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Abstract

The rapid increase in Al-generated images (AIGIs) underscores the need for de-
tection methods. Existing detectors are often trained on biased datasets, leading
to overfitting on spurious correlations between non-causal image attributes and
real/synthetic labels. While these biased features enhance performance on the train-
ing data, they result in substantial performance degradation when tested on unbiased
datasets. A common solution is to perform data alignment through generative recon-
struction, matching the content between real and synthetic images. However, we
find that pixel-level alignment alone is inadequate, as the reconstructed images still
suffer from frequency-level misalignment, perpetuating spurious correlations. To
illustrate, we observe that reconstruction models restore the high-frequency details
lost in real images, inadvertently creating a frequency-level misalignment, where
synthetic images appear to have richer high-frequency content than real ones. This
misalignment leads to models associating high-frequency features with synthetic
labels, further reinforcing biased cues. To resolve this, we propose Dual Data Align-
ment (DDA), which aligns both the pixel and frequency domains. DDA generates
synthetic images that closely resemble real ones by fusing real and synthetic image
pairs in both domains, enhancing the detector’s ability to identify forgeries without
relying on biased features. Moreover, we introduce two new test sets: DDA-COCO,
containing DDA-aligned synthetic images, and EvalGEN, featuring the latest gen-
erative models. Our extensive evaluations demonstrate that a detector trained exclu-
sively on DDA-aligned MSCOCO improves across diverse benchmarks. Code is
available at https://github.com/roy—ch/Dual-Data—-Alignment.

1 Introduction

The rise of AIGIs [12} 11841} 149]] poses risks to digital security, including the potential for misinfor-
mation, fraud, and copyright violations [[12,[20,21}118}[34} 1541152} 51} 147, 24} 136]. This severe security
issue underscores the urgent need for reliable detection methods to differentiate synthetic images
from authentic ones. Despite advances in AIGI detection techniques [4} 132} [35]), the rapid evolution
of generative models and the emergence of new architectures present cross-domain generalization
challenges. This is especially evident in zero-shot scenarios involving previously unseen generation
paradigms.

The generalizability of AIGI detectors is hindered by dataset biases [13| 14,33, [14]]. Existing datasets
often exhibit systematic discrepancies in attributes unrelated to the authority. Works [38]] illustrate
semantic bias through word frequency analysis, and studies [35] demonstrate image size bias by
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Figure 1: Illustration of dataset bias. Top row:
Real/synthetic images show disparities in format,
content, and size. Real images are typically in
JPEG, with varying sizes and centered semantics.
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Figure 2: Overall comparison between detec-
tion methods on 11 benchmarks. Our model is
exclusively trained on DDA-aligned MSCOCO
data. The consistent outperformance of DDA on

Bottom row: Detectors trained on datasets con- 4 in-the-wild (Chameleon, WildRF, BFree-Online

taining these discrepancies are prone to learning
biased features, incorrectly associating authentic-
ity with format, image size, or semantics.

and SynthWildx) and 7 manually-crafted bench-
marks validates the generalizability. Detailed re-
sults are provided in Section[z_f}

analyzing on the datasets where synthetic images are uniformly sized as multiples of 128 x 128.
These non-causal features could be exploited by models to distinguish real from synthetic images,
resulting in biased detector performance that fails to generalize across different datasets. Figure
visually illustrates such bias. Dataset alignment holds promise in addressing the issue of
dataset bias by ensuring synthetic images closely resemble real ones, excluding authenticity-related
factors and directing detectors to focus on forgery-related cues. Specifically, studies [13] reveal
systematic discrepancies in format and size biases: real images are JPEG-encoded and vary in size,
whereas synthetic images are uniformly PNG-encoded and fixed in size. SemGIR [53], DRCT [4],
B-Free [14] aim to mitigate content discrepancies using diffusion reconstruction techniques that
generate images semantically similar to real ones. Works [[1555) 58] prevent models from learning
semantics-dependent features by breaking images into patches and shuffling them.

However, in this paper, we ask: Does reconstruction truly eliminate potential misalignment and
bias? Our answer is no. We find that although reconstruction-based methods align datasets at
the pixel level, they still introduce subtle misalignments at the frequency level. Specifically,
generative reconstruction based data alignment tends to preserve or even amplify details across all
frequency bands. In particular, reconstructed images often restore high-frequency components that
are diminished in real images—typically due to compression during transmission or storage, where
such components are removed to reduce file size because they have little impact on human visual
perception. Consequently, synthetic images exhibit disproportionately strong high-frequency
details, whereas real images contain much weaker ones, creating a noticeable discrepancy in
the magnitude of high-frequency components rather than in their semantic content. This spurious
correlation can lead detectors to overfit these frequency cues, mistakenly identifying high-frequency
richness as an indicator of synthetic origin.

In this paper, we propose Dual Data Alignment (DDA), an effective technique that aligns synthetic
images with real ones across both pixel and frequency domains. DDA consists of three steps: 1) VAE
reconstruction for pixel alignment, 2) high-frequency fusion to eliminate bias, and 3) pixel mixup
for further alignment in the pixel domain. As shown in Figure[2] a single model trained on DDA-
aligned MSCOCO demonstrates significant improvements across benchmarks: +11.4% on
Chameleon, + 26.6% on BFree-Online and + 19.4% on EvalGEN, with much lower fluctuations
across subsets — usually 1/2 that of baselines. We attribute this significant performance boost to
the data alignment process: when synthetic images are carefully aligned with real images across key
domains, the model learns a tighter, more transferable decision boundary, enhancing generalizability
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Figure 3: Visual illustration of how dataset bias affects decision boundaries. Left three panels:
Detectors trained on biased data—where synthetic images (e.g., Syn.1-3) differ from real images in
format, content, or resolution—tend to learn spurious decision boundaries. Right: When synthetic
images are carefully aligned with real images across multiple aspects, the model can learn a tighter
decision boundary that more accurately encompasses the real data.

to unseen data, as demonstrated in Figure E} Moreover, we introduce two new evaluation datasets: 1)
DDA-COCO, a test set consisting of real images from MSCOCO and their DDA-aligned counterparts.
This dataset evaluates whether the detector captures inherent discriminative features or relies on
other biases. Prior detectors suffer significant performance drops on DDA-COCO. 2) EvalGEN, a
test set consisting of FLUX, GoT, Infinity, NOVA, and OmniGen, which includes both advanced
auto-regressive and diffusion generators, serving for measuring detectors’ generalizability under
newly evolved generative models.

