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Figure 1. We introduce a method to reconstruct the 3D position and pose of a person from their thermal reflections in everyday objects
with non-planar surfaces. Given an RGBD image and a thermal image in the middle of the figure, our method is able to recover the 3D
mesh of the person (blue) as well as the objects (pink), even though they are not within the field of view of the camera system. Our system
never sees the scene on the left, which is only shown for visualization purposes.

Abstract

The relatively hot temperature of the human body causes
people to turn into long-wave infrared light sources. Since
this emitted light has a larger wavelength than visible light,
many surfaces in typical scenes act as infrared mirrors with
strong specular reflections. We exploit the thermal reflec-
tions of a person onto objects in order to locate their posi-
tion and reconstruct their pose, even if they are not visible
to a normal camera. We propose an analysis-by-synthesis
[framework that jointly models the objects, people, and their
thermal reflections, which combines generative models with
differentiable rendering of reflections. Quantitative and
qualitative experiments show our approach works in highly
challenging cases, such as with curved mirrors or when the
person is completely unseen by a normal camera.

1. Introduction

One of the major goals of the computer vision commu-
nity is to locate people and reconstruct their poses in every-
day environments. What makes thermal cameras particu-
larly interesting for this task is the fact that humans are often
the hottest objects in indoor environments, thus becoming
infrared light sources. Humans have a relatively stable body
temperature of 37 degrees Celcius, which according to the
Stefan-Boltzmann law, turns people into a light source with
constant brightness under long-wave infrared (LWIR). This
makes LWIR images a robust source of signals of human
activities under many different light and camera conditions.

Since infrared light on the LWIR spectrum has a wave-
length that is much longer than visible light (8 um-14um vs.
0.384m-0.7pm), the objects in typical scenes look qualita-
tively very different from human vision. Many surfaces of
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objects in our daily life — such as a ceramic bowl, a stainless
steel fridge, or a polished wooden table top — have stronger
specular reflections than in the visible light spectrum [7,58].
Figure | shows the reflection of a person with the surface of
salad bowls, which is barely visible to the naked eye, if at
all, but clearly salient in the LWIR spectrum.

In cluttered environments, a visible light camera may not
always be able to capture the person, such as due to a limited
field of view or occlusions. In such scenes, the ideal scene
for locating and reconstructing a person would be an envi-
ronment full of mirrors. This is what the world looks like
under the LWIR spectrum. Infrared mirrors are abundant in
the thermal modality, and reflections reveal significant non-
line-of-sight information about the surrounding world.

In this paper, we introduce a method that uses the image
of a thermal reflection in order to reconstruct the position
and pose of a person in a scene. We develop an analysis-
by-synthesis framework to model objects, people, and their
thermal reflections in order to reconstruct people and ob-
jects. Our approach combines generative models with dif-
ferentiable rendering to infer the possible 3D scenes that are
compatible with the observations. Given a thermal image,
our approach optimizes for the latent variables of generative
models such that light emitting from the person will reflect
off the object and arrive at the thermal camera plane.

Our approach works in highly challenging cases where
the object acts as a curved mirror. Even when a person is
completely unseen by a normal visible light camera, our ap-
proach is able to localize and reconstruct their 3D pose from
just their thermal reflection. Traditionally, the increased
specularity of surfaces has posed a challenge to thermog-
raphy, making it extremely difficult to measure the surface
temperature of a thermally specular surface, which brings
out a line of active research aiming to remove the specular
reflection for more accurate surface temperature measure-
ment [4, 5,40, 80]. We instead exploit these “difficulties”
of LWIR to tackle the problem of 3D human reconstruction
from a single view of thermal reflection image.

