
Published at the SSL-RL Workshop at ICLR 2021

COMBO: CONSERVATIVE OFFLINE MODEL-BASED
POLICY OPTIMIZATION

Tianhe Yu∗1, Aviral Kumar∗2, Rafael Rafailov1, Aravind Rajeswaran3, Sergey Levine2, Chelsea Finn1

1Stanford University, 2UC Berkeley, 3University of Washington
tianheyu@cs.stanford.edu & aviralk@berkeley.edu

ABSTRACT

Model-based algorithms, which learn a dynamics model from logged experience
and perform some sort of pessimistic planning under the learned model, have
emerged as a promising paradigm for offline reinforcement learning (offline RL).
However, practical variants of such model-based algorithms rely on explicit un-
certainty quantification for incorporating pessimism. Uncertainty estimation with
complex models, such as deep neural networks, can be difficult and unreliable. We
overcome this limitation by developing a new model-based offline RL algorithm,
COMBO, that regularizes the value function on out-of-support state-action tuples
generated via rollouts under the learned model. This results in a conservative esti-
mate of the value function for out-of-support state-action tuples, without requiring
explicit uncertainty estimation. We theoretically show that our method optimizes a
lower bound on the true policy value, that this bound is tighter than that of prior
methods, and our approach satisfies a policy improvement guarantee in the offline
setting. Through experiments, we find that COMBO consistently performs as well
or better as compared to prior offline model-free and model-based methods on
widely studied offline RL benchmarks, including image-based tasks.

1 INTRODUCTION

Offline reinforcement learning (offline RL) (Lange et al., 2012; Levine et al., 2020) refers to the
setting where policies are trained using static, previously collected datasets. This presents an attractive
paradigm for data reuse and safe policy learning in many applications, such as healthcare Wang
et al. (2018), autonomous driving Yu et al. (2020a), robotics Kalashnikov et al. (2018); Rafailov et al.
(2020), and personalized recommendation systems Swaminathan & Joachims (2015). Recent studies
have observed that direct use of RL algorithms originally developed for the online or interactive
paradigm leads to poor results in the offline RL setting Fujimoto et al. (2018a); Kumar et al. (2019);
Kidambi et al. (2020). This is primarily attributed to the distribution shift that arises over the course
of learning between the offline dataset and the learned policy. Thus, development of algorithms
specialized for offline RL is of paramount importance to benefit from the offline datasets available
in the aforementioned application domains. In this work, we develop a new model-based offline
RL algorithm that enjoys strong theoretical guarantees, while also matching or improving over
state-of-the-art methods in offline RL benchmarks.

One paradigm for algorithm design in offline RL is to incorporate conservatism or regularization to
the learning algorithm. Model-free offline RL algorithms Fujimoto et al. (2018b); Kumar et al. (2019);
Wu et al. (2019); Jaques et al. (2019); Kumar et al. (2020) directly incorporate conservatism into the
policy or value function training and do not require learning a dynamics model. However, model-free
algorithms learn only on the states in the offline dataset, which can lead to overly conservative
algorithms. In contrast, model-based algorithms Kidambi et al. (2020); Yu et al. (2020c) learn a
pessimistic dynamics model, which in turn induces a conservative estimate of the value function. By
generating data, model-based algorithms can achieve better generalization and e.g. have demonstrated
the ability to solve new tasks using the offline dataset Yu et al. (2020c). However, such algorithms rely
crucially on uncertainty quantification of the learned dynamics model to incorporate conservatism,
which can be difficult or unreliable for complex datasets or deep network models. Furthermore, these
∗denotes equal contribution.

1

Published at the SSL-RL Workshop at ICLR 2021

Figure 1: COMBO learns a conservative value function by utilizing both the offline dataset as well as
simulated data from the model. Crucially, COMBO does not require uncertainty quantification, and
the value function learned by COMBO is a tighter lower-bound of the true value compared to CQL.
This enables COMBO to steer the agent towards higher value states compared to CQL, which may
steer towards sub-optimal states as illustrated in the figure.

methods do not adapt the uncertainty estimates as the policy and value function change over the
course of learning. In this work, our goal is to develop a new algorithm that retains the benefits of
model-based algorithms while removing the reliance on uncertainty estimation, which we argue is
not necessary for offline RL.

Our main contribution is the development of conservative offline model-based policy optimization
(COMBO), a new model-based algorithm for offline RL. COMBO learns a dynamics model using the
offline dataset. Subsequently, it employs an actor-critic method where the value function is learned
using both the offline dataset as well as synthetically generated data from the model, similar to
Dyna Sutton (1991). However, in contrast to Dyna, COMBO learns a conservative critic function by
penalizing the value function in state-action tuples that are not in the support of the offline dataset,
obtained by simulating the learned model. We theoretically show that for any policy, the Q-function
learned with COMBO is a lower bound of the true Q-function, making it a good surrogate for policy
optimization. While the approach of optimizing a performance lower-bound is similar in spirit to
prior model-based algorithms Kidambi et al. (2020); Yu et al. (2020c), COMBO crucially does not
require uncertainty quantification. In addition, we show theoretically that the Q-function learned
by COMBO represents a tighter lower bound of the true Q-function when the model bias is low
compared to prior model-free algorithms like CQL Kumar et al. (2020). Thus, as a consequence
of optimizing a tighter lower bound, COMBO has the potential to learn higher rewarding policies
compared to prior model-free algorithms. This is illustrated through an example in Figure 1. Finally,
in our experiments, we find that COMBO matches or exceeds the state-of-the-art results in commonly
studied benchmark tasks for offline RL. Specifically, COMBO achieves the highest score in 9 out of
12 continuous control domains we consider from the D4RL Fu et al. (2020) benchmark suite, while
the next best algorithm achieves the highest score in only 3 out of the 12 domains. We also show
that COMBO achieves the best performance in tasks that require out-of-distribution generalization
and outperforms previous latent-space offline model-based RL methods in the image-based robotic
manipulation task.

2 PRELIMINARIES

2.1 MARKOV DECISION PROCESSES AND OFFLINE RL

We study RL in the framework of Markov decision processes (MDPs) specified by the tupleM =
(S,A, T, r, µ0, γ). S,A denote the state and action spaces. T (s′|s,a) and r(s,a) ∈ [−Rmax, Rmax]
represent the dynamics and reward function respectively. µ0(s) denotes the initial state distribution,
and γ ∈ (0, 1) denotes the discount factor. We denote the discounted state visitation distribution
of a policy π using dπM(s) := (1− γ)

∑∞
t=0 γ

tP(st = s|π), where P(st = s|π) is the probability
of reaching state s at time t by rolling out π inM. Similarly, we denote the state-action visitation
distribution with dπM(s,a) := dπM(s)π(a|s). The goal of RL is to learn a policy that maximizes the

2

Published at the SSL-RL Workshop at ICLR 2021

return, or long term cumulative rewards:

max
π

J(M, π) :=
1

1− γ
E(s,a)∼dπM(s,a)[r(s,a)]. (1)

Offline RL is the setting where we have access only to a fixed dataset D = {(s,a, r, s′)}, which
consists of transition tuples from trajectories collected using a behavior policy πβ . In other words, the
dataset D is sampled from dπβ (s,a) := dπβ (s)πβ(a|s). We defineM as the empirical MDP induced
by the dataset D and d(s,a) as sampled-based version of dπβ (s,a). In the offline setting, even in the
limit of an infinite size dataset, it may not be possible to find the optimal policy for the underlying
MDP Chen & Jiang (2019); Kidambi et al. (2020). Thus, we typically forgo the goal of finding the
optimal policy, and instead aim to find the best possible policy using the fixed offline dataset.

2.2 MODEL-FREE OFFLINE RL ALGORITHMS

One class of approaches for solving MDPs involves the use of dynamic programming and actor-critic
schemes Sutton & Barto (1998); Bertsekas & Tsitsiklis (1996), which do not explicitly require the
learning of a dynamics model. To capture the long term behavior of a policy without a model, we
define the action value function as

Qπ(s,a) := E

[∞∑
t=0

γt r(st,at) | s0 = s,a0 = a

]
, (2)

where future actions are sampled from π(·|s) and state transitions happen according to the MDP
dynamics. Consider the following Bellman operator:

BπQ(s,a) := r(s,a) + γE s′∼T (·|s,a),a′∼π(·|s′) [Q(s′,a′)] ,

and its sample based counterpart:

B̂πQ(s,a) := r(s,a) + γQ(s′,a′),

associated with a single transition (s,a, s′) and a′ ∼ π(·|s′). The action-value function satisfies
the Bellman consistency criterion given by BπQπ(s,a) = Qπ(s,a) ∀(s,a). When given an offline
dataset D, standard approximate dynamic programming (ADP) and actor-critic methods use this
criterion to alternate between policy evaluation Munos & Szepesvari (2008) and policy improvement.
A number of prior works have observed that such a direct extension of ADP and actor-critic schemes to
offline RL leads to poor results due to distribution shift over the course of learning and over-estimation
bias in the Q function Fujimoto et al. (2018a); Kumar et al. (2019); Wu et al. (2019). To address
these drawbacks, prior works have proposed a number of modifications aimed towards regularizing
the policy or value function (see Section 5). In this work, we primarily focus on CQL Kumar et al.
(2020), which alternates between the two following steps.

Policy Evaluation: The Q function associated with the current policy π is approximated conserva-
tively by repeating the following optimization:

Qk+1 ← arg min
Q

β
(
Es∼D,a∼µ(·|s) [Q(s,a)]− Es,a∼D [Q(s,a)]

)
+

1

2
Es,a,s′∼D

[(
Q(s,a)− B̂πQk(s,a))

)2]
, (3)

where µ(·|s) is a wide sampling distribution such as the uniform distribution over action bounds.
CQL effectively penalizes the Q function at states in the dataset for actions not observed in the
dataset. This enables a conservative estimation of the value function for any policy Kumar et al.
(2020), mitigating the challenges of over-estimation bias and distribution shift.

Policy Improvement: After approximating the Q function as Q̂π , the policy is improved as

π ← arg max
π′

Es∼D,a∼π′(·|s)

[
Q̂π(s,a)

]
.

Actor-critic schemes with parameterized policies and Q functions approximate the arg max and
arg min in above equations with a few steps of gradient descent.

3

Published at the SSL-RL Workshop at ICLR 2021

2.3 MODEL-BASED OFFLINE RL ALGORITHMS

A second class of algorithms for solving MDPs involve the learning of the dynamics function, and
using the learned model to aid policy search. Using the given dataset D, a dynamics model T̂ is
typically trained using maximum likelihood estimation as: minT̂ E(s,a,s′)∼D

[
log T̂ (s′|s,a)

]
. A

reward model r̂(s,a) can also be learned similarly if it is unknown. Once a model has been learned,
we can construct the learned MDP M̂ = (S,A, T̂ , r̂, µ0, γ), which has the same state and action
spaces, but uses the learned dynamics and reward function. Subsequently, any policy learning or
planning algorithm can be used to recover the optimal policy in the model as π̂ = arg maxπ J(M̂, π).

