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ABSTRACT

Despite its central role in the post-training of large language models (LLMs), su-
pervised fine-tuning (SFT) is prone to memorization and often fails to generalize
to out-of-distribution (OOD) inputs. In this work, we present an empirical study
of how different Transformer modules contribute to OOD generalization in rule-
based reasoning tasks. We investigate the effect of selective fine-tuning, where the
parameters of either feedforward neural networks or attention layers are updated
during training. Our results show that fine-tuning only the attention layers substan-
tially improves OOD generalization, while full-parameter or feedforward neural
networks only tuning predominantly increases memorization and leads to gener-
alization collapse. Remarkably, attention-only SFT achieves performance compa-
rable to state-of-the-art reinforcement learning (RL) alignment methods. These
findings provide new insights into the mechanisms underlying SFT and highlight
selective SFT as a promising direction for improving the SFT generalization. We
will release the code upon paper acceptance.

1 INTRODUCTION

Supervised fine-tuning (SFT) is a crucial step in adapting large language models (LLMs), ensur-
ing stable and well-structured outputs for downstream tasks Chu et al. (2025); Guo et al. (2025).
However, SFT has been shown to cause excessive memorization of training data, limiting general-
ization to out-of-distribution (OOD) inputs Chu et al. (2025); Guo et al. (2025), whereas subsequent
reinforcement learning (RL) fine-tuning achieves much better cross-domain generalization.

Notably, the internal effects of SFT and RL on model parameters are quite different. Mukherjee et al.
(2025) find that RL fine-tuning (including popular methods like PPO, DPO, GRPO etc.) updates
only a small subnetwork, roughly 5-30% of the model’s weights, leaving the majority of parameters
essentially unchanged. In contrast, standard SFT induces far more widespread weight updates,
as evidenced by much denser gradient changes during the SFT stage compared to the sparsity of
RL-induced updates. This disparity may help explain why SFT is prone to overfitting: it alters
a larger portion of the model’s knowledge, whereas RL’s more localized updates tend to preserve
generalizable pre-trained knowledge. Indeed, RL-induced models often retain broader capabilities,
whereas SFT models can become narrowly specialized to the fine-tuning data.

Our work is inspired by these differences and asks further: which modules of the Transformer archi-
tecture are most responsible for memorization and, consequently, for out-of-distribution generaliza-
tion during SFT? In this work, we study out-of-distribution generalization in supervised fine-tuning,
with a particular focus on the role of different Transformer modules.

Our primary contributions are as follows:
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Contribution

1. We are the first work to study out-of-distribution generalization in reasoning tasks under
selective supervised fine-tuning.

2. Through controlled experiments, we analyze how memorization dynamics depend on differ-
ent Transformer modules. We show that feedforward neural networks are prone to memorization
and fail OOD generalization, while attention-only fine-tuning significantly improves generaliza-
tion.

3. Extending beyond prior work (Chu et al., 2025) which reported that SFT uniformly fails to
generalize OOD scenarios, we demonstrate that smaller learning rates prevent collapse, allowing
SFT to achieve OOD performance competitive with, and in some cases surpassing, RL-based
methods.

Together, these findings provide new insights into the training dynamics of SFT, highlighting how
memorization emerges across Transformer modules and offering practical strategies for improving
OOD generalization.

2 RELATED WORK

2.1 OUT-OF-DISTRIBUTION GENERALIZATION

Supervised fine-tuning has become the standard first step in adapting pretrained LLMs to align-
ment and reasoning tasks. However, it is increasingly recognized that SFT tends to overfit to train-
ing data and leads to poor generalization on out-of-distribution (OOD) inputs. Chu et al. (2025)
shows that SFT memorizes task-specific patterns while reinforcement learning (RL) generalize in
rule based reasoning tasks. The tension here is critical: SFT is indispensable for stabilizing model
outputs, yet its propensity for memorization undermines cross-task adaptability. Prior work such as
Mireshghallah et al. (2022) has mostly studied memorization in terms of privacy leakage, but to our
best knowledge, no studies relate to how memorization affects OOD reasoning.

2.2 ROLES OF TRANSFORMER MODULES IN KNOWLEDGE AND MEMORY

Transformer architectures consist of attention layers and feedforward neural networks (FNNs),
which serve different functions. Attention heads are generally associated with dynamic, context-
sensitive processing and in-context learning, whereas FNNs are hypothesized to act as long-term
memory stores. Geva et al. (2021) demonstrates that FNN layers behave like key-value memories,
encoding textual associations within their weight matrices. Similarly, Meng et al. (2022) show that
factual knowledge can be directly edited by modifying weights in mid-layer FNNs. Mireshghallah
et al. (2022) empirically shows that fine-tuning layers closer to the logit output layer causes more
likely training data leakage.