The primary contribution of the paper is a method to use
the thermal reflection of the human body on everyday ob-
jects to infer their location in a scene and its 3D structure.
The rest of the paper will analyze this approach in detail.
Section 2 provides a brief overview of related work for 3D
reconstruction and differentiable rendering. Section 3 for-
mulates an integrated generative model of humans and ob-
jects in a scene, then discusses how to perform differen-
tiable rendering of reflection, which we are able to invert to
reconstruct the 3D scene. Section 4 analyzes the capabilities
of this approach in the real world. We believe thermal cam-
eras are powerful tools to study human activities in daily en-
vironments, extending computer vision systems’ ability to
function more robustly even under extreme light conditions.

2. Related Work

Differentiable Rendering. Differentiable rendering is
a differentiable process of rendering 2D images given 3D
scenes. The gradient obtained from the image space w.r.t.
the scene parameters can be calculated and used to perform
optimization. Recent advances in implicit 3D representa-
tions, especially Neural Radiance Field (NeRF) [2,3,52,54,

, 09], have made impressive results on rendering photo-
realistic images for the view-synthesis problems.

Another line of work focuses on differentiable rasteriza-
tion [32,42,46,47,63,73]. These works aim to replace the
traditional rasterization process in computer graphics based
on 2D projections of primitives such as polygons with z-
buffering, with a differentiable rasterization process.

While differentiable, these methods are limited by the
intrinsic difficulty of modeling single or multiple bounces
of light in a scene, which can be modeled with physics-
based differentiable ray tracing [25,30,41,57,73,81]. In our
problem, because humans are light sources and we need to
perform differentiable rendering of one-bounce reflection,
we extended Soft Rasterizer [46].

Single-View 3D Reconstruction. From a practical point
of view, obtaining 3D ground truth for supervision is of-
ten difficult and expensive [28]. In terms of the quantity of
data available, the unlabeled 3D data is not comparable to
the 2D data on the internet. This spurs a long-standing in-
terest from the general computer vision community to pur-
sue 3D reconstruction with as little information as a single-
view [19,31,43,45,46,75,77].

In addition to general 3D object reconstruction, another
line of research focus on the 3D reconstruction of human
body from single-view images and videos [35, 36, 44, 53,

, 64]. Representatively, SMPL-X [61] is an expressive
whole-body model with details around hands and faces,
represented as a triangle mesh with 10,475 vertices. In
the same paper, SMPLify-X was proposed to estimate an
SMPL-X model from just a single RGB image. This is done
by first detecting human keypoints from the image with an
off-the-shelf keypoint detector [6, 10, 10, 14, 17,21, 38,70].
Then the parameters of an SMPL-X model is optimized to
fit the keypoints which serve as the observation of human in
the 2D image.

3D Generative Model. Our system utilizes genera-
tive models for both objects and humans. For 3D ob-
jects, generative models are usually trained with synthetic
datasets composed of CAD models [11]. Different gen-
erative architectures including VAE [9, 20, 20, 76], GAN
[26, 62, 62, 74], normalizing flow [33, 34], and diffusion
models [48] were proposed to generate objects in meshes,
point clouds, or voxels. More recently, implicit 3D repre-
sentation, or coordinate-based models, become a popular
choice of modality to perform generative tasks [16,23,27,
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Figure 2. High-level overview of our analysis-by-synthesis framework. We sample random initializations from the latent space of pretrained
generative models of humans and objects in 3D. Through a differentiable rendering process, we synthesize a reflection image of a human
body on object surfaces. This synthesized reflection is compared with the observed reflection with an L, loss. Gradients are backpropagated
through differentiable rendering and generative models to the latent variables.

For humans, [61, 71] proposed generative models for
3D humans, represented as SMPL-X models. In [61], a
VAE is trained to generate human poses from 4 datasets
including Human3.6M, LSP, CMU Panoptic, and PosePri-
ors [1,22,55,78]. The VAE samples a latent vector from a
high-dimensional Gaussian distribution and generates a hu-
man pose vector. This pose vector is applied with a sparse
linear regressor and a linear blend skinning function to gen-
erate a triangle mesh in a fully differentiable manner.

