃ (x) = ŷ, it is guaranteed that
for all x′ ∈ B2(x,R), F̃ (x′) = ŷ.

The difference with the LVM-RS procedure is that the choice of produced classifier F̃ depends on
input x. Starting from a sub-classifier f , we generate an ensemble of smoothed classifiers {F̃s}s.
For an input x ∈ X , the LVM-RS procedure selects a classifier F̃ ∈ {F̃s}s that maximizes the
margin-variance trade-off. We output for x and F̃ a certified radius R = R(F̃ , x) and a prediction
F̃ (x) = ŷ, it is guaranteed that for all x′ ∈ B2(x,R), F̃ (x′) = ŷ.
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F ABLATION STUDY

This ablation study provides two comparisons:

• A comparison between corrected certified radii produced by Hoeddfing’s and Bernstein’s
inequalities in Fig. 2. The Clopper-Pearson is not included as it is only applicable to bino-
mial values.

• A comparison between corrected certified radii produced by different simplex maps and
temperatures in Fig.3.
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Figure 2: Comparison between corrected certified radii R2(p̄) produced by Bernstein’s and Ho-
effding’s inequalities, for a random subset of 1000 images of ImageNet dataset using RS with a
smoothing noise σ = 1.0. We use the ViT-denoiser baseline from Carlini et al. (2023).
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Figure 3: Comparison of the effect on corrected certified radii R2(p̄) of the choice of
the simplex map s and associated temperature t. Simplex maps considered are s ∈
{sparsemax, softmax,hardmax}. The base subclassifier is the one from Carlini et al. (2023) and
the corrected certified radii were generated with one image from ImageNet with smoothing variance
σ = 1.0. Radii are risk corrected with Empirical Bernstein inequality for a risk α = 1e−3 and
n = 104. We see that by varying the temperature t, softmax and sparsemax can find a better solu-
tion than hardmax to the variance-margin trade-off.

G FIGURES AND TABLES FOR EXPERIMENT 4.2
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Figure 4: Certified accuracies (CA in %) with R1 in function of levels of perturbation r on CIFAR-
10, for different simplex mass r. Number of samples is n = 104 and risk α = 1e-3. The case
r = 1.0 corresponds to the regular RS setting.
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Figure 5: Certified accuracies (CA in %) in function of level of perturbations ϵ on CIFAR-10, for
different noise levels σ = {0.25, 0.5, 1}. Number of samples is n = 105 and risk α = 1e-3. Our
method is compared to the baseline chosen as in Carlini et al. (2023).
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Figure 6: Certified accuracies (CA in %) in function of level of perturbations ϵ on ImageNet, for
different noise levels σ = {0.25, 0.5, 1}. Number of samples is n = 104 and risk α = 1e-3. Our
method is compared to the baseline chosen as in Carlini et al. (2023).

Table 5: Certified accuracies comparison for different perturbation ϵ values, for n = 104 samples
and α = 1e−3. On ImageNet dataset. Here the baseline is a ResNet-150 from Salman et al. (2019).

Methods
Certified accuracy (ε)

0.14 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Salman et al. (2019) 74.49 73.08 69.84 66.41 62.42 57.75 51.24 0.0
LVM-RS (ours) 76.77 74.99 71.26 67.55 63.43 58.59 51.39 0.0
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Table 6: Certified accuracy for σ = 0.25 on CIFAR-10, for risk α = 1e−3 and n = 105 samples.

Methods
Certified accuracy (ε)

0.0 0.14 0.2 0.25 0.3 0.4 0.5 0.6 0.75 0.8 1.0

Carlini et al. (2023) 86.72 80.73 77.47 74.41 71.15 65.01 58.25 51.15 40.96 37.6 0.0
LVM-RS (ours) 88.49 82.15 79.06 76.21 72.73 66.41 60.22 53.41 43.76 40.27 0.0

Table 7: Certified accuracy for σ = 0.5 on CIFAR-10, for risk α = 1e−3 and n = 105 samples.

Methods
Certified accuracy (ε)

0.0 0.14 0.2 0.25 0.3 0.4 0.5 0.6 0.75 0.8 1.0

Carlini et al. (2023) 74.11 67.99 65.22 62.89 60.38 55.67 50.43 45.59 39.26 37.11 29.91
LVM-RS (ours) 79.79 73.45 70.41 68.04 65.8 60.71 55.48 50.07 43.13 40.83 32.35

Table 8: Certified accuracy for σ = 1 on CIFAR-10, for risk α = 1e−3 and n = 105 samples.

Methods
Certified accuracy (ε)

0.0 0.14 0.2 0.25 0.3 0.4 0.5 0.6 0.75 0.8 1.0

Carlini et al. (2023) 48.97 44.24 42.26 40.76 39.15 35.91 33.08 29.92 25.97 24.72 20.09
LVM-RS (ours) 63.72 57.99 55.54 53.4 51.23 47.19 43.19 39.76 34.27 32.35 25.71

Table 9: Certified accuracy for σ = 0.25 on ImageNet, for risk α = 1e−3 and n = 104 samples.

Methods
Certified accuracy (ε)

0.0 0.5 1.0 1.5 2 3

Carlini et al. (2023) 79.88 69.57 0.0 0.0 0.0 0.0
LVM-RS (ours) 80.66 69.84 0.0 0.0 0.0 0.0

Table 10: Certified accuracy for σ = 0.5 on ImageNet, for risk α = 1e−3 and n = 104 samples.

Methods
Certified accuracy (ε)

0.0 0.5 1.0 1.5 2 3

Carlini et al. (2023) 74.37 64.56 51.55 36.04 0.0 0.0
LVM-RS (ours) 78.18 66.47 53.85 36.04 0.0 0.0

Table 11: Certified accuracy for σ = 1 on ImageNet, for risk α = 1e−3 and n = 104 samples.

Methods
Certified accuracy (ε)

0.0 0.5 1.0 1.5 2 3

Carlini et al. (2023) 57.06 49.05 39.74 32.33 25.53 14.01
LVM-RS (ours) 66.87 55.56 44.74 34.83 27.43 14.31
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