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Abstract
Few-shot Named Entity Recognition (NER) aims to identify named entities using very
little annotated data. Recently, prompt-based few-shot NER methods have demonstrated
significant effectiveness. However, most existing methods employ multi-round prompts,
which significantly increase time and computational costs. Furthermore, current single-
round prompt methods are mainly designed for flat NER tasks and are not effective in
handling nested NER tasks. Additionally, these methods do not to fully utilize the seman-
tic information of entity labels through prompts. To address these challenges, we propose
a novel Label-Prompt-based few-shot nested NER method named LPNER, which not only
handles nested NER tasks but also efficiently extracts semantic information of entities
through label prompts, thereby achieving more efficient and accurate NER. LPNER first
designs a specialized prompt based on a span strategy to enhance label semantics and effec-
tively combines multiple span representations using special mark to obtain enhanced span
representations integrated with label semantics. Then, entity prototypes are constructed
through prototype network for classifying candidate entity spans. We conducted extensive
experiments on five nested datasets: ACE04, ACE05, GENIA, GermEval, and NEREL. In
1-shot and 5-shot tasks, LPNER’s F1 scores mostly outperform baseline models.
Keywords: Nested named recognition; Few-shot learning; Prompt learning; Label seman-
tics.

1. Introduction

Named Entity Recognition (NER), as a fundamental task in natural language processing,
aims to locate and classify named entities such as locations, persons, and organizations
from unstructured text. However, traditional fully supervised NER methods rely on a large
amount of labeled data (Huang et al., 2015), and data annotation is a labor-intensive and
time-consuming task requiring rich domain knowledge and expert experience. Therefore,
few-shot named entity recognition, which aims to identify entities using a very limited num-
ber of labeled examples, poses a challenging and practical research problem that can alleviate
manual workload and address cross-domain challenges. Few-shot NER tasks are typically
categorized into few-shot flat NER and few-shot nested NER. In few-shot nested NER, en-
tities are often nested (Finkel and Manning, 2009), meaning a single token may belong to
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Retinoblastoma protein expression leads to reduced Oct-1 DNA binding activity

and enhances interleukin-8 expression.

protein_N/A

protein_molecule

other_name

protein_molecule

Figure 1: Example for nested entities from GENIA dataset: an entity “Oct-1” is nested in
another entity “Oct-1 DNA binding activity”.

multiple entities, as shown in Figure 1. This makes few-shot nested NER more challenging
than few-shot flat NER.

To address the issue of small-sample situations, prompt learning has emerged as a new
and popular paradigm in natural language processing, demonstrating significant potential.
For few-shot NER tasks, several prompt-based methods have been proposed. Most of these
methods use discrete prompts, manually constructing specific prompt templates to trans-
form the NER task into a cloze task, thereby better leveraging pre-trained language mod-
els. For instance, templateNER (Cui et al., 2021) converts the NER task into a cloze
task by defining a template like “<candidate_span> is a <entity_type>”, and then uses a
fine-tuned BART model to decode the prompt input for entity classification of text spans.
QaNER (Liu et al., 2022) addresses the computational complexity and prompt robustness is-
sues in templateNER by designing a simple prompt template “what is the <entity_type>”,
transforming the NER task into a Question Answering task. Similarly, Hou et al. (2022) also
concerned with computational complexity, introduces an inverse prompt paradigm through
“<entity_type> refers to _” for reverse prediction from entity type to entity span. It can
be observed that since NER is a token-level task, for a prompt input with n tokens and k en-
tity types, these prompt-based methods require n(n-1)/2 or k rounds of prompt predictions,
leading to low computational efficiency.