2 Related Works

AIGI Detection. CNNSpot [42] trains a vanilla CNN model, finding that detectors easily recognize
synthetic images from seen models but struggle to generalize to unseen ones. UnivFD [32] employs
CLIP as backbone, showing the improvements in generalizability in detecting unseen generators.
Subsequent works [25} 38,155} [50] explore model architectures and image preprocessing for more
generalizable detection. C2P-CLIP enhances the pretrained CLIP backbone for AIGI detection by
injecting 'real’ and ’fake’ concepts. Works [39} 16, 23] 19, 57]] exploit frequency domain artifacts,
showing that frequency artifacts could well discriminate. NPR [40] explores the upsampling artifact in
generative models. Vision—language approaches [27, [17, 26} 15, 46 145]] pursue explainable detection
by leveraging VLMs’ semantic priors. However, these methods’ generalizability is limited by either
content bias or frequency-level bias, with a chance of exploiting non-causal features like image
format, which can degrade performance on unbiased test sets.

Dataset alignment. The evaluation bias issue in AIGI detection is firstly introduced in the work
[13], showing that image format and size are common biases unintentionally exploited by detectors.
FakeInversion [3]] introduces a bias-reduced evaluation benchmark, mitigating thematic and stylistic
biases by collecting synthetic images that match real images in both content and style. A line of
subsequent works explores eliminating bias in the training set to enhance generalizability. SemGIR
[53] regenerates synthetic images by semantic-level reconstruction conditioned on the real counter-
part’s description, aiming to better align synthetic and real images semantically. DRCT [4] employs
diffusion reconstruction for improved semantic alignment. B-Free [[14] addresses dataset bias through
self-conditioned inpainted reconstructions and content augmentation. However, this inpainting
paradigm can alter the center object, corrupting the semantic alignment. AlignedForensics [33] per-
forms simple VAE reconstruction without latent space manipulation, resulting in synthetic images that
closely match real images in semantics and resolution. However, both B-Free and AlignedForensics
overlook format alignment, creating space for JPEG-based shortcuts in discrimination.

3 Methodology

3.1 Motivation and Analysis

Misaligned Dataset. In the absence of additional supervision, detectors rely exclusively on the
training set to learn the concept of ’real’ versus ’synthetic’. When these two classes’ data differ
systematically in non-causal attributes—such as compression format or semantic content—the model
may incorrectly learn to associate these irrelevant features with authenticity. These spurious signals
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Figure 4: Visualization of frequency domain energy using 2D DCT. The left column shows a
real image, while the remaining columns display images reconstructed by VAEs from various Stable
Diffusion models. The grids represent frequency components, with the top-left and bottom-right
indicating low- and high-frequency regions, respectively. Lighter areas correspond to higher energy.
Real images in JPEG format exhibit darker high-frequency regions compared to VAE reconstructions,
indicating weaker high-frequency content in real images.
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Figure 5: Evidence for the existence of biased frequency-based features to discriminate re-
constructed images. We apply a binary mask to the DCT coefficients, systematically nullifying
high-frequency components where either the horizontal or vertical frequencies exceed 95%, 90%,
85% and 80% of their respective spectral ranges to generate High-Freq. Masked VAE Rec.

are often more salient than subtle, genuine artifacts that actually distinguish real from synthetic
images, making it more difficult for the model to learn truly generalizable features.

Reconstruction-based Alignment. To align synthetic images with real ones, some approaches
(53,59, [14] employ txt2img generative models to generate images with similar semantic content,
conditioned on the image label or image captions obtained through pretrained models. However,
images generated using this approach often differ from the originals due to the lack of strong and
detailed supervision, which prevents the generated images from fully matching the original images in
all semantic details. DRCT [4] [14] leverages Img2Img diffusion reconstruction, directly using the
image itself to guide the reconstruction of a real image x into a synthetic counterpart  as follows:

Z = Decoder(2), where Z=z-+ ¢ —e€p(2,t), =z = Encoder(z). (D

where z represents the encoded latent of the real image, while Z is modified by adding noise and
subsequently denoising, creating new latents that subtly differ from z.However, such self-supervised
diffusion reconstruction can still lead to changes in image details due to modifications in the latent
space, which is responsible for the generation of semantics. The work [33]] further simplifies the
reconstruction process by using a Variational Autoencoder (VAE)—a submodule used in all stable
diffusion generators—without any modification to the latent. This approach generates images that
closely match the original real image at the pixel level.

& = Decoder(z), where z = Encoder(z). 2)

Frequency-Level Misalignment Exists and Can Be Exploited. Frequency domain has been
widely explored in AIGI detectors [30] [48]), demonstrating that frequency information is
crucial for AIGI detection. This motivates us to revisit the frequency-domain alignment. Sur-
prisingly, despite pixel-level alignment, synthetic counterparts exhibit significant discrepancies in
high-frequency content. Figure ] visualizes this discrepancy between the real image and synthetic
images reconstructed using various VAEs. Real images are often with relatively poor high-frequency
information, which is due to JPEG compression removing high-frequency details. Having identified
this frequency-level discrepancy, another question arises: "Can this disparity be leveraged, or are we
overestimating its impact?" To evaluate its effect, we assess the impact by measuring the variance in
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Figure 6: DDA pipeline. Left: VAE-reconstructed images differ from real ones in the intensity of
high-frequency components. Right: DDA fuses high-frequency information from real images into
the VAE-reconstructed images to align them in the frequency domain. Then, DDA uses pixel-level
mixup of real and frequency-aligned images to further align them in the pixel domain.
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Figure 7: Comparison of various image processing methods based on loss with respect to the
real image. Left: Comparison of image processing methods across three Stable Diffusion model
series (SD15, SDXL, SD21) displaying real images alongside processed versions using DDA, VAE
reconstruction (VAE Rec.), diffusion reconstruction (Diff. Rec.), masked inpainting with prompts
(Inpaint), and text-to-image generation (T2I). Mean squared error (MSE) values relative to the real
image are presented beneath each processed image, and each mse value is calculated by generating
100 images. Right: Visualization of relative error metrics for each processing method across the
same model series, segregated into low frequency and high frequency bands as calculated using
discrete Fourier transform (DFT). Bar charts illustrate comparative error magnitudes across different
reconstruction techniques and frequency components. Both pixel-level and frequency-level analyses
indicate that DDA produces synthetic images most similar to the real images.