This straightforward approach is known to fail in the offline RL setting, both in theory and practice,
due to distribution shift and model-bias Ross & Bagnell (2012); Kidambi et al. (2020). In order
to overcome these challenges, offline model-based algorithms like MOReL Kidambi et al. (2020)
and MOPO Yu et al. (2020c) use uncertainty quantification to construct a lower bound for policy
performance and optimize this lower bound. By using an uncertainty estimation algorithm like
bootstrap ensembles Osband et al. (2018); Azizzadenesheli et al. (2018); Lowrey et al. (2019),
we can obtain u(s,a), an estimate of uncertainty in dynamics model prediction. In the case of
MOPO, an uncertainty penalized MDP is constructed where the reward is given by r̃(s,a) =
r̂(s,a)− λu(s,a), and the learned dynamics model is used without modification. MOPO learns a
policy in this “uncertainty-penalized” MDP M̃ = (S,A, T̂ , r̃, µ0, γ) which has the property that
J(M̃, π) ≤ J(M, π) ∀π. By constructing and optimizing such a lower bound, offline model-based
RL algorithms avoid the aforementioned pitfalls like model-bias and distribution shift. While any
RL or planning algorithm can be used to learn the optimal policy for M̃, we focus specifically on
MBPO Janner et al. (2019); Sutton (1991) which was used in MOPO. MBPO follows the standard
structure of actor-critic algorithms, but in each iteration uses an augmented dataset D ∪Dmodel for
policy evaluation. Here, D is the offline dataset and Dmodel is a dataset obtained by simulating the
current policy using the learned dynamics model. Specifically, at each iteration, MBPO performs
k-step rollouts using T̂ starting from state s ∈ D with a particular rollout policy µ(a|s), adds
the model-generated data to Dmodel, and optimizes the policy with a batch of data sampled from
D ∪Dmodel where each datapoint in the batch is drawn from D with probability f ∈ [0, 1] and Dmodel
with probability 1− f .

3 CONSERVATIVE OFFLINE MODEL-BASED POLICY OPTIMIZATION

The principal challenge in practice with prior offline model-based algorithms (discussed in Section 2)
is the strong reliance on uncertainty quantification, which can be challenging for complex datasets
or deep neural network models Ovadia et al. (2019). We also empirically verify this in the offline
dynamics model learning setting in Appendix E. Our goal is to develop a model-based offline RL
algorithm that enables optimizing a lower bound on the policy performance, but without requiring
uncertainty quantification. We achieve this by extending conservative Q-learning Kumar et al. (2020),
which does not require explicit uncertainty quantification, into the model-based setting. Our algorithm,
summarized in Algorithm 1 in Appendix A, alternates between a conservative policy evaluation step
and a policy improvement step. We also provide theoretical analysis of COMBO in Appendix B.

Conservative Policy Evaluation: Given a policy π, an offline dataset D, and a learned model of the
MDP M̂, the goal in this step is to obtain a conservative estimate of Qπ . To achieve this, we penalize
the Q-values evaluated on data drawn from a particular state-action distribution that is more likely to
be out-of-support while pushing up the Q-values on state-action pairs that are trustworthy, which is
implemented by repeating the following recursion:

Q̂k+1 ← arg min
Q

β
(
Es,a∼ρ(s,a)[Q(s,a)]− Es,a∼D [Q(s,a)]

)
+

1

2
Es,a,s′∼df

[(
Q(s,a)− B̂πQ̂k(s,a))

)2]
.

(4)

Here, ρ(s,a) and df are sampling distributions that we can choose. Model-based algorithms allow
ample flexibility for these choices while providing the ability to control the bias introduced by these
choices. For ρ(s,a), we make the following choice:

ρ(s,a) = dπM̂(s)π(a|s),

4

Published at the SSL-RL Workshop at ICLR 2021

where dπ
M̂

(s) is the discounted marginal state distribution when executing π in the learned model M̂.

Samples from dπ
M̂

(s) can be obtained by rolling out π in M̂. Similarly, df is an f−interpolation
between the offline dataset and synthetic rollouts from the model:

dµf (s,a) := f d(s,a) + (1− f) dµ
M̂

(s,a),

where f ∈ [0, 1] is the ratio of the datapoints drawn from the offline dataset as defined in Section 2.3
and µ(·|s) is the rollout distribution used with the model, which can be modeled as π or a uniform
distribution. To avoid notation clutter, we also denote df := dµf .

Under such choices of ρ and df , we push down (or conservatively estimate) Q-values on state-action
tuples from model rollouts and push up Q-values on the real state-action pairs from the offline dataset.
When updating Q-values with the Bellman backup, we use a mixture of both the model-generated
data and the real data, similar to Dyna Sutton (1991). Note that in comparison to CQL and other
model-free algorithms, COMBO learns the Q-function over a richer set of states beyond the states in
the offline dataset. This is made possible by performing rollouts under the learned dynamics model,
denoted by dµ

M̂
(s,a). We will show in Appendix B that the Q function learned by repeating the

recursion in Equation 4 provides a lower bound on the true Q function, without the need for explicit
uncertainty estimation. Furthermore, we will theoretically study the advantages of using synthetic
data from the learned model, and characterize the impacts of model bias.

Policy Improvement Using a Conservative Critic: After learning a conservative critic Q̂π, we
improve the policy as:

π′ ← arg max
π

Es∼ρ,a∼π(·|s)

[
Q̂π(s,a)

]
(5)

where ρ(s) is the state marginal of ρ(s,a). When policies are parameterized with neural networks,
we approximate the arg max with a few steps of gradient descent. In addition, entropy regularization
can also be used to prevent the policy from becoming degenerate if required Haarnoja et al. (2018).
In Appendix B.2, we show that the resulting policy is guaranteed to improve over the behavior policy.

Practical Implementation Details. Our practical implementation largely follows MOPO, with the
key exception that we perform conservative policy evaluation as outlined in this section, rather than
using uncertainty-based reward penalties. Following MOPO, we represent the probabilistic dynamics
model using a neural network, with parameters θ, that produces a Gaussian distribution over the next
state and reward: T̂θ(st+1, r|s,a) = N (µθ(st,at),Σθ(st,at)). The model is trained via maximum
likelihood. For training the conservative critic, which is the major distinction between COMBO and
MOPO, the fixed constant β is tuned with an offline cross-validation scheme for all low-dimensional
continuous control tasks and is decided with a limited number of rollouts in the actual environment
in the vision-based environments. We set the ratio f = 0.5 to have an equal split between model
rollouts and data from the offline dataset. For conservative policy evaluation (eq. 4) and policy
improvement (eq. 5), we augment ρ with states sampled from the offline dataset, which shows more
stable improvement in practice. Additional details about practical implementation are provided in
Appendix D.1.

4 EXPERIMENTS

In our experiments, we aim to answer the follow questions: (1) How does COMBO compare to prior
offline model-free and model-based methods in standard offline RL benchmarks? (2) Can COMBO
generalize better than previous approaches in a setting that requires generalization to tasks that are
different from what the behavior policy solves? (3) How does COMBO compare with prior work in
tasks with high-dimensional image observations?

To answer those questions, we compare COMBO to several prior methods. In the domains with
compact state spaces, we compare with recent model-free algorithms like BEAR (Kumar et al., 2019),
BRAC (Wu et al., 2019), and CQL (Kumar et al., 2020); as well as MOPO (Yu et al., 2020c) which is a
model-based algorithm. In addition, we also compare with an offline version of SAC (Haarnoja et al.,
2018) (denoted as SAC-off), and behavioral cloning (BC). In high-dimensional image-based domains,
which we use to answer question (3), we compare to LOMPO (Rafailov et al., 2020), which is a
latent space offline model-based RL method that handles image inputs, latent space MBPO (denoted

5

Published at the SSL-RL Workshop at ICLR 2021

Table 1: Results for D4RL datasets. Each number is the normalized score proposed in Fu et al. (2020) of the
policy at the last iteration of training, averaged over 3 random seeds. We take the results of MOPO and CQL
from their original papers and results of the other model-free methods from the D4RL paper (Fu et al., 2020).
We include the performance of behavior cloning (BC) from the offline dataset for comparison. We bold the
highest score across all methods.

Dataset type Environment BC COMBO (ours) MOPO CQL SAC-off BEAR BRAC-p BRAC-v

random halfcheetah 2.1 38.8 35.4 35.4 30.5 25.1 24.1 31.2
random hopper 1.6 17.9 11.7 10.8 11.3 11.4 11.0 12.2
random walker2d 9.8 7.0 13.6 7.0 4.1 7.3 -0.2 1.9
medium halfcheetah 36.1 54.2 42.3 44.4 -4.3 41.7 43.8 46.3
medium hopper 29.0 94.9 28.0 86.6 0.8 52.1 32.7 31.1
medium walker2d 6.6 75.5 17.8 74.5 0.9 59.1 77.5 81.1
medium-replay halfcheetah 38.4 55.1 53.1 46.2 -2.4 38.6 45.4 47.7
medium-replay hopper 11.8 73.1 67.5 48.6 3.5 33.7 0.6 0.6
medium-replay walker2d 11.3 56.0 39.0 32.6 1.9 19.2 -0.3 0.9
med-expert halfcheetah 35.8 90.0 63.3 62.4 1.8 53.4 44.2 41.9
med-expert hopper 111.9 111.1 23.7 111.0 1.6 96.3 1.9 0.8
med-expert walker2d 6.4 96.1 44.6 98.7 -0.1 40.1 76.9 81.6

LMBPO), similar to Janner et al. (2019) which uses the model to generate additional synthetic data,
the fully offline version of SLAC (Lee et al., 2020) (denoted SLAC-off), which only uses a variational
model for state representation purposes, and CQL from image inputs. To our knowledge, CQL,
MOPO, and LOMPO are representative of state-of-the-art model-free and model-based offline RL
methods. Hence we choose them as comparisons to COMBO. For more details of our experimental
set-up, comparisons, and hyperparameters, see Appendix D.

4.1 RESULTS ON THE D4RL BENCHMARK

To answer the question (1), we evaluate COMBO on the OpenAI Gym (Brockman et al., 2016)
domains in the D4RL benchmark (Fu et al., 2020), which contains three environments (halfcheetah,
hopper, and walker2d) and four dataset types (random, medium, medium-replay, and medium-expert).
We include the results in Table 1. The numbers of BC, SAC-off, BEAR, BRAC-P and BRAC-v are
taken from the D4RL paper, while the results for MOPO and CQL are based on their respective
papers (Yu et al., 2020c; Kumar et al., 2020). COMBO achieves the best performance in 9 out of
12 settings while attaining similar performance to the best-performing method in the remaining 3
settings. As noted by Yu et al. (2020c) and Rafailov et al. (2020), model-based offline methods
are generally more performant on datasets that are collected by a wide range of policies and have
diverse state-action distributions (random, medium-replay datasets) while model-free approaches
do better on datasets with narrow distributions (medium, medium-expert datasets). However, in
these results, COMBO outperforms or performs comparably to the best method among existing
model-free and model-based approaches, suggesting that COMBO is robust to different dataset types.
Such results can be explained by COMBO being less conservative compared to prior model-free
offline methods and enjoying lower worst-case suboptimality when the learned model is inaccurate
compared to previous model-based offline approaches as shown in Appendix B. COMBO also does
not rely on the heuristics of uncertainty estimation as in prior model-based offline RL methods, which
also potentially leads to COMBO’s superior performance in various dataset types since uncertainty
estimation is particularly challenging in settings where the learned model is not precise. We also
empirically show that the heuristics of uncertainty estimation used in prior model-based offline RL
methods are inaccurate on the medium datasets in D4RL in Appendix E and might be the major reason
of the poor results of prior model-based approaches on those datasets, which further corroborates the
importance of removing uncertainty estimation in model-based offline RL.

4.2 RESULTS ON TASKS THAT REQUIRE GENERALIZATION

To answer question (2), we use the two environments halfcheetah-jump and ant-angle
constructed in Yu et al. (2020c), which requires the agent to solve a task that is different from what
the behavior policy solved. In both environments, the offline dataset is collected by policies trained
with the original reward functions of halfcheetah and ant, which reward the halfcheetah and
the ant to run as fast as possible. The behavior policies are trained with SAC with 1M steps and we
take the full replay buffer as the offline dataset. Following Yu et al. (2020c), we relabel the rewards in
the offline datasets to reward the halfcheetah to jump as high as possible and the ant to run to the top
corner with a 30 degree angle as fast as possible. Following the same manner, we construct a third

6

Published at the SSL-RL Workshop at ICLR 2021

Table 2: Average returns of halfcheetah-jump and ant-angle and average success rate of
sawyer-door-close that require out-of-distribution generalization. All results are averaged over 3 random
seeds. We include the mean and max undiscounted return / success rate of the episodes in the batch data (under
Batch Mean and Batch Max, respectively) for comparison.