Thermal Computer Vision. Previous work has applied
computer vision to thermal images for various problems
[13,15,18,24,37,65,72]. ContactDB [8] used thermal imag-
ing to obtain accurate human grasps of everyday objects for
robotics applications. [49] studied the problem of thermal
non-line-of-sight imaging. In comparison, this work fo-
cuses on the 3D reconstruction of people from their thermal
reflections in non-planar objects. Other work pursues 3D re-
construction of objects from thermal images [12,50,66,67].
To our knowledge, we are the first to perform 3D recon-
struction of humans from their thermal reflection.

3. Methods

Our system takes an RGBD image and a thermal image
of everyday objects with thermally reflective surfaces and
performs a 2-stage optimization to estimate 3D objects and
a human not in sight from both cameras’ perspectives. In the
first stage, a 6 DoF pose, scale, and a neural signed distance
function [59] are jointly estimated for each object present
in the scene. In the second stage, the location, orientation,
and pose of the human are jointly estimated to reconstruct
the observed thermal reflection.

Section 3.1 formulates the problem we aim to solve. Sec-

tion 3.2 gives an overview of the approach. Section 3.3 de-
scribes the generative models we used in our approach in
detail. Section 3.4 lays out a differentiable rendering algo-
rithm of human thermal reflection. Section 3.5 formulates
the optimization process and the objective functions.

3.1. Problem Formulation

We decompose a scene into 3 components: a human
body, objects with specular surfaces in LWIR spectrum, and
environmental heat sources. We first obtain a segmentation
mask from each object in the scene from the RGBD image.
To obtain the thermal reflection image, we perform ray trac-
ing starting from the camera sensor to the light source — the
human body, under Helmholtz reciprocity. Assuming a pin-
hole camera model, let n be the surface normal of the object
at point p, r be the vector from the camera sensor to p and
r’ the reflected ray vector. We model the intensity of each
pixel I in the thermal camera as a binary value:

)]

I — {1, r’ intersects with 7y 7 (M},)
0, otherwise

where M}, represents the human shape in the form of a trian-

gle mesh, and 74 7 represents an SE(3) transformation ma-

trix parameterized by rotation, translation, and scale. With

background subtraction, the noise coming from environ-

mental heat sources can be mitigated.

As described in figure 1, the calibrated thermal cam-
era and RGBD camera with known intrinsic matrix and
unknown extrinsic matrix capture an RGB image, a depth
map, and a thermal image. Given these images as our ob-
servation containing N objects, we solve for the following 7
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Figure 3. Differentiable Rendering of Reflection. Ray direc-
tion shown reverses the physical propagation direction of light by
Helmholtz reciprocity.

variables via optimization: locations {T,;;}Y,, rotations
{dob; 1V, scales {sopj } Y, and the shape {Mp;}Y, of
the objects, location T'y,, rotation ¢y, and the shape M}, of
the human, all in camera’s perspective.

3.2. Overview of Approach

The optimization problem we are solving is severely
under-constrained, so we choose to leverage the priors pro-
vided by pretrained generative models. As described in fig-
ure 2, we first randomly sample the aforementioned 7 vari-
ables as initial input to the generative models to generate
a 3D human and objects in the scene. Then we perform a
differentiable rendering of human thermal reflection. For
every ray from the camera sensor that intersects with an ob-
ject, we can analytically calculate the reflected ray vector,
given that the surface normals of the objects are defined by
the output of the object generative model. With these re-
flected ray vectors, we can render a binary reflection image
based on whether the reflected ray vectors intersect with hu-
mans, whose exact 3D shape and location are defined by
the output of the human generative model. The optimiza-
tion objective is to maximize the similarity between the ren-
dered reflection image and the observed image captured by
the thermal camera.

In order for such a pipeline to be differentiable, we need
both the generative models of humans and objects, as well
as the rendering algorithm, to be differentiable. In the fol-
lowing sections, we will describe how we achieve this.