detector performance on VAE-reconstructed images. As shown in Figure[5} the empirical results are
striking: visually identical VAE-reconstructed images are detected by the frequency-based detector
SAFE with a 93% success rate, indicating a significant difference in the frequency domain. How-
ever, when we mask high-frequency information slightly, the detection rate drops dramatically. This
substantial decline cannot be attributed solely to information loss; rather, it suggests that detectors
exploit biased features—specifically, the richer high-frequency details in synthetic images due to
their not undergoing JPEG compression, unlike real images.

3.2 Dual Data Alignment

Motivated by the previous observation, we propose DDA, a technique that generates synthetic images
aligned with real ones in both the pixel and frequency domains to mitigate the learning of biased
features. As illustrated in Figure[f] DDA consists of three steps: 1) VAE Reconstruction: Generate
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Figure 8: t-SNE visualizations comparing real and generated images, illustrating the proximity of
synthetic image cluster centers to real images in feature space. The ordering of proximity—from
closest to farthest—is: DDA, VAE reconstruction, diffusion reconstruction, and text-to-image (T2I)
generation. These results indicate that DDA produces synthetic samples most closely aligned with
real images near the data manifold boundary, thereby facilitating the learning of a tighter and more
generalizable decision boundary.

pixel-wise similar images containing VAE-specific artifacts. 2) Frequency-Level Alignment: We
identified that discrepancies in the frequency domain primarily arise from JPEG compression. To
mitigate this, we align the frequency by applying the same JPEG compression with an equivalent
quality factor to both real and VAE-reconstructed images. In practice, we estimate the quality factor
of each real image before training and apply the same compression to its reconstructed counterpart
during training. 3) Pixel-Level Alignment: Apply mixup between real and frequency-aligned images
to ensure pixel-domain alignment. A closely aligned synthetic image is generated as follow:

Tmix = Tpizel * LTreal + (1 - Tpiwel) * Tsyn- (3)

where rpze; € [0, 1] controls the degree of pixel-level alignment. A higher 7,,,¢; value yields a
closer synthetic image in the pixel space. In practice, 7p;;¢; is sampled from a uniform distribution
U(0, Rpizer)- Together, these steps ensure that the resulting synthetic images preserve generative
artifacts while maintaining close alignment with real data, both spectrally and spatially.

The generalizability of DDA is built upon two foundations: 1) VAE artifacts generalize across
generators. Because VAE-reconstructed images are the closest synthetic counterparts to real images,
decision boundaries learned from these pairs are likely to remain effective for distinguishing other,
more distant synthetic variants (e.g., those from text-to-image generators). Moreover, since the VAE
decoder is typically the final stage in diffusion-based generators, its artifacts are less influenced by
subsequent modules. 2) Dual-domain alignment mitigates dataset bias. By aligning synthetic
images with real ones in both the frequency and pixel domains, DDA reduces real-synthetic discrep-
ancies more effectively than alternative reconstruction-based methods. In particular, it eliminates
high-frequency bias—commonly introduced by compression or generative artifacts—leading to
stronger generalization and reduced reliance on spurious features.

Comparison to Dataset Alignment Methods. We validate that DDA creates the closest real-
synthetic image pairs when compared to other alignment methods from the following three viewpoints:
1) Pixel domain: Left of Figure[7]shows that DDA-aligned images lead to minimal MSE loss compared
to the original image; 2) Frequency domain: Right of Figure[/|shows that DDA-aligned images are
most similar to the original image in frequency space; 3) Feature domain: Figure [8| validates that the
cluster center of DDA-aligned images is closest to the center of real images.

4 Experiments

4.1 Experimental Setup

Datasets All compared detectors are evaluated on eleven diverse datasets, including seven bench-
mark datasets (GenImage [S9]], DRCT-2M [4]], Synthbuster [1]], DDA-COCO, EvalGEN, AIGCDetec-
tionBenchmark [56]] and ForenSynths [43]] ) and four in-the-wild datasets (Chameleon [48]], WildRF
[2]], SynthWildx [[7]] and BFree-Online [[14]), where images are sourced from the web. These datasets
contain real images from different sources and various generators, including diffusion models, GAN
models, auto-regressive models, and other unknown models. They differ in format, content, and
resolution, thereby minimizing evaluation bias. Table [I] outlines the datasets’ details.



Table 1: Overview of the evaluation benchmarks. “SD” denotes Stable Diffusion and “AR” denotes
auto-regressive models. The diversity of data sources and generator types—along with four bench-
marks collected from in-the-wild data with unknown generators and post-processing—ensures that
the overall evaluation more accurately reflects a detector’s generalizability and practical applicability.

Dataset Real/Fake Source #Models Model Types
DDA-COCO (ours) 5K/25K MSCOCO 5 SD
EvalGEN (ours) 0/2765 Prompt 5 SD & AR
GenlImage [59 48K/48K ImageNet 8 SD & GAN
DRCT-2M (4 SK/80K MSCOCO 16 SD
Synthbuster |1 1K/9K RAISE 9 SD
AIGCDetectionBenchmark [56. 76.25K/76.25K LSUN & MSCOCO & ImageNet & CelebA & FFHQ 17 SD & GAN
ForenSynths [43 36.2K/36.2K LSUN & MSCOCO & ImageNet & CelebA & others 11 GAN
Chameleon |48 14.9K/11.2K Internet unknown unknown
WildRF [2 500/500 Reddit, FB, X unknown unknown
SynthWildx 7 500/1.5K X 3 SD
BFree-Online [14: 303/641 Internet unknown unknown

Table 2: Overall comparison across 11 benchmarks. To ensure fairness and reproducibility, we
use official checkpoints released by each method. We exclude B-Free [14] from this comparison due
to the unavailability of public code. JPEG compression with a quality factor of 96 is applied to the
synthetic images in Genlmage, ForenSynths, and AIGCDetectionBenchmark to mitigate format bias.
The number of generators used in each dataset is reported below the dataset name, where G refers to
GANSs, D to Diffusion models, and AR to Auto-Regressive models. Bold numbers indicate the best
performance per column; underlined numbers indicate the second-best.