Environment Batch
Mean

Batch
Max

COMBO
(Ours) MOPO CQL

halfcheetah-jump -1022.6 1808.6 5392.7 4016.6 741.1
ant-angle 866.7 2311.9 2764.8 2530.9 2473.4
sawyer-door-close 5% 100% 100% 65.8% 36.7%

task sawyer-door-close based on the environment in Yu et al. (2020b); Rafailov et al. (2020).
In this task, we collect the offline data with SAC policies trained with a sparse reward function that
only gives a reward of 1 when the door is opened by the sawyer robot and 0 otherwise. The offline
dataset is similar to the “medium-expert“ dataset in the D4RL benchmark since we mix equal amounts
of data collected by a fully-trained SAC policy and a partially-trained SAC policy. We relabel the
reward such that it is 1 when the door is closed and 0 otherwise. Therefore, in these datasets, the
offline RL methods must generalize beyond behaviors in the offline data in order to learn the intended
behaviors. We visualize the sawyer-door-close environment in the right image in Figure 2.

We present the results on the three tasks in Table 2. COMBO outperforms MOPO and CQL, two
representative model-based and model-free methods respectively, in the halfcheetah-jump
and sawyer-door-close tasks, and achieves an approximately 8% and 12% improvement over
MOPO and CQL respectively on the ant-angle task. These results validate that COMBO achieves
better generalization by behaving less conservatively than prior model-free offline methods and more
robustly than prior model-based offline methods, as shown theoretically in Appendix B.

4.3 RESULTS ON IMAGE-BASED TASKS

Figure 2: Visualization of our image-based
environments. The observations are 64× 64
and 128 × 128 raw pixel images for the
walker-walk and sawyer-door tasks
respectively. The sawyer-door-close
environment used in our generalization ex-
periments in Section 4.2 also uses the same
environment as sawyer-door.

To answer question (3), we evaluate COMBO on
two image-based environments: the standard walker
(walker-walk) task from the the DeepMind Control
suite Tassa et al. (2018) and a visual door opening envi-
ronment with a Sawyer robotic arm (sawyer-door) as
used in Section 4.2. For the walker task we construct 4
datasets: medium-replay (M-R), medium (M), medium-
expert (M-E), and expert, similar to Fu et al. (2020), each
consisting of 200 trajectories. For sawyer-door task
we use only the medium-expert and the expert datasets,
due to the sparse reward – the agent is rewarded only
when it successfully opens the door. Both environments
are visulized in Figure 2. To extend COMBO to the image-
based setting, we follow Rafailov et al. (2020) and train a
recurrent variational model using the offline data and use
train COMBO in the latent space of this model.

We present results in Table 3. On the walker-walk task, COMBO performs in line with LOMPO
and previous methods. On the more challenging Sawyer task, COMBO matches LOMPO and
achieves 100% success rate on the medium-expert dataset, and substantially outperforms all other
methods on the narrow expert dataset, achieving an average success rate of 96.7%, when all other
model-based and model-free methods fail.

5 RELATED WORK

Offline RL (Ernst et al., 2005; Riedmiller, 2005; Lange et al., 2012; Levine et al., 2020) is the task
of learning policies from a static dataset of past interactions with the environment. It has found
applications in domains including robotic manipulation (Kalashnikov et al., 2018; Mandlekar et al.,
2020; Rafailov et al., 2020; Singh et al., 2020), NLP (Jaques et al., 2019; 2020) and healthcare (Short-
reed et al., 2011; Wang et al., 2018). Similar to interactive RL, both model-free and model-based

7

Published at the SSL-RL Workshop at ICLR 2021

Table 3: Results for vision experiments. For the Walker task each number is the normalized score proposed in
Fu et al. (2020) of the policy at the last iteration of training, averaged over 3 random seeds. For the Sawyer task,
we report success rates over the last 100 evaluation runs of training. For the dataset, M refers to medium, M-R
refers to medium-replay, and M-E refers to medium expert.

Dataset Environment COMBO
(Ours)

LOMPO LMBPO SLAC
-Off

CQL

M-R walker walk 69.2 66.9 59.8 45.1 15.6
M walker walk 57.7 60.2 61.7 41.5 38.9
M-E walker walk 76.4 78.9 47.3 34.9 36.3
expert walker walk 61.1 55.6 13.2 12.6 43.3
M-E sawyer-door 100.0% 100.0% 0.0% 0.0% 0.0%
expert sawyer-door 96.7% 0.0% 0.0% 0.0% 0.0%

algorithms have been studied for offline RL, with explicit or implicit regularization of the learning
algorithm playing a major role.

Model-free offline RL. Prior model-free offline RL algorithms have been designed to regularize
the learned policy to be “close“ to the behavioral policy either implicitly via regularized variants
of importance sampling based algorithms (Precup et al., 2001; Sutton et al., 2016; Liu et al., 2019;
Swaminathan & Joachims, 2015; Nachum et al., 2019), offline actor-critic methods (Siegel et al., 2020;
Peng et al., 2019), applying uncertainty quantification to the predictions of the Q-values (Agarwal
et al., 2020; Kumar et al., 2019; Wu et al., 2019; Levine et al., 2020), and learning conservative
Q-values (Kumar et al., 2020) or explicitly measured by direct state or action constraints Fujimoto
et al. (2018a); Liu et al. (2020), KL divergence (Jaques et al., 2019; Wu et al., 2019; Zhou et al.,
2020), Wasserstein distance, and MMD (Kumar et al., 2019). Different from these works, COMBO
uses both the offline dataset as well as simulated data from a learned dynamics model. This allows
COMBO to behave less conservatively by optimizing a tighter lower bound of policy performance,
as well as gain broader generalization when the model bias is small, as demonstrated through our
theoretical analysis and experiments.

Model-based offline RL. Model-based offline RL methods (Finn & Levine, 2017; Ebert et al., 2018;
Kahn et al., 2018; Kidambi et al., 2020; Yu et al., 2020c; Matsushima et al., 2020; Argenson & Dulac-
Arnold, 2020; Swazinna et al., 2020; Rafailov et al., 2020; Lee et al., 2021) provide an alternative
approach to policy learning that involves the learning of a dynamics model using techniques from
supervised learning and generative modeling. Such methods however rely either on uncertainty
quantification of the learned dynamics model which can be difficult for deep network models Ovadia
et al. (2019), or on directly constraining the policy towards the behavioral policy similar to model-free
algorithms Matsushima et al. (2020). In contrast, COMBO conservatively estimates the value function
by penalizing it in out-of-support states generated through model rollouts. This allows COMBO to
retain all benefits of model-based algorithms such as broad generalization, without the constraints of
explicit policy regularization or uncertainty quantification.

6 CONCLUSION

In the paper, we present conservative offline model-based policy optimization (COMBO), a model-
based offline RL algorithm that penalizes the Q-values evaluated on out-of-support state-action pairs.
In particular, COMBO removes the need of uncertainty quantification as widely used in previous
model-based offline RL works (Kidambi et al., 2020; Yu et al., 2020c), which can be challenging and
unreliable with deep neural networks (Ovadia et al., 2019). Theoretically, we show that COMBO
achieves a tighter lower-bound on the true policy value compared to prior model-free offline RL
methods (Kumar et al., 2020) and guarantees a safe policy improvement. In our empirical study,
COMBO outperforms prior model-based and model-free offline RL methods in 9 out of 12 datasets in
the standard D4RL benchmark and attains comparable performance in rest of 3 datasets. COMBO also
achieves the best generalization performances in 3 tasks that require adaptation to unseen behaviors.
Finally, COMBO is able scale to vision-based tasks and outperforms or obtain comparable results in
vision-based locomotion and robotic manipulation tasks. Despite the advantages of COMBO, there
are few challenges left such as the lack of a fully offline hyperparameter tuning mechanism and an
automatically tuned f that takes the model error into account. We leave them for future work.

8

Published at the SSL-RL Workshop at ICLR 2021

REFERENCES

Alekh Agarwal, Nan Jiang, and Sham M Kakade. Reinforcement learning: Theory and algorithms.
CS Dept., UW Seattle, Seattle, WA, USA, Tech. Rep, 2019.

Rishabh Agarwal, Dale Schuurmans, and Mohammad Norouzi. An optimistic perspective on offline
reinforcement learning. In International Conference on Machine Learning, pp. 104–114. PMLR,
2020.

Arthur Argenson and Gabriel Dulac-Arnold. Model-based offline planning. arXiv preprint
arXiv:2008.05556, 2020.

Kamyar Azizzadenesheli, Emma Brunskill, and Animashree Anandkumar. Efficient exploration
through bayesian deep q-networks. In ITA, pp. 1–9. IEEE, 2018.

Dimitri P. Bertsekas and John N. Tsitsiklis. Neuro-Dynamic Programming. Athena Scientific,
Belmont, MA, 1996.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

J. Chen and Nan Jiang. Information-theoretic considerations in batch reinforcement learning. ArXiv,
abs/1905.00360, 2019.

Thomas Degris, Martha White, and Richard S Sutton. Off-policy actor-critic. arXiv preprint
arXiv:1205.4839, 2012.

Frederik Ebert, Chelsea Finn, Sudeep Dasari, Annie Xie, Alex Lee, and Sergey Levine. Visual
foresight: Model-based deep reinforcement learning for vision-based robotic control. arXiv
preprint arXiv:1812.00568, 2018.

Damien Ernst, Pierre Geurts, and Louis Wehenkel. Tree-based batch mode reinforcement learning.
Journal of Machine Learning Research, 6:503–556, 2005.

Chelsea Finn and Sergey Levine. Deep visual foresight for planning robot motion. In 2017 IEEE
International Conference on Robotics and Automation (ICRA), pp. 2786–2793. IEEE, 2017.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning, 2020.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. arXiv preprint arXiv:1812.02900, 2018a.

Scott Fujimoto, Herke Van Hoof, and David Meger. Addressing function approximation error in
actor-critic methods. arXiv preprint arXiv:1802.09477, 2018b.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy maxi-
mum entropy deep reinforcement learning with a stochastic actor. arXiv preprint arXiv:1801.01290,
2018.

Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and James
Davidson. International conference on machine learning. In International Conference on Machine
Learning, 2019.

Thomas Jaksch, Ronald Ortner, and Peter Auer. Near-optimal regret bounds for reinforcement
learning. Journal of Machine Learning Research, 11(4), 2010.

Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model: Model-based
policy optimization. In Advances in Neural Information Processing Systems, pp. 12498–12509,
2019.

Natasha Jaques, Asma Ghandeharioun, Judy Hanwen Shen, Craig Ferguson, Agata Lapedriza, Noah
Jones, Shixiang Gu, and Rosalind Picard. Way off-policy batch deep reinforcement learning of
implicit human preferences in dialog. arXiv preprint arXiv:1907.00456, 2019.

9

Published at the SSL-RL Workshop at ICLR 2021

Natasha Jaques, Judy Hanwen Shen, Asma Ghandeharioun, Craig Ferguson, Agata Lapedriza,
Noah Jones, Shixiang Shane Gu, and Rosalind Picard. Human-centric dialog training via offline
reinforcement learning. arXiv preprint arXiv:2010.05848, 2020.

Gregory Kahn, Adam Villaflor, Pieter Abbeel, and Sergey Levine. Composable action-conditioned
predictors: Flexible off-policy learning for robot navigation. In Conference on Robot Learning, pp.
806–816. PMLR, 2018.

Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander Herzog, Eric Jang, Deirdre
Quillen, Ethan Holly, Mrinal Kalakrishnan, Vincent Vanhoucke, et al. Scalable deep reinforcement
learning for vision-based robotic manipulation. In Conference on Robot Learning, pp. 651–673.
PMLR, 2018.

Rahul Kidambi, Aravind Rajeswaran, Praneeth Netrapalli, and Thorsten Joachims. Morel: Model-
based offline reinforcement learning. arXiv preprint arXiv:2005.05951, 2020.

Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy
q-learning via bootstrapping error reduction. In Advances in Neural Information Processing
Systems, pp. 11761–11771, 2019.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. arXiv preprint arXiv:2006.04779, 2020.

