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Abstract

With the growing adoption of Large Language
Models (LLMs) for open-ended tasks, accu-
rately measuring epistemic uncertainty, a key
indicator of a model’s lack of knowledge or
confidence, has become crucial for ensuring
reliable outcomes. However, quantifying epis-
temic uncertainty in such tasks remains chal-
lenging due to the presence of aleatoric uncer-
tainty, which arises from inherent randomness
among multiple valid answers. Building on pre-
vious work showing that LLMs are more likely
to copy information from input when model
confidence is low, we empirically analyze how
text-based and image-based biases in input af-
fect the behavior of GPT-40 and Qwen2-VL
across varying confidence levels in Visual Ques-
tion Answering (VQA) tasks. Our findings re-
veal that all considered biases induce greater
changes in measured uncertainties, when model
confidence after bias mitigation is lower. More-
over, lower model confidence leads to greater
underestimation of epistemic uncertainty (i.e.
overconfidence) due to the presence of bias,
whereas it has no significant effect on the di-
rection and smaller effect on the magnitude of
aleatoric uncertainty changes. Based on these
observations, we hypothesize that biases de-
grade the ranking performance of measured
uncertainty, motivating our exploration of bias
mitigation as a potential uncertainty quantifica-
tion approach. This approach improves uncer-
tainty quantification in the presence of aleatoric
uncertainty with GPT-4o.

1 Introduction

Robust quantification of Large Language Models’
(LLMs) confidence in their answers is vital for trust
and safety in critical applications. Overestimating
confidence can lead to erroneous decisions, while
underestimating it prevent effective utilization of
their capabilities (Hendrycks et al., 2021).

Much of the existing literature leverages uncer-
tainty to estimate a model’s confidence in its an-
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42 or407?

Aleatoric Uncertainty

42 or157?

Figure 1: An example of aleatoric uncertainty and epis-
temic uncertainty. Both 42 and 15 are valid answers,
while 40 reflects the model’s lack of knowledge about
the ‘42’ in the image.

swers (Guo et al., 2017). General uncertainty quan-
tification typically accounts for both epistemic and
aleatoric uncertainties. However, only epistemic
uncertainty indicates a model’s confidence, as it re-
flects the limitations of the underlying knowledge.
In contrast, aleatoric uncertainty stems from the
irreducible randomness of the true answer distri-
bution. An example of epistemic uncertainty and
aleatoric uncertainty is provided in Figure 1.
Earlier research predominantly tackles the
aleatoric uncertainty from different phrasings of the
same semantic meaning, often by semantic equiv-
alence calculations (Kuhn et al., 2023; Farquhar
et al., 2024; Lin et al., 2023). Recent work has
shifted focus towards more general scenarios (Ah-
dritz et al., 2024; Yadkori et al., 2024), where mul-
tiple distinct semantic meanings are valid (Jiang
et al., 2022; Jia et al., 2024; Barandas et al., 2024).
These two studies concurrently find that models
are more likely to copy information from prompts
under high epistemic uncertainty, which indicates
low model confidence, compared to high aleatoric
uncertainty. As repeating provided information
reflects confirmation bias (Nickerson, 1998; Shi
et al., 2024), we hypothesize that models tend to
rely more on bias rather than semantic meaning



when their confidence without bias is lower. Thus,
biases (Wang et al., 2023; Liu et al., 2024; Gavrikov
et al., 2024; Ye et al., 2024) have a greater impact
in lower-confidence scenarios.

To test our hypothesis, we construct visual-
language datasets in which questions admit
multiple semantically valid answers from
VL_Checklist (Zhao et al., 2022) and CREPE (Ma
et al., 2023). These datasets contain images
with multiple correct and multiple incorrect
descriptions, allowing us to analyze how the
impact of text-based and image-based biases on
epistemic and aleatoric uncertainty changes with
different confidence levels.

Our findings show that for GPT-40 (Hurst et al.,
2024) and Qwen2-VL (Wang et al., 2024), lower
model confidence after bias mitigation correlates
with stronger bias effects, estimated by the absolute
change in measured uncertainties with and without
bias. However, its influence on aleatoric uncer-
tainty is weaker compared to epistemic uncertainty.
Since greater overconfidence in lower-confidence
instances, a phenomenon observed in human be-
havior (Sulistyawati et al., 2011), can undermine
the ranking performance of the measured entropy,
we further explore the impact of these directional
changes. We find that epistemic uncertainty tends
to be significantly more underestimated (overconfi-
dence) with the bias when the model is actually less
confident without the bias. However, model confi-
dence has no significant impact on the directional
changes in aleatoric entropy caused by biases.

Therefore, we explore bias mitigation as a po-
tential uncertainty quantification method, which
does not require access to the internal model state
or additional data training. Our results show that
removing text-based biases boosts the Area Under
the Receiver Operating Characteristic (AUROC)
by approximately 7% with GPT-4o.

2 Related Work

Uncertainty Quantification with a Single Valid
Answer. Traditional machine learning models
treat uncertainty as a measure of confidence
when a single valid answer exists for each ques-
tion (Hendrycks and Gimpel, 2016; Lakshmi-
narayanan et al., 2017). This approach applies to
tasks focused on predicting a single output (Nguyen
and O’Connor, 2015; Guo et al., 2017; Wang et al.,
2022). For instance, in single-choice classification
problems like MMLU (Hendrycks et al., 2020),

studies (Rae et al., 2021; Kadavath et al., 2022)
show that LLMs are generally well-calibrated.
However, as models grow and train on more diverse
data, they are increasingly used for open-ended
questions with multiple valid answers.

Reinforcement Learning with Human Feedback
(RLHF) has complicated uncertainty estimation
(Ouyang et al., 2022). Studies (Xiong et al.,
2023; Zhou et al., 2024) show that RLHF-trained
LLMs often overestimate their certainty, raising
concerns about the reliability of self-reported uncer-
tainty. This overconfidence highlights the potential
misalignment between self-perception and actual
knowledge. Moreover, Huang et al. (2023a) and
Feng et al. (2024) found that self-reflection alone
is insufficient for accurately assessing uncertainty.

