
VLMimic: Vision Language Models are
Visual Imitation Learner for Fine-grained Actions

Guangyan Chen1 Meiling Wang1 Te Cui1 Yao Mu2 Haoyang Lu1

Tianxing Zhou1 Zicai Peng1 Mengxiao Hu1 Haizhou Li1 Li Yuan3 Yi Yang1 ∗

Yufeng Yue1 ∗

1 Beijing Institute of Technology 2 The University of Hong Kong 3 Peking University

Abstract

Visual imitation learning (VIL) provides an efficient and intuitive strategy for
robotic systems to acquire novel skills. Recent advancements in Vision Language
Models (VLMs) have demonstrated remarkable performance in vision and language
reasoning capabilities for VIL tasks. Despite the progress, current VIL methods
naively employ VLMs to learn high-level plans from human videos, relying on
pre-defined motion primitives for executing physical interactions, which remains
a major bottleneck. In this work, we present VLMimic, a novel paradigm that
harnesses VLMs to directly learn even fine-grained action levels, only given a lim-
ited number of human videos. Specifically, VLMimic first grounds object-centric
movements from human videos, and learns skills using hierarchical constraint
representations, facilitating the derivation of skills with fine-grained action levels
from limited human videos. These skills are refined and updated through an iter-
ative comparison strategy, enabling efficient adaptation to unseen environments.
Our extensive experiments exhibit that our VLMimic, using only 5 human videos,
yields significant improvements of over 27% and 21% in RLBench and real-world
manipulation tasks, and surpasses baselines by over 37% in long-horizon tasks.
Code and videos are available at our home page.

1 Introduction

Visual Imitation Learning (VIL) has demonstrated remarkable efficacy in addressing various visual
control tasks within intricate environments [1; 2; 3; 4; 5; 6; 7; 8; 9; 10]. Diverging from conventional
approaches reliant on precise robot action labels, which often necessitates substantial human effort
for data collection. Researchers increasingly turn to learning from human-object interaction videos
that are easily accessible to reduce high data requirements.

Existing methods for skill acquisition leveraging video data can be broadly categorized into two
classes. One typical approach learns efficient visual representations for robotic manipulation through
self-supervised learning from large volumes of videos[11; 12; 13; 14; 15; 16; 17; 18; 19; 20?].
Another approach focuses on learning task-relevant priors to guide robot behaviors or derive a
heuristic reward function for reinforcement learning [21; 14; 21; 22; 23; 24; 25; 26; 27; 28; 29].

∗Yufeng Yue and Yi Yang are co-corresponding authors. This work was supported by the National Natural
Science Foundation of China under Grant No. NSFC 62233002, 92370203. (email: yueyufeng@bit.edu.cn)

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://vlmimic.github.io/

(a) Typical VIL

Policies

Generalize

High level plans

challenge

Low-level actions

Human-object
Interaction Grounding

Fine-grained motions

Skill Learner

</>
Codes Grasp Spread

on
</>

Codes

 Generate low-
level actions

Unseen
scenes

Grasp</>
Codes Brush</>

Codes

 Generalize to unseen scenes

Skill Adapter

challenge

(b)VLM as Planner (c) VLM as Visual Imitation Leaner for Fine-grained Actions (d) Success Rates

 Step one
 Step two

...

…

Figure 1: Illustration of our VLMimic. (a) Typical VIL methods struggle to generalize to unseen
environments, and (b) current methods naively utilize VLMs as planners, encounter difficulties in
generating low-level actions. (c) VLMimic grounds human videos to obtain action movements, and
learns skills with fine-grained actions, while the skill adapter updates skills for generalization. (d)
Our method achieves superior performance given a limited collection of human videos.

However, these approaches often encounter challenges when generalizing to unseen environments.
Therefore, efficiently acquiring generalizable skills from limited videos remains highly challenging.

An appealing prospect for handling this challenge is to employ large pretrained models by encap-
sulating extensive prior knowledge from broad data. Recent advances in vision-language models
(VLMs) provide particularly promising tools in this regard, with their emergent and fast-growing
conceptual understanding, commonsense knowledge, and reasoning abilities. However, current VIL
methods [30; 31; 32; 33; 34; 35; 36; 37; 38; 39; 40] naively employ VLMs to learn high-level plans,
and typically rely on a repertoire of pre-defined motion primitives. This reliance on individual skill
acquisition is often considered a major bottleneck of the system due to the lack of large-scale robotic
data. The question then arises: how can we leverage VLMs to learn even fine-grained action levels
directly from human videos, eliminating the reliance on predefined primitives?

However, adapting VLMs to achieve visual imitation learning for fine-grained actions is non-trivial
due to the following critical reasons: (I) Lack of fine-grained action recognition ability. Despite
existing advancements in VLMs, they still struggle to recognize low-level actions in videos. To
overcome this obstacle, a human-object interaction grounding module is proposed, which parses
videos into multiple segments, and estimates object-centric actions for subsequent analysis. Such
that the intricate low-level action recognition task is converted into the pattern reasoning task, which
is more tractable for existing VLMs. (II) Difficulty for VLMs in understanding motion signals.
Motion signals are characterized by inherent redundancy, hindering models from extracting valuable
information. To overcome this challenge, we propose hierarchical constraint representations for VLM
reasoning, which exhibit semantic constraints through visualized actions and illustrate geometric
constraints using keypoint values. This representation effectively reduces redundancy and facilitates
a comprehensive understanding, enabling our method to learn skills from a limited set of human
videos. (III) Disparities in demonstration and target scenes. Demonstration and execution scenes
may involve different objects and tasks, impeding direct skill transfer. To this end, we propose a skill
adapter with an iterative comparison strategy, which updates skills by iteratively contrasting with the
demonstrated knowledge, facilitating the adaptation of learned skills to unseen scenes.

Based on the above analysis, we present VLMimic, an approach that employs VLMs to directly learn
even fine-grained action levels from a limited number of human videos, and generalize to novel scenes.
As shown in Fig. 1, our method parses videos into multiple segments and captures object-centric
movements using the human-object interaction grounding module. Then, a skill learner employing
hierarchical constraint representations extracts knowledge from estimated motions, deriving skills
with fine-grained actions. In unseen environments, a skill adapter with an iterative comparison
strategy revises and updates the learned skills based on observations and task instructions. Extensive
experiments demonstrate that VLMimic achieves strong performance across various scenes, utilizing
only 5 human videos without requiring additional training.

Our main contributions can be summarized as follows: (I) We propose VLMimic, a novel visual
imitation learning framework empowered by VLMs, to learn generalizable robotic skills from

2

human demonstration videos. VLMimic features a skill learner for knowledge extraction and a
skill adapter for iterative skill refinement, enabling efficient skill acquisition and adaptation. (II)
We build an effective human-object interaction grounding algorithm to enhance fine-grained action
recognition capabilities, and propose hierarchical constraint representations for VLM reasoning to
reduce information redundancy and facilitate comprehensive action comprehension. (III) Our method
outperforms other methods by over 27% on the RLBench. In real-world manipulation tasks, VLMimic
achieves an improvement exceeding 21% in seen environments and 34% in unseen environments.
Moreover, VLMimic exhibits an improvement of over 37% in long-horizon tasks.

2 Related Work

2.1 Learning from Human videos

Conventional learning approaches necessitate access to expert demonstrations, which include ob-
servations and precise actions for each timestep. Drawing on human capabilities, learning from
observation offers efficient and intuitive methods for robots to develop new skills. A plethora of
recent researches explore leveraging large-scale human video data to improve robot policy learning
[11; 12; 13; 14; 15; 16; 17; 18; 19; 20; 41]. Representative methods, R3M [13] and MVP [12], which
employ the internet-scale Ego4D dataset [11] to pretrain visual representations for subsequent imita-
tion learning tasks. Another thread of work [21; 22; 23; 24; 25; 26; 27; 28; 29] focuses on learning
task-relevant priors from videos to guide robot behaviors or derive a heuristic reward function for
reinforcement learning. Learning by watching [27] learns human-to-robot translation, the resulting
representations are used to guide robots to learn robotic skills. WHIRL [21] infers trajectories and
interaction details to establish a prior, but it learns policy through real-world exploration and requires
a large number of rollouts to converge. GraphIRL [24] performs graph abstraction on the videos
followed by temporal matching to measure the task progress, and a dense reward function is employed
to train reinforcement learning algorithms. Despite these advancements, acquiring generalizable
skills efficiently from limited demonstration videos remains highly challenging.