To address the issues of computational complexity and efficiency, some researchers, in-
spired by metric learning, have cleverly combined prompt learning with metric learning to
achieve entity span classification in a single round of prompts. COPNER (Huang et al., 2022)
introduces class-specific word prompts as similarity measures and contrastive learning super-
vision signals, thus leveraging prompts to measure the similarity between samples and entity
categories and to optimize token representations. Similarly, PromptNER (Zhang et al., 2023)
adopts a scheme of constructing prompts from class-specific words, using the prompts not
only for entity classification but also introducing k-nearest neighbor search based on ground
truth entities in the support set as a basis for entity classification. PMRC (Huang et al.,
2024) proposes a template based on label words and an example-based template, inserting
special tokens “[ENT_START]” and “[ENT_END]” in prompts as boundary markers for
various entity types, which serve as anchors for entity classification in subsequent processes.
These methods achieve classification for all entities in a single round of prompts.
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However, for the few-shot nested NER task, existing prompt-based learning methods
have the following challenges: 1) Some methods use prompts that are only applicable to flat
NER and cannot be adapted to nested NER, as they rely on sequence labeling, which lead
to prompt overlap issues when handling nested entities; 2) Methods that can be applied to
nested NER either require multiple rounds of prompts or fail to fully utilize label semantic
information.

To solve these issues, we propose a novel Label-Prompt-based method for few-shot nested
NER, which called LPNER. This method requires only one round of prompting and leverages
prompts to fully exploit the semantic information of labels, enabling the label prototypes
constructed from the support set samples to more accurately represent the distribution of
various entity classes in the feature space. Firstly, for ease of model comprehension, we
manually define a class-specific mapping, which converts entity labels into class-specific
words in natural language for subsequent prompt construction. Then, to incorporate the
semantic features of labels, we introduce a special mark. This special mark is applied to the
entity span representations obtained from prompts and the original text, resulting in the
final fused span representations that incorporate the semantic information of the labels.

In summary, our main contributions of this paper are summarized as follows:

• Label Prompt Design for few-short nested NER: We introduced a label prompt
specifically for few-shot nested NER, allowing the model to better capture and utilize
label semantics, leading to enhanced performance on this challenging task.

• Efficient Integration of Prompt Learning and Prototype Networks: Our LP-
NER combines prompt learning with prototype networks, achieving few-shot nested
NER with a single round of prompt prediction. This approach significantly reduces
computational complexity and increases processing speed compared to methods re-
quiring multiple rounds of prediction.

• Demonstrated Effectiveness Across Multiple Datasets: We validated our method
through extensive experiments on five nested NER datasets (ACE04, ACE05, GENIA,
GermEval, NEREL), consistently achieving higher F1 scores than most existing meth-
ods.

2. Related Work

2.1. Few-shot Named Entity Recognition

For few-shot NER tasks, traditional NER methods struggle to remain effective due to the
lack of training data (Wang et al., 2020). Thus, two main techniques have been proposed
for few-shot NER tasks: transfer learning and meta-learning.

Transfer learning is a method of transferring knowledge from a solved task to an unsolved
one. In the context of NER tasks, the approach involves training a model on a large NER
dataset (often containing various entity types) initially, and then applying the trained model
to a smaller dataset to help the model acquire missing semantic information.

Meta-learning aims to learn a generic model that can quickly adapt to new tasks with
few training samples, without the need for retraining from scratch. The meta-learning
methods primarily focus on small-sample learning and can be broadly categorized into three
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types: metric-based methods (Vinyals et al., 2016), optimization-based methods (Ravi and
Larochelle, 2016), and memory-based methods (Li et al., 2020). Existing few-shot NER
methods typically emphasize metric learning, utilizing representations learned in the seman-
tic space to compute similarity for named entity recognition. For instance, ProtoNet (Snell
et al., 2017) applies prototype networks to learn prototype representations for each entity
class. NNShot (Yang and Katiyar, 2020) directly uses word embeddings as representations
and applies nearest neighbor classification for inference.

