
Under review as a conference paper at ICLR 2024

DAG-BASED COLUMN GENERATION FOR ADVERSAR-
IAL TEAM GAMES

Anonymous authors
Paper under double-blind review

ABSTRACT

Many works recently have focused on computing optimal solutions for the ex ante
coordination of a team for solving sequential adversarial team games, where a team
of players coordinate against an opponent (or a team of players) in a zero-sum
extensive-form game. However, it is challenging to directly compute such an
optimal solution because the team’s coordinated strategy space is exponential in the
size of the game tree due to the asymmetric information of team members. Column
Generation (CG) algorithms have been proposed to overcome this challenge by
iteratively expanding the team’s coordinated strategy space via a Best Response
Oracle (BRO). More recently, more compact representations (particularly, the
Team Belief Directed Acyclic Graph (TB-DAG)) of the team’s coordinated strategy
space have been proposed, but the TB-DAG-based algorithms only outperform
the CG-based algorithms in games with a small TB-DAG. Unfortunately, it is
inefficient to directly apply CG to the TB-DAG because the size of the TB-DAG is
still exponential in the size of the game tree and then makes the BRO unscalable.
To this end, we develop our novel TB-DAG CG (DCG) algorithm framework
by computing a coordinated best response in the original game first and then
transforming this strategy into the TB-DAG form. To further improve the scalability,
we propose a more suitable BRO for DCG to reduce the cost of the transformation
at each iteration. We theoretically show that our algorithm converges exponentially
faster than the state-of-the-art CG algorithms, and experimental results show that
our algorithm is at least two orders of magnitude faster than the state-of-the-art
baselines and solves games that were previously unsolvable.

1 INTRODUCTION

Many research efforts on computational game theory have focused on computing a Nash equilib-
rium (Nash, 1951) in two-player zero-sum Extensive-Form Games (EFGs) (Zinkevich et al., 2008;
Moravčı́k et al., 2017; Brown & Sandholm, 2018; Zhang & Sandholm, 2020), where two players
receive opposite payoffs. In this setting, a Nash equilibrium can be computed in polynomial time in
the size of the EFG (Shoham & Leyton-Brown, 2008). Recent landmark results such as superhuman
performance in the heads-up no-limit Texas hold’em poker game (Moravčı́k et al., 2017; Brown &
Sandholm, 2018) show that researchers have understood the problem of computing a Nash equilib-
rium in two-player zero-sum EFGs well in both theory and practice. However, such a problem in
multiplayer games is not well understood, where computing a Nash equilibrium is generally hard
(Chen & Deng, 2005). Despite the progress made in multiagent systems due to the development
of large language models (LLMs) (Park et al., 2023; Li et al., 2023; Xi et al., 2023), these LLMs
or existing multiagent learning algorithms (Lowe et al., 2017; Lanctot et al., 2017; Rashid et al.,
2018; Yu et al., 2022; Zhong et al., 2023) that can be used with LLMs cannot guarantee to achieve an
optimal solution in multiagent (more than two agents) systems, even if they can guarantee to achieve
a stationary point (i.e., a local Nash equilibrium).

In this paper, we focus on sequential Adversarial Team Games (ATG), where a team of players
coordinate against an opponent (or a team of players) in an EFG. Specifically, we focus on the
solution concept called Team-Maxmin Equilibrium with Coordination device (TMECor) (Celli &
Gatti, 2018), which models the ex ante coordination of team members who share the same payoff
function. That is, the team members agree on a common strategy before the game starts, but they
cannot communicate during playing the game in face of private information for each team member.

1



Under review as a conference paper at ICLR 2024

Examples of this setting include collusion in poker games and a team of drones playing against an
intruder (Carminati et al., 2022). Even though a TMECor is equivalent to a Nash equilibrium in a
two-player (a team and an opponent) zero-sum game, computing a TMECor is hard (i.e., APX-hard)
(Celli & Gatti, 2018). The main barrier is the team members’ asymmetric information in this setting,
which makes a team of players equivalent to a single player with imperfect recall and then the
behavioral strategy space of the team is not realization equivalent to the normal-form strategy space
of the team (Kuhn, 1953). The normal-formal strategies of the team could be arbitrarily better than
the behavioral strategies of the team, but the normal-formal strategy space is exponential in the size
of the game tree in an ATG.

To efficiently compute a TMECor, some approaches have been proposed. Even though computing
a TMECor can be formulated as a linear program (Celli & Gatti, 2018), its size is exponential in
the size of the game tree due to the exponential explosion of the team’s joint normal-formal strategy
(i.e., coordinated strategy) space. Column Generation (CG) algorithms (McMahan et al., 2003;
Zhang & An, 2020; Farina et al., 2021) were proposed to overcome this challenge (Celli & Gatti,
2018; Zhang et al., 2021; Farina et al., 2021; Zhang et al., 2022b) by iteratively expanding the team’s
coordinated strategy space via a Best Response Oracle (BRO) (i.e., normal-form CG). More recently,
a generalization of the sequence form for the team via the tree decomposition was proposed (Zhang &
Sandholm, 2022) as a compact representation for the team’s coordinated strategy space, and another
similar representation (Carminati et al., 2022) was proposed to capture the public information of the
team. The Team Belief Directed Acyclic Graph (TB-DAG) representation (Zhang et al., 2022b;c)
was proposed to unify the previous two representations, which is a decision problem of the team
in an ATG. However, the TB-DAG-based algorithms only outperform the CG-based algorithms in
games with a small TB-DAG. To solve games more efficiently, one straightforward idea is applying
CG to the TB-DAG. That is, we compute a TMECor with a limited size of the TB-DAG for the
restricted game and then expand the TB-DAG by computing a best response over the whole TB-DAG
of the original game. Unfortunately, it is inefficient to compute a best response over the whole
exponential-sized TB-DAG. Therefore, the CG directly applied to the TB-DAG is inefficient.

To this end, we propose our novel TB-DAG CG (DCG) algorithm framework. DCG first computes
a coordinated best response in the original game tree, which is represented by a joint normal-form
strategy of the team. This best response is then transformed into the TB-DAG form. DCG is inspired
by the following two observations:

1. By exploiting the team’s correlation property to solve the BRO’s integer program faster, the
state-of-the-art BRO (Zhang et al., 2021; Farina et al., 2021) can be used in our DCG to
significantly outperform the BRO computing a best response over the whole exponential-
sized TB-DAG without such a correlation property. As a result, the DCG should significantly
outperform the CG directly applied to the TB-DAG.

2. Intuitively, this DCG should not be more efficient than the normal-form CG, as it requires
an extra step for transformation at each iteration. However, we show that the TB-DAG
formed by a set of TB-DAG form strategies, which are transformed from a set of coordinated
strategies, can represent new coordinated strategies due to the new combinations of states
and actions in this TB-DAG. This property makes DCG converge in significantly fewer
iterations than the normal-form CG in large games. Then DCG outperforms the normal-form
CG when the benefit from reducing the number of interactions for convergence surpasses
the cost of the transformation.

Unfortunately, DCG suffers from a very high cost of transformation in large games if the coordinated
best response is computed by the prior state-of-the-art BRO (Zhang et al., 2021; Farina et al., 2021), as
it involves randomized strategies and thus induces a large TB-DAG. To further improve the scalability,
we propose a more suitable BRO for DCG to reduce the cost of the transformation. That is, we
propose an efficient pure BRO to compute a coordinated best response with a pure strategy for each
team member, which will ensure that the corresponding TB-DAG form is small enough.

We theoretically show that our DCG converges exponentially faster than the normal-form CG shown
in Zhang et al. (2021). Moreover, experimental results show that our DCG is at least two orders of
magnitude faster than the state-of-the-art baselines and solves games that were previously unsolvable.
Thus, this paper provides the first efficient TB-DAG CG algorithm. In addition, this paper creates

2



Under review as a conference paper at ICLR 2024

a fundamental theory for applying the multiagent learning framework – Policy-Spaced Response
Oracles (PSRO) (Lanctot et al., 2017) (a variant of CG) – to the TB-DAG for a TMECor.

2 PRELIMINARIES

Adversarial Team Games. The Extensive-Form Game (EFG) with imperfect information (Shoham
& Leyton-Brown, 2008) models the interactions among players through game trees (e.g., Figure 1(a)).
Given a set of players N and the chance player c used to model the stochastic events (e.g., drawing
cards in poker), an EFG defines a tree through a tuple ⟨N ∪ {c}, H, Z,A, {ui}i∈N ⟩, where H is the
set of nonterminal nodes of players in N ∪ {c}, and Z is the set of leaf nodes (i.e., terminal nodes).
This paper focuses on Adversarial Team Games (ATGs), where N = T ∪ {o} with that a team of
players T with |T | ≥ 2 plays against an opponent (or a team of players) o. A = ∪i∈N∪{c}Ai is the
set of all the possible edges (i.e., actions) in the tree, where Ai is the set of player i’s actions. A(h) is
the set of actions available at node h ∈ H , and Hi is the set of nodes with the acting player i with
HT = ∪i∈THi. ui : Z → R is player i’s utility function that assigns a utility to each leaf node. In
an ATG, ui = uj for all i and j in T , and we denote uT =

∑
i∈T ui. We focus on zero-sum ATGs,

where uT = −uo.

Information sets that are partitions of nonterminal nodes are used to model imperfect (private) infor-
mation. An information set Ii (i.e., private state) of player i is a set of nodes that are indistinguishable
to player i, and Ii is the set of player i’s information sets. IT = ∪i∈TIi is the set of information
sets of team T . Ii’s action set is A(Ii), and A(Ii) = A(h) for each h ∈ Ii, i.e., the nodes in Ii have
the same set of actions. For two nodes h and h′, h ⪯ h′ represents that there is a path in the game
tree from h to h′, and h ≺ h′ if h ̸= h′ and h ⪯ h′. Similarly, h ⪯ Ii if there is a node h′ in Ii such
that h ⪯ h′. Two information sets Ii and Ij are connected, denoted by Ii ⇌ Ij , if there are h ∈ Ii
and h′ ∈ Ij such that h ⪯ h′ or h′ ⪯ h. For example, in Figure 1(a), b ⪯ d, and b ⪯ I2 (node b
also represents an information set). We focus on games with perfect recall for each player, where
players do not forget information. The team as a whole may have imperfect recall due to potentially
asymmetric information among team members. After treating the team as a whole, the EFG in this
paper can be formulated as a two-player imperfect-recall game.