2.2 Visual Imitation Learning with VLMs

Motivated by the notable success of VLMs across various domains, recent research [32; 33; 34; 35;
36; 37] investigate their potential in VIL. GPT-4V for Robotics [33] analyzes videos of humans
performing tasks and outputs robot programs that incorporate insights into affordances. Digknow [32]
distills generalizable knowledge with a hierarchical structure, enabling the effective generalization to
novel scenes. Demo2code [37] generates robot task code from demonstrations via an extended chain-
of-thought and defines a common latent specification to connect the two. VLaMP [34] predicts visual
planning from videos through video action segmentation and forecasting, handling long video history
and complex action dependencies. However, these approaches often rely on predefined movement
primitives or pre-trained skills to execute lower-level actions, thereby only partially solving the
control stack. In contrast, our investigation aims to push these boundaries and learn all lower-level
actions for the robot, eliminating the reliance on predefined primitives.

3 VLMimic

Considering video demonstrations V of a human performing manipulation tasks, recorded using
an RGB-D camera. The overall pipeline of VLMimic is illustrated in Fig. 2. Our method first
grounds human videos, segmenting them into subtask intervals {τi}Vi=1 and capturing object-centric
interactions I . A skill learner with hierarchical representations then extracts knowledge from the
obtained interactions, deriving skills with fine-grained actions. In unseen environments, a skill adapter
employs an iterative comparison strategy to revise and update the learned skills based on observations
and task instructions.

3.1 Human-object Interaction Grounding

Despite VLMs demonstrating proficiency in various vision tasks, they still struggle with fine-grained
action recognition within videos. To mitigate this limitation, a four-stage process, illustrated in Fig. 3,

3

(a) Human-object Interaction Grounding (b) Skill Learner with Hierarchical Representations

(c) Skill Adapter with Iterative Comparison

Manipulation phase

Human videos

Task recognition

Video parsing

3
4

Grasping phase

Iterative comparison

2

Interaction
extraction

Manipulation phase

def Spiral(...)
def Spread_w_spiral(...)

R_1['x'] = Bb['x']
R_1['y'] = [-Bb['y']/4, Bb['y']/4]

Please wash the

pan with

brush.

Grasp it vertically

in the middle ...

Spiral envelops

the pie...

...

Move the center

to the left
Reduce radius

Grasping phase

b2 b3 b4

c2 c3

[b4]
[b3]

...

Hierarchical representations

1

a1 a2 a3 a4

b1 b2 b3 b4

c1 c2 c3 c4

d1 d2 d3 d4

[b2;b3]

[c3;b4] ...

1
2

def Spiral(...)
…

def Brush_w_spiral(...)
…

R_1['y'] = [
-Bb['y']/2, Bb['y']/2
] ...

√
1

2

Make a pie

Pie: (in) plate

Plate: (contains) pie

Brush: (in) bowl

Bowl: (on) table

 Grasp the brush

Spread the sauce

22

11

Knowledge Bank

Knowledge BankNew scenes

............

Semantic:
Grasp it vertically in the
middle, or pinch the end.
G_1: A, B; G_2: C, D

Geometric:

...

A

B
C

D

1
,

x x
Bb Bb Bbox= =

Semantic:

Spiral radiates from the

pie's center. It envelops

and grows with the pie.

Geometric:

min(,) / 2Radius X Y= ...

Keypoint values:

Object properties:

Keypoint values:

Object properties:

vI

vI

0
vI

1
vI

0
vI

1
vI

ˆ
vI

ˆ
vI

kV

oP

kV

oP

s

s

Figure 2: Illustration of our VLMimic. (a) The human-object interaction grounding module parses
videos into multiple segments and captures object-centric movements. Then, (b) a skill learner
extracts knowledge from action motions and derives skills. In novel scenes, (c) a skill adapter updates
the learned skills to facilitate adaptation.

is utilized to extract object-centric interactions for skill learning, transforming this intricate problem
into pattern reasoning problems, typically more tractable for existing VLMs.

Task recognition. Keyframes K are intermittently extracted from videos V , vision foundation
models VFM [42; 43; 44] are utilized to detect objects within these frames. Utilizing keyframes K
and textual detection results Td, VLMs are instructed to transcribe videos into task instructions Tt,
and compile the task-related objects To into textual information. The object information is predicated
on the initial frame of the video data, comprising a list of object names and their spatial relationships.
The task recognition procedure is formulated as follows:

Td = VFM(K), Tt,To = VLM(Td,K). (1)

Video parsing. Videos are parsed into segments {τi}Vi=1, using interaction markers that identify
interaction periods. SAM-Track [45; 46; 47; 48; 49] predicts hand and task-related object masks for
each frame, and corresponding point clouds P are generated through back-projection. Markers are
then identified by determining the interaction start time ti and end time te, partitioning videos V
into multiple segments. Segments with hand motion trajectory lengths below than γ are filtered out,
yielding final set of segments {τi}Vi=1. Concretely, the interaction markers are obtained as follows:

d = dist(P), ti = {t|dt−1>ϵ ∧ dt < ϵ}, te = {t|dt−1<ϵ ∧ dt > ϵ}, (2)
where function dist calculates the distance between any two point clouds.

Subtask recognition. Each segment τi is analyzed by VLMs, which generate a subtask textual
description Tτi , and categorize the segment into grasping or manipulation phases based on the
interacting entities and Tτi . VLMs also identify master objects Om and slave objects Os. In the
grasping phase, the agent performs a reach-and-grasp action targeting Om, designating the hand as
Os. In the manipulation phase, the agent employs Os to interact with Om.

Object-centric interaction extraction. FrankMocap [50] and the Iterative Closest Point (ICP)
algorithm [51; 52] are employed to derive precise hand pose trajectories, which are subsequently
converted into robot gripper pose trajectories. Furthermore, BundleSDF [53] is employed for
object reconstruction, and FoundationPose [54] is leveraged for object pose estimation based on
reconstructed objects O. In grasping phases, interactions I are represented as grasp poses at hand-
object contacts. For manipulation phases, I are defined as trajectories of slave objects Os relative to

4

Keyframes

Detection

Task: Make a pie

Object Information:

Pie: (in) plate

Plate: (contains) food

Brush: (in) bowl

Bowl: (on) table

Distance

Time

…

t0 t1 t20

(c) Interaction
extraction

3Grasp the brush
Grasping Manipulation

mo : Brush
so : HandA red brush

A pie on plate
A bowl

1

Grounding results

…

…
Key point values:

Object properties:

Key point values:

Object properties:

[10,1,0,...]A :

:[20,4,2]Bbox

:[[0,0],[1,0], ...]−

:[25,25,2]Bbox

&

Put brush on pie
Manipulation

mo
so so

mo
: Brush
: Pie

: Brush

(a) Task recognition (b) Video parsing

: Pie

Spread the sauce

&& 2

Figure 3: Illustration of Human-object interaction grounding module. (a) It recognizes tasks and
related objects from human videos, (b) parses videos into multiple segments based on this information,
and subsequently (c) identifies object-centric interactions within each segment.

master objects Om. This object-centric paradigm facilitates efficient skill acquisition and enables
VLMimic to accommodate demonstrations across diverse viewpoints.

3.2 Skill Learner with Hierarchical Representations

A straightforward approach for learning skills involves directly discerning the numerical trajectory
patterns [55; 56]. However, VLMs face challenges in reasoning about inherently redundant motion
signals, limiting their ability to extract valuable information. To reduce redundancy and foster
comprehensive comprehension, hierarchical constraint representations are proposed for skill learning,
as illustrated in Fig. 2. These representations exhibit semantic constraints via visualized interaction
Iv and further detail the fine-grained geometric constraints by integrating keypoint values Vk.

Learning with hierarchical constraint representations. Rendering interaction I , and textual nota-
tions Tn on objects O to derive visualized interaction Iv , VLMimic facilitates reasoning capabilities
to analyze semantic constraints Φs by encouraging VLMs to attend to objects and their related
actions, and integrating keypoint values Vk and object properties Po (e.g., 3-D bounding boxes) to
derive geometric constraints Φg . Formally, constraints are learned as follows:

Iv = Render([I,Tn],O), Φs = Sl(Iv) Φg = Gl(Φs,Vk,Po), (3)
where Sl, and Gl are functions to learn semantic, and geometric constraints, respectively.

(I) Grasping constraints. Inspired by task space regions (TSRs) [57], the grasping constraint Φg can
be approximated as a series of bounded regions {Ri}NC

i=1. Interactive grasp poses I are exhibited on
objects, each associated with an index notation Tn. These visualized interactions Iv are presented to
VLMs, leveraging their inherent knowledge and visual understanding ability to summarize semantic
constraints Φs and group these poses. Geometric constraints Φg, represented as bounded regions,
are derived by calculating ranges of grasp pose values Vk within the same group, and associating
them with object properties Po. This approach simplifies the complex task of constraint region
generation into a series of visual understanding based multiple-choice question answering. Moreover,
representing constraints through object properties enhances generalization across objects.

(II) Manipulation constraints. Interaction trajectory I is delineated on the master object Om, in-
corporating keypoints Vk in the textual prompt. Semantic constraints Φs are identified by VLMs
based on the visualized interaction Iv and subtask description Tτi . Geometric constraints Φg are
then formulated based on semantic constraints Φs, keypoint values Vk, and object properties Po,
expressing Φg via the trajectory code. The code comprises two components: parameter estimation
functions fp, which derives trajectory parameters from object properties, and trajectory generation
functions fs, employing estimated parameters to generate a sequence of slave object poses relative to
the master object, promoting effective generalization across various objects and spatial configurations.