Manually Curated Datasets In-the-Wild Datasets

Method Avg Min

Genlmage DRCT-2M DDA-COCO EvalGEN Synthbuster  ForenSynths “ﬁﬁ?““":'"

1G +7D 16D 5D 3D+ 2AR 9D 11G
515+63 373£150 422+54 29+27 50.0+2.6 479 £226

524+15 1544142 678+144  777+161
628 + 104 52257 517415 456+ 33.1 5614107 900118
503412 5034192 499403 11406 46.5 +£20.8 49.7£27
744+ 8.4 592499 513406 89£312 6B5SLIL4 920101
6125119 646+ 118 500+ 04 19.0+1L1  539+£186  594+246
847427 90.5+74 602+43 118+54 848436 739+ 134
79.0+227 955+6.1 865+ 19.1 6804207  774+250 539471
917+ 78 98.1+ 14 922+ 106 972+42 90.1 £56 814+ 139 87.8 £ 126

Synthwildx

46.1 £ 16.1 29
5634165 154
5964146 456
4764 160 11
6214156 389
s41+128 191
701146 506
50+ 111 539

90.7 £53 814

55.1+18 50.6+35
788+178  801+103

90.9 + 3.1 903 +35

DDA-COCO and EvalGEN DDA-COCO consists of five subsets containing reconstructed images
of MSCOCO [28] validation set by different VAEs, utilizing frequency-level alignment. We construct
the EvalGEN dataset using the five latest text-to-image (T2I) generators using aligned prompts from
the GenEval benchmark [11]. Notably, we are the first work to involve auto-regressive-based T2I
generators for image forensics in the AIGI detection field. Specifically, we introduce each generator
as follows: (1) Flux [22]: the SOTA diffusion-based generator, offering extremely higher-resolution
output images. (2) GoT [10]: A multimodal model combining LLM and diffusion processes to
enable reasoning-guided image generation. (3) Infinity [[16]: A bitwise auto-regressive model using
infinite-vocabulary tokenization and self-correction for faster and higher-fidelity image generation.
(4) OmiGen [44]: A unified multimodal framework capable of handling diverse image generation
tasks within a single, simplified architecture. (5) NOVA [9]: A non-quantized auto-regressive model
designed for efficient image and video generation, achieving high fidelity with reduced computational
overhead. These models allow our EvalGEN to serve as a very high-quality benchmark for
evaluating the generalizability of detectors on unseen generators.

Implementation Details We use DINOV2 as the backbone and fine-tune it with LoRA, using a
rank of 8. The input resolution is set to 336x336, employing random cropping during training and
center cropping during validation. Padding is applied when the image height or width is insufficient.
The training data exclusively consists of MSCOCO [29] images and their DDA-aligned counterparts.
During VAE reconstruction, to ensure that the reconstructed image size matches the real one, we
first center-crop each image to the largest size that is a multiple of 8, following the VAE model’s
design. For frequency alignment in DDA, we apply the same JPEG compression to each reconstructed
counterpart with a 50% probability during training, allowing the model to encounter both JPEG and
PNG formats of synthetic images. All evaluations are conducted using a single model without any
dataset-specific fine-tuning or threshold adjustments.

Evaluation Metrics and Comparative Methods Unless otherwise specified, we report balanced
accuracy, the average of real and fake accuracies, as the evaluation metric, following works [8} 132,
31,1231 38), 48, 14, 33| [14]. The methods compared include four frequency-based detectors: NPR
8], SAFE [23], and AIDE [48]]; three CLIP-based detectors: UnivFD [32], Fatformer [31]], and
C2P-CLIP [38]]; and two data alignment methods: DRCT [4] and AlignedForensics [33]].



Table 3: Comparison of balanced accuracy between DDA and compared methods on DRCT-2M.