Sequences. For each node h ∈ H ∪ Z, the ordered set of player i’s actions on the path from the
root to h can be defined by a sequence σi. Σi = {(Ii, ai) : Ii ∈ Ii, ai ∈ A(Ii)} ∪ {∅} is the set of
player i’s sequences, where ∅ is the empty sequence. σi(h) is h’s parent sequence, which is the last
sequence of player i on the path from the root to h. For each Ii ∈ Ii, Ii’s parent sequence is σi(Ii),
and σi(Ii) = σi(h) for each h ∈ Ii due to the perfect recall of player i. In addition, let σi(Ii) = ∅
if there is no information set of player i’s before Ii. ΣN ′ = ×i∈N ′⊆NΣi defines the combinations
of sequences σN ′ of players in N ′ ⊆ N , σN ′ [j] is the sequence of player j in the joint sequence
σN ′ ∈ ΣN ′ . σN ′(h) is the joint sequence of N ′ reaching h. Two sequences σi ∈ Σi and σj ∈ Σj

are relevant if any of them is ∅, or Ii ⇌ Ij with σi = (Ii, ai) and σj = (Ij , aj), denoted by σi ▷◁ σj .
A joint sequence σN ′ is relevant if, for any i, j ∈ N ′, σN ′ [i] and σN ′ [j] in σN ′ are relevant. Σ▷◁

N ′

= {σN ′(hi) | hi ∈ H ∪ Z} ∪ {(σi,×j∈N ′\{i}∅) | σi ∈ Σi, i ∈ N ′} defines a set of relevant joint
sequences. For i /∈ N ′ ⊆ N , Ii ▷◁ σN ′ defines that σN ′ is relevant to Ii if (σi(Ii),σN ′) ∈ Σ▷◁

{i}∪N ′ .

Reduced-normal-form plans. A reduced-normal-form plan πi of player i defines an action for
every reachable information set Ii ∈ Ii due to earlier actions. We use πi(Ii, ai) = 1 to represent
that Ii is reachable and ai ∈ A(Ii) is played in πi. Specifically, πi(∅) = 1. Πi is the set of
reduced-normal-form plans of player i, Πi(Ii) is the set of reduced-normal-form plans πi ∈ Πi with
that πi(σi(Ii)) = 1, Πi(Ii, ai) is the set of reduced-normal-form plans in Πi(Ii) such that ai ∈ A(Ii)
is played in πi. Then Πi(∅) = Πi, and Πi(z) for each z ∈ Z is the set of reduced-normal-form
plans πi ∈ Πi with that πi(σi(z)) = 1. ∆(Πi) is the set of mixed normal-form strategies, i.e., a
probability distribution over Πi. ΠT = ×i∈TΠi is the set of pure coordinated strategies of the team,
and µT ∈ ∆(ΠT ) is a mixed coordinated strategy. ΠT (h) = ×i∈TΠi(h) for each h ∈ H ∪ Z is
the set of pure coordinated strategies with that πi(σi(h)) = 1 for each player i ∈ T , denoted by
πT (σT (h)) = 1 with πT ∈ ΠT . For example, in Figure 1(a), the paths a−b−d−1 and a−c−g−7
show a πT such that πi(σi(1)) = 1 (node 1 is a leaf) for each player i ∈ T , i.e., πT (σT (1)) = 1.

Sequence-form strategies. Given player i, a mixed sequence-form strategy is a vector yi ∈ [0, 1]|Σi|,
and a pure sequence-form strategy is a vector yi ∈ {0, 1}|Σi|, which satisfy: yi(∅) = 1, and

3



Under review as a conference paper at ICLR 2024

∑
ai∈A(Ii)

yi(Ii, ai) = yi(σi(Ii)) for each Ii ∈ Ii. The set of sequence-form strategies is Yi. Two
strategies are equivalent if they assign the same probability for reaching each leaf node. Any pure
(mixed) normal-form strategy of each player i is equivalent to a pure (mixed) sequence-form strategy
and vice versa (von Stengel, 1996). However, coordinated strategies in ∆(ΠT ) cannot be concisely
represented by sequence-form strategies due to the imperfect recall of the team (Farina et al., 2018).

TMECor. A Team-Maxmin Equilibrium with Coordination device (TMECor) (Celli & Gatti, 2018)
is a Nash equilibrium, where the opponent plays the strategy µo ∈ ∆(Πo) (equivalent to yo ∈ Yo),
and the team plays µT ∈ ∆(ΠT ). The team’s expected utility over (µT ,yo) is:

uT (µT ,yo) =
∑
z∈Z

ûT (z)yo(σo(z))
∑

πT∈ΠT (z)

µT (πT )

where ûT (z) = uT (z)pc(z), and pc(z) is the chance probability of reaching z. For (πT ,yo),

uT (πT ,yo) =
∑

z∈Z,πT∈ΠT (z)

ûT (z)yo(σo(z)).

An optimal solution TMECor can be found by solving the following optimization problem, which is
equivalent to a linear program by dualizing the inner linear minimization problem over yo:

max
µT∈∆(ΠT )

min
yo∈Yo

uT (µT ,yo). (1)

CG. Normally, the algorithm Column Generation (CG) (Zhang et al., 2021; Farina et al., 2021; Zhang
et al., 2022b) shown in Figure 1(c) is used to compute a TMECor because |Πi| is exponential in the
size of the game tree (i.e., normal-form CG). CG starts from a restricted game G′, then solves G′ for
the corresponding TMECor, and then uses the BRO (Best Response Oracle, i.e., solving the problem:
maxπT∈ΠT

uT (πT ,yo)) to compute a coordinated best response against the adversarial strategy yo

in the TMECor of G′. If this best response improves the team’s utility obtained by the TMECor of
G′, CG expands G′ by adding this best response to G′; otherwise, CG terminates. More details on
variants of CG are shown in Appendix A.

Team Belief DAG. We introduce the definitions related to Team Belief Directed Acyclic Graph
(TB-DAG) (Zhang et al., 2022b;c). When a piece of information is common knowledge to the team
T in an ATG, it is public to T . Two nodes h and h′ within the same level (i.e., the same length of
the paths from the root to both nodes) are indistinguishable (not public) to the team if there is an
information set I ∈ IT such that h ⪯ I and h′ ⪯ I . For example, in Figure 1(a), nodes b and c are
indistinguishable to the team. A connected component of a graph induced by nodes’ indistinguishable
relation to the team is a public state of the team.

The TB-DAG is a decision problem of the team in an ATG. The nodes in D of the TB-DAG include
a set of observation nodes O (e.g., rectangle nodes in Figure 1(b)), i.e., including the information
observed by the team about states of the game, and a set of decision nodes called beliefs B (e.g.,
circle nodes in Figure 1(b)). Each belief or observation node includes a set of nodes in H ∪ Z that
the team cannot distinguish based on their public information. Starting from the root {∅} ∪ J∗ as a
decision node (J∗ is a set of nodes before reaching any node of the team, e.g., node a in Figure 1(b)),
the TB-DAG is constructed recursively, where beliefs alternate with observation nodes, as shown in
Figure 1(b). Each edge outgoing from a belief B is a joint action called prescription that assigns an
action to each information set that shares some nodes with B. A(B) = {a | a ∈ ×I∩B ̸=∅A(I)} is
the set of possible prescriptions at B. B also includes a set J of nodes that are on the path to the next
decision node of the team but do not belong to the team. The observation node transiting from B
by taking a is: Ba =

⋃
I∩B ̸=∅,aI∈a{haI | h ∈ I ∩B} ∪ {ha | h ∈ J, a ∈ A(h)}. For example, in

Figure 1(b), circle node a is the root with the unique prescription ∅ for the team ({∅} is omitted in
node a), which will transit to an observation node bc due to two actions of the opponent. The circle
node bc has four prescriptions because bc includes two information sets b and c, each of which has
two actions. A belief is a leaf node if it contains a leaf node in the ATG, e.g., circle nodes labeled by
numbers in Figure 1(b). An observation node O is a set of nodes, which form a set of public states
of the team (connected components of the graph induced by O), and each public state represents
one action (outgoing edge) of O. For example, in Figure 1(b), observation node fg (or bc) has only
one action because its two nodes are connected and then only form one connected component, but
observation node ef has two actions because ef includes two connected components, i.e., node e and
node f are not connected.

4



Under review as a conference paper at ICLR 2024

Team Member 2

a

Team Member 1
b

c

d e f g

1 2 3 4 5 6 7 8

(a)

Adversary

𝐼!"𝐼!

Leaf nodes

(b) 1
2
3
4

5

6
7
8

1,3
1
3
2,4
2
4
5,7
5
7
6,8
6
8

de

d

e

g

f

fg

de

bc

ef

fg

dg

Start

Restricted Game 𝐺"

BRO

Solve 
𝐺"

BRO does not improve result 

Terminate

Expand 
𝐺"

(c)

a
bc

Figure 1: (a) An example of a game tree: paths a-b-d-1 and a-c-g-7 represent a pure coordinated
strategy π1

T for the team, and paths a-b-d-2 and a-c-g-8 represent π2
T . (b) The TB-DAG for the

example of (a): paths a-bc-bc-dg-d-1-1 and a-bc-bc-dg-g-7-7 represent a TB-DAG form strategy x1,
and paths a-bc-bc-dg-d-2-2 and a-bc-bc-dg-g-8-8 represent x2. (c) The procedure of CG.

Let E be the set of edges in the TB-DAG of an EFG. The pseudocode for generating the TB-
DAG is shown in Algorithm 1 of Appendix A.5. In a TB-DAG, a pure TB-DAG form strategy
is x ∈ {0, 1}|D|, and a mixed TB-DAG form strategy is x ∈ [0, 1]|D|, which are constrained by:
x(B) =

∑
a∈A(B) x(Ba) and x(B) =

∑
(O,B)∈E x(O) for B ∈ B with x({∅} ∪ J∗) = 1, where

{∅} ∪ J∗ represents the root. The set of the TB-DAG form strategies is equivalent to the set of the
team’s coordinated strategies in an EFG (Zhang et al., 2022c). By using x to replace µT in Eq.(1),
we obtain a TMECor by solving Problem (1) through the TB-DAG.

3 DAG-BASED COLUMN GENERATION

Solving Problem (1) is challenging because the team’s coordinated strategy space is exponential in
the size of the game tree. With the procedure shown in Figure 1(c), CG can mitigate this challenge
but still converges slowly in large games due to such a large strategy space. It has been shown that
the TB-DAG-based algorithms are more efficient than CG in games with a small TB-DAG (Zhang
et al., 2022b;c). However, solving Problem (1) through the TB-DAG is impractical in large games
because the size of the TB-DAG is still exponential in the size of the game tree (Zhang et al., 2022c).
To speed up, one straightforward idea is applying CG with the procedure shown in Figure 1(c) to the
TB-DAG, which also is the direct application of the sequence-form double oracle (Bosansky et al.,
2014) to the TB-DAG. That is, we compute a TMECor with a limited size of the TB-DAG, and then
expand the DAG by computing a best response over the whole TB-DAG form strategy space, i.e.,
solving the problem: maxx uT (x,yo). However, it is inefficient to compute a best response over the
whole exponential-sized TB-DAG. As shown in experiments, this exponential size will make CG
with the DAG-based BRO very inefficient. More details on related work are shown in Appendix A.

