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Abstract

In Open-Set Domain Generalization (OSDG), the model is exposed to both new
variations of data appearance (domains) and open-set conditions, where both known
and novel categories are present at test time. The challenges of this task arise from
the dual need to generalize across diverse domains and accurately quantify category
novelty, which is critical for applications in dynamic environments. Recently,
meta-learning techniques have demonstrated superior results in OSDG, effectively
orchestrating the meta-train and -test tasks by employing varied random categories
and predefined domain partition strategies. These approaches prioritize a well-
designed training schedule over traditional methods that focus primarily on data
augmentation and the enhancement of discriminative feature learning. The prevail-
ing meta-learning models in OSDG typically utilize a predefined sequential domain
scheduler to structure data partitions. However, a crucial aspect that remains inade-
quately explored is the influence brought by strategies of domain schedulers during
training. In this paper, we observe that an adaptive domain scheduler benefits
more in OSDG compared with prefixed sequential and random domain schedulers.
We propose the Evidential Bi-Level Hardest Domain Scheduler (EBiL-HaDS)
to achieve an adaptive domain scheduler. This method strategically sequences
domains by assessing their reliabilities in utilizing a follower network, trained
with confidence scores learned in an evidential manner, regularized by max rebi-
asing discrepancy, and optimized in a bi-level manner. We verify our approach
on three OSDG benchmarks, i.e., PACS, DigitsDG, and OfficeHome. The results
show that our method substantially improves OSDG performance and achieves
more discriminative embeddings for both the seen and unseen categories, under-
scoring the advantage of a judicious domain scheduler for the generalizability to
unseen domains and unseen categories. The source code is publicly available at
https://github.com/KPeng9510/EBiL-HaDS.

1 Introduction

Open-Set Domain Generalization (OSDG) is a challenging task where the model is exposed to both:
domain shift and category shift. Recent OSDG works often take a meta-learning approach [54, 46]
which simulates different cross-domain learning tasks during training. These methods conventionally
use a predefined sequential domain scheduler to create meta-train and meta-test domains within each
minibatch. But is fixing the meta-learning domain schedule a priori the best way to go? As a step to
explore this, our work investigates the new idea of adaptive domain scheduler, which dynamically
adjusts the training order based on ongoing model performance and domain difficulty.
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OSDG is critical for many real-world applications with changing conditions, ranging from health-
care [33] and security [5] to autonomous driving [19]. Despite the remarkable success of deep
learning, the recognition quality often deteriorates when facing out-of-distribution samples. This
problem is amplified in OSDG settings, where the model faces a dual challenge of identifying and
rejecting unseen categories, e.g., by delivering low confidence score in such cases [27, 46] while
simultaneously generalizing well to unseen data appearances (domain shift). Historically, research
efforts in OSDG have predominantly focused on the latter, developing methods to adapt models to
varying domain conditions. Strategies to improve domain generalization include the use of Generative
Adversarial Networks (GANs) [4], contrastive learning [65], and metric learning [27]. MLDG [46]
for the first time proposed to use meta-learning to handle OSDG tasks. However, all these works
follow the OSDG protocols where different source domains preserve different distributions of known
categories, which diverges the domain gaps for different categories. This divergence makes the
challenge more inclined towards the domain generalization aspect. Wang et al. [54] revised these
benchmarks for OSDG, standardizing the category distribution across source domains to achieve a
more balanced evaluation of both domain generalization and open set recognition challenges. This
revision includes established open-set recognition methods such as Adversarial Reciprocal Points
Learning (ARPL) [8]. Recently, Wang et al. [54] introduced an effective meta-learning approach
named MEDIC, featuring a binary classification and a predefined sequential domain scheduler for the
data partition during meta-train and -test stages.

However, these existing meta-learning-based OSDG approaches, i.e., MEIDC [54] and MLDG [46],
do not consider how the order in which domains are presented during training affects model gener-
alization. We believe this overlooks the potential to dynamically adapt the domain scheduler used
for data partition based on certain criteria, such as domain difficulty, which could result in a more
targeted training strategy and, therefore, better outcomes. In this paper, we observe that different
ordering strategies for domain presentation used for data partition during the meta-training and testing
phases lead to significant variations in OSDG performance, emphasizing the critical role of domain
scheduling in optimizing model generalization.

To bridge this gap, we introduce a new training strategy named the Evidential Bi-Level Hardest
Domain Scheduler (EBiL-HaDS), which allows dynamically adjusting the order of domain presenta-
tion during data partitioning in the meta-training and -testing phases. The key idea of our method
is to quantify domain reliability, defined as the aggregated confidence of the model on the samples
across unseen domains, which will then be used as the main criterion for the data partition. To assess
the domain reliability, we incorporate a secondary follower network to assess the domain reliability
alongside the primary network. This allows for prioritizing the optimization of meta-learning on less
reliable domains, facilitating an adaptive domain scheduler-based data partitioning. This follower
network is trained using bi-level optimization, which involves a hierarchical setup where the solution
to a lower-level optimization problem (evaluating domain reliability) serves as a constraint in an
upper-level problem (meta-learning objective). Optimization of the follower network is guided by
confidence scores generated through our proposed max rebiased evidential learning method, which
adjusts the confidence by amplifying the differences between the decision boundaries of different
classes. As a result, the follower network can better quantify the reliability of each domain based on
how distinct and consistent the classification boundaries are, improving the ability to generalize to
unseen domains. EBiL-HaDS enhances cross-domain generalizability and differentiation of seen and
unseen classes by prioritizing training on less reliable domains through adaptive domain scheduling.

Our experiments demonstrate the effectiveness of domain scheduling via EBiL-HaDS on three
established datasets: PACS [31], DigitsDG [63], and OfficeHome [51], which span a variety of
image classification tasks. Results demonstrate that EBiL-HaDS significantly improves model
generalizability in open-set scenarios, enhancing domain generalization and the model’s ability to
distinguish between known and unknown categories in new domains. This performance surpasses that
of both random and standard sequential domain scheduling methods during training, underscoring
EBiL-HaDS’s potential to advance current OSDG capabilities in deep learning.

2 Related Work

We simultaneously address two challenges: domain generalization and open-set recognition. Domain
generalization is a task that expects a model to generalize well to unseen domains while leveraging
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multiple seen domains for training [48, 52]. Open-set recognition, on the other hand, aims to reject
unseen categories at test-time, e.g., by delivering low confidence scores in such cases [16].

Domain generalization methods usually alleviate the domain gap with techniques such as data
augmentation [55, 40, 65, 18, 64, 34, 35], contrastive learning [57, 24, 28, 43], domain adversarial
learning [15], domain-specific normalization [44], and GANs-based methods [10, 32]. For open-set
recognition, common approaches include logits calibration [3, 42], evidential learning [59, 53, 62, 2],
reconstruction-based approaches [58, 22], GANs-based methods [29], and reciprocal point-based
approaches [8, 9].

A considerable cluster of research utilizes source domains that encompass diverse categories for train-
ing, as highlighted in [14, 47, 4, 8, 36, 61], where each category poses unique domain generalization
challenges. The primary focus of these methodologies is to improve domain generalizability, and they
tend to allocate less attention to the complexities associated with open-set scenarios. In this setting,
the categories involved in each source domain may not be the same. ODG-Net proposed by Bose et
al. [4] leverages GAN to synthesize data from the merged training domains to improve cross-domain
generalizability. SWAD proposed by Chen et al. [8] uses models averaged across various training
epochs. Katsumata et al. [27] propose to use metric learning to get discriminative embedding space
which benefits the open-set domain generalization. Wang et al. [54] introduce a new MEDIC model
together with a new formalization of the open-set domain generalization protocols, where the source
domains share the same categories defined as seen. This benchmark definition balances the impact
of the model’s open-set recognition and domain generalization performance in evaluation, which is
adopted in our work.

Newer OSDG approaches show great promise of meta-learning strategies for improving cross-
domain generalization [54, 46]. Yet, these works mainly utilize a fixed, sequential scheduling
of source domains during training [54, 46]. Existing works in curriculum learning indicate that
using a specific training order at the instance level can benefit the model performance on various
tasks [56, 26, 17, 37, 20, 41, 28, 45]. However, existing curriculum learning approaches usually
operate at the instance level (scheduling individual dataset instances within standard training) and
are not designed for OSDG tasks, while we focus on domain-based scheduling by quantifying the
domain difficulty in meta-learning. The influence of domain scheduling in the OSDG task remains
unexplored. This paper, for the first time, examines the effects of guiding the meta-learning process
with an adaptive domain scheduler, named EBiL-HaDS, which achieves data partition based on a
domain reliability measure estimated by a follower network, trained in a bi-level manner with the
supervision from the confidence score optimized by a novel max rebiased discrepancy evidential
learning.