Jiang et al. (2023) found that rephrasing and
reordering prompts improve uncertainty quantifi-
cation in single-answer settings. While their ap-
proach overlaps with ours in textual perturbation,
we extend the analysis to commonly studied biases,
including image-based biases, and examine multi-
answer scenarios where epistemic and aleatoric
uncertainty coexist. More importantly, we exam-
ine how biases affect these uncertainties across
confidence levels, offering insights for improving
uncertainty quantification.

Uncertainty Quantification with a Single Seman-
tic Valid Answer. Prior work on uncertainty esti-
mation in LLMs with aleatoric uncertainty mainly
addresses variability in natural language generation,
where multiple semantically equivalent outputs are
valid. Common benchmarks like CoQA (Reddy
etal., 2019), TriviaQA (Joshi et al., 2017), and Am-
bigQA (Min et al., 2020) mostly assume a single
valid reference answer, with few allowing multiple.

Various techniques have been proposed to quan-
tify uncertainty under such settings, including
training auxiliary classifiers (Kamath et al., 2020;
Cobbe et al., 2021) and leveraging internal model
states (Ren et al., 2022; Burns et al., 2022; Lin
et al., 2023).

Semantic equivalence has proven to be effective
for uncertainty estimation in tasks with a single
semantically valid answer. Kuhn et al. (2023) and
Farquhar et al. (2024) used it to reduce aleatoric un-
certainty from phrasing variability of the same se-
mantic meaning. Research by Huang et al. (2023b)
observed that sample-based methods outperform
single-inference approaches for measuring epis-
temic uncertainty.



Building on these findings, we shift focus from
phrasing variations to the complexity of multiple
semantically valid answers, aiming to understand
uncertainty estimation when validity spans diverse
interpretations.

Uncertainty Quantification with Multiple Se-
mantic Valid Answers. Uncertainty estimation
becomes more complex with multiple semantically
valid answers. Ahdritz et al. (2024) tackled this
by assuming larger models capture aleatoric uncer-
tainty, while a smaller model head is trained to pre-
dict it, requiring access to internal states. They also
found that LLMs are more likely to copy informa-
tion from the inputs when epistemically uncertain
compared to aleatorically uncertain. Yadkori et al.
(2024) built on similar findings by using mutual
information to estimate epistemic uncertainty, mea-
suring answer distribution dependency on provided
hints. Their iterative prompting method requires
second-order information computation.

This growing body of research underscores the
need for more robust methods to distinguish epis-
temic uncertainty from aleatoric uncertainty in
tasks with multiple semantically valid answers. We
extend this by analyzing how bias effects on mea-
sured uncertainty vary with model confidence to
improve uncertainty estimation.

In addition, unlike Yadkori et al. (2024), who
used preselected multi-label queries with high en-
tropy (> 0.7) constructed from WordNet (Fellbaum,
1998), where LLMs achieve near-perfect perfor-
mance, we use unfiltered datasets to better reflect
real-world challenges.

3 Bias Effects on Measured Uncertainties

Ahdritz et al. (2024) and Yadkori et al. (2024) both
found that LLMs are more likely to copy input in-
formation when experiencing high epistemic uncer-
tainty but not high aleatoric uncertainty, resembling
confirmation bias. Inspired by these findings, we
analyze how biases impact measured epistemic and
aleatoric uncertainty across different confidence
levels to provide further insights into distinguish-
ing these two types of uncertainty.

3.1 Epistemic and Aleatoric Uncertainty

Epistemic uncertainty arises from uncertainty in
distinguishing correct from incorrect predictions,
reflecting the model’s lack of knowledge or con-
fidence. On the other hand, aleatoric uncertainty

Prompt Template

You are given an image and a set of descriptions. Your
task is to evaluate each description and determine
whether it is true based on the image.

Below are the descriptions:

{Label_0}: {Option_0}

{Label_1}: {Option_1}

{Label_2}: {Option_2}

{Label_3}: {Option_3}

Provide one index of the descriptions that are true,
regardless of the number of descriptions that you
believe are true. Return your response as a single
index without any additional explanations or text.
Here is an example format for your response:

0

Use the provided format and structure for your re-
sponse.

J

Table 1: The Vanilla Prompt used to obtain greedy out-
puts from Large Language Models for evaluating their
correctness. An example is provided in Appendix A.1.

stems from uncertainty among multiple valid an-
swers and represents irreducible randomness. We
leverage ground-truth information to quantify a
model’s confidence after bias mitigation and eval-
uate the bias effects on measured epistemic and
aleatoric uncertainty.

We define epistemic entropy as the entropy cal-
culated from the probability of making a correct
prediction (the sum of the probabilities of all valid
answers) and the probabilities of each incorrect
prediction, where 7 represents individual predicted
outcomes:

P(correct) = Z P(1) [¢))

i € correct
Epistemic Entropy = — P(correct) log P (correct) 2)
- > P(i)log P(i) ©)

i ¢ correct

Aleatoric entropy is defined as the entropy com-
puted from the probability distribution between the
correct answers:

P(i) P(i)

Aleatoric Entropy = — log 4
Py Z P (correct) o8 P(correct) @

i Ecorrect

Consequently, the total measured entropy, based on
all four options, can be decomposed into epistemic
and aleatoric entropy as follows:

Entropy = Epistemic Entropy + P (correct) X Aleatoric Entropy  (5)

We use epistemic entropy as the estimated epis-
temic uncertainty, and aleatoric entropy as the esti-
mated aleatoric uncertainty in this paper.

Building on the proven effectiveness of seman-
tic equivalence in addressing phrasing variability
using LLM-based Natural Language Inference (Far-
quhar et al., 2024), this paper focuses on the chal-
lenge of multiple valid answers with distinct se-
mantic meanings. We adopt a multiple-choice for-
mat where two semantically distinct options can be



correct, providing a conceptual framework for anal-
ysis without first resolving semantic equivalence.
For the generalization of uncertainty quantification
from classification tasks to open-ended generation
tasks, refer to Appendix B of Jiang et al. (2023).