Sascha Lange, Thomas Gabel, and Martin A. Riedmiller. Batch reinforcement learning. In Reinforce-
ment Learning, volume 12. Springer, 2012.

Romain Laroche, Paul Trichelair, and Remi Tachet Des Combes. Safe policy improvement with
baseline bootstrapping. In International Conference on Machine Learning, pp. 3652–3661. PMLR,
2019.

Alex X. Lee, Anusha Nagabandi, Pieter Abbeel, and Sergey Levine. Stochastic latent actor-critic:
Deep reinforcement learning with a latent variable model. In Advances in Neural Information
Processing Systems, 2020.

Byung-Jun Lee, Jongmin Lee, and Kee-Eung Kim. Representation balancing offline model-based
reinforcement learning. In International Conference on Learning Representations, 2021. URL
https://openreview.net/forum?id=QpNz8r_Ri2Y.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial,
review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Yao Liu, Adith Swaminathan, Alekh Agarwal, and Emma Brunskill. Off-policy policy gradient with
state distribution correction. CoRR, abs/1904.08473, 2019.

Yao Liu, Adith Swaminathan, Alekh Agarwal, and Emma Brunskill. Provably good batch reinforce-
ment learning without great exploration. arXiv preprint arXiv:2007.08202, 2020.

Kendall Lowrey, Aravind Rajeswaran, Sham Kakade, Emanuel Todorov, and Igor Mordatch. Plan On-
line, Learn Offline: Efficient Learning and Exploration via Model-Based Control. In International
Conference on Learning Representations (ICLR), 2019.

Ajay Mandlekar, Fabio Ramos, Byron Boots, Silvio Savarese, Li Fei-Fei, Animesh Garg, and Dieter
Fox. Iris: Implicit reinforcement without interaction at scale for learning control from offline robot
manipulation data. In 2020 IEEE International Conference on Robotics and Automation (ICRA),
pp. 4414–4420. IEEE, 2020.

Tatsuya Matsushima, Hiroki Furuta, Yutaka Matsuo, Ofir Nachum, and Shixiang Gu. Deployment-
efficient reinforcement learning via model-based offline optimization. arXiv preprint
arXiv:2006.03647, 2020.

Rémi Munos and Csaba Szepesvari. Finite-time bounds for fitted value iteration. J. Mach. Learn.
Res., 9:815–857, 2008.

10

https://openreview.net/forum?id=QpNz8r_Ri2Y

Published at the SSL-RL Workshop at ICLR 2021

Ofir Nachum, Bo Dai, Ilya Kostrikov, Yinlam Chow, Lihong Li, and Dale Schuurmans. Algaedice:
Policy gradient from arbitrary experience. arXiv preprint arXiv:1912.02074, 2019.

Ian Osband and Benjamin Van Roy. Why is posterior sampling better than optimism for reinforcement
learning? In International Conference on Machine Learning, pp. 2701–2710. PMLR, 2017.

Ian Osband, John Aslanides, and Albin Cassirer. Randomized prior functions for deep reinforcement
learning. CoRR, abs/1806.03335, 2018.

Yaniv Ovadia, Emily Fertig, Jie Ren, Zachary Nado, David Sculley, Sebastian Nowozin, Joshua V
Dillon, Balaji Lakshminarayanan, and Jasper Snoek. Can you trust your model’s uncertainty?
evaluating predictive uncertainty under dataset shift. arXiv preprint arXiv:1906.02530, 2019.

Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression:
Simple and scalable off-policy reinforcement learning. arXiv preprint arXiv:1910.00177, 2019.

Marek Petrik, Yinlam Chow, and Mohammad Ghavamzadeh. Safe policy improvement by minimizing
robust baseline regret. arXiv preprint arXiv:1607.03842, 2016.

Doina Precup, Richard S Sutton, and Sanjoy Dasgupta. Off-policy temporal-difference learning with
function approximation. In ICML, pp. 417–424, 2001.

Rafael Rafailov, Tianhe Yu, A. Rajeswaran, and Chelsea Finn. Offline reinforcement learning from
images with latent space models. ArXiv, abs/2012.11547, 2020.

Martin Riedmiller. Neural fitted q iteration–first experiences with a data efficient neural reinforcement
learning method. In European Conference on Machine Learning, pp. 317–328. Springer, 2005.

Stephane Ross and Drew Bagnell. Agnostic system identification for model-based reinforcement
learning. In ICML, 2012.

Susan M Shortreed, Eric Laber, Daniel J Lizotte, T Scott Stroup, Joelle Pineau, and Susan A Murphy.
Informing sequential clinical decision-making through reinforcement learning: an empirical study.
Machine learning, 84(1-2):109–136, 2011.

Noah Y Siegel, Jost Tobias Springenberg, Felix Berkenkamp, Abbas Abdolmaleki, Michael Neunert,
Thomas Lampe, Roland Hafner, and Martin Riedmiller. Keep doing what worked: Behavioral
modelling priors for offline reinforcement learning. arXiv preprint arXiv:2002.08396, 2020.

Avi Singh, Albert Yu, Jonathan Yang, Jesse Zhang, Aviral Kumar, and Sergey Levine. Cog:
Connecting new skills to past experience with offline reinforcement learning. arXiv preprint
arXiv:2010.14500, 2020.

R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT Press, Cambridge,
MA, 1998.

Richard S Sutton. Dyna, an integrated architecture for learning, planning, and reacting. ACM Sigart
Bulletin, 2(4):160–163, 1991.

Richard S Sutton, A Rupam Mahmood, and Martha White. An emphatic approach to the problem
of off-policy temporal-difference learning. The Journal of Machine Learning Research, 17(1):
2603–2631, 2016.

Adith Swaminathan and Thorsten Joachims. Batch learning from logged bandit feedback through
counterfactual risk minimization. J. Mach. Learn. Res, 16:1731–1755, 2015.

Phillip Swazinna, Steffen Udluft, and Thomas Runkler. Overcoming model bias for robust offline
deep reinforcement learning. arXiv preprint arXiv:2008.05533, 2020.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Budden,
Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind control suite. arXiv preprint
arXiv:1801.00690, 2018.

11

Published at the SSL-RL Workshop at ICLR 2021

L. Wang, Wei Zhang, Xiaofeng He, and H. Zha. Supervised reinforcement learning with recurrent
neural network for dynamic treatment recommendation. Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, 2018.

Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement learning.
arXiv preprint arXiv:1911.11361, 2019.

F. Yu, H. Chen, X. Wang, Wenqi Xian, Yingying Chen, Fangchen Liu, V. Madhavan, and Trevor
Darrell. Bdd100k: A diverse driving dataset for heterogeneous multitask learning. 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2633–2642, 2020a.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey
Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning.
In Conference on Robot Learning, pp. 1094–1100. PMLR, 2020b.

Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Zou, Sergey Levine, Chelsea Finn, and
Tengyu Ma. Mopo: Model-based offline policy optimization. arXiv preprint arXiv:2005.13239,
2020c.

Wenxuan Zhou, Sujay Bajracharya, and David Held. Plas: Latent action space for offline reinforce-
ment learning. arXiv preprint arXiv:2011.07213, 2020.

12

Published at the SSL-RL Workshop at ICLR 2021

Algorithm 1 COMBO: Conservative Model Based Offline Policy Optimization

Require: Offline dataset D, rollout distribution µ(·|s), learned dynamics model T̂θ , initialized policy and critic
πφ and Qψ .

1: Train the probabilistic dynamics model T̂θ(s′, r|s,a) = N (µθ(s,a),Σθ(s,a)) on D.
2: Initialize the replay buffer Dmodel ← ∅.
3: for i = 1, 2, 3, · · · , do
4: Perform model rollouts by drawing samples from µ and T̂θ starting from states in D. Add model rollouts

to Dmodel.

5: Conservatively evaluate current policy by repeatedly solving eq. 4 to obtain Q̂
πiφ
ψ using data sampled from

D ∪Dmodel.
6: Improve policy under state marginal of df by solving eq. 5 to obtain πi+1

φ .
7: end for

Appendices
A ALGORITHM OVERVIEW

We present the COMBO algorithm in Algorithm 1.

B THEORETICAL ANALYSIS OF COMBO

In this section, we theoretically analyze our method and show that it optimizes a lower-bound on the
expected return of the learned policy. This lower bound is close to the actual policy performance
(modulo sampling error) when the policy’s state-action marginal distribution is in support of the
state-action marginal of the behavior policy and conservatively estimates the performance of a
policy otherwise. By optimizing the policy against this lower bound, COMBO guarantees policy
improvement beyond the behavior policy. Furthermore, the lower-bound of the expected return in the
case of COMBO is a tighter lower bound compared to model-free counterparts.

B.1 COMBO OPTIMIZES A LOWER-BOUND

We first show that training the Q-function using Equation 4 obtains a Q-function such that the expected
off-policy policy improvement objective (Degris et al., 2012) computed using this learned Q-function
lower-bounds its actual value. We will reuse notation for df and d from Section 2 and Section 3.
Assuming that the Q-function is represented as a table, the Q-function found by approximate dynamic
programming in iteration k, can be obtained by differentiating Equation 4 with respect to Qk (see
Appendix C for details):

Q̂k+1(s,a) = (B̂πQk)(s,a)− β ρ(s,a)− d(s,a)

df (s,a)
. (6)

Equation 6 effectively applies a penalty that depends on the three distributions appearing in the
COMBO critic training objective (Equation 4), of which ρ and df are free variables that we choose in
practice as discussed in Section 3. Before stating our main result, we will first show that the penalty
term in equation 6 is positive in expectation. Such a positive penalty is important to combat any
overestimation that may arise as a result of using B̂.

Lemma 1 (Interpolation Lemma). For any f ∈ [0, 1], and any given ρ(s,a) ∈ ∆|S||A|, let df be
an f-interpolation of ρ and D, i.e., df (s,a) := fd(s,a) + (1− f)ρ(s,a). For a given iteration k of
Equation 6, define the expected penalty under ρ(s,a) as:

ν(ρ, f) := Eρ
[
ρ(s,a)− d(s,a)

df (s,a)

]
.

Then ν(ρ, f) satisfies, (1) ν(ρ, f) ≥ 0, ∀ρ, f , (2) ν(ρ, f) is monotonically increasing in f for a
fixed ρ, and (3) ν(ρ, f) = 0 iff ∀ s,a, ρ(s,a) = d(s,a) or f = 0.

13

Published at the SSL-RL Workshop at ICLR 2021

The proof can be found in Appendix C.1. Lemma 1 characterizes ρ(s,a) for which COMBO
(Equation 4) induces a conservative penalty. COMBO sets ρ(s) = dπ

M̂
(s) and uses ρ(a|s) = π(a|s),

and hence each step of update (Equation 6) penalizes the Q-function making it more conservative.
The total amount of conservatism induced in the Q-function, given by ν(ρ, f), is controlled by the
choice of f . Based on result (2) in Lemma 1, we note that by controlling the amount of real data, f ,
we can control the amount of conservatism: f = 1 induces the maximum conservatism, and f = 0
induces no conservatism at all.