3 Method

The most challenging domain is chosen to perform data partitioning for the meta-task reservation
during meta-learning. In our proposed EBiL-HaDS, we first utilize max rebiased discrepancy
evidential learning (Sec. 3.1) to achieve more reliable confidence acquisition, which is subsequently
used as the supervision for the reliability prediction of the follower network. During the training stage,
our method makes use of two networks with identical architectures: one serves as the main feature
extraction network, and the other functions as the follower network, aiming to assess the domain
reliability. The follower network is optimized in a bi-level manner alongside the main network
(Sec. 3.2). Hardest domain selection is accomplished by aggregating votes for samples from each
domain for the randomly selected reserved classes using the follower network (Sec. 3.3).

To optimize domain scheduling, we first define the term domain reliability, as the degree to which data
from a domain consistently aids in improving the model’s accuracy and generalizability across unseen
domains. An important step is therefore to adaptively rate the domain reliability during training.
To achieve this, we employ two parallel networks: the main network used for feature extraction,
and the follower network, which assesses the reliability of different domains based on the refined
confidence metrics. This follower network plays a central role in our adaptive domain scheduling
strategy: it employs a voting process to identify and select the most challenging domains – those that
exhibit the least reliability according to its assessments. After selecting the hardest domain, the data
is divided into two sets. One set includes data from more challenging domains outside the reserved
classes and data from more reliable domains within the reserved classes, which together form the
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meta-training set. The complementary partitions of the meta-training set are used as the meta-testing
set. Both networks are simultaneously optimized through a bi-level training approach, meaning that
the outcome of a lower-level optimization problem (evaluating domain reliability) is a constraint in
an upper-level problem (meta-learning objective). The entire pipeline during training when using the
proposed EBiL-HaDS is depicted in Alg. 1.

3.1 Max Rebiased Discrepancy Evidential Learning

The domain scheduler we propose leverages a follower network to ascertain reliability measurements,
based on reliability evaluations conducted before the start of each epoch for all source domains.
As such, confidence calibration is crucial for the main network’s functionality. Evidential learning,
which has been extensively applied across various domains such as action recognition [62] and image
classification [25], effectively calibrates these confidence predictions. However, a notable limitation
of evidential learning is its propensity for overfitting, leading to suboptimal performance [11].

To address these challenges, we propose to regularize the evidential learning by novel rebiased
discrepancy maximization, which is employed for the confidence calibration of the main network to
encourage diverse decision boundaries. This method involves training dual decision-making heads
designed to exhibit rebiased maximized discrepancies. The aim is to foster the development of both
informative and dependable decision-making capabilities within the leveraged deep learning model.
Let x denote a batch of data used in training, Mα denote the feature extraction backbone, Rθ1 and
Rθ2 denote the two rebiased layers, and K denote the Gaussian kernel to reproduce the Hilbert space.
We first calculate the max rebiased discrepancy regularization by Eq. 1,

RRB(x; Θ) =
∑

i∈{1,2}

E [K(Rθi(Mα(x)), Rθi(Mα(x)))]− 2 ∗ E[K(Rθ1(Mα(x)), Rθ2(Mα(x)))].

(1)
We aim to maximize the above loss function to achieve the maximum discrepancy between the em-
beddings extracted from the two rebiased layers. This maximization encourages the learned evidence
from the two layers to diverge from each other, thereby capturing open-set domain generalization
cues from two different perspectives. Deep evidential learning is then applied to the conventional
classification head, providing an additional constraint to achieve more reliable confidence calibration,
as described in Eq. 2.

LRBE(y,x; Θ) =
∑

i∈{1,2}

[ C∑
c=1

[yc (logSi − log(Rθi (Mα(x))c + 1))]

]
−RRB(x; Θ) (2)

where Si =
∑C

c=1(Dir(p|Rθi (Mα(x))c + 1) denotes the strength of a Dirichlet distribution, yc is
the one-hot annotation of sample x from class c, p is the predicted probability. The two rebiased
layers are engineered to capture distinct evidence by employing max discrepancy regularization. By
averaging the logits produced by the two prediction heads on the top of the two rebiased layers for
the conventional classification on the seen categories, we can harvest the final estimated confidence
score. This score is subsequently utilized to supervise the follower network, as elaborated in the
following subsections.

3.2 Follower Network for Reliability Learning

To establish an adaptive domain scheduler for the OSDG task, the most straightforward approach
would involve training a network to directly predict the sequence in which domains are employed
during the training phase for sample selection. However, this method does not facilitate gradient
computation, thereby preventing the direct optimization of the scheduler network.

In this work, we propose an alternative method where a follower network is trained to assess the
reliability of each sample, utilizing predicted confidence scores derived from max discrepancy
evidential learning as supervision. Throughout the training process, we employ samples from various
domains to collectively assess reliability. Additionally, we utilize a follower network, denoted as Mβ ,
which mirrors the architecture of the main network, but with classification heads replaced by one
regression head. Θ indicates all the parameters in the main network, including the parameters from
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Algorithm 1 Training with Evidential Bi-Level Hardest Domain Scheduler.

Require: Known domains D; Known classes C; backbone Mα; two rebiased layers Rθ1 and Rθ2 ;
two heads Hϕ1

and Hϕ2
; follower scheduling network Mβ ; weighted cross entropy WCE; mean

squared error MSE.
1: while not converged do
2: Randomly select two known classes ci, cj ← C;
3: Get the hardest domain d∗ using Mβ by Eq. 5; Select two domains from di, dj ← D/{d∗};
4: Sample data Ωa,Ωb = {x[ck,dk]|k ∈ [i, j]}, {x[ck,dk]|ck ∈ {C/{ci, cj}, dk ∈ {d∗}};
5: Construct meta-train set by Ωm−train = Ωa ∪ Ωb;
6: Meta-train:
7: for x in Ωm−train do;
8: Extract rebiased embeddings f1 = Rθ1(Mα(x)) and f2 = Rθ2(Mα(x));
9: Obtain the max rebiased discrepancy evidential learning loss LRBE(x) using f1 and f2;

10: Follower learning LREG(x) = MSE(Mβ(x),
1
2

∑
k∈{1,2} Conf(HΦk

(fk)));
11: Obtain classification loss LCLS(x) =

∑
k∈{1,2}(WCE(HΦk

(Mα(x))),y, ω)), ω ←
Mβ(x), where y indicates the classification annotation;

12: end for
13: Lm−train ←

∑
x∈Ωm−train

(LCLS(x) + LREG(x) + LRBE(x)). Backpropagation and pa-
rameter update for the whole network;

14: Meta-test:
15: Sample data Ω∗

a,Ω
∗
b = {x[ck,dk]|ck ∈ {ci, cj}, dk ∈ {d∗}}, {x[ck,dk]|ck ∈ C/{ci, cj}, dk ∈

{di, dj}}. Construct meta-test set Ωm−test = Ω∗
a ∪ Ω∗

b ;
16: Obtain loss for meta-test Lm−test ←

∑
x∈{Ωm−test}(LCLS(x) + LREG(x) + LRBE(x));

17: Back propagation and parameter update using Lall = Lm−test + Lm−train.
18: end while

the backbone, rebiased layers, and heads. We aim to solve the optimization task, as shown in Eq. 3.

Θ∗ = argmin
Θ

Lm(MΘ(x), ω
∗ ←Mβ∗(x)) subject to β∗ = argmin

β
Lf (MΘ(x),Mβ(x)), (3)

where ω∗ indicates the instance-wise reliability which serves as the weight for each instance during
the loss calculation. Substituting the best response function β∗(Θ) = argminβ Lf (MΘ(x),Mβ(x))
provides a single-level problem, as shown in Eq. 4.

Θ∗ = argmin
Θ

Lm(Θ, β∗(Θ)), (4)

where Lm denotes classification loss (LCLS) and LRBE . Lf denotes the regression loss (LREG).

3.3 Hardest Domain Scheduler during Training

We illustrate the details of the training procedure by the proposed domain scheduler in Alg. 1.
We adopt the meta-training framework outlined by MLDG [46], integrating our proposed domain
scheduler to facilitate the data partition of meta-tasks. In this approach, optimization is achieved using
both the meta-train and -test sets, characterized by distinct data distributions. For each domain present
in the training dataset, we sample a batch that encompasses the reserved categories. Subsequently,
we identify the most challenging domain by determining which domain exhibits the lowest reliability
under the selected seen categories. This procedure is accomplished by the calculation of the expected
reliability as in Eq. 5.

d∗ = argmin
d

({ωd|d ∈ D}), ωd = min
c∈C∗

exp
1 + N∗

c∑
i=1

(Mβ(x
(c,d)
i ))

N∗
c

 ∗ (0.1 + σ ∗ γd)

 , (5)

where d∗ denotes the estimated hardest domain. N∗
c and C∗ denote the number of samples from

domain d and the number of selected known categories at the start of one epoch. D denotes the
known domains used during the training procedure. x

(c,d)
i indicates the i-th sample from class c

and domain d. γd indicates the schedule frequency for domain d in the past training period, which
considers the balance of different domains.
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Table 1: Results (%) of PACS on ResNet18 [21]. The open-set ratio is 6:1.