With many top-performing models being closed-
source, understanding their behavior without inter-
nal model states is crucial. We examine how input
biases affect measured epistemic and aleatoric un-
certainty, focusing on observable behaviors. Our
analysis applies to both open- and closed-source
models, offering insights into bias effects on mea-
sured uncertainties.

3.2 Biases

We consider three text-based biases and three
image-based biases for our analysis. The text-based
biases include:

Phrasing Bias. LLM:s often rely on spurious lin-
guistic correlations, making predictions without
fully understanding context (Wang et al., 2021; Si
et al., 2023). Since linguistic cues vary by input,
we mitigate phrasing bias by rephrasing prompts
while preserving semantic meaning to average out
probability shifts caused by bias.

Positional Bias. LLMs are known to exhibit sen-
sitivity to the positional arrangement of input op-
tions (Wang et al., 2023; Liu et al., 2024). We
shuffle the positions of the options to neutralize
the probability shift from positional bias across
prompts.

Label Bias. While label bias falls under linguis-
tic features like phrasing bias, shuffling assigned
labels offers a more targeted intervention than gen-
eral paraphrasing. Liu et al. (2024) highlighted its
significant impact in GPT-3.5 and GPT-4.

While image-based biases are often reduced dur-
ing the training stage through image perturbations
(Shorten and Khoshgoftaar, 2019), we remain inter-
ested in exploring whether insights from text-based
biases can also be applied to image-based biases.
The three image-based biases we consider are:

Shape Bias. The shape bias of vision models has
been discussed in several studies (He et al., 2023;
Gavrikov et al., 2024), where models rely on shape
cues to generate their outputs.

Orientation Bias. The orientation of images can
influence the predictions of vision models, a phe-
nomenon known as orientation bias (Henderson
and Serences, 2021; Ye et al., 2024).

Low-level Feature Bias. Injecting noise into im-
ages mitigates biases by reducing reliance on low-
level features, such as texture, background artifacts,
lighting, and contrast (Shorten and Khoshgoftaar,
2019).

More details of prompts perturbation to miti-
gate biases are provided in Appendix A.1. We as-
sess bias impact by measuring the absolute change
in epistemic and aleatoric entropy between pre-
dictions from a biased prompt and averaged dis-
tributions from shuffled-bias prompts. We quan-
tify bias-induced overconfidence by subtracting en-
tropy from a biased prompt from that of the aver-
aged distribution across perturbed prompts. We use
linear regression analysis to examine the correla-
tion, with confidence levels after bias mitigation
as the independent variable and two types of bias
effects as the dependent variables.

3.3 Uncertainty Quantification

We extend our experiments to explore bias mit-
igation as a potential uncertainty quantification
method, estimating uncertainty without ground
truth by reducing input biases, as illustrated in Fig-
ure 2.

Unlike the mutual information approach pro-
posed by Yadkori et al. (2024), which adds informa-
tion to induce confirmation bias, our method oper-
ates in a smaller search space by directly targeting
biases in default inputs, eliminating the need for
broader searches. While our methods have some
overlap with the methods proposed by Jiang et al.
(2023), our work focuses on a distinct setting where
aleatoric uncertainty is present. Besides, we aim to
emphasize the impact of broader biases, including
image-based biases, on measured entropy.

4 Experiments

Dataset. We use the VL_checklist and CREPE
datasets, which contain numerous images with
human-verified positive and negative descriptions.
In contrast, some datasets (Thrush et al., 2022;
Tong et al., 2024) contain image descriptions but
lack multiple correct and incorrect ones per image,
while others (Ray et al., 2023; Liu et al., 2023)
include only a limited number. For our analysis,
we randomly select two correct and two incorrect
descriptions and present them in a random order to
ensure unbiased LLM evaluation.

These datasets evaluate more advanced model
capabilities, compositional reasoning (Hua et al.,



Prob: 0.7 (sign on a pole next to a man on a sidewalk...)
Prob: 0.1 (man and people on a mall next to a parking...)
Prob: 0.1 (a car on astreet with a cone and dark)

Prob: 0.1 (a man, a boy, and a sign on asidewalk. the boy is
wearing a jacket and there isa parking meter next to him)

P:0.1 P:0.1 P:0.1

P:0.7 P:0.1 P:0.1

P:0.1 P:0.7 P:0.1

P:0.1 P:0.1 P:0.7

High Entropy of Average Probabilities: {0.25,0.25,0.25,0.25} |

Figure 2: Perturb prompts to shuffle bias factors to achieve estimates of uncertainty without bias.

2024), compared to early multi-label datasets such
as WordNet, where current LLMs achieve near-
perfect performance. To balance data coverage
and budget, we create 1,000 questions from 1,000
images per dataset.

Evaluation Metrics. We use linear regression
coefficients and p-values to analyze bias impact on
measured epistemic and aleatoric entropy across
bias-mitigated confidence levels. The coefficients
indicate how increases in model confidence influ-
ence bias-induced changes in measured uncertain-
ties. A positive coefficient suggests greater bias
effects with higher confidence, while a negative
coefficient implies that higher confidence reduces
bias impact. P-values assess statistical significance,
with low values (typically <0.05) indicating a mean-
ingful effect and high values suggesting the effect
may be due to chance.

We adopt AUROC for uncertainty quantification,
following prior studies (Band et al., 2022; Kuhn
et al., 2023; Lin et al., 2023; Farquhar et al., 2024).
As demonstrated by McDermott et al. (2024), AU-
ROC is robust to class imbalance and effectively
captures the ranking performance of uncertainty
estimations.

Models. Given the popularity and diverse ap-
plications of the GPT series, we select the latest
stable version of GPT-40 (‘gpt-40-2024-11-20")
available at the time of our experiments. Addi-
tionally, we extend our empirical analysis to the
open-source LLM Qwen2-VL (‘Qwen2-VL-72B-
Instruct-GPTQ-Int4").