SDXL- SD- SDXL- LCM- LCM- SDvl- SDv2- SDXL- SDvl- SDv2- SDXL-
Method LDM  SDvi4  SDvis  SDv2 SDXL  Refiner  Tubo  Tubo  SDvLS  SDXL Cul Cul Cul DR DR DR Ave
NPR cvprr2e) (8. 330 29.1 29.0 35.1 332 284 279 279 294 302 284 283 347 67.9 674 66.1 373+ 150
UnivFD ) 854 56.8 56.4 582 632 55.0 56.5 53.0 545 65.9 68.0 65.4 759 64.6 56.2 539 61.8 + 89
FatFormg 559 482 482 482 482 48.3 482 482 48.3 50.6 49.7 499 59.8 66.3 60.6 56.0 522+57
SAFE (kpp: 50.3 50.1 50.0 50.0 499 50.1 50.0 50.0 50.1 50.0 49.9 50.0 54.7 98.2 98.5 97.3 593 +19.2
C2P-CLII 83.0 517 51.7 529 519 64.6 517 50.6 520 66.1 56.9 547 778 67.2 57.1 56.7 592+99
AIDE (e r2: 64.4 749 75.1 585 535 66.3 52.8 52.8 70.0 54.3 65.9 536 539 95.3 733 69.0 646 £ 11.8
DRCT emias) 14 96.7 96.3 96.3 949 96.2 935 934 929 91.2 950 95.6 927 920 94.1 69.6 574 90.5 £ 74
AlignedForensics (cir-25) |33] 99.9 99.9 99.9 99.6 90.2 81.3 99.7 89.4 99.7 90.0 99.9 99.2 87.6 99.9 99.8 92.6 955 +6.1
DDA (ours) 92 989 99.0 983 98.0 96.8 979 94.8 959 98.2 987 9.0 99.4 99.0 99.5 963 98.1+ 1.4
Table 4: Comparison of balanced accuracy on Genlmage.
Method Midjourney SDvl.4 SDvl.5 ADM GLIDE Wukong VQDM BigGAN Avg.
NPR (cvpr24) 8] 534 55.1 55.0 43.8 41.2 574 484 577 51.5+6.3
UnivFD (cvpr23) [32 55.1 55.6 55.7 62.5 61.3 61.1 76.9 84.4 64.1 +10.8
FatFormer (cvpro4) [31 52.1 53.6 53.8 61.4 65.5 60.9 725 82.2 62.8 +10.4
SAFE pp2s) 123 49.0 49.7 49.8 49.5 53.0 50.3 50.2 50.9 503+ 1.2
C2P-CLIP (aaaras) 138 56.6 71.5 76.9 71.6 73.5 79.4 73.7 859 744 £ 84
AIDE (c1ro2s) [48 58.2 772 77.4 50.4 54.6 70.5 50.8 50.6 612+11.9
DRCT cumias) & 82.4 88.3 88.2 76.9 86.1 87.9 85.4 87.0 847 +2.7
AlignedForensics (cir2s) [33 97.5 99.7 99.6 524 57.6 99.6 75.0 50.6 79.0 £ 22.7
DDA (ours) 95.6 98.7 98.6 89.5 89.6 98.7 76.5 86.5 91.7 £ 7.8
Table 5: Comparison of balanced accuracy on AIGCDetectionBenchmark.
802 68.5 911 544 880 992 995 99.1 985 717 675 672 994 98.0 98.8 883 756 850+ 14.9

Table 6: Comparison of balanced accuracy between DDA and compared methods on ForenSynths.

Method BigGAN  CRN  CycleGAN  DeepFake  GauGAN  IMLE  PoGAN  SAN  SceingDark  SwrGAN  SyleGAN  SyleGAN2  WFR  Avg

NPR cvrrzs B 53.1 0.4 766 357 422 53 587 484 63.6 674 57.9 546 588 47.9+226
UnivED (cvprzs) 3 875 557 969 69.4 98.8 68.1 99.4 582 622 95.1 80.0 69.4 692 717+16.1
FatFormer ¢ 99.3 72.1 99.5 93.0 99.3 72.1 98.4 708 819 994 98.1 98.9 883 901+118
SAFE pp 522 50.0 519 50.1 50.0 500 500 509 411 50.1 50.0 500 498 29727
C2P-CLI 3 98.4 933 96.8 926 98.8 932 993 632 94.7 99.6 931 79.4 948 921+10.1
AIDE e 70.1 122 93.6 532 60.6 159 890 553 442 721 665 590 806 5944246
DRCT e 14 814 784 910 515 938 826 711 849 722 530 627 638 739 739134
AlignedForensics (cLi2s) (53 512 504 49.5 717 50.8 49.7 507 676 514 538 527 516 500 53971
DDA (ours) 910 87.0 725 765 927 89.7 928 94.7 586 727 878 902 52.1 814+ 139

4.2 Cross-Dataset and Cross-Model Comparison

Overall Comparison on 11 Benchmarks. Table [2] presents a comprehensive comparison across 11
datasets—7 manually curated and 4 in-the-wild—covering most known open-source AIGI evaluation
benchmarks. To the best of our knowledge, the first large-scale comparison of its kind. As benchmarks
vary greatly, the benefits of exploiting any bias are minimized, making the average accuracy across
the 11 benchmarks more representative of the detector’s practical performance. The results show that:
1) DDA achieves an average accuracy of 90.7%, marking a 15.7% improvement over the second-best
method. Notably, DDA reaches 82.4% accuracy on the challenging Chameleon benchmark, where
only AlignedForensics achieves above 70%; 2) DDA also has the highest minimal accuracy of
81.4%, significantly outperforming the second-best method by 27.5%. Moreover, DDA exhibits
the smallest deviation across benchmarks, less than half of the other methods, suggesting it is more
reliable and robust; 3) An interesting observation is that, when comparing methods across datasets,
detectors trained on more aligned data tend to achieve much higher average accuracy. The degree
of data alignment in the detectors, in increasing order, is as follows: UnivFD (no data alignment),
DRCT (data alignment via diffusion reconstruction), AlignedForensics (data alignment via VAE
reconstruction), and DDA (dual-domain data alignment). The overall average accuracy follows the
same order as the degree of data alignment. This clearly demonstrates the effectiveness of data
alignment in improving a detector’s generalizability, supporting our previous assertion that data
alignment helps models learn more transferable decision boundariess.

Detailed Comparison on DRCT-2M, Genlmage, AIGCDetectionBenchmark, ForenSynths,
Synthbuster, SynthWildx, and WildRF. Table [3|to Table [§|report the detailed performance of
various methods across these subsets. From the results, we observe the following: (1) Consistent
superiority: DDA not only surpasses other detectors by a substantial margin in average accuracy
(ranging from 3% to 10%) but also achieves consistently lower deviations across all benchmarks.
Given the diversity of real image sources and the inclusion of both GAN- and diffusion-based models,



Table 7: Comparison of balanced accuracy between DDA and compared methods on Synthbuster.

Method DALLE2  DALLE3  Firefly  GLIDE  Midjourney ~ SD13  SD14  SD2  SDXL  Avg

NPR (cyprad) B 51.1 493 465 485 52.8 514 518 46.0 52.8 50.0 + 2.6
UnivED (cyprias) (32 835 474 89.9 533 525 704 69.9 75.7 68.0 67.8 + 14.4
FatFormer (cypr-as) [31 59.4 395 60.3 727 444 53.7 54.0 523 69.1 56.1+10.7
SAFE ppas) 123 58.0 9.9 103 522 56.7 59.4 59.1 53.0 59.5 465 +£20.8
C2P-CLIP (saaras) (38 55.6 63.2 59.5 86.7 52.9 75.2 76.7 69.2 777 68.5+11.4
AIDE (c1r2s) 148 349 337 2438 65.0 575 74.1 73.7 532 68.4 539+ 18.6
DRCT oy B 772 86.6 84.1 82.6 73.7 86.6 86.6 832 713 848436
AlignedForensics (cr-2s) [33 502 489 517 535 98.7 98.8 98.8 98.6 97.3 7744250
DDA (ours) 86.3 90.0 91.9 76.5 93.5 929 927 933 935 90.1+5.6

Table 8: Comparison of balanced accuracy between DDA and compared methods on SynthWildx and
WildRF.