Photo (P) Art (A) Cartoon (C) Sketch (S) Avg
Method Acc H-score OSCR Acc H-score OSCR Acc H-score OSCR Acc H-score OSCR Acc H-score OSCR

OpenMax [3] 95.56 92.48 - 83.68 69.61 - 78.61 64.36 - 70.89 50.67 - 82.19 69.28 -
ERM [50] 96.04 93.40 95.11 84.18 70.54 71.89 77.63 62.80 62.57 70.44 55.81 51.75 82.07 70.64 70.33
ARPL [8] 94.83 95.06 94.63 83.93 67.88 68.82 78.56 62.98 65.30 74.34 61.20 59.80 82.91 71.78 72.14
MMLD [39] 94.83 88.80 92.94 84.43 64.83 69.43 77.11 64.21 65.36 75.14 67.70 64.69 82.88 71.38 73.11
RSC [23] 94.43 88.37 91.38 83.36 70.27 73.55 78.09 65.13 66.15 77.16 52.98 62.31 83.26 69.19 73.35
DAML [46] 91.44 80.87 82.83 83.11 72.05 71.75 79.11 66.26 66.46 82.97 72.63 73.71 84.16 72.95 73.69
MixStyle [65] 95.23 82.02 88.99 86.18 70.62 72.57 78.92 63.23 63.81 80.34 71.90 72.07 85.17 71.94 74.36
SelfReg [28] 95.72 89.34 92.26 86.24 72.45 73.77 80.77 65.75 66.38 78.30 67.06 65.69 85.26 73.65 74.53
MLDG [30] 94.99 91.48 93.70 84.12 69.52 72.15 78.45 61.59 64.32 79.99 69.67 68.60 84.39 73.06 74.69
MVDG [60] 94.43 74.07 88.07 87.62 71.98 75.05 81.18 63.95 66.34 82.41 73.55 73.83 86.41 70.89 75.82
ODG-Net [4] 93.54 89.39 89.76 85.74 72.36 73.41 81.59 67.04 67.99 79.89 61.57 67.46 85.19 72.59 74.66

MEDIC-cls [54] 94.83 83.68 90.30 86.20 69.35 74.16 81.94 63.26 67.43 81.84 69.60 70.85 86.20 71.47 75.69
MEDIC-bcls [54] 94.83 89.49 92.40 86.20 73.82 75.58 81.94 66.26 69.04 81.84 74.37 74.52 86.20 75.98 77.89

EBiL-HaDS-cls (ours) 95.80 91.54 94.62 87.24 71.87 74.15 82.98 68.55 71.62 83.21 74.89 74.50 87.31 76.71 78.72
EBiL-HaDS-bcls (ours) 95.80 93.10 94.42 87.24 75.66 77.19 82.98 67.57 72.22 83.21 78.29 77.52 87.31 78.66 80.34

Table 2: Results (%) of PACS on ResNet50 [21]. The open-set ratio is 6:1.

Photo (P) Art (A) Cartoon (C) Sketch (S) Avg
Method Acc H-score OSCR Acc H-score OSCR Acc H-score OSCR Acc H-score OSCR Acc H-score OSCR

OpenMax [3] 97.58 93.09 - 88.37 73.91 - 84.38 68.23 - 80.07 68.06 - 87.60 75.82 -
ARPL [8] 97.09 96.81 96.86 88.24 77.48 80.32 82.68 67.19 68.31 78.08 70.04 69.47 86.52 77.88 78.74
MIRO [7] 94.85 92.32 93.27 88.51 65.02 79.01 82.98 63.05 73.72 82.22 69.47 70.61 87.14 72.47 79.15
MLDG [30] 96.77 95.85 96.33 87.99 77.16 79.93 83.45 68.74 71.32 82.25 73.16 72.27 87.61 78.73 79.96
ERM [50] 97.09 96.58 96.68 89.99 76.05 82.44 85.10 65.79 70.59 80.31 70.29 70.16 88.12 77.18 79.97
CIRL [38] 96.53 87.75 95.40 92.06 70.75 77.44 85.71 68.82 73.71 84.35 66.73 77.24 89.66 73.51 80.95
MixStyle [65] 96.53 93.57 95.30 90.87 79.15 83.27 86.80 68.08 74.68 84.88 71.57 73.41 89.77 78.09 81.66
CrossMatch [67] 96.53 96.34 96.12 91.37 75.67 82.32 83.92 67.02 74.55 81.61 72.03 73.99 88.37 77.76 81.75
SWAD [6] 96.37 84.56 93.24 93.75 68.41 85.00 85.57 58.57 75.90 81.90 74.66 74.65 89.40 71.55 82.20
MVDG [60] 97.17 95.02 96.63 92.50 79.47 85.02 86.02 71.05 76.03 83.44 75.24 75.18 89.78 80.20 83.21
ODG-Net [4] 96.53 94.93 95.58 89.24 65.22 74.60 83.86 64.32 71.20 84.80 77.58 77.38 88.61 75.51 79.69

MEDIC-cls [54] 96.37 93.80 95.37 91.62 80.80 84.67 86.65 75.85 77.48 84.61 75.80 76.79 89.81 81.56 83.58
MEDIC-bcls [54] 96.37 94.75 95.79 91.62 81.61 85.81 86.65 77.39 78.30 84.61 78.35 79.50 89.81 83.03 84.85

EBiL-HaDS-cls (ours) 97.82 93.58 95.69 92.31 80.95 84.35 87.52 75.68 78.68 85.91 76.05 78.57 90.89 81.57 84.32
EBiL-HaDS-bcls (ours) 97.82 96.04 97.14 92.31 82.80 86.17 87.52 78.34 79.85 85.91 78.68 81.32 90.89 83.97 86.12

4 Experiments

4.1 Implementation Details

All the experiments use PyToch 2.0 and one NVIDIA A100 GPU. We set the upper limit of the
training step as 1e4 and use SGD optimizer, where the learning rate (lr) is set as 1e−3 and batch size
is chosen as 16. The weights of LCLS , LREG, and LRBE are chosen as 1.0, 1e−4, and 5e−4. Lr
decay is 1e−1 and conducted at 8e3 meta-training step. The worker number is 4 and γ is 2e−5. For
ResNet18 [21] and ResNet50 [21], each rebiased layer is constructed using a residual convolutional
block. For ConvNet [66], convolutional layers are utilized. Apart from the conventional classification
head (cls), we also utilize a binary classification head (bcls) as in MEDIC [54]. The training time of
our method is 1h on PACS (ResNet18 [21]), 1.2h on PACS (ResNet50 [21]), 20min on DigitsDG
(ConvNet [66]), 2h on OfficeHome (ResNet18 [21]). The parameter ablation is provided in the
appendix.

4.2 Datasets and Metrics

We adopt the open-set protocols provided by MEDIC [54], wherein the training set of each domain,
shares the same categories. Three benchmarks are involved. PACS [31] comprises 4 distinct domains,
i.e., photo, art-painting, cartoon, and sketch, totaling 9, 991 images. 7 classes are contained in
this dataset for each domain. Digits-DG [63] aggregates 4 standard digit recognition dataset, i.e.,
Mnist, Mnist-m, SVHN, and SYN. Office-Home [51] includes 15, 500 images across 65 classes from
4 domains, i.e., art, clipart, product, and real-world. Since MEDIC [54] did not provide a detailed
benchmark on OfficeHome, we construct the whole benchmark using several outstanding baselines
and our approach, where the last 30 categories following the alphabet order are chosen as unseen
categories. The leave-one-domain-out DG setting is adopted. Close-set accuracy (acc), H-score, and
OSCR serve as metrics following [54], where OSCR is the primary metric for OSDG.
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Table 3: Results (%) of PACS on ResNet152 [21]. The open-set ratio is 6:1.
Photo (P) Art (A) Cartoon (C) Sketch (S) Avg

Method Acc H-score OSCR Acc H-score OSCR Acc H-score OSCR Acc H-score OSCR Acc H-score OSCR