During execution, grasp candidates are uniformly sampled within the learned grasping constraints,
and object-centric trajectories predicted from manipulation constraints are converted to end-effector
trajectories in the world frame using each grasp candidate of the slave object and object poses of
master and slave objects. The resulting end-effector trajectory candidates are evaluated using motion
planner, such as OMPL [58], the trajectory with the highest fraction is selected.

5

Knowledge bank construction. A knowledge bank B is established to archive both high-level
planning and low-level skill insights, storing knowledge with key-value pairs (ki,vi). High-level
planning knowledge is indexed using task description Tt as keys, paired with the consequent action
sequence Tτ as values. For low-level skill knowledge, keys are constituted by the object images and
subtask description Tτi , and values comprise reconstructed objects, as well as semantic constraints
Φs and geometric constraints Φg representing learned skills.

3.3 Skill Adapter with Iterative Comparison

Even though the skill learner exhibits efficient skill acquisition, the demonstration and execution
scenes may differ in objects and tasks, impeding direct skill transfer to unseen environments. To
mitigate these challenges, VLMs are instructed to adapt skills via an iterative comparison strategy,
as depicted in Fig. 2. This approach updates learned skills by iteratively contrasting with the
demonstrated knowledge, thereby enabling effective adaptation of retrieved skills to novel scenes.

High level planning. High-level planning knowledge Tτ is retrieved from knowledge bank B
based on the task instruction, which acts as the in-context example for VLMs, along with the scene
observation. VLMs serve as a physically-grounded task planner [59; 60], generating a sequence of
actionable steps and descriptions of task-related objects To.

Iterative comparison. In each iteration, VLMs perform a comparative analysis between the adapted
interaction I and retrieved interaction Î , subsequently updating the skill constraints Φs and Φg . This
iterative process persists until either convergence is achieved or the maximum number of iterations NI

is reached. This approach facilitates reasoning in VLMs by directing their attention to discrepancies,
and enables VLMs to pinpoint the best available solution through an iterative process. The adapting
procedure at the i-th iteration can be formally represented as:
Ii
v = Render(Φi

g, O), Φi+1
s = Sa(Îv, I

i
v, Φ̂s,Φ

i
s), Φi+1

g = Ga(Φ̂g,Φ
i
g,Φ

i+1
s ,Vk,Po), (4)

where Φ̂g and Φ̂s denote referential constraints, extracted from the knowledge base. The functions
Sa and Ga adapt semantic and geometric constraints, respectively.

(I) Grasping constraint adaptation. As the grasping orientation is typically derivable from position
constraints using grasping models [61; 62; 63], our work focuses on transferring position constraints.
The visualized grasping position space is discretized into an m× n grid (m,n ∈ Z) and annotated
with textual notations Tn, obtaining I0

v . VLMs are instructed to update semantic constraints Φs, by
contrasting with the referential interaction Îv and semantic constraints Φ̂s, and to adapt geometric
constraints Φg by sampling K outputs of grasping region selection. The updated Φg are then
visualized for the next iteration. The 3-D positional region is represented using two perspectives,
and the consistency of the selected regions for the overlapping area validates the VLM outputs. The
obtained constraints are expressed via object properties to enhance generalization.

(II) Manipulation constraint adaptation. VLMs are instructed to iteratively self-summarise and update
manipulation constraints based on the task instruction and scene differences. VLMimic generates
trajectories adhering to geometric constraints Φg , which are exhibited on master objects. VLMs are
instructed to analyze the deviation of the adapted interaction Iv from the referential interaction Îv to
revise semantic constraints Φs, and geometric constraints Φg undergo refinement predicated on the
updated Φs, along with trajectory keypoint values Vk and object properties Po.

Failure reasoning. Despite the ability of VLMs to generate effective constraints, environmental
noise, such as trajectory estimation errors, impedes successful task execution. Thus, we leverage
VLMs to detect and address failures during execution by providing them with perceptual results, such
as object pose and robot end-effector trajectories, enabling autonomous failure identification and
reasoning for rectification.

4 Experiments

Baselines. VLMimic is compared with five representative methods: (1) R3M-DP that utilizes the
pre-trained R3M visual representation [13] with the state-of-the-art (SOTA) diffusion policy [7]; (2)
Diffusion Policy (DP) [7], a SOTA end-to-end policy method; (3) GraphIRL [24], a method that
employs graph abstraction and learns reward functions for reinforcement learning (RL); (4) Code

6

Table 1: Success rates on RLbench. "Obs-act", "Template", and "Video" indicate paired observation-
action sequences, code templates, and videos performing subtasks.

Methods R3M-DP DP GraphIRL CaP Demo2Code Ours

Overall 0.13(±0.12) 0.15(±0.13) 0.12(±0.12) 0.44(±0.33) 0.49(±0.32) 0.76(±0.17)

Methods
Type of
demos

Num of
demos

Reach
target

Take lid off
saucepan

Pick
up cup

Toilet
seat up

Open
box

Open
door

R3M-DP Obs-act 100 0.37 0.20 0.20 0.07 0.02 0.25
DP Obs-act 100 0.43 0.25 0.24 0.05 0.04 0.22
GraphIRL Video 100 0.39 0.14 0.23 0.03 0.03 0.21
CaP Template 5 0.95 0.90 0.58 0.05 0.12 0.65
Demo2Code Video 5 0.94 0.86 0.65 0.06 0.19 0.83
Ours Video 5 0.97 0.94 0.80 0.76 0.75 0.90

Methods
Type of
demos

Num of
demos

Meat off
grill

Open
drawer

Open
grill

Open
microwave

Open
oven

Knife on
board

R3M-DP Obs-act 100 0.15 0.25 0.07 0.03 0.00 0.00
DP Obs-act 100 0.17 0.28 0.09 0.07 0.00 0.00
GraphIRL Video 100 0.16 0.18 0.04 0.04 0.02 0.00
CaP Template 5 0.35 0.17 0.46 0.12 0.16 0.78
Demo2Code Video 5 0.57 0.22 0.40 0.14 0.21 0.79
Ours Video 5 0.79 0.75 0.81 0.45 0.43 0.76

as Policy (CaP) [64], an LLM-driven method that re-composes API calls to generate new policy
code; and (5) Demo2code [37], an LLM-driven planner method that translates demonstrations into
task code. We modify it to integrate the analysis results from GPT-4V for Robotics [33], enabling
it to transcribe videos into code. R3M-DP and DP are trained using the robot demonstrations with
paired observation and action sequences. GraphIRL is trained in simulators with paired robot videos,
Demo2code and our method learns skills with human videos in real-world experiments and robot
videos in simulation experiments.

4.1 Simulation Manipulation Tasks

Experimental setup. To assess our approach on challenging robotic manipulation tasks, the RLBench
[65] benchmark is utilized for simulation tasks. Due to the unavailability of human videos in simula-
tions, demo2code and our method utilize robot videos captured from a single-camera perspective
during demonstrations, incorporating robot gripper trajectories.

Results. We investigate the capacity of VLMimic to acquire skills from a limited collection of video
demonstrations, without requiring additional training. Our evaluation encompasses 12 manipulation
tasks, as detailed in Table 1, demonstrating that our method surpasses all other methods in 11 out of
these tasks. Our method, learned with only 5 human videos, obviously outperforms R3M-DP and
DP by over 61% in overall performance, despite both being trained on 100 robot demonstrations.
Compared to CaP and demo2code, our method demonstrates an improvement exceeding 27%,
highlighting the significant performance enhancements facilitated by the VLMimic framework.

4.2 Real-world Manipulation Tasks

Experimental setup. The real-world testing environment (E) is divided into "seen" (SE) and "unseen"
(UE) categories. The "seen" category allows for testing in the environment where demonstrations were
collected, whereas the "unseen" category involves testing in a distinct environment characterized by
different objects and layouts. Success criteria are human-evaluated and the success rate is calculated
from 10 randomized object positions and orientations.

Results: To validate the effectiveness of VLMimic in real-world settings, we conduct experiments
involving 14 challenging real-world manipulation tasks selected from recent robotics research [66;
67; 4; 68]. Quantitative results, presented in Table 2, demonstrate that VLMimic clearly outperforms
other methods across all tasks, particularly in the "unseen" environment (UE). VLMimic achieves an

7

Table 2: Success rates on real-world manipulation experiments. "Obs-act", "Template", and "Video"
indicate paired observation-action sequences, code templates, and videos performing subtasks. "SE"
and "UE" are seen and unseen environments.