2.2. Prompt Learning

GPT-3 (Brown et al., 2020) uses manual prompts to provide explicit task instructions and
contextual information to the model, enabling it to better understand the tasks and generate
high-quality outputs. This approach has achieved significant success across various natural
language processing tasks. With the emergence of GPT-3 and other large language mod-
els, prompting learning has become increasingly popular and has demonstrated outstanding
performance in NLP tasks. Templates play a crucial role in prompting learning, as appropri-
ate templates can provide guiding information for downstream tasks, helping models better
adapt to various NLP tasks and improve their performance and generalization capabilities
on specific tasks. Current research focuses on manually constructing templates (Petroni
et al., 2019), discrete prompt templates (Shin et al., 2020), and continuous prompt tem-
plates (Lester et al., 2021). Because prompting learning is well-suited for small-sample
tasks with scarce training data, some studies have begun to introduce prompting learning
into few-shot NER tasks. For example, templateNER (Cui et al., 2021) proposed a template-
based prompting learning method, QaNER (Liu et al., 2022) transforms the NER task into
a Question Answering (QA) task.

3. Problem Formulation

In this section, we formally introduce the problem formulation of few-shot nested named
entity recognition.

Unlike token-level classification based on sequence labeling, we define the few-shot nested
named entity recognition task as a span-based entity classification task. Given an input
sequence X = {xi}Li=1 consisting of L tokens, we generate a set M = {

(
sj , ej

)
}Nj=1(1 ≤ sj ≤

ej ≤ L) containing all possible spans, where sj and ej represent the start and end positions
of the jth span in the sentence, and N denotes the number of possible spans. Subsequently,
we train a classification model that maps each span to one entity label from the label set
TX .

Suppose we have a source domain dataset Dsource and a target domain dataset Dtarget.
During the training procedure, following Ding et al. (2021), we sample batches of train-
ing episode data from the source domain dataset Dsource. For each episode data εtrain =
{Strain, Qtrain, Ttrain} ∈ Dsource, where Strain and Qtrain represent the support set and
query set respectively, and Strain ∩ Qtrain = ∅. Ttrain denotes the set of entity types in a
training episode data. For each example (X,M,Y) in the support set or query set, where
Y = {yj}Nj=1 is the set of entity labels and yj ∈ Ttrain is the label of the jth span (sj , ej).
Then, we train the model on these training episode data. During the test procedure,Dtarget

is divided into a support set Dspt
target and a query set Dqry

target. Dspt
target follows the N -way
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K-shot setting, containing a few labeled sentences with K entities for each entity category.
The remaining data in Dtarget are unlabeled sentences used to construct Dqry

target. Therefore,
we first fine-tune our model on Dspt

target in the target domain, then make inferences for entity
spans in Dqry

target. It should be noted that the entity categories in Dspt
target are the same as

those in Dqry
target, but the sentences appearing in Dspt

target will not appear again in Dqry
target.

4. Methodology

In this section, we will formally introduce our proposed LPNER, its various components,
and target domain adaption procedures.

4.1. Model Framework

Tom want to walk to Washington Bank[Tom | person] [Washington Bank | organization]

Label Prompt
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original text
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Figure 2: The architecture of our model LPNER. Given an original input from the support
set, we first construct label prompts based on the prompt template. We then
encode the label prompts and the raw input to obtain the corresponding token
sequences. Using a Multi-Layer Perceptron (MLP), we transform the token rep-
resentations into span representations. Next, we obtain semantically enhanced
span representations through weighted summation and construct a prototypical
network. Finally, we classify the test samples in the query set based on metric
learning.

The architecture of LPNER is illustrated in Figure 2. Firstly, we apply a Pre-trained
Language Model (PLM) to obtain semantic representations for the input sequence and each
span in the prompt. Then, by applying special mark, we perform weighted fusion on the
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corresponding spans in the input sequence and prompt to obtain the final fused span repre-
sentations that incorporate the semantic information of the labels. Next, LPNER computes
entity class prototypes in the support set and calculates similarity scores between spans in
the query set and prototypes based on distance metrics.