ARPL 94.35 85.45 86.74 89.81 71.27 78.53 83.91 69.75 72.08 77.53 52.70 66.68 77.53 69.81 76.01
MLDG 96.20 91.07 94.64 89.81 77.65 82.19 83.86 73.66 74.03 82.89 64.30 72.98 88.19 76.67 80.96
SWAD 95.64 84.82 89.74 86.30 73.86 75.91 78.49 70.18 68.41 76.92 75.33 63.35 84.34 76.05 74.35
ODG-Net 95.88 89.11 91.85 89.62 80.65 82.48 85.15 70.37 73.66 79.30 77.00 72.22 87.49 79.28 80.05

MEDIC-cls 94.67 49.54 76.98 89.37 73.26 77.79 86.59 68.49 74.82 85.81 56.14 78.83 89.11 61.86 77.11
MEDIC-bcls 94.67 72.88 81.30 89.37 74.92 78.70 86.59 71.46 75.17 85.81 58.80 78.32 89.11 69.52 78.37

EBiL-HaDS-cls (ours) 97.90 91.66 96.62 92.06 81.52 85.43 87.21 76.61 78.19 87.08 81.13 80.21 91.06 82.73 85.11
EBiL-HaDS-bcls (ours) 97.90 94.34 97.39 92.06 82.00 85.94 87.21 76.62 80.15 87.08 88.57 81.52 91.06 85.38 86.25

Table 4: Results (%) of PACS on ViT base model [13] (patch size 16 and image size 224). The
open-set ratio is 6:1.

Photo (P) Art (A) Cartoon (C) Sketch (S) Avg
Method Acc H-score OSCR Acc H-score OSCR Acc H-score OSCR Acc H-score OSCR Acc H-score OSCR

ARPL 99.19 95.31 98.61 90.49 85.46 88.59 81.88 72.17 73.34 63.01 29.33 50.59 83.64 70.57 77.78
MLDG 99.19 95.40 98.88 91.87 82.46 89.47 80.56 69.62 74.19 61.66 40.79 43.88 83.32 72.07 76.61
SWAD 98.55 93.19 97.62 90.81 81.34 88.52 83.24 73.03 76.59 57.89 35.83 41.68 82.62 70.85 76.10
ODG-Net 97.58 96.24 95.23 90.49 83.32 87.90 82.36 68.66 75.80 62.59 43.59 50.22 83.26 72.95 77.29

MEDIC-cls 99.03 95.33 98.22 92.06 83.27 87.46 85.62 69.79 75.37 68.40 41.95 56.56 86.28 72.59 79.40
MEDIC-bcls 99.03 96.04 97.55 92.06 82.68 87.73 85.62 69.15 76.80 68.40 39.60 55.92 86.28 71.87 79.50

EBiL-HaDS-cls (ours) 99.52 97.30 99.11 94.68 86.10 92.10 89.22 74.31 77.76 69.49 44.34 55.37 88.23 75.53 81.09
EBiL-HaDS-bcls (ours) 99.52 96.91 99.18 94.68 88.31 92.28 89.22 73.91 77.95 69.49 48.09 56.78 88.23 76.81 81.55

Table 5: Results (%) of Digits-DG on ConvNet [66]. The open-set ratio is 6:4.

MNIST MNIST-M SVHN SYN Avg
Method Acc H-score OSCR Acc H-score OSCR Acc H-score OSCR Acc H-score OSCR Acc H-score OSCR

OpenMax [3] 97.33 52.03 - 71.03 57.26 - 72.00 49.46 - 84.83 54.78 - 81.30 53.38 -
MixStyle [65] 97.86 73.25 89.36 74.50 59.30 56.95 69.28 53.24 48.43 85.06 60.22 65.44 81.68 61.50 65.05
ERM [50] 97.47 80.90 92.60 71.03 53.92 54.04 71.08 54.37 49.86 85.67 51.57 67.63 81.31 60.19 66.03
ARPL [8] 97.75 85.74 91.86 69.78 58.08 54.21 71.78 56.98 53.63 85.31 64.04 65.89 81.16 66.21 66.40
MLDG [30] 97.83 80.36 94.28 71.11 46.84 55.17 73.64 53.54 53.64 86.08 63.56 70.34 82.16 61.08 68.36
SWAD [6] 97.71 84.44 92.65 73.09 53.35 55.94 76.08 59.18 56.25 87.95 51.27 69.03 83.71 62.06 68.47
ODG-Net [4] 96.86 71.34 90.93 72.92 58.47 56.98 69.83 55.74 51.55 85.42 67.67 68.12 81.26 63.31 66.90

MEDIC-cls [54] 97.89 67.37 96.17 71.14 48.44 55.37 76.00 51.20 55.58 88.11 64.90 73.62 83.28 57.98 70.19
MEDIC-bcls [54] 97.89 83.20 95.81 71.14 60.98 58.28 76.00 58.77 57.60 88.11 62.24 72.91 83.28 66.30 71.15

EBiL-HaDS-cls 99.50 87.40 97.49 74.28 56.58 60.86 80.33 61.27 62.84 93.97 73.95 78.14 87.02 70.27 75.83
EBiL-HaDS-bcls 99.50 91.63 97.58 74.28 60.72 59.39 80.33 62.23 63.88 93.97 69.92 79.28 87.02 71.13 75.87

Table 6: Results (%) of OfficeHome on ResNet18 [21]. The open-set ratio is 35:30.

Art Clipart Real World Product Avg
Method Acc H-score OSCR Acc H-score OSCR Acc H-score OSCR Acc H-score OSCR Acc H-score OSCR

OpenMax [3] 65.59 56.00 - 60.02 47.34 - 83.56 70.48 - 80.50 68.45 - 72.92 60.57 -
MixStyle [65] 62.81 53.93 50.71 52.46 44.53 42.27 81.16 67.70 67.95 76.29 63.46 62.51 68.18 57.41 55.86
ERM [50] 66.30 57.39 54.86 59.60 46.81 47.84 84.50 69.99 74.03 80.81 67.40 67.44 72.80 60.40 61.04
ARPL [8] 60.06 50.34 45.68 54.82 45.72 43.21 76.24 62.04 61.73 75.30 62.47 60.19 66.61 55.14 52.70
MLDG [30] 66.56 52.45 55.10 58.85 53.09 47.69 80.10 70.66 70.02 75.02 66.16 63.49 70.13 60.59 59.08
SWAD [6] 59.12 53.05 47.87 57.37 45.78 47.28 78.38 66.43 65.48 76.50 64.29 63.28 67.84 57.39 58.95
ODG-Net [4] 64.10 54.97 50.64 61.06 52.26 48.33 83.93 70.04 71.34 79.07 65.47 65.49 72.04 60.69 58.95

MEDIC-cls [54] 66.81 55.78 55.85 61.14 54.21 48.51 85.03 71.16 73.15 80.69 67.72 68.09 73.42 62.22 61.40
MEDIC-bcls [54] 66.81 51.76 56.21 61.14 53.28 48.97 85.03 70.61 74.08 80.69 67.70 67.17 73.42 60.82 61.61

EBiL-HaDS-cls 68.18 59.66 56.83 63.48 57.01 52.26 85.48 72.88 74.45 81.61 71.03 70.25 74.69 65.15 63.45
EBiL-HaDS-bcls 68.18 53.57 57.49 63.48 52.12 53.14 85.48 74.20 75.64 81.61 72.20 71.62 74.69 62.97 64.47

4.3 Analysis of the Experimental Results on Three OSDG Benchmarks

We first validate the performances of our approach on the three well-established benchmarks for
the OSDG task, e.g., PACS, DigitsDG, and OfficeHome. In Table 1, we use ResNet18 [21] as the
feature extraction backbone which is pre-trained on ImageNet21K [12] for the PACS benchmark.
Compared with the state-of-the-art methods, i.e., MEDIC and ODG-Net, the proposed EBiL-HaDS
achieves promising performance improvements for all the domain generalization splits. On averaged
metrics across all of these DG splits, our approach delivers performance improvements by 1.11%
of close-set accuracy, 2.68% of H-score, and 2.45% of OSCR for the binary classification head
(bcls), and consistent performance improvements can be found in the conventional classification
head (cls). Through using EBiL-HaDS to achieve a more reasonable domain scheduler during the
training, we observe that on the most challenging domain generalization split, i.e., Cartoon as unseen
domain, EBiL-HaDS delivers the most performance benefits. The core strength of EBiL-HaDS is
its adaptive domain scheduling, optimized through a bi-level manner to achieve maximum rebiased
discrepancy evidential learning. This ensures comprehensive and discriminative data partitions during
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Table 7: Module ablation of the DigitsDG on ConvNet [66].