Methods R3M-DP DP GraphIRL CaP Demo2Code Ours

Overall (SE) 0.49(±0.20) 0.55(±0.21) 0.25(±0.21) 0.39(±0.22) 0.43(±0.21) 0.76(±0.11)
Overall (UE) 0.09(±0.10) 0.10(±0.10) 0.07(±0.08) 0.37(±0.24) 0.37(±0.26) 0.71(±0.15)

Methods Type of
demos

Num of
demos

Open
drawer

Stack
block

Open
oven

Put fruit
on plate

Press
button

Open
microwave

Put tray
in oven

SE UE SE UE SE UE SE UE SE UE SE UE SE UE

R3M-DP Obs-act 100 0.2 0.1 0.6 0.2 0.3 0.0 0.8 0.3 0.7 0.2 0.2 0.0 0.4 0.0
DP Obs-act 100 0.3 0.1 0.6 0.2 0.4 0.1 0.9 0.4 0.7 0.1 0.3 0.0 0.4 0.0
GraphIRL Video 100 0.2 0.0 0.4 0.1 0.0 0.0 0.7 0.2 0.4 0.2 0.0 0.0 0.2 0.0
CaP Template 5 0.3 0.3 0.5 0.5 0.3 0.2 0.8 0.8 0.7 0.7 0.1 0.1 0.2 0.1
Demo2Code Video 5 0.3 0.3 0.5 0.4 0.3 0.1 0.8 0.9 0.8 0.8 0.2 0.1 0.3 0.2
Ours Video 5 0.8 0.7 0.9 0.8 0.6 0.6 0.9 0.9 0.8 0.9 0.7 0.6 0.7 0.7

Methods Type of
demos

Num of
demos

Turn on
oven

Sweep
table

Insert
box

Brush
pan

Sauce
spread

Put toy
to drawer

Pour from
cup to cup

SE UE SE UE SE UE SE UE SE UE SE UE SE UE

R3M-DP Obs-act 100 0.2 0.0 0.7 0.2 0.4 0.0 0.6 0.1 0.6 0.1 0.6 0.1 0.5 0.0
DP Obs-act 100 0.3 0.0 0.8 0.1 0.3 0.1 0.7 0.1 0.7 0.0 0.7 0.1 0.6 0.1
GraphIRL Video 100 0.2 0.1 0.5 0.2 0.0 0.0 0.2 0.0 0.2 0.1 0.4 0.1 0.1 0.0
CaP Template 5 0.3 0.3 0.6 0.5 0.1 0.1 0.3 0.4 0.3 0.3 0.6 0.7 0.4 0.2
Demo2Code Video 5 0.2 0.1 0.6 0.6 0.3 0.2 0.4 0.3 0.3 0.4 0.7 0.6 0.3 0.2
Ours Video 5 0.8 0.7 0.9 0.9 0.6 0.4 0.8 0.7 0.8 0.7 0.8 0.8 0.6 0.5

Table 3: Success rates on long-horizon tasks. "Obs-act", "Template", and "Video" indicate observation-
action sequences, code templates, and videos performing tasks.

Methods
Type of
demos

Num of
demos

Make
coffee

Clean
table

Make
a pie

Wash
pan

Make
slices

Chem.
exp. Overall

R3M-DP Obs-act 100 0.10 0.30 0.20 0.10 0.00 0.10 0.13(±0.09)
DP Obs-act 100 0.00 0.20 0.10 0.00 0.10 0.00 0.07(±0.07)

GraphIRL Video 100 0.00 0.10 0.00 0.00 0.00 0.00 0.02(±0.04)
CaP Template 5 0.00 0.10 0.00 0.00 0.00 0.00 0.02(±0.04)

Demo2Code Video 5 0.00 0.10 0.00 0.00 0.00 0.00 0.02(±0.04)

Ours Video 5 0.40 0.70 0.70 0.40 0.50 0.30 0.50(±0.15)

improvement exceeding 21% in SE and more than 34% in UE. Results reveal the outstanding ability
of VLMimic to acquire skills from human videos and adapt them to unseen environments.

4.3 Real-world Long-Horizon Tasks

Experimental setup. Since baseline methods struggle to complete long-horizon tasks in the UE
setting, experiments are conducted in the SE setting. All other experimental settings are consistent
with those in the real-world manipulation task.

Results. The performance of VLMimic on long-horizon tasks is quantitatively evaluated by its
successful completion of six distinct tasks, each comprising at least five subtasks. Experimental
results, as depicted in Table 3, obviously exhibit a substantial enhancement achieved by our method
over baseline methods. These outcomes suggest that the proposed method is capable of developing
robust skills, thereby achieving promising performance in even long-horizon tasks.

4.4 Robustness against viewpoint variance

The keypoint-centric representation approach enables our method to tolerate different observational
perspectives. To demonstrate the robustness of our method to varying viewpoints. Experiments are
conducted in real-world unseen environments, utilizing distinct viewpoints, as shown in Figure 4,
where the first angle serves as the default perspective used in our experiments. Experimental results
shown in Table 4 prove that our method exhibits only a 7% fluctuation in performance under varying
viewpoints, demonstrating the resilience of VLMimic to viewpoint changes.

8

Table 4: Robustness against viewpoint variance.
Methods Viewpoint 1 Viewpoint 2 Viewpoint 3 Viewpoint 4

Ours 0.71(±0.15) 0.67(±0.16) 0.70(±0.15) 0.64(±0.17)

View 1 View 2 View 4View 3
Figure 4: Configuration of various viewpoints.

Open microwave Chemistry experimentOpen oven

Collision

IK ErrorIK Error

Figure 5: Examples of failure cases.

4.5 Real-world failure cases

Figure 5 elucidates scenarios that present significant challenges for resolution through VLM reasoning.
These scenarios encompass: (I) The task execution may exceed the hardware limitations of the
physical robot, inducing inverse kinematics (IK) errors. (II) Incomplete environmental perception
increases the risk of obstacle collisions, leading to task failure. Since the training datasets for VLMs
exhibit a significant lack of data related to robot dynamics, these models lack associated knowledge,
exhibiting a limited capacity for error analysis and struggling to infer correction strategies when
confronted with these failures.

4.6 Ablation Studies

Comprehensive ablation studies are conducted to investigate the fundamental designs of our VLMimic
approach. The effects of these design decisions are assessed by measuring the success rate on real-
world manipulation tasks, which is computed across 10 randomized object positions and orientations.

Hierarchical constraint representations. Table 5 (a) analyzes three distinct constraint representa-
tions. Variants that exclusively reason semantic constraints or directly obtain geometric constraints
without semantic analysis, lead to diminished performance. The results exhibit that hierarchical
constraint representations enhance skill acquisition capabilities, demonstrating the pivotal role in
facilitating the understanding and reasoning capabilities of VLMs.

Grasping learning. Table 5 (b) presents variants and their respective performance. The first variant
utilizes VLMs for direct prediction of constraint region values, resulting in a significant performance
decline. The second variant employs the DBScan clustering algorithm to group grasp poses and
derive constraints as bounded regions. However, this method only considers numerical distributions
without incorporating grasping common sense, leading to performance degradation.

Number of human videos. Table 5(c) presents an analysis of the impact of human video quantity on
performance. Results indicate that our method attains high success rates on complex tasks with a
single human video demonstration, and increasing the number of videos yields performance gains.
The results show that our approach can efficiently learn generalizable skills from a limited number of
human videos. We choose to use 5 demonstration videos to balance data availability and performance.

Comparison strategy. Table 5 (d) analyzes the impact of the comparison strategy in skill adapters.
Variants compare constraints exclusively utilizing either visualized interactions or keypoints exhibit
decreased success rates. Visual comparison facilitates semantic contrast in VLM, while keypoint
values provide fine-grained geometric information. Experimental results illustrate that our strategy
facilitates reasoning for both semantic and geometric constraint adaptation.

Number of iterations. We conduct an analysis on the impact of iteration count in skill adapter and
search for the optimal choice, as shown in Table 5(e). Reducing the number of iterations to 0 results in

9

Table 5: Ablation experiments with VLMimic on real-world manipulation experiments. "SE" and
"UE" are seen and unseen environments. Default settings are marked in gray .

(a) Hierarchical representations.

Variants SE

Geometric constraints 0.61
Semantic constraints 0.68

Hierarchical constraints 0.76

(b) Grasping learning.

Variants SE

Value prediction 0.52
Grouping (DBSCAN) 0.59
Grouping with VLMs 0.76

(c) Number of videos.

Number SE Number SE

1 0.68 7 0.67
3 0.72 9 0.78
5 0.76 11 0.78

(d) Comparison strategy.

Variants UE

Visual comparison 0.61
Keypoint comparison 0.60
Visual with keypoints 0.71

(e) Number of iterations.

Number UE Number UE

0 0.58 3 0.68
1 0.61 4 0.71
2 0.66 5 0.71

(f) Failure reasoning.