Next, we will show that the asymptotic Q-function learned by COMBO lower-bounds the actual
Q-function of any policy π with high probability for a large enough β ≥ 0. LetM represent the
empirical MDP which uses the empirical transition model based on raw data counts. The Bellman
backups over the dataset distribution df in equation 4 can be interpreted as an f−interpolation of
the backup operator in the empirical MDP (denoted by BπM) and the backup operator under the

learned model M̂ (denoted by Bπ
M̂

). The empirical backup operator suffers from sampling error, but
is unbiased in expectation, whereas the model backup operator induces bias but no sampling error.
We assume that all of these backups enjoy concentration properties with concentration coefficient
Cr,T,δ, dependent on the desired confidence value δ (details in Appendix C.2). This is a standard
assumption in literature (Laroche et al., 2019). Now, we state our main results below.
Theorem 2 (Asymptotic lower-bound). Let Pπ denote the Hadamard product of the dynamics P
and a given policy π in the actual MDP and let Sπ := (I − γPπ)−1cS , where cS is a suitably
chosen positive constant. Let D denote the total-variation divergence between two probability
distributions. For any π(a|s), the Q-function obtained by recursively applying Equation 6, with
B̂π = fBπM + (1− f)Bπ

M̂
, with probability at least 1− δ, results in Q̂π that satisfies:

∀s,a, Q̂π(s,a) ≤ Qπ(s,a)− β · εc + fεs + (1− f)εm,

where, εs, εc and εm are given by:

εc(s,a) :=

[
1

cS
Sπ
[
ρ− d
df

]]
(s,a),

εm(s,a) :=

[
Sπ
[
|R−RM̂|+

2γRmax

1− γ
D(P, PM̂)

]]
(s,a),

εs(s,a) :=

[
Sπ

[
Cr,T,δRmax

(1− γ)
√
|D|

]]
(s,a).

The proof for Theorem 2 can be found in Appendix C.2.

Corollary 3. For a sufficiently large β, we have that Es∼µ0,a∼π(·|s)[Q̂
π(s,a)] ≤

Es∼µ0,a∼π(·|s)[Q
π(s,a)], where µ0(s) is the initial state distribution. Furthermore, when εs is

small, such as in the large sample regime; or when the model bias εm is small, a small β is sufficient
along with an appropriate choice of f .

Corollary 3 directly appeals to Theorem 2 and Lemma 1. Theorem 2 further implies that for large
β, deviating away from the behavior policy is expected to lead to smaller values. Finally, while
Kumar et al. (2020) also analyze how regularized value function training can provide lower bounds
on the value function at each state in the dataset (Kumar et al., 2020) (Theorem 3.1-3.2), our result
goes further, showing that we can handle unseen states that were not seen in the dataset by virtue
of using a learned dynamics model, and more importantly, attains a tighter lower bound: COMBO
does not underestimate the value function at every state in the dataset like Kumar et al. (2020), but
only lower-bounds the expected value function under the initial state distribution as discussed in
Corollary 3. We elaborate on how COMBO is less conservative as it attains tighter lower bounds in
Remark 8 (Appendix C.2).

B.2 SAFE POLICY IMPROVEMENT GUARANTEES

Now that we have shown that learned Q-function penalizes deviation from the behavior policy, we
provide policy improvement guarantees for the COMBO algorithm. Formally, Theorem 4 discuss
safe improvement guarantees over the behavior policy. building on prior work (Petrik et al., 2016;
Laroche et al., 2019; Kumar et al., 2020).

14

Published at the SSL-RL Workshop at ICLR 2021

Theorem 4 (ζ-safe policy improvement). Let π̂out(a|s) be the policy obtained by COMBO. Then, the
policy π̂out(a|s) is a ζ-safe policy improvement over πβ in the actual MDPM, i.e., J(π̂out,M) ≥
J(πβ ,M)− ζ, with probability at least 1− δ, where ζ is given by,

ζ = O
(

γf

(1− γ)2

)[
E
s∼dπ̂out

M

[√
|A|
|D(s)|

DCQL(π̂out, πβ)

]]
︸ ︷︷ ︸

:= (1)

+O
(
γ(1− f)

(1− γ)2

)
DTV(M,M̂)︸ ︷︷ ︸

:= (2)

−β ν(ρπ, f)− ν(ρβ , f)

(1− γ)︸ ︷︷ ︸
:= (3)

.

The complete statement (with constants and terms that grow smaller than quadratic in the horizon)
and proof for Theorem 4 is provided in Appendix C.3. DCQL denotes a notion of probabilistic distance
between policies (Kumar et al., 2020) which we discuss further in Appendix C.3. The expression for
ζ in Theorem 4 consists of three terms: term (1) captures the decrease in the policy performance due
to limited data, and decays as the size of D increases. The second term (2) captures the suboptimality
induced by the bias in the learned model. Finally, as we show in Appendix C.3, the third term (3) is
equivalent to the improvement in policy performance as a result of running COMBO in the empirical
and model MDPs. Since the learned model is trained on the dataset D with transitions generated
from the behavior policy πβ , the marginal distribution ρβ(s,a) is expected to be closer to d(s,a)
for πβ as compared to the counterpart for the learned policy, ρπ. Thus, term (3) is expected to be
positive in practice, and in such cases, an appropriate (large) choice of β will make term (3) large
enough to counteract terms (1) and (2) that reduce policy performance. We discuss this elaborately in
Appendix C.3 (Remark 11).

Further note that in contrast to Theorem 3.6 in Kumar et al. (2020), note that our result indicates the
sampling error (term (1)) is significantly reduced (multiplied by a fraction f) when a near-accurate
model is used to augment data for training the Q-function, and in contrast to prior model-based
offline RL results Kidambi et al. (2020); Yu et al. (2020c), our bound implies that COMBO will incur
lower worst-case suboptimality in cases when the learned dynamics model is inaccurate by biasing
the backups towards the empirical MDP via f . To summarize, through an appropriate choice of f ,
Theorem 4 guarantees safe improvement over the behavior policy without requiring access to an
oracle uncertainty estimation algorithm.

C PROOFS FROM APPENDIX B

In this section, we provide proofs for theoretical results in Appendix B. Before the proofs, we note
that all statements are proven in the case of finite state space (i.e., |S| <∞) and finite action space
(i.e., |A| <∞) we define some commonly appearing notation symbols appearing in the proof:

• PM and rM (or P and r with no subscript for notational simplicity) denote the dynamics
and reward function of the actual MDPM

• PM and rM denote the dynamics and reward of the empirical MDPM generated from the
transitions in the dataset

• PM̂ and rM̂ denote the dynamics and reward of the MDP induced by the learned model M̂
We also assume that whenever the cardinality of a particular state or state-action pair in the offline
dataset D, denoted by |D(s,a)|, appears in the denominator, we assume it is non-zero. For any
non-existent (s,a) /∈ D, we can simply set |D(s,a)| to be a small value < 1, which prevents any
bound from producing trivially∞ values.

C.1 PROOF OF LEMMA 1

Lemma 5 (Lemma 1 restated). For any f ∈ [0, 1], and any given ρ(s,a) ∈ ∆|S||A|, let df be an
f-interpolation of ρ and D, i.e., df (s,a) := fd(s,a) + (1 − f)ρ(s,a). For a given iteration k of
Equation 6, define the expected penalty under ρ(s,a) as:

ν(ρ, f) := Es,a∼ρ(s,a)

[
ρ(s,a)− d(s,a)

df (s,a)

]
.

15

Published at the SSL-RL Workshop at ICLR 2021

Then ν(ρ, f) satisfies, (1) ν(ρ, f) ≥ 0, ∀ρ, f , (2) ν(ρ, f) is monotonically increasing in f for a
fixed ρ, and (3) ν(ρ, f) = 0 iff ∀ s,a, ρ(s,a) = d(s,a) or f = 0.

Proof. To prove this lemma, we use algebraic manipulation on the expression for quantity ν(ρ, f)
and show that it is indeed positive and monotonically increasing in f ∈ [0, 1].

ν(ρ, f) =
∑
s,a

ρ(s,a)

(
ρ(s,a)− d(s,a)

fd(s,a) + (1− f)ρ(s,a)

)
=
∑
s,a

ρ(s,a)

(
ρ(s,a)− d(s,a)

ρ(s,a) + f(d(s,a)− ρ(s,a))

)
(7)

=⇒ dν(ρ, f)

df
=
∑
s,a

ρ(s,a) (ρ(s,a)− d(s,a))
2 ·
(

1

(ρ(s,a) + f(d(s,a)− ρ(s,a))

)2

≥ 0 ∀f ∈ [0, 1].

(8)

Since the derivative of ν(ρ, f) with respect to f is always positive, it is an increasing function of f
for a fixed ρ, and this proves the second part (2) of the Lemma. Using this property, we can show the
part (1) of the Lemma as follows:

∀f ∈ (0, 1], ν(ρ, f) ≥ ν(ρ, 0) =
∑
s,a

ρ(s,a)
ρ(s,a)− d(s,a)

ρ(s,a)
=
∑
s,a

(ρ(s,a)− d(s,a)) = 1−1 = 0.

(9)
Finally, to prove the third part (3) of this Lemma, note that when f = 0, ν(ρ, f) = 0 (as shown
above), and similarly by setting ρ(s,a) = d(s,a) note that we obtain ν(ρ, f) = 0. To prove the only
if side of (3), assume that f 6= 0 and ρ(s,a) 6= d(s,a) and we will show that in this case ν(ρ, f) 6= 0.
When d(s,a) 6= ρ(s,a), the derivative dν(ρ,f)

df > 0 (i.e., strictly positive) and hence the function
ν(ρ, f) is a strictly increasing function of f . Thus, in this case, ν(ρ, f) > 0 = ν(ρ, 0) ∀f > 0. Thus
we have shown that if ρ(s,a) 6= d(s,a) and f > 0, ν(ρ, f) 6= 0, which completes our proof for the
only if side of (3).

C.2 PROOF OF THEOREM 2 AND COROLLARY 3

Before proving this theorem, we provide a bound on the Bellman backup in the empirical MDP,
BM. To do so, we formally define the standard concentration properties of the reward and transition
dynamics in the empirical MDP,M, that we assume so as to prove Theorem 1. Following prior
work (Osband & Van Roy, 2017; Jaksch et al., 2010; Kumar et al., 2020), we assume:

Assumption A1. ∀ s,a ∈M, the following relationships hold with high probability, ≥ 1− δ

|rM(s,a)− r(s,a)| ≤ Cr,δ√
|D(s,a)|

, ||PM(s′|s,a)− P (s′|s,a)||1 ≤
CP,δ√
|D(s,a)|

.

Under this assumption and assuming that the reward function in the MDP, r(s,a) is bounded, as
|r(s,a)| ≤ Rmax, we can bound the difference between the empirical Bellman operator, BM and the
actual MDP, BM,∣∣∣(BMπQ̂k

)
−
(
BπMQ̂k

)∣∣∣
=

∣∣∣∣∣(rM(s,a)− rM(s,a)) + γ
∑
s′

(PM(s′|s,a)− PM(s′|s,a))Eπ(a′|s′)

[
Q̂k(s′,a′)

]∣∣∣∣∣
≤ |rM(s,a)− rM(s,a)|+ γ

∣∣∣∣∣∑
s′

(PM(s′|s,a)− PM(s′|s,a))Eπ(a′|s′)

[
Q̂k(s′,a′)

]∣∣∣∣∣
≤ Cr,δ + γCP,δ2Rmax/(1− γ)√

|D(s,a)|
.

Thus the overestimation due to sampling error in the empirical MDP,M is bounded as a function of
a bigger constant, Cr,P,δ that can be expressed as a function of Cr,δ and CP,δ , and depends on δ via a

16

Published at the SSL-RL Workshop at ICLR 2021

√
log(1/δ) dependency. For the purposes of proving Theorem 2, we assume that:

∀s,a,
∣∣∣(BMπQ̂k

)
−
(
BπMQ̂k

)∣∣∣ ≤ Cr,T,δRmax

(1− γ)
√
|D(s,a)|

. (10)

Next, we provide a bound on the error between the bellman backup induced by the learned dynamics
model and the learned reward, BM̂, and the actual Bellman backup, BM. To do so, we note that:∣∣∣(BM̂πQ̂k

)
−
(
BπMQ̂k

)∣∣∣ =
∣∣∣ (rM̂(s,a)− rM(s,a)

)
+γ
∑
s′

(
PM̂(s′|s,a)− PM(s′|s,a)

)
Eπ(a′|s′)

[
Q̂k(s′,a′)

]∣∣∣∣∣
≤ |rM̂(s,a)− rM(s,a)|+ γ

2Rmax

1− γ
D(P, PM̂), (11)

where D(P, PM̂) is the total-variation divergence between the learned dynamics model and the
actual MDP. Now, we will use Equations 10 and 11 to prove Theorem 2. We restate Theorem 2 for
convenience.