Head DGS RBE MNIST MNIST-M SVHN SYN Avg
Acc H-score OSCR Acc H-score OSCR Acc H-score OSCR Acc H-score OSCR Acc H-score OSCR

cls 97.89 67.37 96.17 71.14 48.44 55.37 76.00 51.20 55.58 88.11 64.90 73.62 83.28 57.98 70.19
bcls 97.89 83.20 95.81 71.14 60.98 58.28 76.00 58.77 57.60 88.11 62.24 72.91 83.28 66.30 71.15

cls ✓ 99.17 79.09 95.37 71.78 60.66 57.05 78.58 60.34 59.52 91.28 70.05 76.65 85.20 67.54 72.15
bcls ✓ 99.17 80.52 96.08 71.78 55.79 58.10 78.52 61.51 60.89 91.28 72.31 74.55 85.20 67.35 72.41

cls ✓ 99.14 79.47 95.14 72.06 59.19 56.76 77.61 56.88 58.37 91.11 72.28 72.78 84.98 66.96 70.76
bcls ✓ 99.14 81.03 96.03 72.06 60.89 57.60 77.61 59.21 59.32 91.11 73.53 73.96 84.98 68.67 71.98

cls ✓ ✓ 99.50 87.40 97.49 74.28 56.58 60.86 80.33 61.27 62.84 93.97 75.82 78.14 87.02 70.27 75.83
bcls ✓ ✓ 99.50 91.63 97.58 74.28 60.72 59.39 80.33 62.23 63.88 93.97 75.77 79.28 87.02 72.59 75.87

training, enhancing generalization to unseen domains, which is observed from the above experimental
analyses. Significant performance gains in challenging DG splits, such as the unseen Cartoon domain,
demonstrate its effectiveness in handling extreme domain shifts. Consistent metric improvements
highlight EBiL-HaDS’s versatility across various OSDG challenges.

Further experiments on a different backbone, i.e., ResNet50 [21], are delivered in Table 2, where
our method contributes 1.08%, 0.94%, and 1.27% performance improvements of close-set accuracy,
H-score, and OSCR for binary classification head and consistent performance improvements for the
conventional classification head. EBiL-HaDS contributes more performance improvements when
we compare the experimental results on ResNet18 with ResNet50 [21] for the PACS dataset, which
illustrates that the EBiL-HaDS is more helpful in alleviating the generalizability issue of model-
preserving light-weight network structure since network with small size is hard to optimize and obtain
the generalizable capabilities on challenging unseen domains.

We further conduct ablation on model architecture on ResNet152 and ViT base model [13], where our
proposed method is compared with the MEDIC and other challenging baselines, i.e., ARPL, MLDG,
SWAD, and ODG-Net. From Table 2 and Table 1 we can observe an obvious OSDG performance
improvement by increasing the complexity of the leveraged feature extraction backbone. However,
when we compare Table 3 and Table 2, some baseline approaches trained with ResNet152 backbone
even show performance decay on the major evaluation metric OSCR. This observation demonstrates
that most OSDG methods face the overfitting issue when using a very large backbone, which is a
critical issue for open-set challenging to recognize samples from unseen categories, especially in an
unseen domain. The MEDIC-bcls approach shows 6.48% performance degradation on OSCR when
we replace the backbone from ResNet50 to ResNet152. Using the proposed BHiL-HaDS to achieve a
more reasonable task reservation in meta-learning procedure, BHiL-HaDS-bcls delivers 86.25% in
terms of OSCR on ResNet152 [21] backbone, where the OSCR performance of BHiL-HaDS-bcls on
ResNet50 is 86.12%.

This observation shows that our proposed adaptive domain scheduler can make the meta-learning
effective on large complex models by reserving reasonable task for model optimization. Additional
experiments on the ViT base model [13] (patch size 16 and window size 224) are provided in
Table 4, where we observe that our proposed method can deliver consistent performance gains on the
transformer architecture.

This observation is further validated by the experimental results on DigitsDG where a smaller network
structure, i.e., ConvNet [66], is used, as shown in Table 5. Our method contributes 3.74%, 4.83%, and
4.72% performance improvements of close-set accuracy, H-score, and OSCR for binary classification
head and 3.74%, 12.29%, and 5.64% performance improvements of close-set accuracy, H-score, and
OSCR for the conventional classification head. Consistent performance improvements are shown in
Table 6 on the OfficeHome. We further observe that using EBiL-HaDS, the optimized model can
contribute a distinct separation between confidence scores of the model on the unseen categories and
seen categories in the test unseen domain, showing the benefits of a reasonable domain scheduler for
OSDG.

4.4 Analysis of the Ablation Experiments

We deliver the ablation experiments in Table 7, We first remove the LRBE by directly supervising the
follower network using the confidence score provided by SoftMax supervised by cross-entropy loss
for classification, where the results are shown in the second part of Table 7 (w/o RBE). Compared
with this ablation, our method achieves 1.82%, 5.24%, and 3.46% performance improvements of
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Table 8: Comparison with different domain schedulers on DigitsDG with open-set ratio 6:4.

MNIST MNIST-M SVHN SYN Avg
Method Acc H-score OSCR Acc H-score OSCR Acc H-score OSCR Acc H-score OSCR Acc H-score OSCR

SequentialSched-cls 97.89 67.37 96.17 71.14 48.44 55.37 76.00 51.20 55.58 88.11 64.90 73.62 83.28 57.98 70.19
SequentialSched-bcls 97.89 83.20 95.81 71.14 60.98 58.28 76.00 58.77 57.60 88.11 62.24 72.91 83.28 66.30 71.15

Random-cls 98.39 52.93 94.21 70.92 52.70 52.41 77.92 59.65 57.95 88.33 44.11 75.66 83.89 52.35 70.06
Random-bcls 98.39 73.67 94.22 70.92 57.23 54.87 77.92 57.54 61.06 88.33 68.34 74.81 83.89 64.20 71.24

EBiL-HaDS-cls 99.50 87.40 97.49 74.28 56.58 60.86 80.33 61.27 62.84 93.97 75.82 78.14 87.02 70.27 75.83
EBiL-HaDS-bcls 99.50 91.63 97.58 74.28 60.72 59.39 80.33 62.23 63.88 93.97 75.77 79.28 87.02 72.59 75.87

(a) ODGNet (b) MEDIC-cls (c) MEDIC-bcls (d) Ours-cls (e) Ours-bcls

Figure 1: Comparison of open-set confidence using ResNet18 [21] on PACS. Photo is the unseen
domain. We use red and blue colors to denote unseen and seen categories.

(a) MEDIC photo (b) Ours photo (c) MEDIC art (d) Ours art

Figure 2: The visualization of the embeddings through TSNE [49] for PACS on ResNet18 [21].

(a) Acc-SA1 (b) OSCR-SA1 (c) Acc-SA2 (d) OSCR-SA2

Figure 3: Ablation of different open-set ratios on DigitsDG dataset by ConvNet [66] backbone, where
SA indicates Split Ablation. Regarding all the splits, Case 1 (denoted by red color) indicates using 7,
8, 9, 10 as unseen categories. In (a) and (b), Case 2 (denoted by blue color) and Case 3 (denoted by
gray color) indicate that using 0, 1, 2, 3 and 2, 3, 4, 5 as unseen categories. In (c) and (d), Case 2 and
Case 3 indicate using 7, 8, 9 and 8, 9 as unseen categories, respectively.

close-set accuracy, H-score, and OSCR for binary classification head and 1.82%, 2.73%, and 3.68%
performance improvements of close accuracy, H-score, and OSCR for conventional classification
head. The significant OSDG performance improvements highlight the importance of the confidence
score learned by the max rebiased discrepancy evidential learning in supervising the follower network,
ensuring the promising reliability prediction. Then we use a sequential scheduler and keep the LRBE

in the third part of Table 7 (w/o DGS), where our approach outperforms this variant by 2.04%,
3.92%, and 3.89% of close accuracy, H-score, and OSCR for binary classification head and 2.04%,
3.31%, and 5.07% of these metrics for conventional classification head. This observation shows
the importance of the proposed domain scheduler for the OSDG task and highlights the effect of
using meta-learning trained with a reasonable data partition. Both ablations show better OSDG
performances compared with MEDIC, confirming the benefit of each component. We further deliver
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more ablations, e.g., the benefits brought by the max discrepancy regularization term, comparison
with recent curriculum learning approaches, and ablation of the rebiased layers in the appendix.