Experimental Settings. Farquhar et al. (2024)
found that sampling settings, like temperature and
top-P, minimally affect sampling-based uncertainty
quantification. Based on this, we fix generation
parameters (temperature = 0.9, top-P = 1) to en-
sure consistency and avoid unnecessary tuning. We
run ten shuffled prompts, aligning with the sam-
ple sizes used in previous sampling-based meth-

ods (Huang et al., 2023b; Kuhn et al., 2023; Far-
quhar et al., 2024) and the per-iteration sample
count in iterative-based methods (Yadkori et al.,
2024).

With OpenAlT’s closed-source LLMs now provid-
ing top-20 token probabilities, we use this to com-
pute prediction probabilities across four options,
rather than approximating via sampling (Farquhar
et al., 2024). We approximate unbiased model con-
fidence by summing correct options from averaging
probabilities across 10 shuffled prompts, reducing
bias reliance. We also extend our experiments by
approximating model confidence with epistemic
entropy from the average probabilities, presented
in Appendix A.3.

Following Kuhn et al. (2023) and Farquhar et al.
(2024), we approximate greedy decoding by setting
a very low temperature (le-15) using a single-run
output as the model’s ‘best generation’ for correct-
ness labels in uncertainty quantification. Despite
potential output variations in closed-source LLMs
even at zero temperature, this approach ensures con-
sistency and aligns with established research. Table
1 shows the prompt used to obtain the model’s an-
swer for correctness evaluation.

5 Results and Analysis

5.1 Relationship Between Model Confidence
and Bias Effects

We use unbiased model confidence, the sum of
the unbiased probabilities of correct options, as
the independent variable and analyze its impact
on changes in measured epistemic and aleatoric
entropy with and without bias. A greater change
indicates a stronger bias impact on the model’s
behavior. Our results, derived from two models and
two datasets as shown in Table 2, reveal consistent
patterns across all biases:

Lower model confidence correlates with greater
bias influence. When the model exhibits lower



Dataset Bias Metrics GPT-4o Qwen2-VL
Epistemic ~ Aleatoric  Ratio Epi./Ale.  Epistemic  Aleatoric ~ Ratio Epi./Ale.
. Coefficients -0.2300 -0.0579 3.97 -0.0332 -0.0123 2.70
Phrasing
P-value (<0.001) (0.006) (<0.001) (0.079)
. Coefficients - 0.6098 -0.0629 9.69 -0.1571 -0.0844 1.86
Positional
P-value (<0.001) 0.111) (<0.001) (<0.001)
Label Coefficients -0.3572 -0.0911 3.92 0.0602 0.0757 0.80
VL, Checklist P-v-alfxe (<0.001) (0.005) (0.001) (<0.001)
Shape Coefficients -0.1679 -0.0707 2.37 - 0.0664 -0.0081 8.20
P P-value (<0.001) (<0.001) (<0.001) (0.042)
. . Coefficients -0.1746 -0.0671 2.60 -0.1073 -0.0230 4.67
Orientation
P-value (<0.001) (<0.001) (<0.001) (0.157)
Coefficients -0.1466 -0.0457 321 -0.0493 -0.0214 2.30
Low-level Feature
P-value (<0.001) (0.004) (<0.001) (0.026)
. Coefficients -0.1149 -0.0481 2.39 - 0.0025 -0.0011 2.27
Phrasing
P-value (<0.001) (<0.001) (0.521) (0.804)
.. Coefficients -0.2914 -0.1162 2.51 0.0192 0.0525 0.37
Positional
P-value (<0.001) (<0.001) (0.307) (0.002)
Label Coefficients -0.1663 -0.1147 1.45 0.0638 0.0407 1.57
CREPE P-\ialfxe (<0.001) (<0.001) (<0.001) (0.001)
Shape Coefficients -0.0952 -0.0215 443 -0.0196 -0.0188 1.04
P P-value (<0.001) (0.042) (0.013) (0.018)
. . Coefficients -0.0797 -0.0347 2.30 -0.0320 -0.0106 3.02
Orientation
P-value (<0.001) (0.006) (0.004) (0.324)
Coefficients -0.0919 -0.0336 2.74 -0.0202 -0.0044 4.59

Low-level Feature
P-value

(<0.001)

(0.002)

(0.002) (0.466)

Table 2: Both GPT-40 and Qwen2-VL exhibit greater sensitivity to bias at lower confidence levels, as reflected in
absolute changes in both epistemic and aleatoric entropy with and without biases. This is supported by the consistent
negative coefficients. Additionally, the impact of bias on epistemic entropy is more strongly correlated with the
model confidence compared to aleatoric entropy, as indicated by coefficient Ratio Epi./Ale. greater than one and the
relatively lower statistical significance of p-values for aleatoric entropy.

confidence without bias, its outputs tend to be more
susceptible to bias, as evidenced by consistently
negative coefficients for GPT-4o0 and only three
exceptions among 12 points in Qwen-2.

The impact of bias on measured epistemic en-
tropy is more strongly correlated with the model
confidence than measured aleatoric entropy.
This is evidenced by the consistently higher coeffi-
cients for epistemic entropy compared to aleatoric
entropy, as indicated by Ratio Epi./Ale. greater
than one for GPT-40 with only two exceptions for
Qwen2-VL. In some cases, the impact of bias on
aleatoric uncertainty appears unrelated or nearly
unrelated to the unbiased model confidence, as indi-
cated by large p-values for aleatoric entropy, which
shows no statistical significance.

Similar results are obtained using debiased epis-
temic entropy as the approximated confidence, as
shown in Appendix A.3.

5.2 Relationship Between Model Confidence
and Bias-Induced Overconfidence

While lower model confidence leads to greater bias-
induced changes, the direction of this change is
crucial. If bias increases under-confidence (raising
measured entropy), instances with already low con-
fidence without the bias will exhibit even lower con-

fidence with the bias, whereas higher-confidence in-
stances will remain relatively higher with a less pro-
nounced reduction. Consequently, the ranking of
measured entropy remains unaffected by the pres-
ence of the bias. However, greater over-confidence
in lower-confidence instances disrupts the ranking
of measured entropy.