Although these works identify knowledge storage mechanisms, they do not directly study Trans-
former module-level contribution to OOD generalization.

Positioning of Our Work This paper addresses the gap by investigating the module-level contribu-
tions of memorization during SFT. We hypothesize that feedforward layers, as the main long-term
memory stores, drive overfitting to fine-tuning data, reducing OOD reasoning performance. In con-
trast, updating attention layers may support adaptation with less risk of overwriting generalizable
knowledge. By selectively freezing and fine-tuning different modules, we directly evaluate their
impact on memorization and OOD reasoning generalization. This perspective reframes selective
SFT not merely as a computationally efficient strategy, but as a targeted intervention for improving
out-of-distribution reasoning.

3 METHODOLOGY

We investigate the contribution of distinct Transformer modules to the OOD generalization of super-
vised fine-tuning. Our approach is empirical: we selectively fine-tune target modules of a pre-trained
model on instruction-formatted downstream reasoning datasets. Experiments are conducted on two
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controlled environments: 1) GeneralPoints, an arithmetic reasoning benchmark, and 2) V-IRL, a
language navigation task, both of which provide systematic evaluation to evaluate reasoning and
generalization Zhai et al. (2024). Please see section 4.1 for the datasets detail.

Following Chu et al. (2025), we assess whether models trained with SFT acquire rule-generalizable
knowledge or primarily memorize training-specific patterns. For each task, the model is fine-tuned
on a single rule and subsequently evaluated both on the trained rule (in-distribution) and on previ-
ously unseen rule variants (out-of-distribution).

3.1 SUPERVISED FINE-TUNING

Supervised fine-tuning adapts a pretrained language model to human-provided demonstrations by
minimizing the discrepancy of reference responses. The mathematical definition of SFT is below:

We are given:
* A pretrained model 7y, (y | ), parameterized by 6y, where € X is an input (e.g., prompt)
and y € ) is an output (e.g., response).
* A supervised dataset
D= {(xu y;k)}fih
where each z; is a prompt and ¥ is the ground-truth or high-quality response.

The SFT objective is to minimize the cross-entropy loss of the labeled responses under the fine-tuned
policy:

Lspr(0) = —E(zy=)~p [log mo(y" | 2)] (1
Token-level formulation: If each response y* = (ay, ..., ar) is a sequence of T tokens, then
T
Lsrr(0) = —E(ayo)mp | > logmo(ar | 2,y%,) )

t=1
3.2 TRANSFORMER MODULES

To isolate the contribution of different Transformer modules, we adopt a selective fine-tuning
paradigm in which one of the following is updated during SFT:

* FNN-only: fine-tuning feedforward neural networks,
» Attention-only: fine-tuning self-attention layers,
e Full-model: fine-tuning all parameters.

Table 1: Experimental settings for selective fine-tuning.

Setting | Trainable Parameters | Iterations

#Parameter not matched | Different across modules | Different (fewer params — more steps)
#Parameter matched Same across modules Same

For a fair comparison, we set the same compute budget (total training FLOPs), but the number
of parameters in modules may vary in order to compare the default unmatched setting and the fair
matched setting. Table 1 summarizes two experimental setups. Modules with fewer trainable pa-
rameters (e.g., attention-only) are trained for more iterations. This setup allows us to evaluate how
each module affects SFT outcomes without being biased by the module’s capacity or training
budget.

4 EXPERIMENTAL SETUP

Our experiments closely follow Chu et al. (2025).
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4.1 DATASETS AND OOD REASONING TASKS

We evaluate memorization and generalization using two controlled reasoning tasks:

GeneralPoints (GP):

* Adapted from Zhai et al. (2024); Chu et al. (2025).

* Arithmetic card game where the model must form an expression equaling a target number
(24 by default) using four given cards exactly once.

* Cards are described in natural language (e.g., “a red queen” — Q).

* OOD settings: enforced by varying symbolic mappings (e.g., treating face cards as 10 vs.
11, 12, 13).

Virtual Intelligence in Real Life (V-IRL):

* Adapted from Yang et al. (2024); Chu et al. (2025).