4.2. Prompt Construction

Tom want to walk to Washington Bank

special mark

original text

Tom Washington Bank

entity spans

label prompt
Label Verbalizer

ℳ 𝑂 = 𝑛𝑜𝑛𝑒
ℳ 𝑂𝑅𝐺 = 𝑜𝑟𝑔𝑎𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛

ℳ 𝑃𝐸𝑅 = 𝑝𝑒𝑟𝑠𝑜𝑛
…

Tom Washington Bank
token sequence we need

MLP Tom Washington Bank

PLM

span representations in label prompt

[ Tom | person ] [ Washington Bank | organization ]

0 1 0 0 0 0 1 1 0 0 0

Figure 3: The illustration of prompt construction. First, we construct the label prompt by
filling a predefined template with known entities from the training data using a
Label Mapper. This Label Prompt is then encoded using a PLM. Subsequently,
we use special mark to extract the token representations that we need and input
them into an MLP to obtain the entity span representations within the prompt.

As shown in Figure 3, our method first employs a pre-defined prompt template to con-
struct corresponding label prompt for each input sentence. Since the labels in the dataset
are often not comprehensible to pre-trained language models, e.g., LOC and ORG, we man-
ually define a class-specific Verbalizer Mver to map each entity label in the dataset to a
unique natural language form of the class-specific word, facilitating the understanding by
pre-trained language models. For instance, in the vast majority of NER datasets, “LOC”
typically represents the “location” entity. Thus, according to Mver(LOC) = “location”, the
label LOC is mapped to the class-specific word “location”. The specific mapping is intro-
duced in Table 8 in the Appendix A. These class-specific words encompass general semantic
information about the relevant entity classes.
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Next, we can utilize these class-specific words to generate corresponding label prompts
Xprompt for each input sentence:

Xprompt = Fprompt(X,M,Y) (1)

Specifically, The function Fprompt serves as a prompt function utilized to populate the prompt
template “[<candidate_entity>|<entity_type>]”. As previously described, X represents
the input sentence, M and Y respectively denote the position information of the entity
span and its corresponding ground-truth label. For each entity appearing in the input
sentence, we retrieve the corresponding label from Y and map the label to a unique class-
specific word to construct the label prompt. For example, given the input sentence X =
“Tom was born in 1999”, which contains entities “Tom” and “1999”, the corresponding label
prompt Xprompt would be “[Tom|person][1999|date]”. In the label prompt, we only need
to retrieve part of the token representations rather than all token representations. Hence,
following ProML (Chen et al., 2022), we introduce a special mark m ∈ [0, 1]|Xprompt| to filter
out those token representations that are not used later through a simple filtering operation
where m==0. Additionally, since the label prompt can only be applied when the ground-
truth label is available, in a few-shot learning setting, we only apply this prompt to the
support set and not to the query set.

4.3. Training in Source Domain

During the training process, we adopt the episode training strategy to sample mini-batches
from the source domain dataset Dsource, where each mini-batch contains a few-shot episode
data. First, we use a PLM to encode the input sentence X = {x1, . . . , xk} and the label
prompt Xprompt = {x′1, . . . , x′l}:

H = [h1, . . . , hk] = PLM([x1, . . . , xk]) (2)

Hprompt = [h′1, . . . , h
′
l] = PLM([x′1, . . . , x

′
l]) (3)

Next, we use mark m to obtain the token representations required in the label prompt:

H′
prompt = Hprompt[m == 1] (4)

For a span with words {wi}ei=s, we first concat the start and end token embeddings, and
then feed them into MLP to get the span representation:

s = MLP (hs ⊕ he) (5)

Therefore, we can get the corresponding span representations set S and Sprompt from H and
H′

prompt respectively:
S =

{
v1, ..., v|s|

}
(6)

Sprompt =
{
u1, ..., u|Sprompt|

}
(7)

Where |S| represent the number of all candidate spans in the input sentence and |Sprompt|
represent the number of entity spans in the label prompt.
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Then, in order to obtain the final entity span representations that incorporate label
semantics, for each entity span ui (i ≤ |Sprompt|) in Sprompt, We weight ui and the corre-
sponding entity span representation vi in S:

u′i = α ∗ ui + β ∗ vi (8)

Where u′i represents a entity span that incorporates label semantics, α and β are learnable
hyper-parameters, which α+ β = 1.