Number UE Number UE

0 0.65 3 0.72
1 0.68 4 0.70
2 0.71 5 0.71

a noticeable decrease in performance. Strong results are observed in the initial iteration, with modest
improvements in subsequent iterations. The findings indicate that this iterative approach enhances
the effectiveness of skill adaptation by enabling VLMs to identify the best available solution. For
enhanced performance, 4 iterations are selected.

Failure reasoning. The impact of failure reasoning is investigated in Table 5(f). The success rate
exhibits an upward trend with increasing iterations, reaching an elbow point at 2 iterations, providing
an optimal trade-off between real-time performance and success rate. Failure reasoning proves crucial
for tasks demanding high-precision manipulation, which are susceptible to environmental noise. It
enhances both the success rate and the robot’s ability to operate in intricate environments.

5 Conclusion

In this paper, we present VLMimic, a novel approach that harnesses VLMs to learn skills with even
fine-grained action levels from a limited number of human videos, and effectively generalize them to
unseen environments. VLMimic first extracts object-centric interactions from human videos, and
learns skills based on these interactions, using hierarchical constraint representations. In unseen
environments, these skills are updated through an iterative comparison strategy. Extensive experiments
conducted on various manipulation and challenging long-horizon tasks demonstrate the superior
performance achieved by our VLMimic, utilizing only 5 human videos without requiring additional
training, exhibiting strong skill acquisition and adaptation capabilities.

Limitations. Despite the promising performance exhibited by VLMimic, current VLMs are still
limited by inference latency and computational resource requirements. We believe that the progression
of lightweight VLMs will mitigate these limitations.

References
[1] Ajay Mandlekar, Danfei Xu, Roberto Martín-Martín, Silvio Savarese, and Li Fei-Fei. Learning to generalize

across long-horizon tasks from human demonstrations. arXiv preprint arXiv:2003.06085, 2020.

[2] Albert Tung, Josiah Wong, Ajay Mandlekar, Roberto Martín-Martín, Yuke Zhu, Li Fei-Fei, and Silvio
Savarese. Learning multi-arm manipulation through collaborative teleoperation. In 2021 IEEE International
Conference on Robotics and Automation (ICRA), pages 9212–9219. IEEE, 2021.

[3] Andy Zeng, Pete Florence, Jonathan Tompson, Stefan Welker, Jonathan Chien, Maria Attarian, Travis
Armstrong, Ivan Krasin, Dan Duong, Vikas Sindhwani, et al. Transporter networks: Rearranging the visual
world for robotic manipulation. In Conference on Robot Learning, pages 726–747. PMLR, 2021.

[4] Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn, Keerthana
Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, et al. Rt-1: Robotics transformer for
real-world control at scale. arXiv preprint arXiv:2212.06817, 2022.

[5] Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Xi Chen, Krzysztof Choromanski,
Tianli Ding, Danny Driess, Avinava Dubey, Chelsea Finn, et al. Rt-2: Vision-language-action models
transfer web knowledge to robotic control. arXiv preprint arXiv:2307.15818, 2023.

10

[6] Abhishek Padalkar, Acorn Pooley, Ajinkya Jain, Alex Bewley, Alex Herzog, Alex Irpan, Alexander
Khazatsky, Anant Rai, Anikait Singh, Anthony Brohan, et al. Open x-embodiment: Robotic learning
datasets and rt-x models. arXiv preprint arXiv:2310.08864, 2023.

[7] Cheng Chi, Siyuan Feng, Yilun Du, Zhenjia Xu, Eric Cousineau, Benjamin Burchfiel, and Shuran Song.
Diffusion policy: Visuomotor policy learning via action diffusion. arXiv preprint arXiv:2303.04137, 2023.

[8] Zhixuan Liang, Yao Mu, Mingyu Ding, Fei Ni, Masayoshi Tomizuka, and Ping Luo. Adaptdiffuser:
Diffusion models as adaptive self-evolving planners. arXiv preprint arXiv:2302.01877, 2023.

[9] Mingxiao Huo, Mingyu Ding, Chenfeng Xu, Thomas Tian, Xinghao Zhu, Yao Mu, Lingfeng Sun,
Masayoshi Tomizuka, and Wei Zhan. Human-oriented representation learning for robotic manipula-
tion. arXiv preprint arXiv:2310.03023, 2023.

[10] Zhixuan Liang, Yao Mu, Hengbo Ma, Masayoshi Tomizuka, Mingyu Ding, and Ping Luo. Skilldiffuser:
Interpretable hierarchical planning via skill abstractions in diffusion-based task execution. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 16467–16476, 2024.

[11] Kristen Grauman, Andrew Westbury, Eugene Byrne, Zachary Chavis, Antonino Furnari, Rohit Girdhar,
Jackson Hamburger, Hao Jiang, Miao Liu, Xingyu Liu, et al. Ego4d: Around the world in 3,000 hours
of egocentric video. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 18995–19012, 2022.

[12] Tete Xiao, Ilija Radosavovic, Trevor Darrell, and Jitendra Malik. Masked visual pre-training for motor
control. arXiv preprint arXiv:2203.06173, 2022.

[13] Suraj Nair, Aravind Rajeswaran, Vikash Kumar, Chelsea Finn, and Abhinav Gupta. R3m: A universal
visual representation for robot manipulation. arXiv preprint arXiv:2203.12601, 2022.

[14] Kenneth Shaw, Shikhar Bahl, and Deepak Pathak. Videodex: Learning dexterity from internet videos. In
Conference on Robot Learning, pages 654–665. PMLR, 2023.

[15] Karl Schmeckpeper, Oleh Rybkin, Kostas Daniilidis, Sergey Levine, and Chelsea Finn. Reinforcement
learning with videos: Combining offline observations with interaction. arXiv preprint arXiv:2011.06507,
2020.

[16] Ashley D Edwards and Charles L Isbell. Perceptual values from observation. arXiv preprint
arXiv:1905.07861, 2019.

[17] Karl Schmeckpeper, Annie Xie, Oleh Rybkin, Stephen Tian, Kostas Daniilidis, Sergey Levine, and Chelsea
Finn. Learning predictive models from observation and interaction. In European Conference on Computer
Vision, pages 708–725. Springer, 2020.

[18] Annie S Chen, Suraj Nair, and Chelsea Finn. Learning generalizable robotic reward functions from"
in-the-wild" human videos. arXiv preprint arXiv:2103.16817, 2021.

[19] Lin Shao, Toki Migimatsu, Qiang Zhang, Karen Yang, and Jeannette Bohg. Concept2robot: Learning
manipulation concepts from instructions and human demonstrations. The International Journal of Robotics
Research, 40(12-14):1419–1434, 2021.

[20] Kevin Zakka, Andy Zeng, Pete Florence, Jonathan Tompson, Jeannette Bohg, and Debidatta Dwibedi. Xirl:
Cross-embodiment inverse reinforcement learning. In Conference on Robot Learning, pages 537–546.
PMLR, 2022.

[21] Shikhar Bahl, Abhinav Gupta, and Deepak Pathak. Human-to-robot imitation in the wild. arXiv preprint
arXiv:2207.09450, 2022.

[22] Maximilian Sieb, Zhou Xian, Audrey Huang, Oliver Kroemer, and Katerina Fragkiadaki. Graph-structured
visual imitation. In Conference on Robot Learning, pages 979–989. PMLR, 2020.

[23] Pratyusha Sharma, Deepak Pathak, and Abhinav Gupta. Third-person visual imitation learning via
decoupled hierarchical controller. Advances in Neural Information Processing Systems, 32, 2019.

[24] Sateesh Kumar, Jonathan Zamora, Nicklas Hansen, Rishabh Jangir, and Xiaolong Wang. Graph inverse
reinforcement learning from diverse videos. In Conference on Robot Learning, pages 55–66. PMLR, 2023.

[25] Laura Smith, Nikita Dhawan, Marvin Zhang, Pieter Abbeel, and Sergey Levine. Avid: Learning multi-stage
tasks via pixel-level translation of human videos. arXiv preprint arXiv:1912.04443, 2019.

11

[26] YuXuan Liu, Abhishek Gupta, Pieter Abbeel, and Sergey Levine. Imitation from observation: Learning
to imitate behaviors from raw video via context translation. In 2018 IEEE international conference on
robotics and automation (ICRA), pages 1118–1125. IEEE, 2018.

[27] Haoyu Xiong, Quanzhou Li, Yun-Chun Chen, Homanga Bharadhwaj, Samarth Sinha, and Animesh Garg.
Learning by watching: Physical imitation of manipulation skills from human videos. In 2021 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages 7827–7834. IEEE, 2021.

[28] Oier Mees, Markus Merklinger, Gabriel Kalweit, and Wolfram Burgard. Adversarial skill networks:
Unsupervised robot skill learning from video. In 2020 IEEE International Conference on Robotics and
Automation (ICRA), pages 4188–4194. IEEE, 2020.

[29] Eric Jang, Alex Irpan, Mohi Khansari, Daniel Kappler, Frederik Ebert, Corey Lynch, Sergey Levine, and
Chelsea Finn. Bc-z: Zero-shot task generalization with robotic imitation learning. In Conference on Robot
Learning, pages 991–1002. PMLR, 2022.