Therefore, we further use model confidence to
analyze its impact on the entropy reduction, sub-
tracting measured entropy derived from a single bi-
ased prompt from that calculated from bias-shuffled
prompts. Our results, derived from two models and
two datasets as shown in Table 3, reveal consistent
patterns across all biases:

Lower model confidence is associated with
greater underestimation of epistemic entropy
in the presence of bias. When model confidence
after bias mitigation is lower, measured epistemic
entropy decreases more with bias than without it.
This is evidenced by the consistently negative co-
efficients associated with the measured epistemic
entropy reduction caused by bias, with the majority
of p-values indicating statistical significance.

Model confidence has no significant effect on the
direction of aleatoric entropy changes caused
by bias. This is supported by the inconsistent co-
efficient directions associated with the measured



Dataset Bias Metrics GPT-4o Qwen2-VL
Epistemic ~ Aleatoric  Ratio Epi./Ale.  Epistemic  Aleatoric ~ Ratio Epi./Ale.
. Coefficients -0.1651 0.0157 10.52 -0.0158 -0.0198 0.80
Phrasing
P-value (<0.001) (0.547) (0.042) (0.032)
. Coefficients -0.7585 -0.0499 15.2 -0.1827 -0.0722 2.53
Positional
P-value (<0.001) (0.285) (<0.001) 0.021)
Label Coefficients -0.3811 -0.0898 4.24 -0.0338 -0.0233 1.45
-Va . . . .3
VL Checklist P \-"xlfxe (<0.001) (0.030) (0.280) (0.355)
Shape Coefficients -0.1542 -0.0344 4.48 - 0.0620 -0.0013 47.69
P P-value (<0.001) (0.156) (<0.001) 0.938)
. . Coefficients -0.1441 -0.0181 7.96 -0.1309 -0.0235 5.57
Orientation
P-value (<0.001) (0.433) (<0.001) (0.264)
Coefficients -0.1188 -0.0121 9.82 -0.0257 -0.0011 23.36
Low-level Feature
P-value (<0.001) (0.525) (< 0.009) (0.921)
. Coefficients -0.1019 0.0184 5.54 -0.0242 0.0097 2.49
Phrasing
P-value (<0.001) (0.268) (<0.001) (0.109)
.. Coefficients -0.3929 -0.0772 5.09 -0.0951 0.0392 243
Positional
P-value (<0.001) (0.024) (<0.001) (0.083)
Label Coefficients -0.2641 -0.1082 2.44 -0.0152 0.0184 0.83
CREPE P-\ialfxe (<0.001) (<0.001) (0.430) 0.261)
Shape Coefficients -0.0580 0.0068 8.52 -0.0147 -0.0082 1.79
P P-value (<0.001) (0.605) (0.163) (0.421)
. . Coefficients -0.0586 -0.0206 2.84 -0.0776 - 0.0095 8.17
Orientation
P-value (<0.001) (0.169) (<0.001) (0.495)
Coefficients -0.0741 -0.0181 4.09 -0.0152 -0.0079 1.92
Low-level Feature
P-value (<0.001) 0.172) (0.062) (0.285)

Table 3: Both GPT-40 and Qwen2-VL exhibit greater overconfidence in measured epistemic entropy due to bias
when their confidence is lower, demonstrated by the negative coefficients and statistically significant p-values. In
contrast, model confidence has no significant effect on the direction of aleatoric entropy changes caused by bias,
supported by the inconsistent coefficient directions and statistically insignificant p-values.

aleatoric entropy reduction due to the presence of
bias, with the majority of p-values showing no sta-
tistical significance.

Similar results are obtained using debiased epis-
temic entropy as the approximated confidence, as
shown in Appendix A.3.

5.3 Uncertainty Quantification Through Bias
Mitigation

Section 5.2 shows that biases systematically dis-
tort the ranking of epistemic entropy and, conse-
quently, measured entropy (Equation 5), while their
impact on aleatoric entropy is much less and non-
directional. Therefore, we hypothesize that when
model confidence (self-perception) ranking aligns
with the ranking of probability of being correct
(true knowledge) (Farquhar et al., 2024) and bias
is considerable, mitigating bias can improve un-
certainty quantification, making it more robust to
the presence of aleatoric uncertainty. Since GPT-
40 shows higher coefficients than Qwen2-VL in
both Table 2 and 3, indicating greater bias-induced
noise, we focus our experiments on GPT-4o.

Baselines. We focus on Entropy for uncertainty
quantification, as it has been proven to be a strong
baseline in recent studies on methods applicable to
closed-source LLMs (Kuhn et al., 2023; Farquhar
et al., 2024; Yadkori et al., 2024). We also include

other commonly used baselines, namely the prob-
ability of the prediction (Prob) and the number
of answers (#Answers). Additionally, we incor-
porate the recently proposed Mutual Information
approach by Yadkori et al. (2024), which leverages
prompt perturbation to quantify confirmation bias.

Since closed-source models may yield varying
token probabilities for the same prompt under iden-
tical decoding, we introduce an additional baseline:
averaging probabilities over multiple samples of
the same prompt. This Repetitive-based approach
allows us to investigate whether improved perfor-
mance arises from better probability estimation due
to increased sampling.

Analysis. As shown in Table 4, we observe that
repetitive-based samplings have minimal improve-
ment over single-inference estimations.
Mitigating biases consistently improves perfor-
mance across all baselines considered. While no
single bias mitigation method demonstrates a clear
advantage over the others, summing the entropy
obtained from each bias removal leads to further
performance gains. This finding aligns with the re-
sults reported by Jiang et al. (2023), despite being
applied in a distinct setting where aleatoric uncer-
tainty is present. The similar accuracies achieved
by perturbed prompts are presented in Appendix
A.2, indicating that the observed improvement is
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Figure 3: Comparison of ROC curves for the text-based bias mitigation methods and baselines on two datasets
using GPT-40. The high prevalence of identical Mutual Information estimates makes it less suitable when a high
abstention rate is required. The bias mitigation approach maintains robustness across different thresholds.