3.1 A NOVEL CG ALGORITHM FRAMEWORK

To solve ATGs more efficiently, we propose our novel TB-DAG CG (DCG) framework based
on two observations: 1) by exploiting the team’s correlation property to solve the BRO’s integer
program significantly faster, the state-of-the-art BRO (Zhang et al., 2021; Farina et al., 2021) should
significantly outperform the BRO computing a best response over the whole exponential-sized TB-
DAG without such a correlation property available, and 2) the TB-DAG formed by a set of TB-DAG
form strategies transformed from a set of coordinated strategies could represent new coordinated
strategies, as shown in Example 1 and Theorem 4 of Appendix C.
Example 1. TB-DAG form strategies x1 and x2 in Figure 1(b) are equivalent to coordinated strategies
π1
T and π2

T in Figure 1(a), respectively. Let D({π1
T ,π

2
T }) be the TB-DAG induced by {π1

T ,π
2
T },

i.e., consisting of beliefs and actions reachable in x1 and x2. Then the TB-DAG form strategy
space of D({π1

T ,π
2
T }) includes all combinations of beliefs and actions reachable in x1 and x2. For

example, a TB-DAG form strategy x3 with paths a-bc-bc-dg-d-1-1 and a-bc-bc-dg-g-8-8 (i.e., the
probability of reaching nodes 1 and 8 is 1) in Figure 1(b) is obtained by using the beliefs and actions
represented by the sub-path g-8-8 in x2 to replace the beliefs and actions represented by the sub-path
g-7-7 in x1 to make x1 become x3. x3 is in the TB-DAG form strategy space of D({π1

T ,π
2
T }) and

is equivalent to the coordinated strategy π3
T with paths a-b-d-1 and a-c-g-8 in Figure 1(a). However,

π3
T /∈ ∆{π1

T ,π
2
T } because only using π1

T and π2
T cannot guarantee the probability of reaching leaf

nodes 1 and 8 is 1. That is, any combinations of π1
T and π2

T cannot represent π3
T .

5



Under review as a conference paper at ICLR 2024

As shown in Example 1, the TB-DAG formed by a set of TB-DAG form strategies transformed from a
set of coordinated strategies could represent new coordinated strategies due to the new combinations
of beliefs and actions in this TB-DAG. Then this TB-DAG form strategies will represent more new
coordinated strategies in larger games with wider or deeper game trees (having more combinations of
beliefs and actions). It means that, if we expand the restricted game G′ in CG by using the TB-DAG
form strategies instead of coordinated strategies, the corresponding CG could converge in fewer
iterations in large games. Based on the above observations, with the similar procedure shown in
Figure 1(c), the procedures of our DCG are: 1) computing a coordinated best response (e.g., through
the existing BRO in Zhang et al. (2021); Farina et al. (2021)), 2) transforming this coordinated
best response into the TB-DAG form, and then 3) adding this equivalent TB-DAG form strategy to
the restricted game. The procedure of transforming a coordinated strategy into the TB-DAG form
is similar to the procedure for generating the whole TB-DAG mentioned in the previous section,
except that we only consider actions played by the team in the best response strategy with nonzero
probabilities. The details of this procedure are shown in Appendix A.6. Intuitively, DCG should
perform worse than the normal-form CG because DCG has an extra step for the transformation at
each iteration. However, this intuition is contradicted by that DCG can converge in significantly fewer
iterations than the normal-form CG and then outperforms the normal-form CG when the benefit from
reducing the number of interactions for convergence surpasses the cost of the transformation.

The normal-form CG with the BRO based on a semi-randomized coordinated strategy was shown

(Zhang et al., 2021) to converge to a TMECor in at most 2|Π1|
|ΠT |
Π1 iterations. Now we theoretically

show that our DCG converges exponentially faster than the normal-form CG. This result is based on
the size of the TB-DAG (Zhang et al., 2022c): The TB-DAG has at most O∗((b(p + 1))w) edges,
where b is the branching factor, p is the largest effective size (the number of distinct team sequences)
of any public state (i.e., connected component), w is the maximum number of information sets
involved in any belief, and O∗ hides factors polynomial in the size of the original game tree (Zhang
et al., 2022c). (All proofs are in Appendix C)

Theorem 1. DCG with any BRO converges to a TMECor in at most O∗((b(p+ 1))w) iterations.

b, p, and w are exponentially smaller than the size of the game tree, but |Πi| is exponential in the size
of the game tree. Therefore, theoretically, DCG converges exponentially faster than the normal-form
CG.

3.2 EXISTING BRO FOR DCG AND THE CORRESPONDING TRANSFORMATION COST

DCG can employ any existing BRO to compute a coordinated best response in the original game tree
against the adversarial strategy yo in the TMECor of the restricted game G′. There are two kinds of
BRO: randomized BRO and pure BRO. The randomized BRO is the state-of-the-art BRO (Zhang
et al., 2021; Farina et al., 2021), which computes a semi-randomized coordinated strategy in which
one team member plays a randomized strategy. The pure BRO in Celli & Gatti (2018) computes a
coordinated best response, a coordinated strategy, with a pure strategy for each team member. The
difference between the randomized and pure strategies makes the randomized BRO and the pure BRO
have different transformation costs for transforming a coordinated strategy into the TB-DAG form.

The transformation cost for transforming a coordinated strategy into the TB-DAG form is determined
by the size of this transformed TB-DAG. In the previous section, we know that the size of a TB-DAG
is influenced by the branching factor b. For the transformation for the pure BRO, b is 1 due to the
pure strategy. However, b is usually larger than 1 in the randomized BRO due to the randomized
strategy, so the randomized BRO has a higher transformation cost than the pure BRO. For example,
the TB-DAG induced by the pure coordinated strategy π1

T in Figure 1(a) is very small and only
involves the node dg and its succeeding nodes in the paths of x1 in Figure 1(b). However, if team
member 1 plays a randomized strategy at information sets b and c of Figure 1(a), the size of the
TB-DAG induced by this coordinated strategy increases about threefold, i.e., four nodes fg , ef ,

dg , de and half of their succeeding nodes in Figure 1(b) are involved. Actually, the transformation
cost for a pure coordinated best response is only polynomial in the size of the original game tree.

Theorem 2. The size of the transformed TB-DAG for a pure coordinated best response is at most
O(|H ∪ Z|).

6



Under review as a conference paper at ICLR 2024

Therefore, pure BRO will give us a small transformation cost. Unfortunately, the existing pure BRO
in Celli & Gatti (2018) is extremely inefficient (Zhang et al., 2021; Farina et al., 2021) (see details in
Appendix A). Therefore, we will develop a more suitable BRO (i.e., efficient pure BRO) for DCG.

3.3 MORE SUITABLE BRO FOR DCG

To improve the scalability of DCG, we propose a more suitable BRO, i.e., our pure BRO. Specifically,
to effectively represent the space of pure coordinated strategies, we extend the two-player von
Stengel-Forges polytope (Von Stengel & Forges, 2008) to cases with multiple players playing pure
strategies, i.e., a correlation plan ξ ∈ [0, 1]|Σ

▷◁
T | with −i = T \ {i} and empty joint sequences

∅∅∅−i = ×j∈T\{i}∅ and ∅∅∅T = ×j∈T∅ satisfies the following polynomial-sized set of constraints of
the probability flow representing the team’s correlation property: ξ(∅∅∅T ) = 1, and for each σi ∈ Σi,
ξ(σi,∅∅∅−i) ∈ {0, 1},∑

ai∈A(Ii)

ξ(σ−i, (Ii, ai)) = ξ(σ−i, σi(Ii)) ∀Ii ▷◁ σ−i, Ii ∈ Ii,σ−i ∈ Σ▷◁
−i, i ∈ T (2a)

∑
j∈T

ξ(σT [j],∅∅∅−j) + 1− |T | ≤ ξ(σT ) ≤ ξ(σT [i],∅∅∅−i) ∀σT ∈ Σ▷◁
T , i ∈ T. (2b)

yi ∈ {0, 1}|Σi| such that yi(σi) = ξ(σi,∅∅∅−i) for each σi ∈ Σi represents a pure reduced-normal-
form plan, and then ξ(σT (z)) for z ∈ Z represents the reaching probability of a team’s pure
coordinated strategy (see Lemmas 1 and 2 in Appendix C). Then we can obtain a pure BRO:

max
ξ

∑
z∈Z

ûT (z)ξ(σT (z))yo(σo(z)) (3a)

subject to Eq.(2), ξ(σT ) ∈ [0, 1] σT ∈ Σ▷◁
T . (3b)

Theorem 3. The optimal solution ξ∗ of Program (3) defines a pure best response against yo.

Program (3) is our pure BRO for DCG, and Theorem 1 for convergence still holds with this BRO.
Corollary 4. DCG with the pure BRO converges to a TMECor in at most O∗((b(p+1))w) iterations.

4 EXPERIMENTAL EVALUATION

We computationally evaluate the performance of DCG. We run all experiments on a machine with a
4-core 2.3GHz CPU (8 threads) and 16GB of RAM available by using CPLEX 20.1.

Algorithms. We denote the DCG with our pure BRO of solving Program (3) in Section 3.3 by
DCGpure. We consider four variants of DCGpure: 1) CGpure: normal-form CG with our pure BRO;
2) DCGrandom: DCG with the BRO in Zhang et al. (2021); Farina et al. (2021) computing a semi-
randomized coordinated strategy; and 3) DCG2random: DCG with two-sided CG (Zhang et al., 2022b),
i.e., computing two best-response semi-randomized strategies at each iteration, and each one corre-
sponds to one player playing a randomized strategy. We consider two state-of-the-art normal-form CG
algorithms: 1) CGrandom: CG in Zhang et al. (2021); Farina et al. (2021) and 2) CG2random: two-sided
CG in Zhang et al. (2022b) computing two best-response semi-randomized strategies and transform-
ing the sequence-form (randomized) strategy in each strategy into variables to be re-optimized, i.e.,
CG2random adds not only two best response strategies but also |Σi| variables for the sequence-form
strategy of each i ∈ T with the corresponding constraints. For each of these algorithms, we consider
one more variant: at each iteration, it solves the linear relaxation of the BRO first to see if it can
output the optimal solution added to the restricted game; if it cannot do that, it solves the original
mixed-integer BRO and adds all feasible solutions for the BRO from the CPLEX solution pool to
the original game. These variants are DCGlinrelax

pure , DCGlinrelax
random, DCGlinrelax

2random, CGlinrelax
pure , CGlinrelax

random, and
CGlinrelax

2random for DCGpure, DCGrandom, DCG2random, CGpure, CGrandom, and CG2random, respectively. For
these CG-based algorithms, we randomly initialize the restricted game with a coordinated strategy for
the team, and for the CG-based algorithms with semi-randomized strategies, we initialize a uniform
strategy for the corresponding player. We consider two additional baselines: 1) DAG: it directly
solves the linear program for a TMECor after generating the whole TB-DAG (see Appendix A.5);
and 2) CGdag: CG with the sequence-form BRO (Bosansky et al., 2014) on the whole TB-DAG.