3.3. Generative Models

Object: DeepSDF. We decided to use DeepSDF [59]
as our generative models for objects. SDF, or signed dis-
tance function, is a function between a point in space and
its orthogonal distance to the closest surface. In essence,
DeepSDF is an SDF parameterized by a neural network
Gop; whose input is a 3D coordinate p and output is a
signed distance s. Following [59], we condition a DeepSDF
model on a latent vector z.; from a probabilistic latent

RGB Input Our Reconstruction

Depth Input

Figure 4. 3D Object Reconstruction from RGBD

space to make them generative model:
Gobj(pazobj)ZS:I)ER‘{SER )

Human: SMPL-X. We adopted SMPL-X [61] as our
generative models of 3D humans. Broadly, SMPL-X is
composed of 2 components. The first is a variational au-
toencoder (VAE) that projects a latent vector z; sampled
from a probabilistic latent space with Gaussin prior to the
human pose space, in the form of rotations of human body
joints. The generated human body pose is then applied with
a differentiable sparse linear regressor to generate vertices
and triangle meshes representing the surface skins of a hu-
man body. Because both the VAE and the linear vertex re-
gressor are differentiable, the location of each vertex is dif-
ferentiable w.r.t. the latent vector zy,.

3.4. Differentiable Rendering of Reflection

The information we have from the thermal image of ob-
jects is a reflected human silhouette. Soft rasterizer (Sof-
tRas) [46] is a method of choice to perform differentiable
rendering from 2D silhouette images. However, SoftRas is
a differentiable rasterization algorithm, which does not di-
rectly apply to reflection, especially when the reflective sur-
face is a curved surface defined by a DeepSDF. To overcome
this limitation, we extended SoftRas to ray tracing under
non-planar reflection off the zero-isosurface of a DeepSDF.
This process is visualized in figure 3.

DeepSDF Depth Estimation. The complex geometry
of an everyday object prevents us from projecting all trian-
gles to the 2D image plane as in [46]. Thus, we need to
march rays {r;} from camera sensor c, through the reflec-
tion point on the surface {p;} with a surface normal {n;},
to the reflected rays {r}}. To obtain the intersection point
with the surface {p;} given an SDF representation of an
object, we need a differentiable method to extract the zero-
isosurface and calculate the depth of the surface along the
incoming ray r;. Previously, [79] proposed to perform sur-
face projection by first grid-searching for a point close to the
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Figure 5. 3D Human Reconstruction (visualized from another camera view). From an RGBD image, we recover the 3D location T, pose
®ob;, and shape zp; of each object. A marching cube visualization of the reconstructed 3D objects is shown in pink. With reconstructed
objects, we recover 3D location T, pose ¢, and shape z;, of the human from a denoised thermal input showing reflections of the human
on object surfaces, which we visualize in blue. We also include the original scene and our reconstruction from a calibrated third-camera
view for comparison. This image is not seen by our system during reconstruction. The black mesh where the objects are located is the

depth pointclouds captured by the RGBD camera.

. . . . . . oG
zero-isosurface, then projecting along gradient direction o

with the predicted distance. However, because the gradient
direction is not in the same direction as the incoming ray,
performing such an operation could yield a point far from
the intersection point between the incoming ray and zero-
isosurface, especially when the attack angle is small. To
mitigate this error, we perform finite steps of sphere trac-
ing along the ray to estimate the intersection point {p;} as
shown in figure 3.

DeepSDF Surface Normal. With the estimated inter-
section point {p;} between {r;} and the surface of the ob-
ject, we calculate the surface normal of the object at {p; }:

_ 9Gob; (Pi» Zobj)

3
i Ip; 3)
We can then calculate the reflected ray vector as:
=2 (4)

[l

3D Ray-Triangle Distance. We can then calculate the

pairwise distance matrix, denoted as D; ; between each re-
flected ray r/ and each triangle ¢t; € {Mj}, where M,
represents human body mesh. Each element in the distance
matrix d; ; € D can be expressed as a differentiable func-
tion of vertices of ¢; and the reflected ray vector r;. We
can also obtain a ray-triangle intersection matrix A with the
same dimension as the distance matrix. Since the value of
the ray-triangle intersection is binary, this calculation is not
required to be differentiable.