Next, we can compute the prototype ct for each entity type by averaging the represen-
tations of all spans in the support set that share the same entity type t:

ct =
1

|u′t|
∑

u′t (9)

Where |u′t| represents the span number of the entity type t.
During the training stage, since the labels for spans in the query set are visible, the

prototypical learning loss is calculated as:

Lproto =
1

|Mq|
∑

sqry∈Mq

− log p(ysqry |sqry) (10)

Where Mq represents the span set in the query set, sqry represents the original span rep-
resentation in the query set and p(ysqry |sqry) is the probability distribution which can be
calculated as:

p(ysqry |sqry) = softmax (−d (sqry, cysqry)) (11)

Where d(., .) represents a distance function.

4.4. Adapting to Target Domain

Since the source domain and target domain belong to different domains, LPNER requires
certain domain-transferring capabilities. Therefore, after training the model on the source
domain, we make an adaptation to the target domain.

During the domain adaptation procedure, LPNER is fine-tuned with relevant support
sets. This fine-tuning procedure is similar to the training procedure. Specifically, we first
obtain the enhanced span representations based on the label prompt and further compute
the prototypes in the support set. After that, we fine-tune the model by utilizing the
prototypical learning loss. Different from using sqry in the training procedure, we fine-tune
the model using the original span representations of the input sentence S =

{
v1, ..., v|s|

}
in

the support set since the labels of the query set are unknown.
In the inference phase, LPNER obtains prototypes and original span representations in

the query set. For each span sqry in the query set, LPNER utilizes nearest neighbor inference
to find the nearest prototype in the PLM representation space and assigns the corresponding
label to this span:

ypredsqry = argmaxp(y|sqry) (12)

5. Experiments

In this section, we mainly introduce our experiments. We will introduce the experimental
datasets, baselines and experimental settings, and discuss the experimental results.
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5.1. Datasets

To evaluate the performance of LPNER, we use six datasets across different domains:
ACE04 (Mitchell et al., 2005), ACE05 (Walker et al., 2006), GENIA (Kim et al., 2003), Ger-
mEval (Benikova et al., 2014), NEREL (Loukachevitch et al., 2021), and Few-NERD (Ding
et al., 2021). Among these datasets, the first five datasets are nested NER datasets, and
the last one is a flat NER dataset. The details of the dataset are shown in Table 1.

Table 1: Statistics of Datasets.
Dataset language Types Sentences Entities/Nest entities
ACE04 English 7 6.8k 27.8k / 12.7k
ACE05 English 7 13.6k 50.2k / 18.3k
GENIA English 36 18.5k 55.7k / 30.0k

GermEval German 12 18.4k 41.1k / 6.1k
NEREL Russian 29 8.9k 56.1k / 18.7k

FewNERD English 66 188.2k -

5.2. Baselines

To compare the performance of LPNER, we consider three different types of methods as our
baselines:

1) Rich-resource-based nested NER methods: NER-DP (Yu et al., 2020) uses the idea of
graph-based dependency parsing and applies a biaffine model to establish the dependency
of the start and end words for each span. IoBP (Wang et al., 2022b) is an extension of
the second-best path recognition method, which eliminates the impact of the best path.
PO-TreeCRFs (Fu et al., 2021) treats nested NER as constituency parsing with partially
observed trees.

2) prompt-learning-based few-shot NER methods: COPNER (Huang et al., 2022) is
a few-shot flat NER approach, which combines contrastive learning and prompt guiding.
ProML (Chen et al., 2022) combines prompt learning and nearest neighbor inference to
solve few-shot flat NER. TemplateNER (Cui et al., 2021) proposes a template-based method
for NER, treating NER as a language model ranking problem in a sequence-to-sequence
framework.