[30] Yao Mu, Qinglong Zhang, Mengkang Hu, Wenhai Wang, Mingyu Ding, Jun Jin, Bin Wang, Jifeng Dai,
Yu Qiao, and Ping Luo. Embodiedgpt: Vision-language pre-training via embodied chain of thought.
Advances in Neural Information Processing Systems, 36, 2024.

[31] Yao Mu, Junting Chen, Qinglong Zhang, Shoufa Chen, Qiaojun Yu, Chongjian Ge, Runjian Chen, Zhixuan
Liang, Mengkang Hu, Chaofan Tao, et al. Robocodex: Multimodal code generation for robotic behavior
synthesis. arXiv preprint arXiv:2402.16117, 2024.

[32] Guangyan Chen, Te Cui, Tianxing Zhou, Zicai Peng, Mengxiao Hu, Meiling Wang, Yi Yang, and Yufeng
Yue. Human demonstrations are generalizable knowledge for robots. arXiv preprint arXiv:2312.02419,
2023.

[33] Naoki Wake, Atsushi Kanehira, Kazuhiro Sasabuchi, Jun Takamatsu, and Katsushi Ikeuchi. Gpt-4v (ision)
for robotics: Multimodal task planning from human demonstration. arXiv preprint arXiv:2311.12015,
2023.

[34] Dhruvesh Patel, Hamid Eghbalzadeh, Nitin Kamra, Michael Louis Iuzzolino, Unnat Jain, and Ruta Desai.
Pretrained language models as visual planners for human assistance. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 15302–15314, 2023.

[35] Yuetian Weng, Mingfei Han, Haoyu He, Xiaojun Chang, and Bohan Zhuang. Longvlm: Efficient long
video understanding via large language models. arXiv preprint arXiv:2404.03384, 2024.

[36] KunChang Li, Yinan He, Yi Wang, Yizhuo Li, Wenhai Wang, Ping Luo, Yali Wang, Limin Wang, and
Yu Qiao. Videochat: Chat-centric video understanding. arXiv preprint arXiv:2305.06355, 2023.

[37] Yuki Wang, Gonzalo Gonzalez-Pumariega, Yash Sharma, and Sanjiban Choudhury. Demo2code: From
summarizing demonstrations to synthesizing code via extended chain-of-thought. Advances in Neural
Information Processing Systems, 36, 2024.

[38] Hao Sha, Yao Mu, Yuxuan Jiang, Li Chen, Chenfeng Xu, Ping Luo, Shengbo Eben Li, Masayoshi Tomizuka,
Wei Zhan, and Mingyu Ding. Languagempc: Large language models as decision makers for autonomous
driving. arXiv preprint arXiv:2310.03026, 2023.

[39] Mengkang Hu, Yao Mu, Xinmiao Yu, Mingyu Ding, Shiguang Wu, Wenqi Shao, Qiguang Chen, Bin Wang,
Yu Qiao, and Ping Luo. Tree-planner: Efficient close-loop task planning with large language models. arXiv
preprint arXiv:2310.08582, 2023.

[40] Zeyu Gao, Yao Mu, Jinye Qu, Mengkang Hu, Lingyue Guo, Ping Luo, and Yanfeng Lu. Dag-plan:
Generating directed acyclic dependency graphs for dual-arm cooperative planning. arXiv preprint
arXiv:2406.09953, 2024.

[41] Neha Das, Sarah Bechtle, Todor Davchev, Dinesh Jayaraman, Akshara Rai, and Franziska Meier. Model-
based inverse reinforcement learning from visual demonstrations. In Conference on Robot Learning, pages
1930–1942. PMLR, 2021.

[42] Youcai Zhang, Xinyu Huang, Jinyu Ma, Zhaoyang Li, Zhaochuan Luo, Yanchun Xie, Yuzhuo Qin, Tong
Luo, Yaqian Li, Shilong Liu, et al. Recognize anything: A strong image tagging model. arXiv preprint
arXiv:2306.03514, 2023.

[43] Teng Wang, Jinrui Zhang, Junjie Fei, Yixiao Ge, Hao Zheng, Yunlong Tang, Zhe Li, Mingqi Gao, Shanshan
Zhao, Ying Shan, et al. Caption anything: Interactive image description with diverse multimodal controls.
arXiv preprint arXiv:2305.02677, 2023.

12

[44] Ting Pan, Lulu Tang, Xinlong Wang, and Shiguang Shan. Tokenize anything via prompting. arXiv preprint
arXiv:2312.09128, 2023.

[45] Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Chunyuan Li, Jianwei Yang,
Hang Su, Jun Zhu, et al. Grounding dino: Marrying dino with grounded pre-training for open-set object
detection. arXiv preprint arXiv:2303.05499, 2023.

[46] Zongxin Yang, Yunchao Wei, and Yi Yang. Associating objects with transformers for video object
segmentation. In Advances in Neural Information Processing Systems (NeurIPS), 2021.

[47] Zongxin Yang and Yi Yang. Decoupling features in hierarchical propagation for video object segmentation.
In Advances in Neural Information Processing Systems (NeurIPS), 2022.

[48] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. arXiv preprint
arXiv:2304.02643, 2023.

[49] Yangming Cheng, Liulei Li, Yuanyou Xu, Xiaodi Li, Zongxin Yang, Wenguan Wang, and Yi Yang.
Segment and track anything. arXiv preprint arXiv:2305.06558, 2023.

[50] Yu Rong, Takaaki Shiratori, and Hanbyul Joo. Frankmocap: Fast monocular 3d hand and body motion
capture by regression and integration. arXiv preprint arXiv:2008.08324, 2020.

[51] Paul J Besl and Neil D McKay. Method for registration of 3-d shapes. In Sensor fusion IV: control
paradigms and data structures, volume 1611, pages 586–606. Spie, 1992.

[52] Szymon Rusinkiewicz and Marc Levoy. Efficient variants of the icp algorithm. In Proceedings third
international conference on 3-D digital imaging and modeling, pages 145–152. IEEE, 2001.

[53] Bowen Wen, Jonathan Tremblay, Valts Blukis, Stephen Tyree, Thomas Müller, Alex Evans, Dieter Fox, Jan
Kautz, and Stan Birchfield. Bundlesdf: Neural 6-dof tracking and 3d reconstruction of unknown objects.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 606–617,
2023.

[54] Bowen Wen, Wei Yang, Jan Kautz, and Stan Birchfield. Foundationpose: Unified 6d pose estimation and
tracking of novel objects. arXiv preprint arXiv:2312.08344, 2023.

[55] Yen-Jen Wang, Bike Zhang, Jianyu Chen, and Koushil Sreenath. Prompt a robot to walk with large
language models. arXiv preprint arXiv:2309.09969, 2023.

[56] Suvir Mirchandani, Fei Xia, Pete Florence, Brian Ichter, Danny Driess, Montserrat Gonzalez Arenas,
Kanishka Rao, Dorsa Sadigh, and Andy Zeng. Large language models as general pattern machines. arXiv
preprint arXiv:2307.04721, 2023.

[57] Dmitry Berenson, Siddhartha Srinivasa, and James Kuffner. Task space regions: A framework for pose-
constrained manipulation planning. The International Journal of Robotics Research, 30(12):1435–1460,
2011.

[58] Ioan A Sucan, Mark Moll, and Lydia E Kavraki. The open motion planning library. IEEE Robotics &
Automation Magazine, 19(4):72–82, 2012.

[59] Marta Skreta, Zihan Zhou, Jia Lin Yuan, Kourosh Darvish, Alán Aspuru-Guzik, and Animesh Garg. Replan:
Robotic replanning with perception and language models. arXiv preprint arXiv:2401.04157, 2024.

[60] Yingdong Hu, Fanqi Lin, Tong Zhang, Li Yi, and Yang Gao. Look before you leap: Unveiling the power
of gpt-4v in robotic vision-language planning. arXiv preprint arXiv:2311.17842, 2023.

[61] Hao-Shu Fang, Chenxi Wang, Minghao Gou, and Cewu Lu. Graspnet-1billion: A large-scale benchmark
for general object grasping. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 11444–11453, 2020.

[62] Hao-Shu Fang, Chenxi Wang, Hongjie Fang, Minghao Gou, Jirong Liu, Hengxu Yan, Wenhai Liu, Yichen
Xie, and Cewu Lu. Anygrasp: Robust and efficient grasp perception in spatial and temporal domains. IEEE
Transactions on Robotics, 2023.

[63] Yuanchen Ju, Kaizhe Hu, Guowei Zhang, Gu Zhang, Mingrun Jiang, and Huazhe Xu. Robo-abc: Affordance
generalization beyond categories via semantic correspondence for robot manipulation. arXiv preprint
arXiv:2401.07487, 2024.