Game instances. There are many EFGs available for experiments, but we only need EFGs with
different widths and depths to verify that DCG performs better in games with wider or deeper game

7



Under review as a conference paper at ICLR 2024

Relatively Shallow Game Trees Deeper and Deeper Game Trees Relatively Deep Game Trees Iterations
Game 3K15 3K16 3K110 3K113 3K18 3K28 3K38 3K48 3K45 3K46 3K310 3K213 3K38 3K213
∆U 6 6 6 6 6 9 12 15 15 15 12 9 12 9
|Σi| 41 49 81 105 65 201 497 1113 696 835 621 326 497 326
|Z| 780 1560 9360 22308 4368 14448 36624 82992 14820 29640 78480 73788 36624 73788
Rank 5 6 10 13 8 8 8 8 5 6 10 13 8 13
Depth 6 6 6 6 6 8 9 12 12 12 9 8 9 8
Value -0.025 -0.024 -0.016 -0.012 -0.019 -0.008 0.007 0.016 -0.014 0.006 0.011 0.0004 0.007 0.0004
DCGpure 0.86s 2.2s 33s 295s 11s 52s 203s 642s 49s 107s 936s 21m 166 239
DCGlinrelax

pure 0.92s 2.5s 48s 374s 17s 61s 180s 17m 47s 103s 19m 33m 63 117
DCGrandom 2.1s 11s >10h >10h 515s 34m 576m >10h 50s 301s >10h >10h 157 -
DCGlinrelax

random 2.1s 11s >10h >10h 482s 31m 528m >10h 31s 257s >10h >10h 66 -
DCG2random 3.2s 19s >10h >10h 861s 579m >10h >10h 97s 595s >10h >10h - -
DCGlinrelax

2random 3.7s 21s >10h >10h 925s 582m >10h >10h 68s 581s >10h >10h - -
CGpure 0.56s 0.96s 5s 12s 2.3s 161s 37m >10h 893s 32m 65m 63m 1379 1129
CGlinrelax

pure 0.52s 0.94s 5.7s 22s 3.5s 211s 25m 10h 819s 33m 37m 47m 449 513
CGrandom 0.46s 1s 4s 18s 3s 135s 44m >10h 34m 37m 60m 53m 1482 1158
CGlinrelax

random 0.48s 0.98s 6.2s 23s 2.7s 210s 20m 337m 630s 18m 39m 65m 411 542
CG2random 0.23s 0.61s 2.5s 15s 1.3s 51s 272s ∞ 60s 138s ∞ ∞ 47 -
CGlinrelax

2random 0.3s 0.99s 13s 64s 1.7s 68s ∞ ∞ 95s ∞ ∞ ∞ - -
DAG 0.28s 2s ∞ ∞ ∞ ∞ ∞ ∞ 91s ∞ ∞ ∞ - -
CGdag 35m >10h >10h >10h >10h >10h >10h >10h >10h >10h >10h >10h - -

Table 1: Results on Kuhn poker: ∞ means ‘out of memory’.

Relatively Deep Game Trees Iterations for Convergence
Game 3

3L1
13

3
3L1

14
3
3L1

15
3
1L1

16
3
1L1

17
3
1L2

010
3
1L2

013
3
3L1

13
3
3L1

14
3
3L1

15
3
1L1

16
3
1L1

17
3
1L2

010
3
1L2

013
∆U 21 21 21 21 21 15 15 21 21 21 21 21 15 15
|Σi| 457 801 1241 1489 2073 2411 4070 457 801 1241 1489 2073 2411 4070
|Z| 6477 20856 51215 29880 69510 164880 552551 6477 20856 51215 29880 69510 164880 552551
Rank 3 4 5 6 7 10 13 3 4 5 6 7 10 13
Depth 12 12 12 12 12 11 11 12 12 12 12 12 11 11
Value 0.215 0.107 0.025 -0.015 -0.035 -0.031 -0.025 0.215 0.107 0.025 -0.015 -0.035 -0.031 -0.025
DCGpure 40s 381s 117m 357s 103m 725s 119m 82 130 239 110 246 167 264
DCGlinrelax

pure 34s 188s 36m 324s 37m 21m 238m 32 42 60 52 63 94 119
DCGrandom 46s 537s 99m 31m 289m >10h >10h 82 146 211 84 230 - -
DCGlinrelax

random 29s 191s 42m 647s 74m >10h >10h 27 45 62 32 60 - -
DCG2random 88s 76m >10h 21m 303m >10h >10h 81 134 - 63 166 - -
DCGlinrelax

2random 36s 723s 173m 524s 66m >10h >10h 20 31 40 22 42 - -
CGpure 822s 434m >10h >10h >10h 49m >10h 1149 4364 - - - 1172 -
CGlinrelax

pure 549s 151m >10h >10h >10h 28m ∞ 384 798 - - - 342 -
CGrandom 933s 10h >10h >10h >10h 29m >10h 1132 4165 - - - 1020 -
CGlinrelax

random 485s 224m >10h >10h >10h 36m ∞ 326 816 - - - 411 -
CG2random 609s ∞ ∞ 57m ∞ ∞ ∞ 73 - - 59 - - -
CGlinrelax

2random 308s ∞ ∞ ∞ ∞ ∞ ∞ 33 - - - - - -
DAG 0.75s 9s 43m 24m ∞ ∞ ∞ - - - - - - -
CGdag 30m >10h >10h >10h >10h >10h >10h 88 - - - - - -

Table 2: Results on Leduc Poker: ∞ means ‘out of memory’.

trees. We then use two standard EFGs (Farina et al., 2018; 2021; Carminati et al., 2022): Kuhn poker
and Leduc poker (details on them can be found in these references). nKcr: n-player Kuhn poker with
r ranks and at most c bets. n

s Lc1
c2r: n-player Leduc poker with r ranks, at most c1 bets in the first

betting round, at most c2 bets in the second betting round, and s suits. We consider two dimensions
of the game tree in each game: depth and width. A game with more bets or ranks is larger. That
is, a game with more bets means that its game tree is deeper according to the maximum number of
actions at any sequence of any team member. Similarly, a game with more ranks (proportional to the
maximum number of information sets involved in any belief) means that its game tree is wider. As
we discussed in Section 3, the size of the TB-DAG is mainly influenced by this maximum number
of information sets involved in any belief, so the TB-DAG is larger in games with wider game trees
(more ranks). In addition, the game tree in Leduc poker with two rounds is deeper than the game tree
in Kuhn poker with only one round. A game tree is wide if the value of ‘Rank’ is relatively large, and
a game tree is narrow if the value of ‘Rank’ is relatively small. Similarly, a game tree is deep if the
value of ‘Depth’ is relatively large, and a game tree is shallow if the value of ‘Depth’ is relatively
small. Without loss of generality, the last player is the opponent.

Results. Results in Tables 1 and 2 show the algorithms’ performance on runtime for converging
to a TMECor with target precision of the team value in a TMECor is 10−6 and the corresponding
number of iterations for CG algorithms if they converge within 10 hours. Results on varying target
precision values are shown in Appendix D. Results show that our proposed algorithm DCGpure and its
relaxed version DCGlinrelax

pure significantly outperform all baselines in large games with deep and wide
game trees. Normal-form CG algorithms (i.e., CGpure, CGlinrelax

pure , CGrandom, CGlinrelax
random, CG2random, and

CGlinrelax
2random) are the fastest algorithms in games with shallow game trees, and the DAG-based linear

8



Under review as a conference paper at ICLR 2024

program (i.e., DAG) is the fastest algorithm in games with very narrow game trees (e.g., 3
3L1

13) but
runs out of memory in games with wide game trees. However, CGdag is not efficient in all games
because it needs to compute a best response on the whole TB-DAG. Finally, DCGrandom, DCGlinrelax

random,
DCG2random, and DCGlinrelax

2random are relatively fast in games with narrow game trees but not efficient in
games with wide game trees.

Our DCGpure is at least two orders of magnitude faster than prior state-of-the-art baselines in large
games. DCGpure needs to transform the coordinated best response into the corresponding TB-DAG
form at each iteration, so it runs relatively slower than normal-form CG algorithms in games with
shallow game trees, as shown in the first column of Table 1. When the game tree grows deeper
and deeper, our DCGpure performs closer and closer to normal-form CG algorithms first and then
outperforms normal-form CG algorithms with larger and larger gaps, as shown in the second column
of Table 1. Then, in games with relatively deep game trees, our DCGpure is at least two orders of
magnitude faster than normal-form CG algorithms, as shown in the third column of Table 1 and the
first column of Table 2. The relaxed version DCGlinrelax

pure of DCGpure, in most games with relatively
narrow game trees, outperforms DCGpure because it could reduce the cost of calling the mixed-
integer BRO. However, in games with relatively wide game trees, DCGpure outperforms DCGlinrelax

pure

because DCGlinrelax
pure transforms too many coordinated strategies into the TB-DAG form, which incurs

a very high cost in games with relatively wide game trees. Our CGpure is comparable with the prior
state-of-the-art single-side CGrandom, and its relaxed version CGlinrelax

pure always outperforms CGpure

because it could reduce the cost of calling the mixed-integer BRO. In large games (e.g., 31L2
013), due

to transforming too many coordinated strategies into the TB-DAG form, CGlinrelax
pure could run out of

memory. Results of DCGrandom, DCGlinrelax
random, CGrandom, and CGlinrelax

random have the similar pattern.