Method \ SynthWildx \ WildRF
| DALLE3 Firefly Midjourney Avg. | Facebook Reddit Twitter Avg.

NPR (cypras) [8 436 61.3 445 49.8 +10.0 78.1 61.0 513 635+ 13.6

UnivFD (cypro2s) (B2 454 653 462 523+113 49.1 602 56.5 553457

FatFormer (cypg-24) [31 46.5 61.6 483 52.1+82 54.1 68.1 544 58.9 4 8.0

SAFE (ppas) 123 49.4 482 49.6 49.1 +0.7 50.9 74.1 375 572+ 185

C2P-CLIP (pparas) 38 56.9 61.4 53.0 57.1+42 54.4 68.4 55.9 59.6 +7.7

AIDE (c1r2s) 148 63.4 48.8 51.9 48.8+0.8 57.8 715 45.8 584+ 129

DRCT e ] 583 56.4 50.5 551418 46.6 53.1 552 50.6 £ 3.5

AlignedForensics jcLr2s) 133 855 58.5 922 788 +17.8 894 69.1 81.8 80.1 +10.3

DDA (ours) | 923 87.3 93.1 90.9 £3.1 93.1 86.4 91.5 90.3£35

Table 9: Comparison of balanced accuracy between Table 10: Comparison of balanced accuracy
our DDA and other methods on DDA-COCO. on EvalGEN.
Method real fake Ave Method Flux GoT Infinity NOVA OmiGen Avg.
XL EMA  MSE  Sb2l  SD35  FLUX.1 - NPR conan B o7 0z ss a7 z 29527

UnvED s PR TR R S ¥ VO ; 9 4y M7 s d3 dsexi
FatFormer (¢ 3l 96.4 54 6.9 10.4 10.3 6.6 28 C2P-CLIP (yaprs, (B8] 87 196 353 86.4 145 389 £ 312
SAFE ikpopzs 98.8 06 09 09 10 03 18 AIDE 10 179 247 34 163 334 190+ 111
it R I R T SR DRCT o BB ORON OB B
DRCT geni 26, 942 | 169 348 335 336 217 17.2 3 gnecrorensics aourzs B4 22 2 =2
AlignedForensics ict-2s) 33 9.8 825 992 990 991 554 36 86.5 = 19.1 DDA (ours) 89.9 99.5 97.8 99.5 99.5 972442
DDA (ours) 99.0 95.0 99.3 99.7 99.7 68.1 50.2 922+ 10.6

these results strongly demonstrate the effectiveness and generalizability of DDA. (2) Exception on
ForenSynths: DDA underperforms slightly on the ForenSynths benchmark. We attribute this to
the fact that the two methods outperforming DDA—FatFormer and C2P-CLIP—were trained on
ProGAN, which is also the generator used in the ForenSynths subsets, giving them an advantage.
Moreover, some data in the ForenSynths are generated by older and smaller models, which deviate
significantly from modern generators, contributing to DDA’s performance degradation.

Comparison on DDA-COCO and EvalGEN Table [9] and Table [I0] report accuracies on our
two proposed benchmarks, DDA-COCO and EvalGEN, respectively. We observe the following:
(1) Generalization across diffusion models: DDA, trained solely on SD 2.1-reconstructed data,
generalizes well to other diffusion models and exhibits a smaller standard deviation. This suggests that
DDA learns a universal upsampling artifact shared across diverse generative models, reinforcing our
claim that data alignment enhances generalizability. (2) Effectiveness of data alignment: Results on
DDA-COCO highlight the importance of data alignment. Methods lacking explicit alignment—such
as NPR [8]], UnivFD [32]], FatFormer [31]], C2P-CLIP [38], AIDE [48]], and SAFE [23]—exhibit large
disparities between real and fake accuracies, revealing underlying dataset biases. (3) Performance on
emerging generators: DDA also achieves SOTA on EvalGEN, excelling on auto-regressive generators,
further validating its strong cross-architecture generalizability.

Comparison on Generation Time Cost We compare three methods which introduce train data
generation—DRCT [4]], AlignedForensics [33]], and B-Free [14]. Tablepresents the number of
real and synthetic images used for training, generation method and the estimated reconstruction
time (Single Image & Full Set) using each method, which is tested by generating 100 synthetic
images. Results show that our DDA requires the least amount of training data and reconstruction
time, confirming its effectiveness and efficiency in terms of training cost.



Table 11: Comparing on data generation time.

Method # Real / Fake Generation Method Time Per Image Full Construction Time
DRCT 118K /354K Diff. Rec. 0.6569 + 0.0050 s 64.6 h
AlignedForensics 179K / 179K VAE Rec. 0.1756 £ 0.0692 s 8.73h
B-Free 51K /309K Diff. Rec + Inpaint. 3.0150 £0.0125 s 258.79h
DDA (ours) 118K/ 118K VAE Rec. + DDA 0.1792 £ 0.0704 s 59h
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Figure 9: Robustness analysis on Genlmage.
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Figure 10: Ablation studies. (a) Pp;.;: probability of applying pixel-level alignment; (b) Rpize::
upper bound for sampling the pixel mixup ratio; (c) VAE: backbone used for training data reconstruc-
tion. Results show the impact of each hyperparameter on the performance of DDA.
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4.3 Evaluation on Robustness

Figure [9] shows the results of three robustness evaluations on the GenImage-JPEG96 dataset for
all compared methods. Results show that: (1) DDA shows strong robustness across all three post-
processing methods, outperforming the second-best method by 10.5%, 4.1%, and 5.7% under JPEG
60, RESIZE 2.0, and BLUR 2.0, respectively. (2) Methods lacking alignment, such as NPR [8§]],
SAFE [23]], and AIDE [48]], demonstrate poor robustness under JPEG compression and resizing. In
contrast, methods with alignment perform much better, emphasizing the importance of data alignment.