Theorem 6 (Theorem 2 restated). Let Pπ denote the Hadamard product of the dynamics P and a
given policy π in the actual MDP and let Sπ := (I − γPπ)−1. Let D denote the total-variation
divergence between two probability distributions. For any π(a|s), the Q-function obtained by
recursively applying Equation 6, with B̂π = fBπM + (1 − f)Bπ

M̂
, with probability at least 1 − δ,

results in Q̂π that satisfies:

∀s,a, Q̂π(s,a) ≤ Qπ(s,a)− β ·
[
Sπ
[
ρ− d
df

]
(s,a) + f

[
Sπ

[
Cr,T,δRmax

(1− γ)
√
|D|

]]
(s,a)

+ (1− f)

[
Sπ
[
|r − rM̂|+

2γRmax

1− γ
D(P, PM̂)

]]
(s,a).

Proof. We first note that the Bellman backup B̂π induces the following Q-function iterates as per
Equation 6,

Q̂k+1(s,a) =
(
B̂πQ̂k

)
(s,a)− β ρ(s,a)− d(s,a)

df (s,a)

= f
(
BπMQ̂

k
)

(s,a) + (1− f)
(
BπM̂Q̂

k
)

(s,a)− β ρ(s,a)− d(s,a)

df (s,a)

=
(
BπQ̂k

)
(s,a)− β ρ(s,a)− d(s,a)

df (s,a)
+ (1− f)

(
BM̂

πQ̂k − BπQ̂k
)

(s,a)

+ f
(
BM

πQ̂k − BπQ̂k
)

(s,a)

∀s,a, Q̂k+1 ≤
(
BπQ̂k

)
− β ρ− d

df
+ (1− f)

[
|rM̂ − rM|+

2γRmax

1− γ
D(P, PM̂)

]
+ f

Cr,T,δRmax

(1− γ)
√
|D|

Since the RHS upper bounds the Q-function pointwise for each (s,a), the fixed point of the Bellman
iteration process will be pointwise smaller than the fixed point of the Q-function found by solving for
the RHS via equality. Thus, we get that

Q̂π(s,a) ≤ SπrM︸ ︷︷ ︸
=Qπ(s,a)

−β
[
Sπ
[
ρ− d
df

]]
(s,a)+ f

[
Sπ

[
Cr,T,δRmax

(1− γ)
√
|D|

]]
(s,a)

+ (1− f)

[
Sπ
[
|r − rM̂|+

2γRmax

1− γ
D(P, PM̂)

]]
(s,a),

which completes the proof of this theorem.

17

Published at the SSL-RL Workshop at ICLR 2021

Next, we use the result and proof technique from Theorem 2 to prove Corollary 3, that in expectation
under the initial state-distribution, the expected Q-value is indeed a lower-bound.
Corollary 7 (Corollary 3 restated). For a sufficiently large β, we have a lower-bound that
Es∼µ0,a∼π(·|s)[Q̂

π(s,a)] ≤ Es∼µ0,a∼π(·|s)[Q
π(s,a)], where µ0(s) is the initial state distribution.

Furthermore, when εs is small, such as in the large sample regime; or when the model bias εm is
small, a small β is sufficient along with an appropriate choice of f .

Proof. To prove this corollary, we note a slightly different variant of Theorem 2. To observe this, we
will deviate from the proof of Theorem 2 slightly and will aim to express the inequality using BM̂,
the Bellman operator defined by the learned model and the reward function. Denoting (I − γPM̂)−1

as Sπ
M̂

, doing this will intuitively allow us to obtain β (µ(s)π(a|s))T
(
Sπ
M̂

[
ρ−d
df

])
(s,a) as the

conservative penalty which can be controlled by choosing β appropriately so as to nullify the
potential overestimation caused due to other terms. Formally,

Q̂k+1(s,a) =
(
B̂πQ̂k

)
(s,a)− β ρ(s,a)− d(s,a)

df (s,a)

=
(
BπM̂Q̂

k
)

(s,a)− β ρ(s,a)− d(s,a)

df (s,a)
+ f

(
BπM − B

π
M̂Q̂

k
)

(s,a)︸ ︷︷ ︸
:=∆(s,a)

By controlling ∆(s,a) using the pointwise triangle inequality:

∀s,a,
∣∣∣BπMQ̂k − BπM̂Q̂k∣∣∣ ≤ ∣∣∣BπQ̂k − BπM̂Q̂k∣∣∣+

∣∣∣BπMQ̂k − BπQ̂k∣∣∣ , (12)

and then iterating the backup Bπ
M̂

to its fixed point and finally noting that ρ(s,a) =(
(µ · π)TSπ

M̂

)
(s,a), we obtain:

Eµ,π[Q̂π(s,a)] ≤ Eµ,π[QπM̂(s,a)]− β Eρ(s,a)

[
ρ(s,a)− d(s,a)

df (s,a)

]
+ terms independent of β.

(13)
The terms marked as “terms independent of β” correspond to the additional positive error terms
obtained by iterating

∣∣∣BπQ̂k − BπM̂Q̂k∣∣∣ and
∣∣∣BπMQ̂k − BπQ̂k∣∣∣, which can be bounded similar to the

proof of Theorem 2 above. Now by replacing the model Q-function, Eµ,π[Qπ
M̂

(s,a)] with the actual
Q-function, Eµ,π[Qπ(s,a)] and adding an error term corresponding to model error to the bound, we
obtain that:

Eµ,π[Q̂π(s,a)] ≤ Eµ,π[Qπ(s,a)] + terms independent of β − β Eρ(s,a)

[
ρ(s,a)− d(s,a)

df (s,a)

]
︸ ︷︷ ︸

=ν(ρ,f)>0

.

(14)
Hence, by choosing β large enough, we obtain the desired lower bound guarantee.

Remark 8 (COMBO attains a tighter lower-bound than CQL). Before concluding this section,
we discuss how the bound obtained by COMBO (Equation 14) is tighter than CQL. CQL learns
a Q-function such that the value of the policy under the resulting Q-function lower-bounds the
true value function at each state s ∈ D individually (in the absence of no sampling error), i.e.,
∀s ∈ D, V̂ πCQL(s) ≤ V π(s), whereas the bound in COMBO is only valid in expectation of the value
function over the initial state distribution, i.e., Es∼µ0(s)[V̂

π
COMBO(s)] ≤ Es∼µ0(s)[V

π(s)], and the
value function at a given state may not be a lower-bound. For instance, COMBO can overestimate
the value of a state more frequent in the dataset distribution d(s,a) but not so frequent in the ρ(s,a)

marginal distribution of the policy under the learned model M̂. To see this more formally, note that
the expected penalty added in the effective Bellman backup performed by COMBO (Equation 6), in
expectation under the dataset distribution d(s,a), ν̃(ρ, d, f) is actually negative:

ν̃(ρ, d, f) =
∑
s,a

d(s,a)
ρ(s,a)− d(s,a)

df (s,a)
= −

∑
s,a

d(s,a)
d(s,a)− ρ(s,a)

fd(s,a) + (1− f)ρ(s,a)
< 0,

18

Published at the SSL-RL Workshop at ICLR 2021

where the final inequality follows via a direct application of the proof of Lemma 1. Thus, COMBO
actually overestimates the values at atleast some states (in the dataset) unlike CQL, making it a
tighter lower bound.

C.3 PROOF OF THEOREM 4

To prove the policy improvement result in Theorem 4, we first observe that using Equation 6 for
Bellman backups amounts to finding a policy that maximizes the return of the policy in the a modified
“f-interpolant” MDP which admits the Bellman backup B̂π , and is induced by a linear interpolation of
backups in the empirical MDPM and the MDP induced by a dynamics model M̂ and the return of a
policy π in this effective f-interpolant MDP is denoted by J(M,M̂, f, π). Alongside this, the return
is penalized by the conservative penalty where ρπ denotes the marginal state-action distribution of
policy π in the learned model M̂.

Ĵ(f, π) = J(M,M̂, f, π)− β ν(ρπ, f)

1− γ
. (15)

We will require bounds on the return of a policy π in this f-interpolant MDP, J(M,M̂, f, π), which
we first prove separately as Lemma 9 below and then move to the proof of Theorem 4.
Lemma 9 (Bound on return in f-interpolant MDP). For any two MDPs, M1 and M2, with the
same state-space, action-space and discount factor, and for a given fraction f ∈ [0, 1], define
the f-interpolant MDPMf as the MDP on the same state-space, action-space and with the same
discount as the MDP with dynamics: PMf

:= fPM1 + (1− f)PM2 and reward function: rMf
:=

frM1
+ (1 − f)rM2

. Then, given any auxiliary MDP, M, the return of any policy π in Mf ,
J(π,Mf), also denoted by J(M1,M2, f, π), lies in the interval:[

J(π,M)− α, J(π,M) + α
]
, where α is given by:

α =
2γ(1− f)

(1− γ)2
RmaxD (PM2

, PM) +
γf

1− γ
∣∣EdπMπ

[(
PπM − PπM1

)
QπM

]∣∣ .
+

f

1− γ
Es,a∼dπMπ[|rM1(s,a)− rM(s,a)|] +

1− f
1− γ

Es,a∼dπMπ[|rM2(s,a)− rM(s,a)|].

(16)

Proof. To prove this lemma, we note two general inequalities. First, note that for a fixed transition
dynamics, say P , the return decomposes linearly in the components of the reward as the expected
return is linear in the reward function:

J(P, rMf
) = J(P, frM1

+ (1− f)rM2
) = fJ(P, rM1

) + (1− f)J(P, rM2
).

As a result, we can bound J(P, rMf
) using J(P, r) for a new reward function r of the auxiliary

MDP,M, as follows

J(P, rMf
) = J(P, frM1 + (1− f)rM2) = J(P, r + f(rM1 − r) + (1− f)(rM2 − r)

= J(P, r) + fJ(P, rM1
− r) + (1− f)J(P, rM2

− r)

= J(P, r) +
f

1− γ
Es,a∼dπM(s)π(a|s) [rM1

(s,a)− r(s,a)]

+
1− f
1− γ

Es,a∼dπM(s)π(a|s) [rM2
(s,a)− r(s,a)] .

Second, note that for a given reward function, r, but a linear combination of dynamics, the following
bound holds:

J(PMf
, r) = J(fPM1

+ (1− f)PM2
, r)

= J(PM + f(PM1
− PM) + (1− f)(PM2

− PM), r)

= J(PM, r)−
γ(1− f)

1− γ
Es,a∼dπM(s)π(a|s)

[(
PπM2

− PπM
)
QπM

]
− γf

1− γ
Es,a∼dπM(s)π(a|s)

[(
PπM − PπM1

)
QπM

]
∈
[
J(PM, r) ±

(
γf

(1− γ)

∣∣∣Es,a∼dπM(s)π(a|s)
[(
PπM − PπM1

)
QπM

]∣∣∣+
2γ(1− f)Rmax

(1− γ)2
D(PM2 , PM)

)]
.

19

Published at the SSL-RL Workshop at ICLR 2021

To observe the third equality, we utilize the result on the difference between returns of a policy
π on two different MDPs, PM1

and PMf
from Agarwal et al. (2019) (Chapter 2, Lemma 2.2,

Simulation Lemma), and additionally incorporate the auxiliary MDP M in the expression via
addition and subtraction in the previous (second) step. In the fourth step, we finally bound one term
that corresponds to the learned model via the total-variation divergence D(PM2

, PM) and the other
term corresponding to the empirical MDPM is left in its expectation form to be bounded later.