Methods # Inference VL_Checklist CREPE

Mutual Information 20 0.6782 0.5973
Repetitive-based #Answers 10 0.6763 0.5821
Rephrased-based #Answers (proposed) 10 0.7328 0.6106
Single-inference Prob 1 0.7349 0.5801
Repetitive-based Prob 10 0.7233 0.6017
Rephrase-based Prob (proposed) 10 0.7762 0.6513
Single-inference Entropy 1 0.7492 0.5870
Repetitive-based Entropy 10 0.7412 0.6084
Rephrase-based Entropy (proposed) 10 0.7779 0.6442
Reorder-based Entropy (proposed) 10 0.7844 0.6299
Relabel-based Entropy (proposed) 10 0.7665 0.6406
Rephrase+Reorder+Relabel-based Entropy (proposed) 10%3 0.8123 0.6588
Resize-based Entropy (proposed) 10 0.7605 0.6219
Rotate-based Entropy (proposed) 10 0.7565 0.6204
Noise-based Entropy (proposed) 10 0.7535 0.6252
Resize+Rotate+Noise-based Entropy (proposed) 103 0.7699 0.6287

Table 4: This table presents the AUROC scores for epis-
temic uncertainty quantification using different methods
with GPT-40. While the Repetitive-based method shows
minimal improvement, bias mitigation methods based
on any single bias consistently enhance performance on
both datasets. Furthermore, combining methods based
on different biases further improve performance over
individual methods.

not attributable to prompt quality.

Among the bias mitigation strategies, combining
three text-based methods yields the greatest perfor-
mance improvement, increasing AUROC by 6.39%
on VL _Checklist and 7.18% on CREPE. In con-
trast, combining three image-based methods results
in a relatively modest improvement, with 2.07% on
VL_Checklist and 4.17% on CREPE. This smaller
gain likely results from training image augmen-
tation already mitigating image-based biases, re-
ducing the need for additional bias correction at
inference. Combining image- and text-based bias
mitigation yields no further gains, suggesting text-
based corrections capture most biases affecting un-
certainty estimation. These findings highlight that
bias removal is not only crucial for ensuring fair-
ness in predictions but also essential for accurately

quantifying uncertainty when bias is significant.

The low performance of the Mutual Information
method can be attributed to the concentration of
its values as shown in Figure 3, a challenge shared
by the # Answers method. Specifically, the large
number of identical Mutual Information values lim-
its its ability to differentiate within a significant
subset, particularly among instances with low un-
certainty estimates, as reflected in the low AUROC
score. This limitation reduces its suitability for
high-stakes applications that potentially demand a
high rate of abstention. In contrast, the bias mitiga-
tion approach based on text maintains robustness
across different thresholds.

6 Conclusion

While entropy decomposes into epistemic and
aleatoric components, our findings show that lower
model confidence amplifies bias effects on mea-
sured entropy. Notably, bias influence on epistemic
entropy is more sensitive to model confidence than
on aleatoric entropy.

Furthermore, while model confidence has no sig-
nificant effect on the direction of aleatoric entropy
changes caused by bias, we observe that lower
model confidence leads to a greater underestima-
tion of epistemic entropy in the presence of bias.

We improve uncertainty quantification by remov-
ing three text-based biases and three image-based
biases in AUROC with GPT-40, though image-
based bias removal has a smaller effect, likely due
to existing image perturbation during training.



Limitations

Reliance on Token Probabilities. While Ope-
nAl provides token probabilities for its closed-
source models, other LLMs impose stricter lim-
itations. Some return only the predicted token’s
probability without alternatives, while others, like
Gemini, limit usage to one query per day. These
constraints hinder the entropy-based uncertainty
quantification method we use, which may require
more samples to approximate the token probabili-
ties.

Increase in Inference Cost. While bias mitiga-
tion enhances the robustness of uncertainty quan-
tification, it comes at the expense of the increased
number of inferences. Shuffling prompts to ac-
count for each individual bias requires multiple
model queries, increasing costs compared to single-
inference methods.
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A Appendix
A.1 Details of Prompt Design

Table 5 gives an example of vanilla prompt we used
in our experiments.

{ )
Prompt Example
You are given an image and a set of descriptions. Your
task is to evaluate each description and determine
whether it is true based on the image.
Below are the descriptions:
0: person sitting in a boat with a paddle in the water.
there is another paddle and boat in the water. the boat
has writing on the side of it.
1: person wearing shirt and captain on boat in water
2: a boat with a paddle and captain on it, in dioxide
3: captain of ground with yacht in water
Provide one index of the descriptions that are true,
regardless of the number of descriptions that you
believe are true. Return your response as a single
index without any additional explanations or text.
Here is an example format for your response:
0
Use the provided format and structure for your re-
sponse.

\ J

Table 5: The Vanilla Prompt example used to obtain
greedy outputs.

Phrasing Bias. We utilize GPT-40 to help para-
phrase our default prompt shown in Table 1 while
keeping the options unchanged. Table 10 lists all
the rephrased prompts used in our experiments to
perturb bias related to phrasing.

Positional Bias. To perturb positional bias, we
shuffle the assignments of option_0, option_2, op-
tion_3, and option_4 in the prompt template shown
in Table 1, while keeping the four labels in their
natural order: 0, 1, 2, 3.

Label Bias. To perturb label bias, we maintain
the original positions of the options but shuffle the
labels assigned to Label_0, Label_1, Label_2, and
Label 3, suchas 2,0, 3, 1.

Shape Bias. We resize images across different
inputs by varying the length-to-width ratio from 0.5
to 1.5, intentionally distorting the shapes of objects
in the images.

Orientation Bias. We rotate images across dif-
ferent inputs by varying the rotated degrees from
-45° to 45°. The rotation angles are kept relatively
small to preserve the overall spatial relationships
within the images.

Low-level Feature Bias. We add random Gaus-
sian noise with mean=0 and std=25 to the images
across different inputs to disrupt local features
while preserving their overall semantic meaning.