13

[64] Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol Hausman, Brian Ichter, Pete Florence, and Andy
Zeng. Code as policies: Language model programs for embodied control. In 2023 IEEE International
Conference on Robotics and Automation (ICRA), pages 9493–9500. IEEE, 2023.

[65] Stephen James, Zicong Ma, David Rovick Arrojo, and Andrew J Davison. Rlbench: The robot learning
benchmark & learning environment. IEEE Robotics and Automation Letters, 5(2):3019–3026, 2020.

[66] Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea Finn,
Chuyuan Fu, Keerthana Gopalakrishnan, Karol Hausman, et al. Do as i can, not as i say: Grounding
language in robotic affordances. arXiv preprint arXiv:2204.01691, 2022.

[67] Ted Xiao, Harris Chan, Pierre Sermanet, Ayzaan Wahid, Anthony Brohan, Karol Hausman, Sergey Levine,
and Jonathan Tompson. Robotic skill acquisition via instruction augmentation with vision-language models.
arXiv preprint arXiv:2211.11736, 2022.

[68] Tianhe Yu, Ted Xiao, Austin Stone, Jonathan Tompson, Anthony Brohan, Su Wang, Jaspiar Singh, Clayton
Tan, Jodilyn Peralta, Brian Ichter, et al. Scaling robot learning with semantically imagined experience.
arXiv preprint arXiv:2302.11550, 2023.

[69] Peize Sun, Shoufa Chen, Chenchen Zhu, Fanyi Xiao, Ping Luo, Saining Xie, and Zhicheng Yan. Going
denser with open-vocabulary part segmentation. arXiv preprint arXiv:2305.11173, 2023.

[70] Peize Sun, Shoufa Chen, and Ping Luo. Grounded segment anything: From objects to parts. https:
//github.com/Cheems-Seminar/grounded-segment-any-parts, 2023.

[71] Sami Haddadin, Sven Parusel, Lars Johannsmeier, Saskia Golz, Simon Gabl, Florian Walch, Mohamadreza
Sabaghian, Christoph Jähne, Lukas Hausperger, and Simon Haddadin. The franka emika robot: A reference
platform for robotics research and education. IEEE Robotics & Automation Magazine, 29(2):46–64, 2022.

14

https://github.com/Cheems-Seminar/grounded-segment-any-parts
https://github.com/Cheems-Seminar/grounded-segment-any-parts

A Implementation details

In human-object interaction grounding module, the Tokenize Anything [44] model is employed during
task recognition to improve fine-grained scene understanding ability. The textual detection results are
integrated using VLMs to generate concise task descriptions and detailed object information. The
videos are segmented using a threshold ϵ of 2cm. Segments with hand motion trajectory lengths
below γ = 10cm are discarded. During the grasping constraint learning phase, the number of regions
Nc is automatically determined by the VLMs. In manipulation constraint learning, keypoints are
obtained by uniformly sampling 10 points. For the skill adapter, the maximum number of iterations is
set to NI = 4. During grasping constraint adaptation, visualized grasping position space is discretized
into a 5× 5 grid, with K = 4 outputs sampled per iteration.

During skill execution, the pretrained Grounded-segment-any-parts model [69; 70] is used to generate
segmentation maps of queried objects or parts. These segmentation maps are then utilized to predict
object-centric pose sequences using codes generated by VLMs. FoundationPose [54] is employed
to track object poses, transforming the object-centric poses into the world frame. The robotic
arm’s motion planning is facilitated by the integration of the MoveIt module, renowned for its
comprehensive motion planning capabilities, and the OMPL [58] (Open Motion Planning Library),
which offers a suite of advanced algorithms for efficient path planning and obstacle avoidance.
Upon action completion, the real-time object positions are used to assess task success until manual
confirmation or a preset time is reached. In case of failure detection, object and gripper poses are
employed for failure reasoning, where the gripper poses are estimated using the attatched QR scan.

B Experimental Setup

B.1 Baseline setup

R3M-DP [13] and DP [7] employ a CNN-based network architecture for its robustness across diverse
tasks. These methods are trained on robot demonstrations using default hyper-parameters, robot
demonstrations consist of paired observation and action sequences.

To ensure that GraphIRL [24] is trained and tested under the same scenario in the SE setting.
GraphIRL is trained in the simulator with corresponding paired robot videos, and the SE results
are obtained from the same simulated environments, while UE results are acquired from real-world
scenarios under the UE setting. Since the original GraphIRL method struggle to learn the gripper
switch information, we additionally provide this information to GraphIRL.

Following Cap [64], the primitives for Cap [64] and demo2code [37] include: move to pos, rotate by
quat, set vel, open gripper, close gripper, pick obj, and place at pos. Cap employs natural language
instruction directly for reasoning, Demo2code generates code from textual video analysis results
provided by GPT-4V for Robotics [33], a video analysis approach for robotics, enabling demo2code
to learn from human videos. Specifically, the detailed task analysis results and affordance analysis
outcomes from GPT-4V for Robotics are incorporated as contextual information within the textual
prompt for demo2code.

B.2 Real-world experimental setup

Experiments are conducted on Franka Emika [71], employing three RGB-D cameras (ORBBEC
Femto Bolt) for environment observation: one at the top right of the table, one at the top left, and one
mounted on the robot’s wrist. All cameras start recording and return real-time RGB-D observations
at a frequency of 30 Hz. All experiments are evaluated on an Intel i7-10700 CPU with an RTX 3090
graphics card.

C Details of the long-horizon task designs

The definition of our long-horizon tasks is listed below. For each task, the initial state and subgoals
are pre-defined. The whole task is completed if and only if all subgoals are completed in the correct
order.

15

C.1 Kitchen

• Make a pie

– Initial state: On the table, there is a bowl filled with sauce, a pan containing pie, a brush
placed on the shelf, and a microwave.

– Criteria: Brush the sauce on the pie and put the pie in the microwave to heat up.
– Subgoals: (1) Grasp the bowl; (2) Pour sauce from the bowl to the pie; (3) Grasp the brush;

(4) Spread sauce; (5) Open the microwave; (6) Place the pan in the microwave; (7) Close
the microwave; (8) Turn on the microwave.

0 1

5

2

43

6 7

(1) Place the pan in the sink
(2) Align the faucet with

 the pan

(4) Turn off the faucet(3) Turn on the faucet (5) Place the pan on the table

(6) Wipe the pan with

a brush

(7) Place the pan on the

pan rack

(0) Initial state

0 1

5

2

43

6 7

(1) Place the pan in the sink
(2) Align the faucet with

 the pan

(4) Turn off the faucet(3) Turn on the faucet (5) Place the pan on the table

(6) Wipe the pan with

a brush

(7) Place the pan on the

pan rack

(0) Initial state

0 1

5

2

43

6 7

(1) Grasp the bowl
(2) Pour sauce from the bowl

to the pie

(4) Spread sauce(3) Grasp the brush (5) Open the microwave

(6) Place the pan in the

microwave
(7) Close the microwave

(0) Initial state

7

(8) Turn on the microwave

0 1

5

2

43

6 7

(1) Grasp the bowl
(2) Pour sauce from the bowl

to the pie

(4) Spread sauce(3) Grasp the brush (5) Open the microwave

(6) Place the pan in the

microwave
(7) Close the microwave

(0) Initial state

7

(8) Turn on the microwave

0 1

5

2

43

6 7

(3) Place the cutting board

on the table

(1) Turn on the faucet

(4) Place the cucumber on

the cutting board

(2) Turn off the faucet

(5) Remove the knife from

the knife rack

(6) Cut the cucumber
(7) Place the knife back on

the knife rack

(0) Initial state

0 1

5

2

43

6 7

(1) Grab the coffee capsule
(2) Place the coffee capsule

in the capsule chamber

(4) Insert the capsule chamber

into the coffee machine

(3) Grasp the capsule

chamber

(5) Place the cup under the

coffee machine’s water outlet

(6) Grasp the lever
(7) Turn on the

coffee machine

(0) Initial state

0 1

5

2

43

6 7

(1) Grab the coffee capsule
(2) Place the coffee capsule

in the capsule chamber

(4) Insert the capsule chamber

into the coffee machine

(3) Grasp the capsule

chamber

(5) Place the cup under the

coffee machine’s water outlet

(6) Grasp the lever
(7) Turn on the

coffee machine

(0) Initial state

0 1

5

2

43

6 7

(1) Place the banana on

 the plate

(2) Place the mango on

the plate

(4) Place the brush in

 the drawer
(3) Open the drawer

(5) Place the cup in

the drawer

(6) Close the drawer (7) Grasp the brush

(0) Initial state

8

(8) Sweep the tabletop

0 1

5

2

43

6 7

(1) Place the banana on

 the plate

(2) Place the mango on

the plate

(4) Place the brush in

 the drawer
(3) Open the drawer

(5) Place the cup in

the drawer

(6) Close the drawer (7) Grasp the brush

(0) Initial state

8

(8) Sweep the tabletop

0 1

5

2

43

(1) Place conical flask A

under the funnel

(2) Pour the contents of the

test tube into beaker A

(4) Pour the contents of

beaker B into conical flask B

(3) Pour the contents of

beaker A into conical flask B

(5) Shake the mixed solution

in conical flask B

(0) Initial state

6

(6) Pour the contents of

conical flask B into the funnel

0 1

5

2

43

(1) Place conical flask A

under the funnel

(2) Pour the contents of the

test tube into beaker A

(4) Pour the contents of

beaker B into conical flask B

(3) Pour the contents of

beaker A into conical flask B

(5) Shake the mixed solution

in conical flask B

(0) Initial state

6

(6) Pour the contents of

conical flask B into the funnel

Figure 6: Visualization of the make-a-pie task.