DCG2random still performs worse than DCGpure and DCGrandom in these games because this two-sided
CG-based algorithm transforms two strategies instead of one strategy into the TB-DAG form at each
iteration. Similar to DCGrandom and DCGlinrelax

random, DCG2random and DCGlinrelax
2random do not perform well in

games with relatively wide game trees due to the extra cost of the transformation for randomized
strategies. CG2random performs the best in small games with relatively shallow game trees, as shown
in the first column of Table 1, but performs worse and worse in games with deeper and deeper game
trees, as shown in the second column of Table 1. Overall, CG2random cannot perform well in large
games because it adds too many variables and constraints to the program for solving the restricted
game at each iteration and then usually runs out of memory. In addition, CGlinrelax

2random generally performs
worse than CG2random because CGlinrelax

2random usually adds more variables and constraints than CG2random.

Results on the number of iterations for convergence in Tables 1 and 2 further confirm our analysis.
We can see that our DCG algorithms require significantly fewer iterations for convergence than
CGpure, CGlinrelax

pure , CGrandom, and CGlinrelax
random. CG2random and its variant CGlinrelax

2random require relatively few
iterations for convergence in relatively small games, but they run out of memory in large games.

Limitations. Runtime values reported in this paper for baselines may be different from the runtime
values reported in previous papers (Zhang et al., 2021; Farina et al., 2021; Zhang et al., 2022c;b)
because results reported in different papers may be obtained from different settings (see details in
Appendix E). Thus, to have a fair comparison with the previous baselines, all algorithms in our
experiments are tested with the same setting.

5 CONCLUSIONS

In this paper, we develop a novel TB-DAG CG framework to compute a TMECor in an ATG by
computing a coordinated best response in the original game first and then transforming it into the
TB-DAG form. We further reduce the cost of transformation, which is based on a more suitable BRO
for DCG to compute a coordinated best response with a pure strategy for each team member. We
theoretically show that our algorithm converges exponentially faster than the state-of-the-art CG
algorithms, and experimental results show that our algorithm is significantly faster than the state-of-
the-art baselines and solves games that were previously unsolvable. In the future, by applying the
multiagent learning framework PSRO (Lanctot et al., 2017) with the aid of deep learning techniques
for the transformation step and the best response oracle, we believe that our algorithm framework
can scale to very large-scale games. Thus, this paper creates a fundamental theory for applying the
multiagent learning framework to compute optimal solutions in multiagent systems.

9



Under review as a conference paper at ICLR 2024

REFERENCES

Branislav Bosansky, Christopher Kiekintveld, Viliam Lisy, and Michal Pechoucek. An exact double-
oracle algorithm for zero-sum extensive-form games with imperfect information. Journal of
Artificial Intelligence Research, 51:829–866, 2014.

Noam Brown and Tuomas Sandholm. Superhuman AI for heads-up no-limit poker: Libratus beats
top professionals. Science, 359(6374):418–424, 2018.

Luca Carminati, Federico Cacciamani, Marco Ciccone, and Nicola Gatti. A marriage between
adversarial team games and 2-player games: Enabling abstractions, no-regret learning, and subgame
solving. In ICML, pp. 2638–2657. PMLR, 2022.

Andrea Celli and Nicola Gatti. Computational results for extensive-form adversarial team games. In
AAAI, pp. 965–972, 2018.

Xi Chen and Xiaotie Deng. 3-Nash is PPAD-complete. In Electronic Colloquium on Computational
Complexity, volume 134, pp. 2–29, 2005.

Gabriele Farina, Andrea Celli, Nicola Gatti, and Tuomas Sandholm. Ex ante coordination and
collusion in zero-sum multi-player extensive-form games. In NeurIPS, pp. 9638–9648, 2018.

Gabriele Farina, Andrea Celli, Nicola Gatti, and Tuomas Sandholm. Connecting optimal ex-ante
collusion in teams to extensive-form correlation: Faster algorithms and positive complexity results.
In ICML, pp. 3164–3173, 2021.

Harold W Kuhn. Extensive games and the problem of information. Annals of Mathematics Studies,
28:193–216, 1953.

Marc Lanctot, Vinicius Zambaldi, Audrunas Gruslys, Angeliki Lazaridou, Karl Tuyls, Julien Pérolat,
David Silver, and Thore Graepel. A unified game-theoretic approach to multiagent reinforcement
learning. In NeurIPS, pp. 4190–4203, 2017.

Guohao Li, Hasan Abed Al Kader Hammoud, Hani Itani, Dmitrii Khizbullin, and Bernard Ghanem.
Camel: Communicative agents for” mind” exploration of large scale language model society. arXiv
preprint arXiv:2303.17760, 2023.

Ryan Lowe, Yi I Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor Mordatch. Multi-agent
actor-critic for mixed cooperative-competitive environments. NeurIPS, 30, 2017.

H Brendan McMahan, Geoffrey J Gordon, and Avrim Blum. Planning in the presence of cost
functions controlled by an adversary. In ICML, pp. 536–543, 2003.

Matěj Moravčı́k, Martin Schmid, Neil Burch, Viliam Lisý, Dustin Morrill, Nolan Bard, Trevor
Davis, Kevin Waugh, Michael Johanson, and Michael Bowling. DeepStack: Expert-level artificial
intelligence in no-limit poker. Science, 356:508–513, 2017.

John Nash. Non-cooperative games. Annals of Mathematics, pp. 286–295, 1951.

Joon Sung Park, Joseph C O’Brien, Carrie J Cai, Meredith Ringel Morris, Percy Liang, and
Michael S Bernstein. Generative agents: Interactive simulacra of human behavior. arXiv preprint
arXiv:2304.03442, 2023.

Tabish Rashid, Mikayel Samvelyan, Christian Schroeder, Gregory Farquhar, Jakob Foerster, and Shi-
mon Whiteson. QMIX: Monotonic value function factorisation for deep multi-agent reinforcement
learning. In ICML, pp. 4295–4304. PMLR, 2018.

Yoav Shoham and Kevin Leyton-Brown. Multiagent Systems: Algorithmic, Game-Theoretic, and
Logical Foundations. Cambridge University Press, 2008.

Bernhard von Stengel. Efficient computation of behavior strategies. Games and Economic Behavior,
14(2):220–246, 1996.

Bernhard Von Stengel and Françoise Forges. Extensive-form correlated equilibrium: Definition and
computational complexity. Mathematics of Operations Research, 33(4):1002–1022, 2008.

10



Under review as a conference paper at ICLR 2024

Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen Ding, Boyang Hong, Ming Zhang, Junzhe
Wang, Senjie Jin, Enyu Zhou, et al. The rise and potential of large language model based agents:
A survey. arXiv preprint arXiv:2309.07864, 2023.

Chao Yu, Akash Velu, Eugene Vinitsky, Jiaxuan Gao, Yu Wang, Alexandre Bayen, and Yi Wu. The
surprising effectiveness of PPO in cooperative multi-agent games. In Thirty-sixth Conference on
Neural Information Processing Systems Datasets and Benchmarks Track, 2022. URL https:
//openreview.net/forum?id=YVXaxB6L2Pl.

Brian Zhang and Tuomas Sandholm. Sparsified linear programming for zero-sum equilibrium finding.
In ICML, pp. 11256–11267, 2020.

Brian Zhang, Luca Carminati, Federico Cacciamani, Gabriele Farina, Pierriccardo Olivieri, Nicola
Gatti, and Tuomas Sandholm. Subgame solving in adversarial team games. In NeurIPS, pp.
26686–26697, 2022a.

Brian Hu Zhang and Tuomas Sandholm. Team correlated equilibria in zero-sum extensive-form
games via tree decompositions. In AAAI, 2022.

Brian Hu Zhang, Gabriele Farina, Andrea Celli, and Tuomas Sandholm. Optimal correlated equilibria
in general-sum extensive-form games: Fixed-parameter algorithms, hardness, and two-sided
column-generation. In EC, pp. 1119–1120, 2022b.

Brian Hu Zhang, Gabriele Farina, and Tuomas Sandholm. Team belief DAG form: A concise repre-
sentation for team-correlated game-theoretic decision making. arXiv preprint arXiv:2202.00789,
2022c.

Youzhi Zhang and Bo An. Converging to team-maxmin equilibria in zero-sum multiplayer games. In
ICML, pp. 11033–11043, 2020.

Youzhi Zhang, Bo An, and Jakub Černỳ. Computing ex ante coordinated team-maxmin equilibria in
zero-sum multiplayer extensive-form games. In AAAI, volume 35, pp. 5813–5821, 2021.

Yifan Zhong, Jakub Grudzien Kuba, Siyi Hu, Jiaming Ji, and Yaodong Yang. Heterogeneous-agent
reinforcement learning. arXiv preprint arXiv:2304.09870, 2023.

Martin Zinkevich, Michael Johanson, Michael Bowling, and Carmelo Piccione. Regret minimization
in games with incomplete information. In NeurIPS, pp. 1729–1736, 2008.

11

https://openreview.net/forum?id=YVXaxB6L2Pl
https://openreview.net/forum?id=YVXaxB6L2Pl


Under review as a conference paper at ICLR 2024

Appendix

A RELATED WORK

Our DCG does not just directly apply CG to the TB-DAG. Our work provides the first efficient
TB-DAG CG algorithm, which includes a novel CG algorithm framework and solves many games
that were previously unsolvable. Our DCG algorithm computes a pure coordinated best response (i.e.,
a coordinated strategy represented by a joint normal-form strategy of the team) in the original game
tree first and then transforms it into the TB-DAG form. Our DCG has an extra transformation step,
which does not exist in previous CG algorithms. Our DCG significantly overcomes the limitation of
previous CG algorithms for a TMECor with a novel CG algorithm framework and a suitable best
response oracle.

1. Novel algorithm framework: In previous CG algorithms, the strategy representations in
the restricted game and the best response oracle are the same. For example, the normal-form
CG (Celli & Gatti, 2018; Farina et al., 2018; Zhang et al., 2021; Farina et al., 2021; Zhang
et al., 2022b) (variants of normal-form double-oracle (McMahan et al., 2003) by using a
single oracle) solves the restricted game with the team’s normal-form strategy space (i.e.,
the team’s coordinated strategy space) and then iteratively expands the team’s coordinated
strategy space via a normal-form best response oracle; and the sequence-form double oracle
(Bosansky et al., 2014) solves the restricted game with the sequence-form strategy space
and then iteratively expands the team’s sequence-form strategy space via a sequence-form
best response oracle. In contrast, our DCG adopts different strategy representations in the
restricted game and the best response oracle: the strategy representation in the restricted
game is sequence-form via the TB-DAG, and the strategy representation is normal-form
in the best response oracle. These strategy representations are connected by our extra
transformation procedure. Applying the framework of previous CG algorithms to compute
a TMECor is challenging, and our new algorithm framework aims to overcome these
challenges:
(a) The challenge of normal-form CG (Celli & Gatti, 2018; Farina et al., 2018; Zhang

et al., 2021; Farina et al., 2021; Zhang et al., 2022b): The normal-form CG solves
the restricted game with the team’s coordinated space and then iteratively expands the
team’s coordinated strategy space via a normal-form best response oracle. Normal-form
CG converges slowly in large games due to the exponential-sized team’s coordinated
strategy space. Our DCG can overcome the challenge of normal-form CG because
the TB-DAG form strategy space is significantly smaller than the team’s coordinated
strategy space. Intuitively, our DCG should not outperform the normal-form CG
because our DCG needs an extra step for the transformation at each iteration. We
contradict this intuition by showing that the TB-DAG formed by a set of TB-DAG
form strategies transformed from a set of the team’s normal-form strategies could
represent new coordinated strategies of the team due to the new combinations of states
and actions in this TB-DAG. This property makes our DCG converge in significantly
fewer iterations than the normal-form CG in large games. Then DCG outperforms
the normal-form CG when the benefit from reducing the number of interactions for
convergence surpasses the cost of the transformation. We theoretically show that our
DCG converges exponentially faster than the normal-form CG.