3) contrastive-learning-based and metric-learning-based few-shot NER methods: CON-
TaiNER (Das et al., 2021) is a contrastive-learning-based few-shot flat NER method. Pro-
toNet (Snell et al., 2017) utilizes Prototypical Network. SLNER (Ren et al., 2023) utilizes
two encoders: one encodes text spans with enhanced span representations using biaffine and
self-attention, and the other encodes label names for label representations. NNShot (Yang
and Katiyar, 2020) is a few-shot flat NER method that utilizes nearest neighbor inference
based metric-learning. ESD (Wang et al., 2021) constructs prototypes by applying intra-
span and cross-span attention to enhance span representation. SpanProto (Wang et al.,
2022a) applies a two-stage strategy to recognize entities, including a span extractor stage to
determine candidate entity spans and a mention classifier stage to identify entity labels.
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5.3. Training and Inference Settings

During the training procedure, we used the Few-NERD dataset as the source dataset. We
randomly sampled 10500 5-way 5-shot subtasks from the Few-NERD inter-domain subset,
among which 10000 subtasks as the training set and 500 subtasks as the validation set. And
we validate our model for every 1000 subtasks.

During the inference procedure, we also require support set and query set for model fine-
tuning and inference. Therefore, we first sample several sentences from the target domain
dataset as the support set and the remaining sentence as the query set. During the sampling
process, we refer to the idea of K-2K sampling strategy and allow some entity categories
to have more than K entities. After that, we fine-tuned our model on the support set and
then tested it on the query set. In this experiment, we adopted a few-shot setting of 1-shot
and 5-shot, sampling support sets from the test subset of the ACE04, ACE05, GENIA,
GermEval, and NEREL datasets, respectively.

5.4. Implementation Details

We choose BERTbase_multilingual from HuggingFace as the default Pre-trained Language
Model. And we select Adam as the optimizer to optimize the model. The learning rate
of the encoder is 5e-5. α and β are learnable hyper-parameters, we initialize them to 0.5
and 0.5 respectively. We set 10 different random seeds from 0 to 9 to get ten results and re-
port the average micro-F1 with standard deviations. We implement our model with PyTorch
1.8.2, and train the model with a single NVIDIA Tesla A10 GPU.

5.5. Experimental Results

5.5.1. Main Results

Table 2: F1 performance on ACE04, ACE05, GENIA, GermEval, and NEREL nested NER
datasets with 1-shot setting (%).

Model ACE04 ACE05 GENIA GermEval NEREL
NER-DP 4.01±2.75 6.48±5.34 15.26±2.78 7.12±2.61 15.86±5.77

IoBP 10.63±6.70 15.68±4.48 16.09±2.07 3.32 ±2.04 8.61±1.23
PO-TreeCRFs 10.55±4.79 18.02±11.93 22.37±5.08 8.87±8.08 22.06±6.55

COPNER 9.19±6.34 11.21±9.92 7.47±1.70 27.81±9.89 26.56±3.42
ProML 22.05±5.01 22.74±9.81 6.65±1.56 23.40±5.61 21.93±3.39

TemplateNER 10.16±5.25e-03 16.51±4.83e-03 19.01±5.00e-03 13.50±9.92e-03 7.49±0.02
CONTaiNER 6.87±2.89 11.46±3.30 18.47±2.36 29.18±7.05 26.61±1.75

ProtoNet 25.55±8.23 25.61±11.25 19.76±1.73 33.20±9.00 38.70±4.62
SLNER 11.14±3.91 16.58±9.39 12.48±4.32 23.82±7.74 29.76±4.57
NNShot 22.01±7.92 23.93±10.74 24.25±2.89 28.58±6.76 38.58±1.30

ESD 23.41±6.19 24.85±11.17 21.73±3.64 34.00±8.75 28.56±5.18
SpanProto 24.90±5.80 29.92±8.27 29.01±3.55 34.12±6.64 44.20±3.55
LPNER 25.67±7.05 25.01±10.83 26.32±3.88 39.45±6.55 45.11±3.78
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Table 3: F1 performance on ACE04, ACE05, GENIA, GermEval, and NEREL nested NER
datasets with 5-shot setting (%).