4.5 Comparison of Different Domain Schedulers for OSDG Task

We present several comparison experiments in Table 8 to demonstrate the efficacy of various domain
schedulers when applying meta-learning to the OSDG task. We compare our proposed EBiL-HaDS
with both the sequential domain scheduler and the random domain scheduler. The sequential domain
scheduler selects domains in a fixed order for batch data partitioning, while the random scheduler
assigns domains randomly. Results show that EBiL-HaDS significantly outperforms both the random
and sequential domain schedulers. Specifically, EBiL-HaDS achieves performance improvements of
3.13%, 8.39%, and 4.63% in closed accuracy, H-score, and OSCR for the binary classification head,
and 3.13%, 17.92%, and 5.77% in these metrics for the conventional classification head compared to
the random scheduler. This ablation demonstrates that our scheduler enables the model to converge
to a more optimal region, which outperforms both predefined fixed-order (sequential) and maximally
random (random) schedulers, underscoring the importance of a well-designed domain scheduler in
meta-learning for the OSDG. More ablations on domain schedulers are supplemented in the appendix.

4.6 Analysis of the TSNE Visualizations of the Latent Space

In Figure 2, we deliver the TSNE [49] visualization of the latent space of MEDIC and our approach
on the OSDG splits, i.e., photo and art as unseen domains. Unseen and seen categories are denoted
by red and other colors. we observe that the model trained by our method delivers a more compact
cluster for each category and the unseen category is more separable regarding the decision boundary
in the latent space. Our method’s ability to improve the generalizability of the model is particularly
noteworthy. The well-structured latent space facilitates better transfer learning capabilities, allowing
the model to adapt more efficiently to new, unseen categories. This characteristic is especially
beneficial in dynamic environments where the data distribution can change over time. In essence, the
effectiveness of our approach in achieving a more discriminative and generalizable latent space can be
directly linked to the sophisticated data partitioning achieved through EBiL-HaDS. This demonstrates
the profound influence that carefully designed domain schedulers can have on the overall performance
of deep learning models, emphasizing the need for thoughtful consideration in their implementation.

4.7 Ablation of the Open-Set Ratios and the Number of Unseen Categories

We first conduct the ablation towards different unseen categories with a predefined open-set ratio
in Figure 3a and Figure 3b of close-set accuracy and the OSCR for open-set evaluation, where the
performance of the ODG-NET, binary classification head, and conventional classification head of
MEDIC method and our method are presented. We then conduct the ablation towards different
numbers of unseen categories in Figure 3c and Figure 3d of close-set accuracy and the OSCR for
open-set evaluation, where the performance of the ODG-NET, binary classification head, and classifi-
cation head of MEDIC method and our method are presented. From the experimental results and
comparisons, we can find consistent performance improvements, indicating the high generalizability
of our approach across different open-set ratios and unseen category settings.

5 Conclusion

In this study, we introduce the Evidential Bi-Level Hardest Domain Scheduler (EBiL-HaDS) for the
OSDG task. EBiL-HaDS is designed to create an adaptive domain scheduler that dynamically adjusts
to varying domain difficulties. Extensive experiments on diverse image recognition tasks across
three OSDG benchmarks demonstrate that our proposed solution generates more discriminative
embeddings. Additionally, it significantly enhances the performance of state-of-the-art techniques in
OSDG, showcasing its efficacy and potential for broader applications for deep learning models.

Limitations and Societal Impacts. EBiL-HaDS positively impacts society by enhancing model
awareness of out-of-distribution categories in unseen domains, leading to more reliable decisions. It
emphasizes the importance of domain scheduling in OSDG. However, the method may still result in
misclassification and biased predictions, potentially causing negative effects. EBiL-HaDS relies on
source domains with unified categories and has so far only been tested on image classification.
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Appendix

A Further Illustration of the Evaluation Methods and Protocols

We follow the same protocol according to the MEDIC approach [54]. For PACS dataset which is
used in Table 1 and Table 2, we use the open-set ratio as 6 : 1, where the elephant, horse, giraffe,
dog, guitar, house are selected as seen categories and person is selected as the unseen category.
For the DigitsDG dataset, we leverage the open-set ratio as 6 : 4, where digits 0, 1, 2, 3, 4, 5 are
used as seen categories while digits 6, 7, 8, 9 are selected as unseen categories, in Table 5. For the
OfficeHome dataset, Mop, Mouse, Mug, Notebook, Oven, Pan, PaperClip, Pen, Pencil, PostitNotes,
Printer, PushPin, Radio, Refrigerator, Ruler, Scissors, Screwdriver, Shelf, Sink, Sneakers, Soda,
Speaker, Spoon, TV, Table, Telephone, ToothBrush, Toys, TrashCan, Webcam are chosen as the 30
unseen categories. The Acc indicates the close-set accuracy measured on the seen categories to assess
the correctness of the classification. The H-score and OSCR are measurements for the open-set
recognition which are widely used in the OSDG field. Since the H-score relies on a predefined
threshold derived from the source domain validation set to separate the seen categories and unseen
categories, it is regarded as a secondary metric in our evaluation. MEDIC proposes OSCR for the
OSDG evaluation where no predefined threshold is required, which is used as our primary evaluation
metric.

Regarding the calculation of the H-Score, we first have a threshold ratio λ to separate the samples
coming from seen and unseen classes. When the predicted confidence score is below λ, we regard
the corresponding samples as an unseen category. Then, we calculate the accuracy for all the samples
regarded as seen categories according to their corresponding seen labels, which can be denoted
as Acck. The accuracy calculation of the unseen categories is conducted in a binary classification
manner, where the label for the samples from the seen category is annotated as 1 and the label for the
samples from the unseen category is annotated as 0. Then the accuracy for the unseen evaluation can
be denoted as Accu. The H-score is calculated as follows,

Hscore =
2 ∗Accu ∗Acck
Accu +Acck

. (6)

OSCR is a combination of the accuracy and the AUROC via a moving threshold to measure the
quality of the confidence score prediction for the OSDG task. Different from the AUROC, OSDG
only calculates the samples that are correctly predicted using such moving threshold, which is a
combination of the calculation manner from the H-score and AUROC.

B More Ablations of the Proposed Method

B.1 Ablation of the RBE

We deliver the ablation results of schedulers with different loss function components on the Digits-
DG dataset with an open-set ratio of 6:4 for close-set accuracy, H-score, and OSCR of both the
conventional and binary classification heads under different dataset partitions (Mnist, Mnist-m,
SVHN, SYN). The experiments are conducted by removing the whole LRBE component or removing
only the regularization termRRB from the EBiL-HaDS method. The results show that EBiL-HaDS
performs better than the other two variations on almost all the dataset partitions except the H-score
of Mnist-m, as shown in Table 9, demonstrating the effect of our LRBE and the importance of the
regularization termRRB in the whole LRBE component.

Comparisons between EBiL-HaDS and the method without the LRBE illustrate the whole improve-
ment of our deep evidential learning component with regularization term RRB . EBiL-HaDS has
in average 2.04%, 3.31%, 5.07% performance increase of the conventional classification head and
2.04%, 3.92%, 3.89% increase of the binary classification head for close-set accuracy, H-score, and
OSCR, respectively. Differences between the models without LRBE and withoutRRB demonstrate
the effect of our deep evidential learning itself. The performance with deep evidential learning
improves 0.66%, 0.43%, 2.47% with the conventional classification head and 0.66%, 0.73%, 0.83%
with the binary classification head for close-set accuracy, H-score, and OSCR in average. On the
other hand, EBiL-HaDS has superior results than the model without regularization term RRB by
1.38%, 2.88%, 2.60% and 1.38%, 3.19%, 3.06% for close-set accuracy, H-score, OSCR with the
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conventional and binary classification heads averagely. These experiments showcase the significance
of regularization term RRB , which contributes more than 50% performance improvement in the
whole LRBE component on all 3 metrics with either conventional or binary classification head.

Table 9: Comparison with different domain schedulers on Digits-DG with open-set ratio 6:4 using
ConvNet [66] (Best in Bold).