12

A.2 Accuracy Comparison Between Default

Prompt and Single Perturbed Prompt

Model Dataset Bias
Default
Phrasing

Positional
Label
Shape

Orientation

Low-level Feature
Default
Phrasing

Positional
Label
Shape

Orientation

Low-level Feature
Default
Phrasing

Positional
Label
Shape

Orientation

Low-level Feature
Default
Phrasing

Positional
Label
Shape

Orientation
Low-level Feature

Accuracy (%)
89.1
86.5
85.8
83.6
87.5
86.5
86.7
73.3
73.7
71.7
70.7
73.1
729
72.8
92.1
82.1
82.8
779
822
81.4
81.5
78.7
78.5
78.7
779
76.7
75.6
74.9

VL_Checklist

GPT-40

CREPE

VL_Checklist

Qwen2-VL

CREPE

Table 6: This table presents the accuracy achieved by
the default prompt and the average accuracy achieved
by each perturbed prompt with regard to each bias.

Table 6 presents the accuracy comparison be-
tween the default prompt with greedy generation
and each single bias-perturbed prompt used in our
sampling method. The ranking of prompt perfor-
mance does not correlate with their effectiveness
in uncertainty quantification, indicating that the im-
provements in uncertainty quantification cannot be
attributed to prompt quality.

A.3 More Empirical Results
Dataset GPT-40 | Qwen2-VL
VL_Checklist 1.01 1.06
CREPE 1.27 1.22

Table 7: This table presents the ratio of Epistemic en-
tropy to Aleatoric entropy across both datasets and mod-
els using the default prompt. Ratios closer to one indi-
cate that aleatoric entropy is comparable in magnitude
to epistemic entropy.

Table 7 shows that the magnitude of aleatoric
entropy is comparable that of epistemic entropy.

We further validate our empirical findings by
using the epistemic entropy after bias reduction,
calculated from the average probabilities of ten
shuffled prompts, as an approximation of the un-
derlying model confidence. The results remain
consistent with those obtained when approximating



model confidence using the sum of the probabilities
of correct options from the average probabilities.

More specifically, the effects of bias, measured
by changes in measured uncertainties, are more
pronounced when model confidence is lower; in
other words, when debiased epistemic entropy is
higher. This is evidenced by consistently positive
and statistically significant coefficients for changes
in measured epistemic uncertainty due to biases in
GPT-40. Qwen2-VL follows the same pattern, with
two exceptions: Label bias in VL_Checklist and
Positional bias in CREPE. For aleatoric uncertainty,
GPT-40 also shows predominantly positive coef-
ficients, whereas Qwen2-VL exhibits inconsistent
coefficient directions with much smaller values,
as indicated by Epi./Ale. ratios greater than one-
except for the same two exceptions. These results
are detailed in Table 8.

Lower model confidence is more strongly asso-
ciated with greater underestimation of measured
epistemic uncertainty, whereas it has no signifi-
cant effect on the direction of changes in measured
aleatoric uncertainty. This is supported by the con-
sistently positive and largely significant coefficients
for the decrease in measured epistemic uncertainty,
while the coefficients for the decrease in measured
aleatoric uncertainty are predominantly insignifi-
cant except the same two Qwen2-VL cases.
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GPT-40 Qwen2-VL

Dataset Bias Metrics
Epi i Aleatoric Ratio Epi./Ale. Epi i Aleatoric Ratio Epi./Ale.
. Coefficients 0.2622 0.0739 3.55 0.0347 - 0.0056 6.20
Phrasing
P-value (<0.001) (<0.001) (<0.001) (0.234)
L Coefficients 0.4719 0.0379 12.45 0.1326 -0.0654 2.03
Positional
P-value (<0.001) (0.087) (<0.001) (<0.001)
Label Coefficients 0.2999 0.0575 522 -0.0255 -0.0828 0.31
VL,_Checklist Pr‘v-ulfxe (<0.001) (0.004) (0.064) (<0.001)
Shape Coefficients 0.2023 0.0822 2.46 0.0644 0.0144 4.47
P P-value (<0.001) (<0.001) (<0.001) (0.132)
. . Coefficients 0.2126 0.0876 243 0.0916 0.0316 2.90
Orientation
P-value (<0.001) (<0.001) (<0.001) (0.005)
Coefficients 0.1851 0.0536 345 0.0476 0.0205 232
Low-level Feature
P-value (<0.001) (<0.001) (<0.001) (0.003)
. Coefficients 0.1825 0.0558 3.27 0.0067 - 0.0020 3.30
Phrasing
P-value (<0.001) (<0.001) (0.043) (0.614)
. Coefficients 0.3344 0.0476 7.03 0.0139 -0.0508 0.27
Positional
P-value (<0.001) (0.024) (0.356) (<0.001)
Label Coefficients 0.2129 0.0721 2.95 -0.0744 -0.0676 1.10
CREPE P—valfxe (<0.001) (<0.001) (<0.001) (<0.001)
Shae Coefficients 0.1694 0.0423 4.00 0.0173 -0.0029 597
P P-value (<0.001) (<0.001) (0.011) (0.675)
. . Coefficients 0.1723 0.0689 2.50 0.0227 -0.0084 2.70
Orientation
P-value (<0.001) (<0.001) (0.020) (0.364)
Coefficients 0.1565 0.0517 3.03 0.0184 0.0064 2.88

Low-level Feature
P-value (<0.001) (<0.001) (0.001) (0.227)

Table 8: Both GPT-40 and Qwen2-VL exhibit greater changes in measured entropy due to bias when the true
confidence, approximated by epistemic entropy derived from the average probabilities of shuffled prompts, is lower.
This is indicated by the consistently positive coefficients for epistemic entropy, and much lower coefficients for
aleatoric entropy as ratios greater than one. Additionally, the impact of bias on epistemic entropy is more strongly
correlated with the model confidence than aleatoric entropy.