4.4 Ablation Studies

Figure@ illustrates the impact of Pp;zei, Rpizer, and the choice of VAE in training data generation.
Results indicate that the detector maintains consistent accuracy when Pp;ze; and Ry, are between
0.2 and 0.8, with performance drops observed at 0.0 and 1.0. Experiments with different VAEs
confirm that SD21 is the most effective choice.

5 Conclusion

In this paper, we demonstrate that pixel-domain alignment alone is insufficient for fully aligning
real and synthetic image pairs. Building on this, we propose DDA to align synthetic images with
real ones across both pixel and frequency domains, thereby mitigating bias. We also introduce two
AIGI benchmarks: DDA-COCO and EvalGEN. Extensive experiments across eleven benchmarks
demonstrate the consistent superiority of DDA. We believe that DDA, DDA-COCO, and EvalGEN
provide a solid foundation for advancing the generalization of AIGI detection.

Limitations and Future Work While DDA demonstrates strong performance across extensive
benchmarks, there remains a gap in its application to real-world scenarios, particularly due to the
heavy post-processing applied to images in such contexts. In practice, we observe that even authentic
photos taken by smartphones may exhibit synthetic-like artifacts, likely resulting from the Al-based
enhancements embedded in modern smartphone camera pipelines, which adds complexity to real-
world AIGI detection. In future work, we plan to develop a more practical AIGI detector tailored to
address these real-world challenges.
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The Appendix provides additional technical and evaluative details of our work. Section[A]presents
the implementation details of DDA. Section [B|summarizes the peer methods. Section[C|visualizes
the degree of data alignment of different methods in the feature space. Section |D|presents ablation
studies on input size and backbone. Section [E]|provides details of our proposed dataset EvalGEN,
including example prompts used for generation and visualizations of selected samples. Finally,
Section [F visualizes the regional detection results of DDA.

A Implementation Details

Training Details. All experiments were conducted on eight NVIDIA V100 GPUs. We trained
the detector on a dataset consisting of MSCOCO images and their synthetic counterparts generated
through DDA alignment using the VAE from Stable Diffusion 2.1. The model was optimized with a
base batch size of 16 and a learning rate of le-4. To achieve an effective batch size of 64 without
exceeding GPU memory limits, gradient accumulation was applied over four iterations. Balanced
accuracy was evaluated on all datasets every 10,000 iterations, and early stopping was employed to
prevent overfitting. To help the model better shape its decision boundary, each batch was manually
constructed to include both real images and their DDA-aligned counterparts, allowing the model to
simultaneously observe closely aligned positive and negative samples.

B Peer Methods

Below we provide a brief description of the compared methods used in Section 4 of main paper.

NPR [8] This detector leverages low-level features—neighboring pixel relationships—to distinguish
synthetic images from real ones. NPR trains a ResNet-50 to identify upsampling patterns.

UnivFD [32] Instead of conventional supervised training, this method utilizes features from a
vision-language model (CLIP-ViT) combined with a linear classifier. This approach avoids overfitting
to specific generative artifacts and generalizes better to unseen generators.

FatFormer [31] FatFormer builds on a ViT backbone, incorporating a forgery-aware adapter that
adapts features in both the image and frequency domains. It introduces language-guided alignment
using contrastive learning with text prompts to improve generalization.

SAFE [23] This method focuses on frequency domain artifacts. The detector is built upon a ResNet
backbone and trained with several data augmentation techniques, including random masking.

C2P-CLIP [38] The method utilizes CLIP embeddings with category-specific prompts to enhance
deepfake detection generalizability. Image captions are generated using ClipCap and enhanced with
category common prompts. During training, these enhanced caption-image pairs train the image
encoder through contrastive learning. For inference, only the modified image encoder and a linear
classifier are used.

AIDE [48] This work employs a hybrid approach that combines low-level patch statistics with
high-level semantics. It uses DCT scoring to select extreme frequency patches for extracting noise
patterns through SRM filters, while utilizing CLIP embeddings to capture semantic information.
These complementary features are fused through channel-wise concatenation before classification.

DRCT [4] This method reconstructs real images using diffusion models to generate challenging
synthetic samples that retain visual content while introducing subtle artifacts. Contrastive learning is
employed to guide detectors toward recognizing these fingerprints, improving generalization.

AlignedForensics [33] This method creates aligned datasets by reconstructing real images through
a single forward pass in an LDM’s autoencoder. This forces the detector to focus exclusively on
artifacts introduced by the VAE decoder, avoiding reliance on spurious correlations.
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Figure 11: t-SNE visualizations comparing real and synthetic images using detectors trained with
different data alignment methods. Rows correspond to the data alignment method used during detector
training, while columns represent the generative pipeline—either VAE or diffusion—used to produce
synthetic images. The results show that detectors trained with better dataset alignment are
able to separate reconstructed images more distinctly, highlighting the importance of effective
dataset alignment in achieving clearer feature space separation.

B-Free [14] B-Free introduces a training paradigm using self-conditioned diffusion-based recon-
structions. It ensures semantic alignment between real and synthetic images so that differences arise
solely from generation artifacts. The approach includes content augmentation via inpainting and
fine-tunes a DINOv2+reg ViT using large crops to retain forensic signals.

C More Comparison Results

Comparison to Dataset Alignment Methods in Feature Domain Fig|[IT]presents t-SNE visualiza-
tions of real and synthetic image features, generated by detectors trained with varying data alignment
strategies. Each row, from top to bottom, represents detectors trained on datasets with progressively
stronger alignment. Detectors trained on better-aligned datasets yield more separable feature
distributions, suggesting that enhanced alignment facilitates clearer decision boundaries be-
tween real and synthetic content. These findings reinforce the role of data alignment in improving
feature separability and overall AGI detector performance.