MNIST MNIST-M SVHN SYN Avg
Method Acc H-score OSCR Acc H-score OSCR Acc H-score OSCR Acc H-score OSCR Acc H-score OSCR

w/o RBE (cls) 99.14 79.47 95.14 72.06 59.19 56.76 77.61 56.88 58.37 91.11 72.28 72.78 84.98 66.96 70.76
w/o RBE (bcls) 99.14 81.03 96.03 72.06 60.89 57.60 77.61 59.21 59.32 91.11 73.53 73.96 84.98 68.67 71.98

w/o RB (cls) 99.19 82.72 94.67 73.89 56.47 60.78 78.17 56.54 59.54 91.31 73.81 77.92 85.64 67.39 73.23
w/o RB (bcls) 99.19 84.89 96.13 73.89 60.03 58.73 78.17 61.49 60.20 91.31 71.17 76.17 85.64 69.40 72.81

EBiL-HaDS-cls 99.50 87.40 97.49 74.28 56.58 60.86 80.33 61.27 62.84 93.97 75.82 78.14 87.02 70.27 75.83
EBiL-HaDS-bcls 99.50 91.63 97.58 74.28 60.72 59.39 80.33 62.23 63.88 93.97 75.77 79.28 87.02 72.59 75.87

B.2 Ablation of the Hyperparameters

We visualize the impact of various hyperparameter configurations on the DigitsDG dataset for
close-set accuracy, as well as the OSCR of both the conventional and binary classification heads
under different dataset partitions (Mnist, Mnist-m, SVHN, SYN as unseen domains), as illustrated in
Figure 7, Figure 8, and Figure 9. Figure 7 presents an ablation study focusing on the σ influences,
and demonstrates that varying σ from 2e−1 to 2e−6 slightly impacts model performance, with certain
settings yielding optimal results. For instance, lower values of σ generally enhance the OSCR
of binary classification head, particularly in more complex datasets like SVHN, suggesting that σ
is important for achieving a balance between robustness and accuracy in domain generalization
scenarios.

In Figure 8, adjustments to the loss weight of LREG ranging from 1e−3 to 1e−6 are analyzed, which
is evident that the loss weight of LREG with 1e−4 yields the most optimal results across various
metrics. Conversely, excessively lower loss weight of LREG appears to have a detrimental effect,
potentially leading to overfitting or diminishing the model’s ability to generalize effectively across
different domains. Besides, Figure 9 explores the ablation of the loss weight of LRBE via adjusting
LRBE from 5e−1 to 5e−4. It shows a direct effect on both accuracy and OSCR, with lower weights
generally improving performance, particularly for challenging datasets like SVHN, which suggests
that LRBE plays a critical role in the evidential learning framework, significantly influencing the
model’s ability in open-set conditions under unseen domains. Tuning of hyperparameters σ, the loss
weights of LREG and LRBE are significant for optimizing the performance of domain generalization
models. Optimal settings remarkably enhance both the accuracy of meta-training and the OSCR of
the classification heads, particularly under complex and challenging dataset conditions like SVHN as
the unseen domain.

B.3 Ablation of the Rebiased Layers

In this subsection, we provide the ablation of the layer number used for the rebiased operation as
shown in Table 10. In this ablation, 1-1 layer, 2-1 layer, and 2-2 layer indicate that the Rθ1 and
Rθ2 are both constructed by 1 convolutional layer, constructed by 1 and 2 convolutional layers,
and both constructed by 2 convolutional layers, with unified kernel size 3. We first observe that
all of the ablation experiments outperform the baseline MEDIC in terms of the averaged OSDG
performance, indicating that with rebiased setting our method can achieve overall OSDG performance
improvements regardless of the layer constructions. Delving deeper into the ablation comparison, we
find that different convolutional layers to construct the rebiased head can achieve the best performance.
This 2-1 layer setting is thereby adopted in other experiments.

B.4 Comparison with the Self-Generated Reliability-Based Domain Scheduler and
Easy-to-Hard Domain Scheduler

We deliver the comparison among the predefined domain scheduler [54], the self-generated reliability-
based domain scheduler (denoted as SDGS), the easier domain scheduler (denoted as EDS), and our
domain scheduler in Table 11. The self-generated reliability-based domain scheduler indicates that
we do not rely on the follower network to achieve the reliability assessment while the confidence
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Table 10: Ablation of the rebiased layer number on Digits-DG with open-set ratio 6:4 using Con-
vNet [66] (Best in Bold).

MNIST MNIST-M SVHN SYN Avg
Method Acc H-score OSCR Acc H-score OSCR Acc H-score OSCR Acc H-score OSCR Acc H-score OSCR

MEDIC (cls) 97.89 67.37 96.17 71.14 48.44 55.37 76.00 51.20 55.58 88.11 64.90 73.62 83.28 57.98 70.19
MEDIC (bcls) 97.89 83.20 95.81 71.14 60.98 58.28 76.00 58.77 57.60 88.11 62.24 72.91 83.28 66.30 71.15

1-1 layer (cls) 99.11 87.30 94.12 72.86 56.50 59.29 78.64 61.69 61.45 92.58 74.30 78.12 85.80 69.97 73.25
1-1 layer (bcls) 99.11 91.35 96.92 72.86 60.20 61.10 78.64 62.16 60.67 92.58 75.05 79.78 85.80 72.19 74.62

2-1 layer (cls) 99.50 87.40 97.49 74.28 56.58 60.86 80.33 61.27 62.84 93.97 75.82 78.14 87.02 70.27 75.83
2-1 layer (bcls) 99.50 91.63 97.58 74.28 60.72 59.39 80.33 62.23 63.88 93.97 75.77 79.28 87.02 72.59 75.87
2-2 layers (cls) 99.08 87.02 96.61 73.32 56.57 59.33 79.14 61.97 61.03 94.00 74.54 79.13 86.39 70.03 74.03
2-2 layers (bcls) 99.08 90.12 96.79 73.32 60.11 59.59 79.14 59.58 60.04 94.00 72.74 77.48 86.39 70.64 73.48

score from the main network is utilized for the domain scheduling. This comparison is designed to
showcase the importance of the follower network used for the domain reliability assessment. The
easier domain scheduler indicates that we use the domain with the highest reliability to accomplish
the data partition during the meta-learning.

Through using the follower network, we observe that our method outperforms SDGS by 2.19%,
2.81%, and 3.29% of Acc, H-score, and OSCR for binary classification head and 2.19%, 3.42%, and
4.05% of Acc, H-score, and OSCR for conventional classification head. Consistent performance
benefits of our method can be observed when we compare the results of the EDS with ours, indicating
the importance of using the hardest domain scheduler in the OSDG task when meta-learning is
involved. Compared with the predefined domain scheduler from MEDIC, SDGS and EDS outperform
it obviously, indicating the importance of using an adaptive domain scheduler during the meta-learning
procedure for the OSDG task.

Table 11: Comparison of self-generated reliability-based domain scheduler, the Easy2Hard scheduler,
and ours on Digits-DG with open-set ratio 6:4 using ConvNet [66] (Best in Bold).

MNIST MNIST-M SVHN SYN Avg
Method Acc H-score OSCR Acc H-score OSCR Acc H-score OSCR Acc H-score OSCR Acc H-score OSCR

MEDIC (cls) 97.89 67.37 96.17 71.14 48.44 55.37 76.00 51.20 55.58 88.11 64.90 73.62 83.28 57.98 70.19
MEDIC (bcls) 97.89 83.20 95.81 71.14 60.98 58.28 76.00 58.77 57.60 88.11 62.24 72.91 83.28 66.30 71.15

SDGS (cls) 98.97 85.99 95.67 71.17 50.86 56.06 76.72 57.55 57.78 92.47 72.98 77.61 84.83 66.85 71.78
SDGS (bcls) 98.97 88.79 96.62 71.17 57.01 54.18 76.72 57.89 59.06 92.47 75.44 80.46 84.83 69.78 72.58

EDS (cls) 98.89 76.21 95.40 72.17 53.81 57.46 76.86 58.07 58.95 90.72 69.40 76.45 84.66 64.37 72.07
EDS (bcls) 98.89 88.17 96.46 72.17 59.15 56.09 76.86 59.61 57.97 90.72 69.98 76.58 84.66 69.23 71.78

Ours (cls) 99.50 87.40 97.49 74.28 56.58 60.86 80.33 61.27 62.84 93.97 75.82 78.14 87.02 70.27 75.83
Ours (bcls) 99.50 91.63 97.58 74.28 60.72 59.39 80.33 62.23 63.88 93.97 75.77 79.28 87.02 72.59 75.87

B.5 Comparison with Other Curriculum Learning Approaches

We implement two recent curriculum learning approaches, i.e., the training paradigms proposed by
Wang et al. [56] and Abbe et al. [1] into the OSDG task, where the comparison of the experimental
results are delivered in Table 12. We first observe that using different training paradigms can benefit
OSDG. Compared with the MEDIC baseline, the approach proposed by Abbe et al. [1] achieves
performance improvements of 2.44%, 3.49%, and 0.92% and 2.44%, 2.04%, and 1.09% of Acc,
H-score, and OSCR for the conventional classification head and the binary classification head. The
approach proposed by Wang et al. [56] also delivers promising comparable results with the MEDIC
baseline. Furthermore, since our approach is specifically designed for the OSDG task, our approach
achieves performance improvements of 1.30%, 8.80%, and 4.72% and 1.30%, 4.25%, and 3.63% in
Acc, H-score, and OSCR for the conventional classification head and the binary classification head
compared with the approach proposed by Abbe et al. [1], illustrating the superior performance of our
domain scheduler based data partition in the OSDG task.