Dataset Bias Metrics GPT-4o Qwen2-VL
Epi i Aleatoric Ratio Epi./Ale. Epi i Aleatoric Ratio Epi./Ale.
. Coefficients 0.1537 0.0187 8.22 0.0230 -0.0071 3.24
Phrasing
P-value (<0.001) (0.374) (<0.001) (0.250)
L Coefficients 0.4874 0.0330 14.8 0.1311 -0.0449 2.92
Positional
P-value (<0.001) (0.229) (<0.001) (0.024)
Label Coefficients 0.2942 0.0486 6.05 0.0267 -0.0070 3.81
VL,_Checklist P—‘v-ul%m (<0.001) (0.059) (0.211) (0.685)
Shape Coefficients 0.1277 0.0438 292 0.0387 -0.0033 47.69
P P-value (<0.001) (0.022) (<0.001) 0.779)
. . Coefficients 0.1590 0.0289 5.50 0.0883 0.0108 8.18
Orientation
P-value (<0.001) ©0.117) (<0.001) (0.457)
Coefficients 0.1219 0.0192 6.35 0.0272 -0.0080 34
Low-level Feature
P-value (<0.001) (0.236) (<0.009) (0.333)
. Coefficients 0.1577 - 0.008 197.13 0.0116 0.0070 1.66
Phrasing
P-value (<0.001) (0.961) (0.023) (0.183)
L. Coefficients 0.4043 0.0327 12.36 0.0975 -0.0433 2.25
Positional
P-value (<0.001) (0.230) (<0.001) 0.017)
Label Coefficients 0.2890 0.0863 3.35 0.0171 -0.0419 0.41
CREPE P—vfnlfxe (<0.001) (<0.001) (0.505) (0.005)
Shape Coefficients 0.1425 0.0108 13.19 0.0282 - 0.0060 4.70
P P-value (<0.001) (0.436) (0.002) (0.496)
. . Coefficients 0.1478 0.0579 2.55 0.0738 -0.0022 33.55
Orientation
P-value (<0.001) (<0.001) (<0.001) (0.857)
Coefficients 0.1299 -0.0083 15.65 0.0186 0.0033 5.64
Low-level Feature
P-value (<0.001) (0.561) (0.010) (0.613)

Table 9: Both GPT-40 and Qwen2-VL exhibit greater overconfidence in measured epistemic entropy due to bias
when their confidence is lower, supported by positive coefficients and statistically significant p-values. In contrast,
model confidence has no significant effect on the direction of aleatoric entropy changes caused by bias, as the
directions of coefficients are inconsistent and p-values are not statistically significant.
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Prompt Template 1

You are given an image and a set of descriptions. Your task is to evaluate each description and determine whether it is
true based on the image.

Below are the descriptions:

<Options >

Provide one index of the descriptions that are true, regardless of the number of descriptions that you believe are true.
Return your response as a single index without any additional explanations or text. Here is an example format for your
response:

0

Use the provided format and structure for your response.

Prompt Template 2

You are presented with an image and a list of descriptions. Your task is to assess each description and judge if it is true
based on the image.

The descriptions are listed below:

<Options >

Indicate one index of the descriptions that are true, regardless of how many you think are correct. Return your response
as a single index without any additional explanations or text. Here is an example format for your response:

0

Use the provided format and structure for your response.

Prompt Template 3

You have an image and several descriptions. Your task is to evaluate each description and determine its validity based
on the image.

Below are the descriptions:

<Options >

List one index of the descriptions that are true, even if multiple descriptions seem accurate. Return your response as a
single index without any additional explanations or text. Here is an example format for your response:

0

Use the provided format and structure for your response.

Prompt Template 4

Given an image and a set of descriptions, your task is to evaluate each description and determine if it is true based on
the image.

Here are the descriptions:

<Options >

Provide one index of the descriptions that are true, even if multiple descriptions are accurate. Respond with a single
index without any additional explanations or text. Here is an example format for your response:

0

Use the provided format and structure for your response.

Prompt Template 5

You have an image and a series of descriptions. Your task is to evaluate each description to determine its truthfulness
based on the image.

Below are the descriptions:

<Options >

Indicate one index of the true descriptions, even if there are multiple true descriptions. Return your response as a single
index without any additional explanations or text. Here is an example format for your response:

0

Use the provided format and structure for your response.

Prompt Template 6

Given an image and several descriptions, your task is to evaluate each description and determine whether it is true based
on the image.

Here are the descriptions:

<Options >

Provide one index of the true descriptions, even if multiple descriptions are valid. Return your response as a single
index without any additional explanations or text. Here is an example of how your response should look:

0

Use the provided format and structure for your response.

Prompt Template 7

You are provided with an image and a series of descriptions. Evaluate each description to determine if it is true based on
the image.

Below are the descriptions:

<Options >

Provide one index of the descriptions that are true, even if there are multiple descriptions that seem valid. Return your
response as a single index without any additional explanations or text. Here is an example format for your response:
0

Use the provided format and structure for your response.

Prompt Template 8

Your task is to evaluate an image and a set of descriptions to determine if each description is true based on the image.
Here are the descriptions:

<Options >

Provide an index of the true description(s), even if multiple descriptions seem correct. Return your response as a single
index without any additional explanations or text. Here is an example format for your response:

0

Use the provided format and structure for your response.

Prompt Template 9

You have been given an image and a list of descriptions. Your task is to evaluate each description and determine if it is
true based on the image.

The descriptions are as follows:

<Options >

Provide one index of the descriptions that are true, even if you think more than one description is correct. Return your
response as a single index without any additional explanations or text. Here is an example format for your response:
0

Use the provided format and structure for your response.

Prompt Template 10

You’ve been presented with an image alongside a series of descriptions. Your objective is to assess each description to
determine its accuracy based on the image.

The descriptions are listed below:

<Options >

You need to identify one description that is true, regardless of how many you think are correct. Please format your
response as a single index without any additional explanations or text. Here is an example of how your response should
look:

0

Ensure you adhere to this format and structure in your response..

Table 10: The ten prompts used to average the output distribution of Large Language Models in order to reduce
phrasing bias through paraphrasing. 15
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