Model ACE04 ACE05 GENIA GermEval NEREL
NER-DP 11.48±4.05 15.58±8.54 31.89±4.01 24.89±3.92 42.25±2.42

IoBP 14.14±6.06 34.36±6.62 31.67±3.31 12.86±2.60 18.50±1.46
PO-TreeCRFs 29.77±7.97 33.83±10.54 35.13±3.33 45.83±3.88 52.25±2.40

COPNER 17.25±11.56 26.21±11.05 16.67±2.62 32.40±9.87 37.46±4.15
ProML 26.50±6.46 38.44±9.16 10.31±0.93 28.45±7.10 30.23±2.18

TemplateNER 14.46±0.02 19.16±9.29e-03 20.86±0.02 18.31±0.03 10.49±0.06
CONTaiNER 14.19±3.09 15.52±4.96 19.90±1.21 37.05±1.01 44.37±1.27

ProtoNet 40.18±6.19 41.52±5.14 38.01±2.75 47.95±4.06 50.22±1.28
SLNER 23.40±2.45 34.72±2.76 27.01±2.50 25.84±3.72 39.81±0.47
NNShot 37.74±5.55 36.69±6.23 35.57±2.43 41.26±2.50 46.54±1.93

ESD 39.13±5.09 41.30±5.37 27.54±3.17 34.75±6.03 47.68±2.20
SpanProto 40.10±5.98 41.65±7.89 41.84±2.66 51.11±5.89 56.16±2.15
LPNER 42.67±7.55 46.62±5.82 44.99±2.20 59.30±2.26 61.54±1.77

Table 2 and Table 3 shows the average results over ten experiments of our method com-
pared with these baselines introduced in 5.2 under the 1-shot and 5-shot settings, respec-
tively. We can observe that our method has improved compared to most of these baselines.

In the 1-shot setting, LPNER performs well on some datasets. For the ACE04 dataset, it
surpasses all baselines with a modest improvement of 0.12%, but it underperforms on ACE05,
likely due to limited labeled data restricting its ability to capture deeper semantics. On the
GENIA dataset, LPNER falls short of SpanProto, potentially due to the complexity and
similarity of biomedical labels, which are harder to differentiate with minimal data. However,
LPNER performs strongly on GermEval and NEREL, achieving F1 scores of 39.45% and
45.11%, with improvements of 5.33% and 0.91%, respectively.

In the 5-shot setting, LPNER consistently excels across datasets. It outperforms all
baselines on ACE04 and ACE05 with improvements of 2.49% and 4.97%, respectively. For
the GENIA dataset, LPNER achieves state-of-the-art results with a 3.15% improvement
over SpanProto. It also performs exceptionally well on GermEval and NEREL, with F1

scores of 59.30% and 61.54%, marking improvements of 8.19% and 5.38%, respectively.
From the experimental results, it can be observed that LPNER demonstrates more sig-

nificant performance improvements in the 5-shot setting. This is likely because, in the 1-shot
setting, the extremely limited labeled data may prevent LPNER from fully capturing label
semantics, hindering its ability to achieve optimal performance on certain datasets. In con-
trast, the increased number of labeled examples in the 5-shot setting enables LPNER to
better leverage semantic information, leading to superior results.

5.5.2. Comparison of LPNER and ChatGPT

In order to compare the performance of LPNER with that of Large Language Models (LLM),
we cited the experimental results of ChatGPT in Han et al. (2023), and the results are shown
in Table 4. For the ACE04 and ACE05 datasets, LPNER improved by 4.15% and 10.45%
respectively compared with ChatGPT. For the GENIA dataset, ChatGPT performed bet-
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ter, 3.83% higher than LPNER. We think that this is due to the model characteristics of
ChatGPT itself and the selection of some optimal prompt sample examples, which signifi-
cantly improves the model performance and makes ChatGPT more adaptable on the GENIA
dataset.