Differentiable Ray Occupancy. Following Soft-
Ras [46], we define the influence of each triangle ¢; on each
ray r; where the influence is expressed as a function of dis-
tance d; ;:

2

ds .
d. = sigmoid /\i,jﬂ s Ai,j EA, di,j eD (5
g

.3

where \; ; = 1 if reflected ray r; intersects with triangle
t;, otherwise —1. d;; denotes the distance between ray
r; and triangle t;, o is a hyperparameter that controls the
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Figure 6. Real-world 3D human reconstruction from thermal reflections of cars. A diverse set of human poses can be reconstructed by
using the surfaces of different types of cars as infrared mirrors. RGB input (1st row) and thermal input (2nd row) captured by a depth
camera and a thermal camera are used as input to our method. Our reconstruction (3rd row) is compared with the original scene (4th row),

both rendered/captured from another camera viewpoint.

“softness” of the influence. We then aggregate the influence
of each triangle for a ray reflected r; to obtain the estimated
binary occupancy of the ray by human body mesh M, :

I = A({D};) = 1 - T;(1 — dy ) (6)

The estimated binary occupancy of ray I; is a value between
0 and 1 and is compared with the ground truth binary ther-
mal image defined in Eq. 1.

3.5. Optimization for Inference

3D Object Reconstruction. We first estimate the 6 DoF
pose, scale, and shape of the objects present in the scene fol-
lowing a similar method as in [29]. We optimize the loca-
tions {Topj } Y, rotations {dop; Yo, scale {sop; 1Y, and
the shape of the objects {Zop; } 2, where {zop; }Y , are la-
tent variables sampled from the probabilistic latent space of
DeepSDF G s.t. Mgy, = Gopj(2Zob;). For each object,
we minimize the objective:

‘CObj = ‘Cdepth + £mask: + L:prior (7)

where Lgepen is the Ly loss between the estimated depth
map and the measured depth map, L,,,.s5 denotes a pixel-
wise Lo loss between the estimated segmentation mask
and the observed segmentation mask obtained from RGB
observation, and L., is a shape prior regularization term.

3D Human Reconstruction Given the estimated trans-
lations, rotations, scales, and shape latent vectors from 3D
object reconstruction, we optimize translation T}, rota-
tion ¢y, and shape z; of the human where z;, is the la-
tent vector sampled from the pose VAE in SMPL-X s.t.
M;, = Gp(zr). Upon obtaining the estimated reflection

image I and observed thermal silhouette image I, we mini-
mize the objective:

ﬁhuman = ﬁsilhouette + »Cprior (8)
where )
[T I]jy
L =1-— 7 &)
silhouette ||I@I*I®I||1

and £,y is an Ly regularization term on the human latent
vector zj,

4. Experiments

The goal of our experiments is to validate our hypothe-
sis that LWIR thermal reflection on everyday objects pro-
vides sufficient information to perform accurate 3D human
reconstruction in the real world. In section 4.1, we first
demonstrate the accurate 3D reconstruction of objects from
a single RGBD image, which serves as a foundation for 3D
human reconstruction from reflection. We showcase our re-
sults on 3D human reconstruction with different poses and
object types with everyday objects (section 4.2) and cars
(section 4.3). Lastly, in section 4.4 we perform quantitative
and qualitative ablation studies to evaluate the effectiveness
of our technical approach.