(b) The challenge of sequence-from CG: The sequence-from CG directly applies CG
to the TB-DAG (a sequence-form structure). That is, we can compute a TMECor
with a limited size of the TB-DAG for the restricted game and then expand the TB-
DAG by computing a best response over the whole TB-DAG of the original game.
Unfortunately, it is inefficient to compute a best response over the whole exponential-
sized TB-DAG. Therefore, the CG directly applied to the TB-DAG is inefficient in
large games. Our DCG can overcome the challenge of sequence-form CG because
we compute the normal-form best response in the original game tree with the team’s
correlation property available and the original game tree is exponentially smaller than
the whole TB-DAG.

2. Suitable best response oracle for DCG: If we directly use the prior state-of-the-art best
response oracle (Zhang et al., 2021; Farina et al., 2021), the resulting DCG suffers from a

12



Under review as a conference paper at ICLR 2024

very high cost of the transformation in large games because the best response computed by
the prior state-of-the-art BRO (Zhang et al., 2021; Farina et al., 2021) involves randomized
strategies and then induces a large TB-DAG. To further improve the scalability, we propose
a more suitable BRO for DCG to reduce the cost of the transformation. That is, we propose
an efficient pure BRO to compute a coordinated best response with a pure strategy for each
team member, which will make sure the corresponding TB-DAG form is small enough
and then reduce the cost of the transformation. Our pure BRO extends the two-player von
Stengel-Forges polytope (Von Stengel & Forges, 2008) to cases with multiple players playing
pure strategies to represent the space of pure coordinated strategies effectively. Our pure
BRO is fundamentally different from the pure BRO in Celli & Gatti (2018), which expresses
whether or not a leaf is reached by a pure joint normal-form strategy of all team members
with |Z| (the number of leaf nodes) integer variables. Our pure BRO expresses whether a
sequence is played by a pure joint normal-form strategy, which involves only

∑
i∈T |Σi|

(the number of sequences of all players) integer variables. As shown in Tables 1 and 2,∑
i∈T |Σi| is significantly smaller than |Z|. The large number of integer variables makes the

pure BRO in Celli & Gatti (2018) inefficient, which is the reason why the randomized BRO
was developed in Zhang et al. (2021); Farina et al. (2021). Our pure BRO is different from
the randomized BRO (Zhang et al., 2021; Farina et al., 2021) that exploits the two-player
von Stengel-Forges polytope in two aspects:

(a) Their randomized BRO (Zhang et al., 2021; Farina et al., 2021) involves randomized
strategies, but our pure BRO only includes pure strategies for team members to reduce
the cost of the transformation, which also means that our pure BRO has more integer
variables than the randomized BRO.

(b) Their randomized BRO (Farina et al., 2021) is only limited to the two-player case by
directly exploiting the two-player von Stengel-Forges polytope, but our pure BRO can
be applied to the cases with any number of players by extending the two-player von
Stengel-Forges polytope to cases with multiple players.

Compared with other BRO algorithms, we understand that our pure BRO alone is not
so novel, but our BRO is more suitable for DCG than other BRO algorithms. Indeed,
experimental results show that DCG with our pure BRO significantly outperforms DCG
with the randomized BRO, even though it has more integer variables than the randomized
BRO. Our DCG with a novel CG algorithm framework (with an extra transformation step)
and a pure BRO with more integer variables, as a whole, is novel.

Thus, this paper provides the first efficient TB-DAG CG algorithm and will be the base for applying
the multiagent learning framework– Policy-Spaced Response Oracles (PSRO) (Lanctot et al., 2017)
(a variant of CG) to the TB-DAG for a TMECor. Moreover, our TB-DAG CG with an extra
transformation step and a pure BRO with more integer variables represents a new approach for
computing a TMECor, and its surprising performance shows the promise of this approach and makes
us understand TMECor better.

A.1 RELATION BETWEEN DCG AND THE SEQUENCE-FORM DOUBLE ORACLE

Note that the sequence-form double oracle (Bosansky et al., 2014) is an extension of the normal-form
double oracle (McMahan et al., 2003). Similar to other CG algorithms (i.e., single-oracle algorithms),
as incremental strategy generation algorithms, our CG algorithm and the sequence-form double oracle
(Bosansky et al., 2014) have a nearly-identical main loop: compute a best response (by any method),
add the actions/sequences that are played in that best response to the strategy space, and repeat as
necessary. Except for that common main loop, our algorithm is fundamentally different from the
sequence-form double oracle (Bosansky et al., 2014):

1. We have different frameworks for strategy representations: The strategy representations
in the restricted game and the best response oracle are the same in Bosansky et al. (2014).
That is, the sequence-form double oracle (Bosansky et al., 2014) solves the restricted game
with the sequence-form strategy space and then iteratively expands the team’s sequence-
form strategy space via a sequence-form best response oracle. In contrast, our DCG
adopts different strategy representations in the restricted game and the best response oracle:
the strategy representation in the restricted game is sequence-form via the TB-DAG, and

13



Under review as a conference paper at ICLR 2024

the strategy representation is normal-form in the best response oracle. These strategy
representations are connected by our extra transformation procedure that transforms the
normal-form strategy into the TB-DAG form. Based on the sequence-form double oracle
(Bosansky et al., 2014), we can directly apply CG to the TB-DAG (a sequence-form
structure). That is, we can compute a TMECor with a limited size of the TB-DAG for
the restricted game and then expand the TB-DAG by computing a best response over the
whole TB-DAG of the original game. Unfortunately, it is inefficient to compute a best
response over the whole exponential-sized TB-DAG. Therefore, the CG directly applied to
the TB-DAG is inefficient in large games. Our DCG can overcome the challenge of this
sequence-form CG because we compute the normal-form (coordinated) best response in the
original game tree with the team’s correlation property available and the original game tree
is exponentially smaller than the whole TB-DAG.

2. Our algorithm does not have the key features of the sequence-form double oracle (Bosansky
et al., 2014) in the restricted game and the best response oracle.

(a) The restricted game: In the sequence-form double oracle (Bosansky et al., 2014), the
restricted game is represented by limited sequence-form strategies of two players. Then
it needs to handle the following two primary complications “that arise when we use
sequences instead of full strategies in the double-oracle algorithm, both due to the
fact that sequences do not necessarily define actions in all information sets: (1) a
strategy computed in the restricted game may not be a complete strategy in the original
game, because it does not define behavior for information sets that are not in the
restricted game, and (2) it may not be possible to play every action from a sequence
that is allowed in the restricted game, because playing a sequence can depend on
having a compatible sequence of actions for the opponent” (Bosansky et al., 2014, p.
840). However, in our DCG (a single-oracle algorithm), the restricted game includes
all sequence-form strategies of the opponent and the limited team’s TB-DAG form
strategies generated by the equivalent (complete) normal-form strategies, which means
that our DCG can avoid the above two primary complications of (Bosansky et al.,
2014).

(b) Best response oracle: The sequence-form double oracle (Bosansky et al., 2014) adopts
the sequence-form best response oracle with the branch-and-bound approach, but our
best response oracle computes a normal-form best response via solving a mixed-integer
linear program.

3. Our DCG has an extra transformation step that transforms a best response from one strategy
representation into another strategy representation, but the sequence-form double oracle
(Bosansky et al., 2014) does not have such a transformation step.

A.2 ABOUT THE VIEWPOINT OF APPLYING SEQUENCE-FORM DOUBLE ORACLE TO ATGS

Another viewpoint for presenting our algorithm is applying the sequence-form double oracle algorithm
(Bosansky et al., 2014) to ATGs. Recall that the sequence-form double oracle algorithm in Bosansky
et al. (2014) is only for two-player extensive-form perfect-recall zero-sum games. However, as we
mentioned, an ATG is an imperfect-recall game. Thus, the algorithm in Bosansky et al. (2014) cannot
be directly applied to original ATGs. To apply the algorithm in Bosansky et al. (2014) for solving
ATGs, we need to transform the original strategy representation of ATGs into the TB-DAG form.
Then, we can compute a TMECor with a limited size of the TB-DAG for the restricted game and then
expand the TB-DAG by computing a best response over the whole TB-DAG of the original game.
Unfortunately, it is inefficient to compute a best response over the whole exponential-sized TB-DAG.
Therefore, the sequence-form double oracle algorithm in Bosansky et al. (2014) that is directly applied
to the TB-DAG is inefficient in large games. To improve the scalability, similar to Section 3, we can
propose a novel sequence-form oracle algorithm framework that includes 1) computing a coordinated
best response, 2) transforming this coordinated best response into the TB-DAG form, and then 3)
adding this equivalent TB-DAG form strategy to the restricted game. This algorithm framework has
an extra transformation step and needs a suitable BRO to reduce the cost of the transformation.

We can see that the above algorithm procedure is the same as our DCG. We chose to present our
algorithm from the viewpoint of applying CG to the TB-DAG because:

14



Under review as a conference paper at ICLR 2024

1. As we mentioned, both viewpoints will result in the same algorithm.
2. In the mainstream literature on ATGs (Celli & Gatti, 2018; Farina et al., 2018; Zhang et al.,

2021; Farina et al., 2021; Zhang et al., 2022b), CG was used to solve ATGs because the
team’s strategy space is in normal form and is exponentially larger than the strategy space of
the opponent (adversary).

3. Because the strategy space of the opponent (adversary) is exponentially smaller than the
team’s strategy space, we only expand the strategy space of the team. Thus, we do not need
the key features of the sequence-form double oracle algorithm (Bosansky et al., 2014) in
the restricted game (i.e., incomplete strategy and unallowed actions), as we mentioned in
Appendix A.1.