Using the above bounds on return for reward-mixtures and dynamics-mixtures, proving this lemma is
straightforward:

J(M1,M2, f, π) := J(PMf
, frM1 + (1− f)rM2) = J(fPM1 + (1− f)PM2 , rMf

)

∈

J(PMf
, rM) ±

(
f

1− γ
Es,a∼dπMπ[|rM1

(s,a)− rM(s,a)|] +
1− f
1− γ

Es,a∼dπMπ[|rM2
(s,a)− rM(s,a)|]

)
︸ ︷︷ ︸

:=∆R

 ,
where the second step holds via linear decomposition of the return of π inMf with respect to the
reward interpolation, and bounding the terms that appear in the reward difference. For convenience,
we refer to these offset terms due to the reward as ∆R. For the final part of this proof, we bound
J(PMf

, rM) in terms of the return on the actual MDP, J(PM, rM), using the inequality proved
above that provides intervals for mixture dynamics but a fixed reward function. Thus, the overall
bound is given by J(π,Mf) ∈ [J(π,M)− α, J(π,M) + α], where α is given by:

α =
2γ(1− f)

(1− γ)2
RmaxD (PM2 , PM) +

γf

1− γ
∣∣EdπMπ

[(
PπM − PπM1

)
QπM

]∣∣+ ∆R. (17)

This concludes the proof of this lemma.

Finally, we prove Theorem 4 that shows how policy optimization with respect to Ĵ(f, π) affects the
performance in the actual MD by using Equation 15 and building on the analysis of pure model-free
algorithms from Kumar et al. (2020). We restate a more complete statement of the theorem below
and present the constants at the end of the proof.

Theorem 10 (Formal version of Theorem 4). Let π̂out(a|s) be the policy obtained by COMBO. Then,
the policy πout(a|s) is a ζ-safe policy improvement over πβ in the actual MDPM, i.e., J(πout,M) ≥
J(πβ ,M)− ζ, with probability at least 1− δ, where ζ is given by (where ρβ(s,a) := d

πβ

M̂
(s,a)):

O
(

γf

(1− γ)2

)[
Es∼dπout

M

[√
|A|
|D(s)|

(DCQL(πout, πβ) + 1)

]]

+O
(
γ(1− f)

(1− γ)2

)
DTV(PM, PM̂)− β ν(ρπout , f)− ν(ρβ , f)

(1− γ)
.

Proof. We first note that since policy improvement is not being performed in the same MDP,M
as the f-interpolant MDP, Mf , we need to upper and lower bound the amount of improvement
occurring in the actual MDP due to the f-interpolant MDP. As a result our first is to relate J(π,M)

and J(π,Mf) := J(M,M̂, f, π) for any given policy π.

Step 1: Bounding the return in the actual MDP due to optimization in the f-interpolant MDP.
By directly applying Lemma 9 stated and proved previously, we obtain the following upper and
lower-bounds on the return of a policy π:

J(M,M̂, f, π) ∈ [J(π,M)− α, J(π,M) + α] ,

where α is shown in Equation 16. As a result, we just need to bound the terms appearing the
expression of α to obtain a bound on the return differences. We first note that the terms in the
expression for α are of two types: (1) terms that depend only on the reward function differences
(captured in ∆R in Equation 17), and (2) terms that depend on the dynamics (the other two terms in
Equation 17).

20

Published at the SSL-RL Workshop at ICLR 2021

To bound ∆R, we sipmply appeal to concentration inequalities on reward (Assumption A1), and
bound ∆R as:

∆R :=
f

1− γ
Es,a∼dπMπ[|rM1(s,a)− rM(s,a)|] +

1− f
1− γ

Es,a∼dπMπ[|rM2(s,a)− rM(s,a)|]

≤ Cr,δ
1− γ

Es,a∼dπMπ

[
1√

D(s,a)

]
+

1

1− γ
||RM −RM̂|| := ∆u

R.

Note that both of these terms are of the order of O(1/(1 − γ)) and hence they don’t figure in the
informal bound in Theorem 4 in the main text, as these are dominated by terms that grow quadratically
with the horizon. To bound the remaining terms in the expression for α, we utilize a result directly
from Kumar et al. (2020) for the empirical MDP,M, which holds for any policy π(a|s), as shown
below.

γ

(1− γ)

∣∣∣Es,a∼dπM(s,a)

[(
PπM − PπM1

)
QπM

]∣∣∣ ≤ 2γRmaxCP,δ
(1− γ)2

Es∼dπ
M

(s)

[√
|A|√
|D(s)|

√
DCQL(π, πβ)(s) + 1

]
.

Step 2: Incorporate policy improvement in the f-inrerpolant MDP. Now we incorporate the
improvement of policy πout over the policy πβ on a weighted mixture of M̂ andM. In what follows,
we derive a lower-bound on this improvement by using the fact that policy πout is obtained by
maximizing Ĵ(f, π) from Equation 15. As a direct consequence of Equation 15, we note that

Ĵ(f, πout) = J(M,M̂, f, πout)− β
ν(ρπ, f)

1− γ
≥ Ĵ(f, πβ) = J(M,M̂, f, πβ)− β ν(ρβ , f)

1− γ
(18)

Following Step 1, we will use the upper bound on J(M,M̂, f, π) for policy π = πout and a
lower-bound on J(M,M̂, f, π) for policy π = πβ and obtain the following inequality:

J(πout,M)−β ν(ρπ, f)

1− γ
≥
{
J(πβ ,M)− β ν(ρβ , f)

1− γ
− 4γ(1− f)Rmax

(1− γ)2
D(PM, PM̂)

− 2γf

(1− γ)

∣∣∣Edπout
M

[(
Pπout
M − Pπout

M

)
Qπout
M

]∣∣∣︸ ︷︷ ︸
:=(∗)

− 4γRmaxCP,δf

(1− γ)2
E
s∼d

πβ
M

[√
|A|
|D(s)|

]
︸ ︷︷ ︸

:=(∧)

−∆u
R

}
.

The term marked by (∗) in the above expression can be upper bounded by the concentration properties
of the dynamics as done in Step 1 in this proof:

(∗) ≤ 4γfCP,δRmax

(1− γ)2
Es∼dπout

M (s)

[√
|A|√
|D(s)|

√
DCQL(πout, πβ)(s) + 1

]
. (19)

Finally, using Equation 19, we can lower-bound the policy return difference as:

J(πout,M)− J(πβ ,M) ≥ β ν(ρπ, f)

1− γ
− β ν(ρβ , f)

1− γ
− 4γ(1− f)Rmax

(1− γ)2
D(PM, PM̂)− (∗)−∆u

R.

Plugging the bounds for terms (a), (b) and (c) in the expression for ζ where J(πout,M)−J(πβ ,M) ≥
ζ, we obtain:

ζ =

(
4fγRmaxCP,δ

(1− γ)2

)
Es∼dπout

M (s)

[√
|A|√
|D(s)|

√
DCQL(πout, πβ)(s) + 1

]
+ (∧)−∆u

R

+
4(1− f)γRmax

(1− γ)2
D(PM, PM̂)− β ν(ρπ, f)

1− γ
+ β

ν(ρβ , f)

1− γ
. (20)

Remark 11 (Interpretation of Theorem 4). Now we will interpret the theoretical expression for ζ
in Equation 20, and discuss the scenarios when it is negative. When the expression for ζ is negative,
the policy πout is an improvement over πβ in the original MDP,M.

21

Published at the SSL-RL Workshop at ICLR 2021

• First note that we have never used the fact that the learned model PM̂ is close to the
actual MDP, PM on the states visited by the behavior policy πβ in our analysis. We
will use this fact now: in practical scenarios, ν(ρβ , f) is expected to be smaller than
ν(ρπ, f), since ν(ρβ , f) is directly controlled by the difference and density ratio of ρβ(s,a)

and d(s,a): ν(ρβ , f) ≤ ν(ρβ , f = 1) =
∑

s,a d
πβ

M̂
(s,a)

(
d
πβ

M̂
(s,a)/d

πβ

M(s,a)− 1
)2

by
Lemma 1 which is expected to be small for the behavior policy πβ in cases when the behavior
policy marginal in the empirical MDP, dπβM(s,a), is broad. This is a direct consequence
of the fact that the learned dynamics integrated with the policy under the learned model:
P
πβ

M̂
is closer to its counterpart in the empirical MDP: PπβM for πβ . Note that this is not

true for any other policy besides the behavior policy that performs several counterfactual
actions in a rollout and deviates from the data. For such a learned policy π, we incur an
extra error which depends on the importance ratio of policy densities, compounded over
the horizon and manifests as the DCQL term (similar to Equation 19, or Lemma D.4.1 in
Kumar et al. (2020)). Thus, in practice, we argue that we are interested in situations where
ν(ρπ, f) > ν(ρβ , f), in which case by increasing β, we can make the expression for ζ in
Equation 20 negative, allowing for policy improvement.

• In addition, note that when f is close to 1, the bound reverts to a standard model-free policy
improvement bound and when f is close to 0, the bound reverts to a typical model-based
policy improvement bound. In scenarios with high sampling error (i.e. smaller |D(s)|), if
we can learn a good model, i.e., D(PM, PM̂) is small, we can attain policy improvement
better than model-free methods by relying on the learned model by setting f closer to 0. A
similar argument can be made in reverse for handling cases when learning an accurate
dynamics model is hard.

D EXPERIMENTAL DETAILS

In this section, we include all details of our empirical evaluations of COMBO.

D.1 PRACTICAL ALGORITHM IMPLEMENTATION DETAILS

Model training. In the setting where the observation space is low-dimensional, as mentioned
in Section 3, we represent the model as a probabilistic neural network that outputs a Gaussian
distribution over the next state and reward given the current state and action:

T̂θ(st+1, r|s,a) = N (µθ(st,at),Σθ(st,at)).

We train an ensemble of 7 such dynamics models following Janner et al. (2019) and pick the best 5
models based on the validation prediction error on a held-out set that contains 1000 transitions in
the offline dataset D. During model rollouts, we randomly pick one dynamics model from the best 5
models. Each model in the ensemble is represented as a 4-layer feedforward neural network with
200 hidden units. For the generalization experiments in Section 4.2, we additionally use a two-head
architecture to output the mean and variance after the last hidden layer following Yu et al. (2020c).

In the image-based setting, we follow Rafailov et al. (2020) and use a variational model with the
following components:

Image encoder: ht = Eθ(ot)

Inference model: st ∼ qθ(st|ht, st−1,at−1)

Latent transition model: st ∼ T̂θ(st|st−1,at−1)

Reward predictor: rt ∼ pθ(rt|st)
Image decoder: ot ∼ Dθ(ot|st).

(21)

We train the model using the evidence lower bound:

22

Published at the SSL-RL Workshop at ICLR 2021

max
θ

T−1∑
τ=0

[
Eqθ [logDθ(oτ+1|sτ+1)]

]
− Eqθ

[
DKL[qθ(oτ+1, sτ+1|sτ ,aτ)‖T̂θτ (sτ+1, aτ+1)]

]

At each step τ we sample a latent forward model T̂θτ from a fixed set ofK models [T̂θ1 , . . . , T̂θK]. For
the encoder Eθ we use a convolutional neural network with kernel size 4 and stride 2. For the Walker
environment we use 4 layers, while the Door Opening task has 5 layers. The Dθ is a transposed
convolutional network with stride 2 and kernel sizes [5, 5, 6, 6] and [5, 5, 5, 6, 6] respectively. The
inference network has a two-level structure similar to Hafner et al. (2019) with a deterministic path
using a GRU cell with 256 units and a stochastic path implemented as a conditional diagonal Gaussian
with 128 units. We only train an ensemble of stochastic forward models, which are also implemented
as conditional diagonal Gaussians.

Policy Optimization. We sample a batch size of 256 transitions for the critic and policy learning.
We set f = 0.5, which means we sample 50% of the batch of transitions from D and another 50%
from Dmodel. The equal split between the offline data and the model rollouts strikes the balance
between conservatism and generalization in our experiments as shown in our experimental results in
Section 4. We represent the Q-networks and policy as 3-layer feedforward neural networks with 256
hidden units.

For the choice of ρ(s,a) in Equation 4, we can obtain the Q-values that lower-bound the true value
of the learned policy π by setting ρ(s,a) = dπ

M̂
(s)π(a|s). However, as discussed in Kumar et al.