4.1. 3D Object Reconstruction

Real-world depth sensors are subject to often significant
measurement errors and are sensitive to lighting conditions
(assuming an active stereo sensor). The surface depth es-
timated is often noisy, non-smooth, and full of “holes”, as
shown in figure 4. Performing differentiable rendering of
reflection using the direct output of the depth sensor will
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Figure 7. Visualization of reconstruction obtained from ablated variations of our full model. While all variations can still find the 3D
location of humans relatively accurately, the fine-grained details of human poses are significantly improved in our full model.

necessarily introduce an excessive amount of noise, given
the reflected ray direction is calculated from the surface
normal. Therefore, we opted to perform 3D object recon-
struction from RGBD input first, then use the reconstructed
surfaces for differentiable ray tracing.

In figure 4, we visualize the reconstructed objects from
the RGBD input. Because our 3D representation of objects
is an implicit function — DeepSDF, we perform marching
cubes to extract the zero-isosurface of each object generated
from the latent vector z.p;. We then applied the SE(3) trans-
formation matrix which is calculated from the estimated lo-
cation 15, and pose Pop; .

As shown in figure 4, the location, pose, and shape of 3D
objects can be faithfully reconstructed. Most importantly,
we are able to obtain a high-fidelity, smooth, and accurate
object surface without an explicit regularization on surface
smoothness, which sets the foundation for the differentiable
rendering of reflection. The successful reconstruction even
when the depth input is noisy can be largely attributed to
the object priors provided by searching in the latent space
of a pretrained generative model. Generative priors such as
a bowl is usually symmetric, the outside surface of a mug is
often smooth, are enforced during the optimization process.

4.2. 3D Human Reconstruction

Given the reconstructed objects represented as individual
DeepSDF models and their locations, we perform joint op-
timization of human location T, orientation ¢y, and shape
zp. The input to the differentiable rendering algorithm is a
single binary thermal reflection image, representing a mask
of human silhouette on each reflective object, as shown in
figure 5. The binary mask of reflection is obtained from the
thermal camera pointing towards the reflective objects, with
simple denoising and thresholding. In addition to RGBD
and thermal cameras, we put a third calibrated camera in
the scene to capture the scene from another angle for eval-
uation and visualization. Note that any images from this
camera are not used as input to our system.

We render the reconstruction from the third camera’s
perspective for comparison with the original scene at the
exact time input data was captured. As shown in figure 5,
the output of our method very accurately reconstructs the
original scene. Note that the subject in the original scene is
wearing normal clothing and the data is collected in a nor-
mal office environment without special lab environmental
control. Besides, the objects used to reflect human ther-
mal radiation are everyday objects with a variety of textures
and materials that we purchased from supermarkets. This
indicates the robustness of our system and its practical ap-
plicability to various settings.

4.3. Cars as Infrared Mirrors

Non-line-of-sight information of human activity plays a
crucial role in the safe deployment of autonomous driving
systems. Therefore, we showcase an experiment where we
use cars as infrared mirrors to reconstruct the 3D location,
orientation, and shape of a pedestrian that’s not in the line-
of-site of a camera system. In figure 6, we show the results
in a similar fashion as figure 5. 3D reconstruction from ther-
mal imaging could allow new opportunities for autonomous
vehicles to sense and safely avoid occluded pedestrians.

4.4. Ablation Studies

To solve the extremely under-constrained and challeng-
ing problem, we made a lot of design decisions that turned
out to be crucial to the quality of reconstruction. To evaluate
the effectiveness of our technical approach, we perform ab-
lation studies and compare our reconstruction with a base-
line. We have included both quantitative evaluations as well
as qualitative visualizations. Here we described some rep-
resentative design decisions in detail.