D More Ablation Results

Ablation on Input Size Table[I2] presents an ablation study of our method across different input
sizes, ranging from 224 to 504. Detectors achieve comparable accuracies across these input sizes.

Ablation on Backbone Table[I3|presents an ablation study comparing the performance of different
backbone architectures. The ResNet backbone is excluded from this study due to training instability
and failure to converge. The relatively poor performance of linear probing methods is attributed to the
limited representational capacity of a single linear layer. This observation aligns with the convergence
issues observed with ResNet, suggesting that the universal artifacts in our training data are inherently
more difficult to learn. In contrast, AlignedForensics [33]] successfully employs a ResNet backbone,
implying that the artifacts used in our training setup may be subtler or more complex than those
captured in prior work. Another key finding is that DINO-LoRA outperforms CLIP-LoRA. This
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Table 12: Ablation study across different input sizes.
Input Size Genlmage DRCT-2M EvalGEN Chameleon SynthWildx Avg

224 94.9 96.7 97.2 71.9 80.3 882+ 11.5
252 95.3 96.7 94.1 72.0 84.0 88.4+10.5
280 95.7 96.2 95.4 70.1 84.6 884 +11.3
392 92.9 96.5 95.7 71.8 89.6 89.3 +10.2
448 93.4 97.2 89.5 65.7 89.9 87.1 £12.4
504 93.0 93.0 95.8 732 86.2 88.2+9.1

336 91.7 98.1 96.3 824 90.9 919 £6.1

Table 13: Ablation on backbones and training strategies. Linear Probing refers to training a linear
classifier on frozen backbone features. LoRA Finetune denotes fine-tuning the backbone using
LoRA (rank=8).

Train Strategy Backbone Genlmage DRCT-2M EvalGEN Chameleon SynthWildx Avg
CLIP ViT-B/16 86.4 84.2 92.3 54.7 53.9 743 + 18.5
CLIP ViT-B/32 83.8 80.8 97.3 63.2 54.5 759+ 17.1
Linear CLIP ViT-L/14 91.2 91.2 98.9 59.1 52.8 78.6 + 21.1
Probing DINOv2 VIT-S/14 68.8 74.4 59.8 60.9 62.6 65.3+6.2
DINOv2 VIT-B/14 68.3 74.5 66.2 64.1 58.6 66.8 +4.9
DINOv2 VIT-L/14 70.5 75.6 56.8 60.6 61.6 65.0+£7.8
CLIP ViT-B/16 95.2 80.3 96.2 46.6 62.0 76.1 £ 21.5
LoRA CLIP ViT-B/32 93.2 80.6 98.5 55.0 59.0 773 +£19.7
Finetune CLIP ViT-L/14 97.0 80.4 99.2 67.7 71.8 832+ 144
DINOv2 VIT-L/14 91.7 98.1 96.3 82.4 90.9 91.9 + 6.1

performance difference is likely due to the architectural focus of each backbone: CLIP emphasizes
high-level semantic features, while DINO is more attuned to low-level visual patterns—which are
more indicative of Al-generated image artifacts. Moreover, DINO-LoRA achieves a lower standard
deviation, indicating greater stability for robust AGI detection.

Prompt 00 a photo of a backpack
Prompt 01 a photo of a backpack below a cake
Prompt 02 a photo of a backpack right of a sandwich
Prompt 03 a photo of a banana
Prompt 04 a photo of a baseball bat
Prompt 05 a photo of a baseball bat and a bear
Prompt 06 a photo of a baseball bat and a fork
Prompt 07 a photo of a baseball bat and a giraffe
Prompt 08 a photo of a baseball glove
Prompt 09 a photo of a baseball glove and a carrot
Prompt 10 a photo of a baseball glove below an umbrella
Prompt 11 a photo of a baseball glove right of a bear
Prompt 12 a photo of a bear
Prompt 13 a photo of a bear above a clock
Prompt 14 a photo of a bear above a spoon
Prompt 15 a photo of a bed
Prompt 16 a photo of a bed right of a frisbee
Prompt 17 a photo of a bed right of a sports ball
Prompt 18 a photo of a bench

a photo of a bench and a snowboard

Prompt 19

E More Details of EvalGEN

To construct EvalGEN, we used 553 distinct prompts, each generating 20 synthetic images per
generator, resulting in 11,060 images per generator and a total of 55,300 synthetic images in the
complete dataset. All images are stored in JPEG format with a quality factor of 96. A subset
of prompts is provided above to illustrate the dataset’s diversity and semantic coverage, while
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Fig.[T2]shows visual examples from EvalGEN. To balance efficiency and representativeness, for the
comparison in Table [2]and Table [T0]of the main paper, we selected the first (index 0) image generated
for each prompt, yielding 55,300 / 20 = 2,765 samples for quantitative evaluation.

F Regional Detection Analysis

Figure [I3]displays heatmaps of detection scores across segmented image regions, with numerical
overlays indicating the detector’s predictions. These results reveal that detection scores vary by
region, indicating that synthetic artifacts are spatially uneven. This observation suggests that localized
detection strategies could further enhance robustness.
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Figure 13: Patch-level detection results. From top to bottom, images are sourced from Synthbuster [1],
Chameleon [48]), ForenSynths [43]], SynthWildx [[7], AIGCDetectionBenchmark [56]], WildRF [2]],
and EvalGEN (ours), respectively.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: Refer to Abstract and Section [T]
Guidelines:
* The answer NA means that the abstract and introduction do not include the claims
made in the paper.
* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.
* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.
* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Refer to Section
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

 The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

 The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

 The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: Refer to Section

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Refer to Section[4]

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: Refer to Abstract
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Refer to Section [
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: Refer to Section[4]
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.
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8.

10.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Refer to Section 4]
Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Research conducted in this paper conform with the NeurIPS Code of Ethics in
every respect

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: Refer to Section[3]
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no risk for misuse
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: Refer to Section[4]
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: Refer to Supplementary
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdscourcing nor research with human subjects
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: Refer to Section[3.2]
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
L.LM) for what should or should not be described.
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