(2020), computing π by alternating the full off-policy evaluation for the policy π̂k at each iteration k
and one step of policy improvement is computationally expensive. Instead, following Kumar et al.
(2020), we pick a particular distribution ψ(a|s) that approximates the the policy that maximizes the
Q-function at the current iteration and set ρ(s,a) = dπ

M̂
(s)ψ(a|s). We formulate the new objective

as follows:

Q̂k+1 ← arg min
Q

β
(
Es∼dπ

M̂
(s),a∼ψ(a|s)[Q(s,a)]− Es,a∼D [Q(s,a)]

)
+

1

2
Es,a,s′∼df

[(
Q(s,a)− B̂πQ̂k(s,a))

)2]
+R(ψ), (22)

whereR(ψ) is a regularizer on ψ. In practice, we pickR(ψ) to be the −DKL(ψ(a|s)‖Unif(a)) and
under such a regularization, the first term in Equation 22 corresponds to computing softmax of the
Q-values at any state s as follows:

Q̂k+1 ← arg min
Q

max
ψ

β

(
Es∼dπ

M̂
(s)

[
log
∑
a

Q(s,a)

]
− Es,a∼D [Q(s,a)]

)

+
1

2
Es,a,s′∼df

[(
Q(s,a)− B̂πQ̂k(s,a))

)2]
. (23)

We estimate the log-sum-exp term in Equation 23 by sampling 10 actions at every state s in the
batch from a uniform policy Unif(a) and the current learned policy π(a|s) with importance sampling
following Kumar et al. (2020).

D.2 WORKFLOW WITH COMBO AND HYPERPARAMETER SELECTION

In this section, we discuss the hyperparameters associated with COMBO along with guidelines
to choose hyperparameters for offline RL tasks with a lot of variety in terms of dataset-diversity,
input modality, etc. In the D4RL and generalization experiments, our method are built upon the
implementation of MOPO provided at: https://github.com/tianheyu927/mopo. The
hyperparameters used in COMBO that relates to the backbone RL algorithm SAC such as twin
Q-functions and number of gradient steps follow from those used in MOPO with the exception of
smaller critic and policy learning rates, which we will discuss below. In the image-based domains,
COMBO is built upon LOMPO without any changes to the parameters used there. For the evaluation
of COMBO, we follow the evaluation protocol in D4RL (Fu et al., 2020) and report the normalized
score of the smooth undiscounted averaged return over 3 random seeds for all environments except

23

https://github.com/tianheyu927/mopo

Published at the SSL-RL Workshop at ICLR 2021

sawyer-door-close and sawyer-door where we report the average success rate over 3
random seeds.

We now list the additional hyperparameters and our decisions behind these (which can serve as
guidelines/rules for hyperparameter selection when COMBO is used on a new task) as follows.

• Rollout length h. We perform a short-horizon model rollouts in COMBO similar to Yu
et al. (2020c) and Rafailov et al. (2020). For the D4RL experiments and generalization
experiments, we followed the defaults used in MOPO and used h = 1 for walker2d and
sawyer-door-close, h = 5 for hopper, halfcheetah and halfcheetah-jump, and
h = 25 for ant-angle. In the image-based domain we used rollout length of h = 5 for
both the the walker-walk and sawyer-door-open environments following the same
hyperparameters used in Rafailov et al. (2020).

• Q-function and policy learning rates. According to Kumar et al. (2020), we used smaller
learning rates for the policy as compared to the Q-function and we found that 3e− 4 for the
Q-function learning rate (also used previously in Kumar et al. (2020)) and 1e− 4 for the
policy learning rate (also recommended previously in Kumar et al. (2020) for gym domains)
work well for almost all domains except that on walker2d where a smaller Q-function
learning rate of 1e− 4 and a correspondingly smaller policy learning rate of 1e− 5 works
the best. In the image-based domains, we followed the defaults from prior work (Rafailov
et al., 2020) and used 3e− 4 for both the policy and Q-function.

• Conservative coefficient β. As noted in our theoretical results in Lemma 1, the amount
of conservatism depends on the choice of fraction f and ρ(s,a). In principle, we only
need to control one of these factors, ρ, f , β to obtain the right degree of conservatism.
Since we do not alter f and ρ(s,a) for different quality datasets (see Appendix D.1 for our
choice of f ; ρ was chosen based on model-prediction error as discussed next) we instead
choose values of β for different dataset types. We fixed β to take one of three values from
a default set {0.5, 1.0, 5.0}, which correspond to low conservatism, medium conservatism
and high conservatism. A larger β would be desirable in more narrow dataset distributions
with lower-coverage of the state-action space that propagates error in a backup whereas
a smaller β is desirable with diverse dataset distributions. On the D4RL experiments, we
found that β = 0.5 works well for halfcheetah agnostic of dataset quality, while on hopper
and walker2d, we found that the more “narrow” dataset distributions: medium and medium-
expert datasets work best with larger β = 5.0 whereas more “diverse” dataset distributions:
random and medium-replay datasets work best with smaller β (β = 0.5 for walker2d and
β = 1.0 for hopper) which is consistent with the intuition. On generalization experiments,
β = 1.0 works best for all environments. In the image-domains we used β = 0.5 for the
medium-replay walker-walk task and and β = 1.0 for all other domains, which again is
in accordance with the impact of β on performance.

• Choice of ρ(s,a). We first decouple ρ(s,a) = ρ(s)ρ(a|s) for convenience. As discussed
in Appendix D.1, we use ρ(a|s) as the soft-maximum of the Q-values and estimated with
log-sum-exp. For ρ(s), we use dπ

M̂
for the hopper task in D4RL and df for the rest

of the environments. As consistent with Lemma 1, we found that COMBO works well
with ρ(s) = dπ

M̂
in settings where the learned model is accurate (as measured by model

prediction error on a held-out validation dataset), which is the case in hopper. For the
remaining domains, we used ρ(s) = df .

• Choice of µ(a|s). For the rollout policy µ, we use µ(a|s) = Unif(a) for the hopper task
in D4RL since the dynamics model is most accurate on this task (as measured by model-
prediction error on a held-out validation subset of the data) which enables augmenting the
dataset with uniform-at-random actions without introducing much model bias into learning,
and also in the ant-angle generalization experiment. For the remaining state-based
environments, we use the default µ(a|s) = π(a|s) which is consistent with our theory
(Lemma 1). In the image-based domain, we used µ(a|s) = Unif(a) in the walker-walk
domain and µ(a|s) = π(a|s) for the sawyer-door environment. We found that µ(a|s) =
Unif(a) behaves less conservatively and is suitable to tasks where dynamics models can be
learned fairly precisely.

• Choice of Backup. Following CQL (Kumar et al., 2020), we use the standard deterministic
backup for COMBO.

24

Published at the SSL-RL Workshop at ICLR 2021

D.3 DETAILS OF GENERALIZATION ENVIRONMENTS

For halfcheetah-jump and ant-angle, we follow the same environment used in MOPO.
For sawyer-door-close, we train the sawyer-door environment in https://github.
com/rlworkgroup/metaworld with dense rewards for opening the door until convergence.
We collect 50000 transitions with half of the data collected by the final expert policy and a policy that
reaches the performance of about half the expert level performance. We relabel the reward such that
the reward is 1 when the door is fully closed and 0 otherwise. Hence, the offline RL agent is required
to learn the behavior that is different from the behavior policy in a sparse reward setting.

D.4 DETAILS OF IMAGE-BASED ENVIRONMENTS

We use the standard walker-walk environment from Tassa et al. (2018) with 64 × 64 pixel
observations and an action repeat of 2. Datasets were constructed the same way as Fu et al. (2020)
with 200 trajectories each. For the sawyer-door we use 128 × 128 pixel observations. The
medium-expert dataset contains 1000 rollouts (with a rollout length of 50 steps) covering the state
distribution from grasping the door handle to opening the door. The expert dataset contains 1000
trajectories samples from a fully trained (stochastic) policy. The data was obtained from the training
process of a stochastic SAC policy using dense reward function as defined in Yu et al. (2020b).
However, we relabel the rewards, so an agent receives a reward of 1 when the door is fully open and
0 otherwise. This aims to evaluate offline-RL performance in a sparse-reward setting.

D.5 COMPUTATION COMPLEXITY

For the D4RL and generalization experiments, COMBO is trained on a single NVIDIA GeForce
RTX 2080 Ti for one day. For the image-based experiments, we utilized a single NVIDIA GeForce
RTX 2070. We trained the walker-walk tasks for a day and the sawyer-door-open tasks for
about two days.

E EMPIRICAL EVIDENCE ON CHALLENGES OF UNCERTAINTY
QUANTIFICATION

In this section, we perform empirical evaluations to show that uncertainty quantification with deep neu-
ral networks, especially in the setting of dynamics model learning, is challenging and could cause prob-
lems with uncertainty-based model-based offline RL methods such as MOReL (Kidambi et al., 2020)
and MOPO (Yu et al., 2020c). In our evaluations, we consider two uncertainty quantification meth-
ods, maximum learned variance over the ensemble (denoted as Max Var) maxi=1,...,N ‖Σiθ(s,a)‖F
(used in MOPO) and the variance of the model prediction over the ensemble (denoted as Ens.
Var) maxi=1,...,N ‖µiθ(s,a)− 1

N

∑N
j=1 µ

j
θ(s,a)‖2 (used in MOPO and MOReL) where we use an

ensemble of N probabilistic dynamics models {T̂ iθ(st+1, r|s,a) = N (µiθ(st,at),Σ
i
θ(st,at))}Ni=1.

As shown in Table 1, MOPO performs underwhelmingly on medium datasets in the D4RL datasets
where the dataset is collected with a single policy and hence with relatively narrow data coverage of
the whole state space. To empirically analyze the poor performance of MOPO on those datasets, we
visualize the correlation between the true model error and two uncertainty quantification methods
Max Var and Ens. Var. We normalize both the model error and the uncertainty estimates to be
within scale [0, 1]. As shown in Figure 3, on all three medium datasets, Max Var tends to be
overly conservative and Ens. Var behaves too optimistic to correctly quantify the true model error,
suggesting that uncertainty estimation used by MOPO is not accurate and might be the major factor
that results in its poor performance. Meanwhile, COMBO circumvents challenging uncertainty
quantification problem and achieves much better performances on those medium datasets, indicating
the effectiveness and the robustness of the method.

25

https://github.com/rlworkgroup/metaworld
https://github.com/rlworkgroup/metaworld

Published at the SSL-RL Workshop at ICLR 2021

Figure 3: We visualize the correlation between the model error and two uncertainty quantification methods
maximum learned variance over the ensemble (left column) and variance of the model prediction over the
ensemble (right column) on three D4RL medium datasets (from the top row to the bottom row: halfcheetah,
hopper and walker) where MOPO performs poorly compared to model-free methods. We show that Max Var
tends to be overly conservative and overestimating the model error while Ens. Var is on the opposite. Such
visualizations corroborate that uncertainty quantification is challenging with deep neural networks and could
lead to poor performance in model-based offline RL. In the meantime, COMBO addresses this issue by removing
the burden of performing uncertainty quantification.

26

	Introduction
	Preliminaries
	Markov Decision Processes and Offline RL
	Model-Free Offline RL Algorithms
	Model-Based Offline RL Algorithms

	Conservative Offline Model-Based Policy Optimization
	Experiments
	Results on the D4RL benchmark
	Results on tasks that require generalization
	Results on image-based tasks

	Related Work
	Conclusion
	Algorithm Overview
	Theoretical Analysis of COMBO
	COMBO Optimizes a Lower-Bound
	Safe Policy Improvement Guarantees

	Proofs from Appendix B
	Proof of Lemma 1
	Proof of Theorem 2 and Corollary 3
	Proof of Theorem 4

	Experimental details
	Practical algorithm implementation details
	Workflow with COMBO and Hyperparameter Selection
	Details of generalization environments
	Details of image-based environments
	Computation Complexity

	Empirical Evidence on Challenges of Uncertainty Quantification