C More Details of the Open-Set Ratios and Splits Ablations

We visualize the impact of different strategies for splitting known and unknown classes on the
DigitsDG dataset, specifically examining the effects on close-set accuracy and OSCR of both
conventional and binary classification heads. The analysis covers various dataset partitions, including
Mnist, Mnist-m, SYN, and SVHN, as depicted in Figure 4 and Figure 5. Figure 4 presents an

17



Table 12: Comparison with other curriculum learning methods on Digits-DG with open-set ratio 6:4
using ConvNet [66] (Best in Bold).

MNIST MNIST-M SVHN SYN Avg
Method Acc H-score OSCR Acc H-score OSCR Acc H-score OSCR Acc H-score OSCR Acc H-score OSCR

MEDIC (cls) 97.89 67.37 96.17 71.14 48.44 55.37 76.00 51.20 55.58 88.11 64.90 73.62 83.28 57.98 70.19
MEDIC (bcls) 97.89 83.20 95.81 71.14 60.98 58.28 76.00 58.77 57.60 88.11 62.24 72.91 83.28 66.30 71.15

Wang et al. [56] (cls) 98.92 87.80 94.34 72.22 48.27 57.99 78.14 52.87 59.92 90.03 62.48 69.35 84.83 62.86 70.40
Wang et al. [56] (bcls) 98.92 89.42 94.98 72.22 60.13 58.22 78.14 59.20 59.46 90.03 66.43 70.67 84.83 68.78 70.83

Abbe et al. [1] (cls) 99.22 78.06 94.79 71.92 50.16 55.56 79.81 52.80 59.95 91.92 64.87 74.13 85.72 61.47 71.11
Abbe et al. [1] (bcls) 99.22 88.37 95.53 71.92 60.06 57.96 79.81 59.55 60.32 91.92 65.37 75.14 85.72 68.34 72.24

Ours (cls) 99.50 87.40 97.49 74.28 56.58 60.86 80.33 61.27 62.84 93.97 75.82 78.14 87.02 70.27 75.83
Ours (bcls) 99.50 91.63 97.58 74.28 60.72 59.39 80.33 62.23 63.88 93.97 75.77 79.28 87.02 72.59 75.87

ablation study focusing on the selection of unknown classes with a 6:4 ratio. Despite the suboptimal
dataset partitioning leading to declines in both close-set accuracy and OSCR, the superiority of our
method remains largely unaffected by the choice of unknown classes. It consistently achieves the
highest close-set accuracy and OSCR across most domains within the DigitsDG dataset, while also
maintaining competitive performance in the remaining domains. This demonstrates the model’s
proficiency in distinguishing and recognizing known classes within the training set, as well as its
capability of managing unseen classes, thereby highlighting its robustness in open-set environments.
Furthermore, Figure 5 illustrates an ablation study examining various open-set ratios (7:3 and 8:2). By
analyzing the impact of various open-set ratios in this ablation, we show that our method effectively
mitigates saturation in close-set accuracy, maintaining robust generalization capabilities of OSDG.
However, the imbalance between known and unknown samples diminishes the model’s ability to
differentiate unknown classes, resulting in a general decrease in OSCR. Despite this challenge, our
method consistently achieves the highest OSCR across different open-set ratios compared with the
baselines. Notably, in the complex and challenging SVHN domain, our OSCR exceeds the baseline
MEDIC-bcls by 5.08% at the 8:2 ratio. This finding underscores our model’s exceptional performance
in detecting unknown classes and accurately classifying known ones.

D Analysis of the Performances during Training

We visualize the accuracy changes during training every 100 epochs for the meta-learning process,
reporting both validation accuracy and test accuracy, as shown in Figure 6. Implementing our domain
scheduler introduces significant improvements in the model’s training dynamics. Notably, the valida-
tion accuracy curve appears smoother compared to the MEDIC baseline, as illustrated in Figure 6a
and Figure 6c. At the early stages of meta-learning for OSDG, our domain scheduler demonstrates
superior initial training performance, with test set accuracy surpassing that of MEDIC [54]. These
findings suggest that customizing the training schedule to match distinct domain partitions within
the data can substantially enhance both training efficiency and overall performance. Our approach
capitalizes on specialized domain knowledge, allowing the training algorithm to better adapt to
varying data characteristics, ultimately optimizing the model’s performance outcomes.
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(a) Close-set accuracy on DigitsDG when we choose 0, 1, 2, 3 as unknown classes.

(b) Close-set accuracy on DigitsDG when we choose 2, 3, 4, 5 as unknown classes.

(c) OSCR on DigitsDG when we choose 0, 1, 2, 3 as unknown classes.

(d) OSCR on DigitsDG when we choose 2, 3, 4, 5 as unknown classes.

Figure 4: Experimental details for the ablation of different splits on 6:4 ratio on DigitsDG dataset.
(Supplementary figure)
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(a) Close-set accuracy on DigitsDG when we choose 7, 8, 9 as unknown classes.

(b) Close-set accuracy on DigitsDG when we choose 8, 9 as unknown classes.

(c) OSCR on DigitsDG when we choose 7, 8, 9 as unknown classes.

(d) OSCR on DigitsDG when we choose 8, 9 as unknown classes.

Figure 5: Experimental details for the ablation of different open-set ratios on DigitsDG dataset.
(Supplementary figure)
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(a) Val and test accuracy on MnistDG, where Mnist is
chosen as the unseen domain.

(b) Val and test accuracy on MnistDG, where Mnist-m
is chosen as the unseen domain.

(c) Val and test accuracy on MnistDG, where SYN is
chosen as the unseen domain.

(d) Val and test accuracy on MnistDG, where SVHN is
chosen as the unseen domain.

Figure 6: Val and test accuracy on MnistDG, where the validation accuracy of MEDIC and our
approach are indicated by lines in blue and orange colors, and the test accuracy of MEDIC and our
approach are indicated by lines in gray and yellow colors. The horizontal axis indicates the evaluation
step with stepsize 100 during the meta-learning procedure.

(a) Accuracy (b) OSCR (cls)

(c) OSCR (bcls)

Figure 7: Ablation for the σ, where the horizontal axis indicates the ablation cases. Case 1, 2, 3, 4, 5,
and 6 indicate 2e−1, 2e−2, 2e−3, 2e−4, 2e−5 and 2e−6. The experiments are conducted on DigitsDG
using a ConvNet architecture.
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(a) Accuracy (b) OSCR (cls)

(c) OSCR (bcls)

Figure 8: Ablation for the loss weight of the LREG, where the horizontal axis indicates the ablation
cases. Case 1, 2, 3, and 4 indicate 1e−3, 1e−4, 1e−5, and 1e−6. The experiments are conducted on
DigitsDG using a ConvNet architecture.

(a) Accuracy (b) OSCR (cls)

(c) OSCR (bcls)

Figure 9: Ablation for the loss weight of the LRBE , where the horizontal axis indicates the ablation
cases. Case 1, 2, 3, and 4 indicate 5e−1, 5e−2, 5e−3, and 5e−4. The experiments are conducted on
DigitsDG using a ConvNet architecture.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The authors confirm that the main claim provided in the abstract and the
introduction is verified through experiments and can demonstrate the contribution and the
scope of this work.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The authors confirm that the limitation of the proposed approach is discussed
in the conclusion section alongside the negative and positive society impacts.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: The authors confirm that this submission does not contain theoretical result.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The authors confirm that a detailed algorithm description is provided in our
main paper alongside with the implementation details. The code will be made publicly
available to the community upon decision.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The code link is provided in abstract.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The authors confirm that the detailed training scripts are illustrated in the
appendix. The training details, e.g., optimizer, scheduler, and hyperparameters, are delivered
in the implementation details section in the main paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The authors confirm that this submission does not provide error bars in our main
experiments. However, our ablation experiments include cross backbone generalizability,
cross split tests and cross open-set ratio tests, which can demonstrate the statistic significance
of the proposed approach as shown in Figure 3 in our main paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The authors confirm that the details of the computational resources are provided
in the implement details section in the main paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The authors have reviewed the NeurIPS Code of Ethics and confirmed for all
of the content.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The authors confirm that the potential positive and negative society impacts
are discussed in the conclusion section.

Guidelines:
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The authors confirm that this submission poses no such risk.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The authors confirm that the original papers that produced the code package or
dataset are correctly cited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [No]
Justification: The authors confirm that this submission does not contain new dataset. Pro-
tocols are demonstrated in the supplementary materials and code will be made publicly
available upon decision.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The authors confirm that this submission does not involve crowdsourcing nor
research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The authors confirm that this submission does not involve crowdsourcing nor
research with human subjects.
Guidelines:
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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