» Large-scale language navigation environment.

* Input: natural language route instructions paired with street-level imagery (textualized).
* Qutput: navigation actions to reach the correct destination.

* OOD settings: tested by altering action specifications (absolute vs. relative orientation)
Chu et al. (2025).

These two benchmarks are chosen because they allow precise control over symbolic rules, mak-
ing them well-suited for disentangling memorization from reasoning generalization. In GP, altering
the numerical interpretation of face cards creates a controlled shift in symbolic rules, directly testing
whether models adapt reasoning strategies or merely memorize mappings. In V-IRL, changing from
absolute to relative action specifications probes the model’s ability to transfer navigation policies
across rule systems. Together, these benchmarks provide complementary views of rule-based rea-
soning: GP stresses symbolic arithmetic composition, while V-IRL evaluates instruction-following
and spatial reasoning.

4.2 EVALUATION METRICS

For GeneralPoints, performance is measured by the success rate of producing a valid expression
equaling the target Chu et al. (2025). For V-IRL, we report per-step accuracy (local action cor-
rectness relative to expert demonstrations) Chu et al. (2025). For both benchmarks, we distinguish
between in-distribution (training rule) and out-of-distribution (novel rules) performance, thereby
isolating memorization from generalization.

4.3 MODEL ARCHITECTURE AND TRAINING

Following Chu et al. (2025), we adopt Llama-3.2-Vision-11B Dubey et al. (2024) as the backbone
model. SFT is conducted on expert demonstrations formatted as prompt-response pairs. All experi-
ments were performed on 8 x A100 GPUs (80 GB) with matched compute budgets across conditions.

5 RESULTS AND DISCUSSION

We now present our empirical findings on how selective fine-tuning on Transformer modules affects
memorization and out-of-distribution generalization.

5.1 EFFECT OF MODULE CHOICE ON MEMORIZATION AND GENERALIZATION

Figure 1 shows the in-distribution (left) and out-of-distribution (right) performance of different fine-
tuning strategies as a function of floating-point operations (FLOPs), across two reasoning bench-
marks: GP (top) and V-IRL (bottom). We compare full fine-tuning, selective fine-tuning of feed-
forward networks (labeled as FNN), and selective fine-tuning of attention layers (labeled as Attn).



Under review as a conference paper at ICLR 2026

To ensure a fair comparison, configurations with fewer trainable parameters (e.g., attention-only
fine-tuning) are trained for proportionally more iterations, such that the total training FLOPs are
approximately matched to those of full fine-tuning.
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Figure 1: Performance vs. FLOPs (10'°) on GP and V-IRL for SFT with selected fine-tuned mod-
ules. FNN-only finetuning consistently exhibits performance degradation across all the OOD evalu-
ations on all tasks, whereas attention-only fine-tuning preserves the OOD generalization. SFT with
fewer trainable parameters (e.g., attention-only fine-tuning) are trained for additional iterations to
match the total training FLOPs to full fine-tuning.

On in-distribution data, all three strategies quickly achieve near-perfect performance as FLOPs in-
crease. This suggests that either module type can be tuned to fit the training distribution, and mem-
orization allows the model to saturate performance regardless of which modules are updated. No-
tably, full fine-tuning and FNN-only tuning converge slightly faster on GP benchmark, consistent
with FNNs’ role as long-term memory stores that can readily encode training examples.

The out-of-distribution results, however, reveal a stark contrast. Both full fine-tuning and FNN-
only tuning suffer degradation: success rates on GP collapse dramatically, and per-step accuracy
on V-IRL drops to almost zero as training progresses. This highlights a classic memorization ef-
fect: these strategies overfit to training patterns and catastrophically fail to generalize to unseen
scenarios. By contrast, attention-only fine-tuning sustains substantially higher OOD performance:
on GP benchmark, attention-only fine-tuning maintains success rates above 10%, outperforming the
other modules fine-tuning by a wide margin. On V-IRL benchmark, attention-only fine-tuning pre-
serves per-step accuracy above 70-80% even at later stages, whereas other strategies degrade almost
entirely.

Takeaway 1: Attention-only fine-tuning prevents OOD collapse

Fine-tuning feedforward layers or the full model achieves strong in-distribution performance but
collapses on out-of-distribution tasks, while attention-only fine-tuning consistently preserves
out-of-distribution generalization.