Edge Sampling. As pointed out by [41], edge sampling
plays an important role in differentiable ray tracing. This is
even more significant for human reflection silhouettes. In
addition, unless a person is standing right in front of the
reflector, the reflection silhouette usually occupies a small
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Evaluation Method Object wio EQge wio Sphere wio Surface Full Model Random
Type Sampling Tracing Smoothing
2D Keypoints [17]  Bowl 0.231 0.224 0.145 0.116 0.346
2D Keypoints [17] Mug 0.101 0.209 0.109 0.094 0.371
3D Skeleton [39] Bowl 0.309 0.272 0.212 0.152 0.322
3D Skeleton [39] Mug 0.223 0.215 0.202 0.126 0.317

Table 1. Quantitative evaluation of our reconstructed 3D human. We used two evaluation methods by comparing the extracted 2D keypoints
and 3D skeleton with a calibrated 3rd camera view. Object type indicates the type of objects serving as reflectors. Columns 3-5 are three
variations of our full model with some parts ablated. Random shows the corresponding metric if a random sample were to be drawn from
the HumanEva [68] dataset, which includes diverse poses in daily human activities. Numbers show the average normalized Euclidean

distance between reconstruction and ground truth.

region of the thermal image. We therefore perform edge de-
tection on the reflection image to extract edges of human
silhouette and sampling ray with a probability distribution
concentrated at the vicinity of these edges and increasing
the concentration as training progresses as a type of cur-
riculum training.

Sphere Tracing. As we’ve described in 3.4, direct sur-
face projection from the vicinity of an SDF will yield a
point far from the real intersection between the incoming
ray and the zero-isosurface of the SDF. Therefore, we per-
form 3 steps of sphere tracing to estimate the intersection
point on the object.

Surface Smoothing. From experiments, we discovered
that even after we perform sphere tracing, the reflection sur-
face normals are still noisy, causing the differentiable ren-
dering algorithm to produce a noisy reflection. This effec-
tively injects noise into the gradients, making the optimiza-
tion more challenging. We discovered that this is caused
by the reconstructed DeepSDF having a locally non-smooth
zero iso-surface. In figure 8, we visualize the surface
normals calculated from a small region of zero-isosurface
which shows the non-smoothness. To mitigate this error, we
perform surface smoothing during differentiable rendering
by sampling 8 neighboring rays surrounding the main ray
and averaging all estimated surface normals for reflection
calculation.

Evaluation. We evaluate our reconstruction as well as
the 3 aforementioned ablated methods by comparing the 2D
keypoints and 3D skeleton estimated from synchronized im-
ages captured by a calibrated third camera. We used [17]
for 2D keypoints detection and [39] for 3D skeleton estima-
tion. For comparison, we compared the reconstruction to
200 randomly sampled 2D human keypoints and 3D skele-
tons from the HumanEva dataset [68].

Both the quantitative experiments and qualitative visual-
izations have shown the effectiveness of our technical ap-
proach as well as the design decisions. Particularly, we be-
lieve our findings regarding differentiable rendering of re-
flections on implicit surfaces will provide insights to other
computer vision researchers working with reflections.

Deep SDF Surface

Deep SDF Surface (Smoothed)

Figure 8. Visualization of DeepSDF Surface Normals within a
1.6 cmx 1.6 cm area. From the visualization, we can clearly see
an improvement in surface smoothness at a small scale, which is
beneficial to the differentiable rendering process. The X-Y plane
(horizontal) indicates the location on a surface with a step size of
0.2mm. Given the unit surface normal vector at a point on the grid
(z,y), we compute its dot product with the unit surface normal
vector at (0, 0), and plot this value on the Z-axis. This shows the
curvature of the surface as well as its level of smoothness.

5. Conclusion

This paper shows that 3D position and pose of a human
can be reconstructed from a single thermal image of every-
day objects reflecting human thermal radiations. We ap-
proach this problem by combining the priors learned by pre-
trained 3D generative models and differentiable rendering
of reflections. By formulating the problem as an optimiza-
tion problem, we perform analysis by synthesis to explain
the observations. We believe thermal cameras are powerful
tools to study human activities in daily environments and
integrating them with modern computer vision models will
bring out many downstream applications in robotics, graph-
ics, and 3D perception.
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