That is, both viewpoints give us the same procedure and do not need key feature of the sequence-form
double oracle algorithm in Bosansky et al. (2014), but using CG is the tradition in the literature on
ATGs. Therefore, we choose the viewpoint of applying CG to the TB-DAG.

A.3 ABOUT THE REPRESENTATION SIZE IN BRO

Recall that the sequence-from CG directly applies CG to the TB-DAG (a sequence-form structure).
That is, we can compute a TMECor with a limited size of the TB-DAG for the restricted game and
then expand the TB-DAG by computing a best response over the whole TB-DAG of the original
game. Unfortunately, it is inefficient to compute a best response over the whole exponential-sized
TB-DAG. Therefore, the CG directly applied to the TB-DAG is inefficient in large games. Our
DCG can overcome the challenge of sequence-form CG because we compute the normal-form best
response in the original game tree with the team’s correlation property available and the original
game tree is exponentially smaller than the whole TB-DAG.

Our pure BRO ensures that only one joint action for each reachable belief will be used to expand
the TB-DAG and then reduce the cost of the transformation. We exploit the team’s correlation
property defined in Eq.(2a) (a probability flow) to improve the scalability of our BRO. In the original
two-player von Stengel-Forges polytope (Von Stengel & Forges, 2008) for this probability flow, the
constraints involve all relevant sequences. If we consider all relevant joint sequences for multiple
team members, the number of constraints in our BRO will be exponential in the size of the game tree.
To reduce the number of constraints, we consider only a subset of relevant joint sequences for nodes
and sequences of the original game tree (i.e., Σ▷◁

T ) and limit the relevant relation of an information set
and a joint sequence to Σ▷◁

T . That is, Σ▷◁
T = {σT (hi) | hi ∈ H ∪Z} ∪ {(σi,∅∅∅−i) | σi ∈ Σi, i ∈ T}

and Ii ▷◁ σ−i only if (σi(Ii),σ−i) ∈ Σ▷◁
T . We further add constraints in Eq.(2b) to ensure that

ξ(σT ) =
∏

i∈T ξ(σT [i],∅∅∅−i) for each σT ∈ Σ▷◁
T . Therefore, our pure BRO shown in Program (3)

has polynomial-sized constraints, i.e., O(|H ∪ Z||T |) constraints.

A.4 ABOUT COLUMN GENERATION FOR SPARSER SOLUTIONS IN SUBGAME SOLVING

Zhang et al. (2022a) provided a subgame technique to solve ATGs and proposed using CG for sparse
solutions in the subgame solving algorithm. That is, for each reachable belief in each public state,
they compute a best response starting from this belief. To keep the number of these reachable beliefs
small, they create sparse blueprints in the subgame solving algorithm by using a CG algorithm
because “the support size of the blueprint generated by a CG algorithm, scales linearly with the
number of iterations, which, under reasonable time constraints, rarely exceeds the hundreds” (Zhang
et al., 2022a). Their sparse blueprint and our pure best response are both sparse solutions, but theirs
is different from our suitable BRO:

1. The goals are different: Our goal is to reduce the cost of the transformation in our DCG, but
their goal is to reduce the number of times that the BRO is called.

2. The sparsity concepts are different: Their sparse blueprint is about a small support size of
the blueprint (a mixed strategy of the gadget game), but our pure best response is just about
an action for each reachable state/belief.

3. The approaches are different: We propose a new suitable BRO, i.e., pure BRO, to improve
our DCG, but they just directly use an existing CG algorithm for a sparse blueprint, i.e., they
do not provide a new BRO algorithm.

15



Under review as a conference paper at ICLR 2024

Algorithm 1 Expanding the TB-DAG
1: Function ADDBELIEF(B,D, br):
2: if B /∈ D then
3: Add B to D
4: if B = {z} for z ∈ Z then
5: Make B a leaf node and Return B
6: end if
7: I′ ← {I ∩B ̸= ∅, I ∈ I′}
8: J ← {h ∈ B, ρ(h) ∈ {o, c}}, ρ(h) is the player acting at node h
9: AI ← {ai ∈ A(I) : br(I, ai) > 0}, ∀I ∈ I′

10: for a ∈ ×I∈I′AI do
11: Ba← ∪I∈I′,aI∈a{haI | h ∈ I ∩B} ∪ {ha | h ∈ J, a ∈ A(h)}
12: add edge B → ADDOBSERVE(Ba,D, br)
13: end for
14: end if

Function ADDOBSERVE(O,D, br):
15: if O /∈ D then
16: Add O to D
17: for each connected component P for O do
18: add edge O → ADDBELIEF(P,D, br)
19: end for
20: end if

Function EXPANDTBDAG(D, br):
21: ADDBELIEF({∅} ∪ J∗,D, br), where J∗ is a set of nodes before reaching any node of the team

A.5 GENERATING THE TB-DAG

The procedure for generating the TB-DAG is shown in Algorithm 1, which starts with
EXPANDTBDAG(∅, br) at Line 21, where br assigns 1 to each sequence (I, ai) of the team, i.e.,
AI = A(I) in Line 9. Note that we do not perform optimization tricks in Zhang et al. (2022c) after
generating the TB-DAG. The reason is that: DAG, i.e., solving the linear program based on the whole
TB-DAG, is fast enough in games with narrow game trees, but it will run out of memory in games
with wide game trees because the TB-DAG is too large, where optimization tricks after generating
the whole TB-DAG cannot mitigate the problem causing by the memory requirement much.

A.6 TRANSFORMING A COORDINATED STRATEGY INTO THE TB-DAG FORM

The procedure of transforming a coordinated strategy into the TB-DAG form is shown in Algorithm
1, where br represents the best response of the team, i.e., a coordinated strategy, and br(I, ai) at
Line 9 is the probability to play sequence (I, ai) according to br. This procedure is similar to the
procedure for generating the whole TB-DAG mentioned in the previous section, except that, in Line
9 of Algorithm 1, we only consider actions played by the team in the best response strategy with
nonzero probabilities.

B CONSTRUCTION

C PROOFS

Theorem 1. DCG with any BRO converges to a TMECor in at most O∗((b(p+ 1))w) iterations.

Proof. The TB-DAG has at most O∗(b(p + 1))w) edges (Zhang et al., 2022c). In the worst case,
DCG will add all of these edges to restricted game G′. Then DCG converges to a TMECor in at most
O∗(b(p+ 1))w) iterations.

Theorem 2. The size of the transformed TB-DAG for a pure coordinated best response is at most
O(|H ∪ Z|).

16



Under review as a conference paper at ICLR 2024

Proof. The size of this transformed TB-DAG for a pure coordinated best response is at most O(|H ∪
Z|) because:

1. The number of beliefs at any level in the TB-DAG form is not greater than the number of
nodes in the corresponding level of the original game tree because each belief is a connected
component in its parent (an observation node), and these beliefs in this transformed TB-DAG
do not share nodes in the original game tree due to the unique prescription in each belief.
Therefore, the number of beliefs in this transformed TB-DAG is less than |H ∪ Z|.

2. Each observation node corresponds to one outgoing edge (a prescription) of a belief, and
there is only one prescription for each belief now. Therefore, the number of observation
nodes in this transformed TB-DAG is less than |H|.

To show Theorem 3, we first show that the above correlation plan ξ defines a pure sequence-form
strategy, i.e., a reduced-normal-form plan, for each player i ∈ T . Recall that −i = T \ {i} and empty
joint sequences ∅∅∅−i = ×j∈T\{i}∅ and ∅∅∅T = ×j∈T∅.

Lemma 1. Let yi ∈ {0, 1}|Σi| such that yi(σi) = ξ(σi,∅∅∅−i) for each σi ∈ Σi, then yi is a pure
sequence-form strategy and also a reduced-normal-form plan.

Proof. By Eq.(2), we have yi(∅) = 1, and
∑

ai∈A(Ii)
yi(Ii, ai) = yi(σi(Ii)) for each Ii ∈ Ii.

Therefore, yi is a pure sequence-form strategy. yi(Ii, ai) = 1 if Ii is reachable and ai ∈ A(Ii) is
played in πi, which is the definition of a reduced-normal-form plan. Then yi is a reduced-normal-form
plan.

Now we show that the probability of each joint sequence in the correlation plan ξ is the product of
the probabilities for playing the individual sequence of each team member.
Lemma 2. For each σT ∈ Σ▷◁

T , ξ(σT ) =
∏

i∈T ξ(σT [i],∅∅∅−i).

Proof. For each σT ∈ Σ▷◁
T and each i ∈ T , ξ(σT [i],∅∅∅−i) ∈ {0, 1}. By Eq.(2b), (1) if there is i ∈ T

such that ξ(σT [i],∅∅∅−i) = 0, then ξ(σT ) = 0; and (2) if for all i ∈ T with ξ(σT [i],∅∅∅−i) = 1, then
ξ(σT ) = 1. Therefore, for each σT ∈ Σ▷◁

T , ξ(σT ) =
∏

i∈T ξ(σT [i],∅∅∅−i).

Theorem 3. The optimal solution ξ∗ of Program (3) defines a pure best response against yo.

Proof. By Lemmas 1 and 2, let yi(σi) = ξ(σi,∅∅∅−i) for each i ∈ T and σi ∈ Σi, then ξ(σT (z)) = 1
for each z ∈ Z could represent that z is reachable according to the coordinated strategy ×i∈Tyi, i.e.,
×i∈Tyi ∈ ΠT (z). Then we can compute a pure best response against yo via Program (3), i.e., the
optimal solution ξ∗ of Program (3) defines a pure best response against yo.

Let Π′
T ⊆ ΠT . D(Π′

T ) is the TB-DAG induced by Π′
T according to the equivalent TB-DAG form

strategy of each coordinated strategy in Π′
T . Let ΠT (D(Π′

T )) be the set of coordinated strategies
induced by D(Π′

T ) according to the equivalent coordinated strategy of each TB-DAG form strategy
in D(Π′

T ). Inspired by Example 1, we have the following formal result.
Theorem 4. Given π1

T and π2
T ∈ ΠT , there is π3

T ∈ ΠT (D({π1
T ,π

2
T })) such that π3

T /∈
∆({π1

T ,π
2
T }) if:

1. There are two nodes in two different unconnected information sets, i.e., h1 ∈ I1 ∈ IT and
h2 ∈ I2 ∈ IT with I1 ̸= I2, I1 ̸⇌ I2, such that h1 and h2 are exclusively reachable in I1
and I2 by π1

T and π2
T , respectively, i.e.,

π1
T (σT (h1)) = π1

T (σT (h2)) = π2
T (σT (h1)) = π2

T (σT (h2)) = 1

and for any h′
1 ∈ I1 with h′

1 ̸= h1 and h′
2 ∈ I2 with h′

2 ̸= h2

π1
T (σT (h

′
1)) = π1

T (σT (h
′
2)) = π2

T (σT (h
′
1)) = π2

T (σT (h
′
2)) = 0.