SFT Under Matched Numbers of Trainable Parameter In addition, we conduct experiments
under a parameter-matched setting, where the number of trainable parameters is kept nearly identical



Under review as a conference paper at ICLR 2026

In-distribution Out-of-distribution

0.8 4

Success Rate
14
Y
Success Rate

o
S

0.2 1 —e— Full Fine-Tuning (Layers 0-2) —e— Full Fine-Tuning (Layers 0-2)
=& FNN (Layers 0-3) 0.02 ~o— FNN (Layers 0-3)

—o— Attn —o— Attn

0.04 @ End of an Epoch 0004 @ Endof an Epoch

o 1500 3000 4500 6000 7500 9000 10500 12000 0 1500 3000 4500 6000 7500 9000 10500 12000
Training Step Training Step

Figure 2: Performance vs. Training steps on GeneralPoints and V-IRL for SFT with selected fine-
tuned modules and matched number of trainable parameters.

across configurations. Specifically, we restrict fine-tuning to the first L transformer blocks rather
than the entire model, with L chosen to balance parameter counts. Let N (0,4, ) denote the number of
trainable parameters in all attention layers, and N (64t ) denote the cumulative number of trainable
parameters in module M (either FNNs or transformer blocks) from layer O up to L. We then select
L as:

L =arg mlin [N (aen) — N (039113 3)

Figure 2 shows the in-distribution (left) and out-of-distribution (right) performance on GP bench-
mark under parameter-matched setting.

On the in-distribution benchmark, all methods improve steadily with training, though important
differences emerge. Full fine-tuning and FNN-only tuning achieve moderate success rates (70-75%)
after convergence, but attention-only fine-tuning substantially outperforms both, reaching close to
100% success rate. This indicates that even under identical parameter, and correspondingly compute
budgets, attention layers provide a more efficient fine-tuning for fitting the training distribution.

The divergence is more pronounced in the out-of-distribution evaluation. Full fine-tuning and FNN-
only tuning plateau at low success rates (6-8%) and exhibit strong instability, reflecting severe
overfitting to the training distribution. In contrast, attention-only fine-tuning maintains consistently
higher performance, with success rates in the 10-15% range throughout training. The robustness
of attention tuning under matched training FLOPs highlights that its generalization benefits are not
simply a byproduct of fewer parameters being updated, but instead stem from the functional role of
attention modules in supporting flexible, context-sensitive adaptation.

These results in Figure 1 and Figure 2 strengthen our central claim: memorization during SFT is
tied to FNN updates, while restricting updates to attention layers preserves generalizable knowledge
and leads to superior OOD reasoning. Importantly, this advantage persists even when accounting
for training efficiency, showing that selective attention tuning is a principled strategy for improving
reasoning generalization without additional computational overhead.

Takeaway 2: Attention wins under matched number of trainable parameters

Even under matched numbers of trainable parameters, attention-only tuning yields superior in-
distribution performance and significantly better OOD generalization, confirming attention lay-
ers’ generalizability beyond computational fairness concerns.

5.2 IMPACT OF LEARNING RATE ON MEMORIZATION VS. OOD GENERALIZATION

Figure 3 illustrates the effect of learning rate on supervised fine-tuning memorization, comparing
three settings (1e-6, le-7, 1e-8) across both in-distribution (left) and out-of-distribution (right) eval-
uations on GP (top) and V-IRL (bottom). For all experiments in this section, we report SFT results
under full fine-tuning.
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Figure 3: Effect of Learning Rate on SFT Memorization on V-IRL and GP benchmarks.

In contrast to Chu et al. (2025), our experiments demonstrate that substantially smaller learning
rates can alter the OOD trend (see figure 3), allowing SFT to match or even surpass reinforcement
learning in OOD settings (see table 2). On in-distribution tasks, a higher learning rate (1e-6) leads to
rapid convergence. In GP, the model with 1e-6 achieves near-perfect per-step accuracy within 2,000
steps, whereas smaller learning rates converge more slowly and to lower ceilings. Similarly, in V-
IRL, 1e-6 and 1e-7 quickly achieve near 100% success rates, while 1e-8 lags significantly before
eventually catching up. This suggests that high learning rates accelerate memorization of training
data.

On out-of-distribution tasks, however, the pattern reverses. Models fine-tuned with 1e-6 suffer from
severe generalization collapse. In GP, OOD accuracy for le-6 drops below 5% after a few thousand
steps, while le-7 and le-8 maintain substantially higher and more stable accuracy (10-17%). A
similar trend appears in V-IRL: 1e-6 initially peaks but rapidly degrades to near-zero success rates,
whereas lower learning rates (1e-7, 1e-8) stabilize around 70-80% success rates.