Table 4: Performance comparison between ChatGPT and LPNER on different datasets on
5-shot setting.

Model ACE04 ACE05 GENIA
ChatGPT 38.52±2.51 36.17±1.78 48.82±1.31

LPNER 42.67±7.55 46.62±5.82 44.99±2.20

5.5.3. Analysis of Prompt Template

Table 5: Statistics of different prompt templates.
templateID template
template1 [<candidate_entity> is a <entity_type> entity]
template2 [<candidate_entity> belongs to <entity_type> category]
template3 [the entity type of <candidate_entity> is <entity_type>]
template4 [<candidate_entity> is marked as <entity_type>]

Table 6: Results of different prompt templates in 1-shot and 5-shot settings on the GermEval
dataset.

dataset template1 template2 template3 template4
GermEval(1-shot) 40.71±6.65 40.39±8.89 39.32±9.62 38.07±8.37
GermEval(5-shot) 59.20±2.25 58.77±3.13 60.66±2.83 58.79±2.74

To analyze the impact of different prompt templates on model performance, we addition-
ally designed four prompt templates as shown in Table 5. We then conducted experiments
using these templates on the GermEval dataset under 1-shot and 5-shot settings. Tabel 6
illustrates the effect of various templates on the model’s F1 score. As can be seen from
the Tabel 6, when the prompt template changes, the performance of the model will change
slightly, but it is generally stable, indicating that our method is robust to prompts to a
certain extent.

5.5.4. Ablation Study

As shown in Table 7, in order to analyze the effectiveness of Label Prompt (LP) in our
LPNER, we conduct an ablation study on the ACE04, ACE05, GENIA, GermEval and
NEREL 1-shot setting. According to Table 7, the results suggest that the LP can effectively
improve the F1 score. Specifically, Label Prompt achieved F1 score improvements of 1.20%,
0.88%, 3.24%, 4.96%, and 2.86% on the ACE04, ACE05, GENIA, GermEval, and NEREL
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datasets. The results of the above ablation experiments show that Label Prompt is of
positive impact to the improvement of performance.

Table 7: Ablation study of F1 performance on different datasets 1-shot setting (%).
“w/o LP” means removing the Label Prompt.

ACE04 ACE05 GENIA GermEval NEREL
LPNER 25.67±7.05 25.01±10.83 26.32±3.88 39.45±6.55 45.11±3.78
w/o LP 24.47±7.76 24.13 ±10.73 23.08±5.44 34.49±7.62 42.25±3.20

6. Conclusion

In this paper, we propose LPNER, a novel Label-Prompt-based approach for nested named
entity recognition, specifically designed for few-shot learning scenarios. By leveraging prompt
templates to integrate label semantics and text information, LPNER consistently outper-
forms baseline methods across multiple datasets, including ACE04, ACE05, GENIA, Ger-
mEval, and NEREL, in both 1-shot and 5-shot settings. While effective, our approach has
some limitations, particularly in the manual design of prompts and the need for label-to-
class-specific-word mappings, which may impact performance. Addressing these limitations
could further enhance the model’s adaptability and effectiveness.

Futuremore, the label prompt method proposed in this paper can also be applied to
other fields, such as static, dynamic, and multimodal knowledge graphs reasoning (Liang
et al., 2024). For static graphs, label prompts can enhance the model’s ability to accurately
identify and label entities and relationships. In dynamic graphs, including temporal knowl-
edge graphs (Wang et al., 2023), time-sensitive prompts can capture temporal variations
in data, improving the accuracy of temporal knowledge graph completion. Additionally,
in multimodal graphs, label prompts can provide context across different data modalities,
further enhancing the model’s reasoning capabilities.
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Appendix A. Label Mapping

Table 8: Original labels and their corresponding class-specific words in the datasets.
Dataset original label class-specific word

Few-NERD O none
organization-company company

... ...
GermEval OTH other

PER person
... ...

GENIA other_name other
virus virus
... ...

NEREL NATIONALITY nationality
... ...

ACE ORG organization
... ...
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