17



Under review as a conference paper at ICLR 2024

Runtime: 3
3L1

13 with ∆U = 21
Target Precision 0.1×∆U 0.05×∆U 0.01×∆U 0.005×∆U 0.001×∆U 0.01 10−4 10−6

DCGpure 1.7s 3.3s 10s 13s 28s 32s 40s 40s
DCGlinrelax

pure 2s 3s 10s 15s 25s 27s 34s 34s
DCGrandom 1.3s 4s 12s 14.5s 31s 38s 45.5s 46s
DCGlinrelax

random 2s 4.8s 10.4s 11.5s 22s 25s 29s 29s
DCG2random 1.8s 6.3s 19s 28s 47s 59s 85.8s 88s
DCGlinrelax

2random 4s 5s 14s 16s 26s 32s 36s 36s
CGpure 2.4s 6.6s 47s 115s 301s 414s 813s 822s
CGlinrelax

pure 1.5s 6.3s 46s 83s 227s 312s 530s 549s
CGrandom 1s 6s 50s 90s 325s 374s 907s 933s
CGlinrelax

random 0.8s 7s 43s 77s 223s 276s 435s 485s
CG2random 0.7s 2s 9s 14.6s 92s 148s 578s 609s
CGlinrelax

2random 0.7s 11.6s 32s 46s 107s 136s 298s 308s
Iterations: 3

3L1
13 with ∆U = 21

Target Precision 0.1×∆U 0.01×∆U 0.01×∆U 0.005×∆U 0.001×∆U 0.01 10−4 10−6

DCGpure 7 14 34 40 66 72 82 82
DCGlinrelax

pure 3 4 13 17 25 27 32 32
DCGrandom 4 12 36 40 64 73 81 82
DCGlinrelax

random 4 6 12 13 22 24 27 27
DCG2random 3 11 30 41 58 66 80 81
DCGlinrelax

2random 3 5 11 12 16 18 20 20
CGpure 9 28 151 284 565 712 1140 1149
CGlinrelax

pure 3 11 55 85 187 242 372 384
CGrandom 6 30 163 245 582 630 1111 1132
CGlinrelax

random 5 17 62 85 175 204 297 326
CG2random 2 4 10 14 37 44 72 73
CGlinrelax

2random 2 3 7 8 14 17 32 33

Table 3: Results on Leduc Poker 3
3L1

13: ∞ means ‘out of memory’.

2. h1 and h2 (i.e., I1 and I2) both have two different actions, i.e., a1, a′1 ∈ A(h1) with a1 ̸= a′1
and a2, a

′
2 ∈ A(h2) with a2 ̸= a′2, such that different actions are played by π1

T and π2
T , i.e.,

π1
T (I1, a1) = π1

T (I2, a2) = π2
T (I1, a

′
1) = π2

T (I2, a
′
2) = 1.

Proof. We construct a new strategy π3
T , which is initialized by π3

T = π1
T . By the definition of π1

T ,
h1 and h2 are reachable in the current π3

T that plays a1 and a2 in these nodes. To be different from
π1
T and π2

T , we modify the current π3
T by: for each node h′ ∈ HT ∪Z with h1 ⪯ h′, π3

T (σT (h
′)) =

π2
T (σT (h

′)). Then, for each node h′ ∈ HT ∪ Z with h1 ⪯ h′, π3
T (σT (h

′)) = 1 if and only if
π2
T (σT (h

′)) = 1 because π1
T (σT (h1)) = π2

T (σT (h1)) = 1, and only one node is assigned the
probability 1 in the corresponding information set I1. It means that π3(I1, a

′
1) = π2

T (I1, a
′
1) = 1

and π3(I2, a2) = π1
T (I2, a2) = 1. Then, for each node h′ ∈ HT with π3

T (σT (h
′)) = 1, there is

a node B ∈ D({π1
T ,π

2
T }) such that h′ ∈ B because D({π1

T ,π
2
T }) includes all nodes h ∈ HT

with π1
T (σT (h)) = 1 or π2

T (σT (h)) = 1. That is, π3
T ∈ ΠT (D({π1

T ,π
2
T })). However, π3

T /∈
{π1

T ,π
2
T } and π3

T /∈ ∆({π1
T ,π

2
T }) because any combination of π1

T and π2
T cannot represent π3

T
with π3

T (I1, a
′
1) = 1 and π3

T (I2, a2) = 1.

D MORE EXPERIMENTAL RESULTS

Tables 3 and 4 show the results on varying the target precision values on games 3
3L1

13 and 3
3L1

14.
Solving a game with a smaller target precision value is similar to solving a larger game. In Tables
3 and 4, we can see that CG2random and CGlinrelax

2random perform well in cases with larger target precision
values but cannot perform well in cases with smaller target precision values because they add too
many variables and constraints to the program for solving the restricted game at each iteration and
then usually run out of memory. Other CG algorithms outperform our DCG algorithms in cases with
larger target precision values, but they perform worse than our DCG algorithms in cases with smaller
target precision values because they need too many iterations for convergence. Our DCG algorithms
need significantly fewer indentations for the convergence in cases with smaller target precision values
and then perform well. In addition, with more ranks (the game tree is wider, i.e., in 3

3L1
14), our DCG

with a pure BRO (DCGpure or DCGlinrelax
pure ) performs better than the DCG with a randomized BRO

(DCGrandom or DCGlinrelax
random). These results are consistent to our results shown in Section 4. Achieving

18



Under review as a conference paper at ICLR 2024

Runtime: 3
3L1

14 with ∆U = 21
Target Precision 0.1×∆U 0.01×∆U 0.01×∆U 0.005×∆U 0.001×∆U 0.01 10−4 10−6

DCGpure 4.5s 12s 54s 88s 177s 206s 358s 381s
DCGlinrelax

pure 9s 18s 61s 79s 104s 120s 162s 188s
DCGrandom 6.2s 10s 61s 100s 249s 302s 501s 537s
DCGlinrelax

random 11s 25s 66s 90s 117s 134s 191s 191s
DCG2random 17s 29s 139 230s 506 991s 75m 76m
DCGlinrelax

2random 19s 32s 89s 99s 149s 279s 590s 723s
CGpure 4.5s 13.3s 270s 18m 93m 138m 372m 434m
CGlinrelax

pure 8.3s 29s 340s 712s 38m 51m 129m 151m
CGrandom 3.4s 13s 216s 764s 150m 206m 557m 10h
CGlinrelax

random 7.4s 23s 209s 434s 39m 68m 204m 224m
CG2random 1.8s 72s ∞ ∞ ∞ ∞ ∞ ∞
CGlinrelax

2random 1.6s 66s ∞ ∞ ∞ ∞ ∞ ∞
Iterations: 3

3L1
14 with ∆U = 21

Target Precision 0.1×∆U 0.01×∆U 0.01×∆U 0.005×∆U 0.001×∆U 0.01 10−4 10−6

DCGpure 6 19 53 68 92 98 127 130
DCGlinrelax

pure 3 8 20 23 28 31 38 42
DCGrandom 3 8 48 63 98 108 140 146
DCGlinrelax

random 5 11 24 28 33 36 45 45
DCG2random 4 12 50 65 92 101 133 134
DCGlinrelax

2random 2 5 14 15 19 23 29 31
CGpure 7 23 253 569 1562 2031 3394 4364
CGlinrelax

pure 5 17 95 151 346 426 744 798
CGrandom 6 23 207 450 1476 1934 3935 4165
CGlinrelax

random 6 13 68 110 308 392 756 816
CG2random 2 3 - - - - - -
CGlinrelax

2random 2 3 - - - - - -

Table 4: Results on Leduc Poker 3
3L1

14: ∞ means ‘out of memory’.

a small target precision value is important because computing an accurate (or exact) solution is the
core task of CG/double oracle algorithms (Bosansky et al., 2014).

E DETAILS ON LIMITATIONS

Runtime values reported in this paper for baselines may be different from the runtime values reported
in previous papers (Zhang et al., 2021; Farina et al., 2021; Zhang et al., 2022c;b) because results
reported in different papers may be obtained from different settings, e.g., different target precision
values: 10−6 in this paper, 0.005×∆U (at least 0.03) in Zhang et al. (2022b), and 0.001×∆U (at
least 0.006) in Zhang et al. (2022c); different program solvers: CPLEX in this paper and Gurobi
(Farina et al., 2021; Zhang et al., 2022c;b); different implementations (the codes for these baselines
are not available); and different computers, e.g., 2.3GHz CPU used in our paper but 2.80GHz CPU
used in Farina et al. (2021), 16GB RAM used in our paper but 64GB or 60GB RAM used in Zhang
et al. (2022c;b). If we directly compare our results with the result reported in previous papers for the
same algorithm, we may obtain different conclusions: CGlinrelax

random solves 3
3L

1
13 with target precision

10−6 by using 485s shown in Table 2, which is 203s reported in Farina et al. (2021). We may
conclude that our implemented baseline CGlinrelax

random is slower than the algorithm in Farina et al. (2021).
However, CGlinrelax

random solves 3
3L

1
13 with target precision 0.005×∆U by using 77s shown in Appendix

D, which is 82s reported in Zhang et al. (2022b) for the algorithm in Farina et al. (2021). We may
conclude that our implemented baseline CGlinrelax

random is faster than the algorithm in Farina et al. (2021).
Thus, to have a fair comparison with the previous baselines, all algorithms in our experiments are
tested with the same setting. Overall, our results of baselines are consistent with the results reported
in previous papers: normal-form CG algorithms perform well in games with shallow game trees
but cannot perform well in games with deep game trees, and the baseline DAG performs well in
games with narrow game trees but cannot perform well in games with wide game trees. Our DCG
significantly overcomes their limitations.

19


	Introduction
	Preliminaries
	DAG-Based Column Generation 
	A Novel CG Algorithm Framework
	Existing BRO for DCG and the Corresponding Transformation Cost
	More Suitable BRO for DCG 

	Experimental Evaluation
	Conclusions
	Related Work
	Relation between DCG and the Sequence-Form Double Oracle
	About the Viewpoint of Applying Sequence-Form Double Oracle to ATGs
	About the Representation Size in BRO
	About Column Generation for Sparser Solutions in Subgame Solving
	Generating the TB-DAG
	Transforming a Coordinated Strategy into the TB-DAG Form

	Construction
	Proofs
	More Experimental Results
	Details on Limitations