These results provide strong evidence that large learning rates amplify memorization and harm OOD
generalization, while smaller learning rates act as a regularizer, slowing memorization and preserv-
ing the model’s reasoning capabilities on unseen distributions. Importantly, this demonstrates that
beyond which modules are updated (Figures 1-2), the magnitude of parameter updates is another
key factor in controlling memorization during SFT.

Method V-IRL GP
SFT (FFT) + RL Chu et al. (2025)  91.8 15.0
SFT (Full Fine-Tuning) 89.05 17.95
SFT (FNN-only) 91.28 16.79
SFT (Attention-only) 94.13 19.23

Table 2: Effectiveness of LLM modules in SFT out-of-distribution generalization. Success rate
(GP) and per-step accuracy (V-IRL) are used as evaluation metrics. Attention-only fine-tuning sig-
nificantly improves generalization, performing on par with or better than state-of-the-art SFT+RL
methods.
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Takeaway 3: Small Rates, Big Gains

Building on prior work Chu et al. (2025) that found SFT fails to generalize OOD, we show
that using smaller learning rates prevents collapse and enables SFT to reach, or even exceed,
RL-induced OOD performance.

6 CONCLUSION

We conducted a systematic study of supervised fine-tuning in large language models, focusing on
how different Transformer modules affect out-of-distribution generalization. Our experiments show
that fine-tuning only attention layers preserves OOD performance, while FNN-only or full-model
fine-tuning leads to memorization and fails generalization. Importantly, this advantage holds even
under matched trainable parameters and total training FLOPs. In addition, we further showed that
learning rate plays a critical role: smaller rates mitigate collapse and unlock stronger OOD perfor-
mance.

These findings highlight that selective attention-only SFT is a simple, computationally efficient
strategy to mitigate memorization and enhance OOD reasoning generalization. Our work provides
practical guidelines for improving SFT and offers new insights into the module-level dynamics of
memorization in large language models.

REFERENCES

Tianzhe Chu, Yuexiang Zhai, Jihan Yang, Shengbang Tong, Saining Xie, Dale Schuurmans, Quoc V
Le, Sergey Levine, and Yi Ma. Sft memorizes, 1l generalizes: A comparative study of foundation
model post-training. arXiv preprint arXiv:2501.17161, 2025.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv e-prints, pp. arXiv—2407, 2024.

Mor Geva, Roei Schuster, Jonathan Berant, and Omer Levy. Transformer feed-forward layers
are key-value memories. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott
Wen-tau Yih (eds.), Proceedings of the 2021 Conference on Empirical Methods in Natural Lan-
guage Processing, pp. 5484-5495, Online and Punta Cana, Dominican Republic, November
2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.446. URL
https://aclanthology.org/2021.emnlp-main.446/.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual
associations in gpt. Advances in neural information processing systems, 35:17359—-17372, 2022.

Fatemehsadat Mireshghallah, Archit Uniyal, Tianhao Wang, David K Evans, and Taylor Berg-
Kirkpatrick. An empirical analysis of memorization in fine-tuned autoregressive language models.
In Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing,
pp. 1816-1826, 2022.

Sagnik Mukherjee, Lifan Yuan, Dilek Hakkani-Tur, and Hao Peng. Reinforcement learning finetunes
small subnetworks in large language models. arXiv preprint arXiv:2505.11711, 2025.

Jihan Yang, Runyu Ding, Ellis Brown, Xiaojuan Qi, and Saining Xie. V-irl: Grounding virtual
intelligence in real life. In European conference on computer vision, pp. 36-55. Springer, 2024.



Under review as a conference paper at ICLR 2026

Simon Zhai, Hao Bai, Zipeng Lin, Jiayi Pan, Peter Tong, Yifei Zhou, Alane Suhr, Saining Xie, Yann
LeCun, Yi Ma, et al. Fine-tuning large vision-language models as decision-making agents via
reinforcement learning. Advances in neural information processing systems, 37:110935-110971,
2024.

Xiongtao Zhou, Jie He, Yuhua Ke, Guangyao Zhu, Victor Gutiérrez-Basulto, and Jeff Z Pan. An
empirical study on parameter-efficient fine-tuning for multimodal large language models. ACL,
2024.