• Wash pan

– Initial state: The pan that needs to be washed is located on the left side of the table, the pan
rack and brush are on the right side of the table, and the sink and faucet are in the middle
of the table.

– Criteria: Rinse the pan with water, scrub it with a brush, and place the pan on the rack.
– Subgoals: (1) Place the pan in the sink; (2)Align the faucet with the pan; (3) Turn on the

faucet; (4) Turn off the faucet; (5) Place the pan on the table; (6) Wipe the pan with a brush;
(7) Place the pan on the pan rack.

16

0 1

5

2

43

6 7

(1) Place the pan in the sink
(2) Align the faucet with

 the pan

(4) Turn off the faucet(3) Turn on the faucet (5) Place the pan on the table

(6) Wipe the pan with

a brush

(7) Place the pan on the

pan rack

(0) Initial state

0 1

5

2

43

6 7

(1) Place the pan in the sink
(2) Align the faucet with

 the pan

(4) Turn off the faucet(3) Turn on the faucet (5) Place the pan on the table

(6) Wipe the pan with

a brush

(7) Place the pan on the

pan rack

(0) Initial state

0 1

5

2

43

6 7

(1) Grasp the bowl
(2) Pour sauce from the bowl

to the pie

(4) Spread sauce(3) Grasp the brush (5) Open the microwave

(6) Place the pan in the

microwave
(7) Close the microwave

(0) Initial state

7

(8) Turn on the microwave

0 1

5

2

43

6 7

(1) Grasp the bowl
(2) Pour sauce from the bowl

to the pie

(4) Spread sauce(3) Grasp the brush (5) Open the microwave

(6) Place the pan in the

microwave
(7) Close the microwave

(0) Initial state

7

(8) Turn on the microwave

0 1

5

2

43

6 7

(3) Place the cutting board

on the table

(1) Turn on the faucet

(4) Place the cucumber on

the cutting board

(2) Turn off the faucet

(5) Remove the knife from

the knife rack

(6) Cut the cucumber
(7) Place the knife back on

the knife rack

(0) Initial state

0 1

5

2

43

6 7

(1) Grab the coffee capsule
(2) Place the coffee capsule

in the capsule chamber

(4) Insert the capsule chamber

into the coffee machine

(3) Grasp the capsule

chamber

(5) Place the cup under the

coffee machine’s water outlet

(6) Grasp the lever
(7) Turn on the

coffee machine

(0) Initial state

0 1

5

2

43

6 7

(1) Grab the coffee capsule
(2) Place the coffee capsule

in the capsule chamber

(4) Insert the capsule chamber

into the coffee machine

(3) Grasp the capsule

chamber

(5) Place the cup under the

coffee machine’s water outlet

(6) Grasp the lever
(7) Turn on the

coffee machine

(0) Initial state

0 1

5

2

43

6 7

(1) Place the banana on

 the plate

(2) Place the mango on

the plate

(4) Place the brush in

 the drawer
(3) Open the drawer

(5) Place the cup in

the drawer

(6) Close the drawer (7) Grasp the brush

(0) Initial state

8

(8) Sweep the tabletop

0 1

5

2

43

6 7

(1) Place the banana on

 the plate

(2) Place the mango on

the plate

(4) Place the brush in

 the drawer
(3) Open the drawer

(5) Place the cup in

the drawer

(6) Close the drawer (7) Grasp the brush

(0) Initial state

8

(8) Sweep the tabletop

0 1

5

2

43

(1) Place conical flask A

under the funnel

(2) Pour the contents of the

test tube into beaker A

(4) Pour the contents of

beaker B into conical flask B

(3) Pour the contents of

beaker A into conical flask B

(5) Shake the mixed solution

in conical flask B

(0) Initial state

6

(6) Pour the contents of

conical flask B into the funnel

0 1

5

2

43

(1) Place conical flask A

under the funnel

(2) Pour the contents of the

test tube into beaker A

(4) Pour the contents of

beaker B into conical flask B

(3) Pour the contents of

beaker A into conical flask B

(5) Shake the mixed solution

in conical flask B

(0) Initial state

6

(6) Pour the contents of

conical flask B into the funnel

Figure 7: Visualization of the wash-pan task.

• Make cucumber slices (Make slices)

– Initial state: The refrigerator is to the left of the table, the cutting board is on the shelf to
the right of the table, next to which is a knife inserted into the knife rack.

– Criteria: Take the cucumber out of the refrigerator and cut it with a knife.

– Subgoals: (1) Place the cutting board on the table; (2) Open the refrigerator; (3) Place the
cucumber on the cutting board; (4) Close the refrigerator; (5) Remove the knife from the
knife rack; (6) Cut the cucumber; (7) Place the knife back on the knife rack.

0 1

5

2

43

6 7

(1) Place the pot in the sink
(2) Align the faucet with

 the pot

(4) Turn off the faucet(3) Turn on the faucet (5) Place the pot on the table

(6) Wipe the pot with

a brush

(7) Place the pot on the

pot rack

(0) Initial state

0 1

5

2

43

6 7

(1) Place the pot in the sink
(2) Align the faucet with

 the pot

(4) Turn off the faucet(3) Turn on the faucet (5) Place the pot on the table

(6) Wipe the pot with

a brush

(7) Place the pot on the

pot rack

(0) Initial state

0 1

5

2

43

6 7

(1) Grasp the bowl
(2) Pour sauce from the bowl

to the pie

(4) Spread sauce(3) Grasp the brush (5) Open the microwave

(6) Place the pot in the

microwave
(7) Close the microwave

(0) Initial state

7

(8) Turn on the microwave

0 1

5

2

43

6 7

(1) Grasp the bowl
(2) Pour sauce from the bowl

to the pie

(4) Spread sauce(3) Grasp the brush (5) Open the microwave

(6) Place the pot in the

microwave
(7) Close the microwave

(0) Initial state

7

(8) Turn on the microwave

0 1

5

2

43

6 7

(3) Place the cutting board

on the table

(1) Turn on the faucet

(4) Place the cucumber on

the cutting board

(2) Turn off the faucet

(5) Remove the knife from

the knife rack

(6) Cut the cucumber
(7) Place the knife back on

the knife rack

(0) Initial state

0 1

5

2

43

6 7

(1) Grab the coffee capsule
(2) Place the coffee capsule

in the capsule chamber

(4) Insert the capsule chamber

into the coffee machine

(3) Grasp the capsule

chamber

(5) Place the cup under the

coffee machine’s water outlet

(6) Grasp the lever
(7) Turn on the

coffee machine

(0) Initial state

0 1

5

2

43

6 7

(1) Grab the coffee capsule
(2) Place the coffee capsule

in the capsule chamber

(4) Insert the capsule chamber

into the coffee machine

(3) Grasp the capsule

chamber

(5) Place the cup under the

coffee machine’s water outlet

(6) Grasp the lever
(7) Turn on the

coffee machine

(0) Initial state

0 1

5

2

43

6 7

(1) Place the banana on

 the plate

(2) Place the mango on

the plate

(4) Place the brush in

 the drawer
(3) Open the drawer

(5) Place the cup in

the drawer

(6) Close the drawer (7) Grasp the brush

(0) Initial state

8

(8) Sweep the tabletop

0 1

5

2

43

6 7

(1) Place the banana on

 the plate

(2) Place the mango on

the plate

(4) Place the brush in

 the drawer
(3) Open the drawer

(5) Place the cup in

the drawer

(6) Close the drawer (7) Grasp the brush

(0) Initial state

8

(8) Sweep the tabletop

0 1

5

2

43

(1) Place conical flask A

under the funnel

(2) Pour the contents of the

test tube into beaker A

(4) Pour the contents of

beaker B into conical flask B

(3) Pour the contents of

beaker A into conical flask B

(5) Shake the mixed solution

in conical flask B

(0) Initial state

6

(6) Pour the contents of

conical flask B into the funnel

0 1

5

2

43

(1) Place conical flask A

under the funnel

(2) Pour the contents of the

test tube into beaker A

(4) Pour the contents of

beaker B into conical flask B

(3) Pour the contents of

beaker A into conical flask B

(5) Shake the mixed solution

in conical flask B

(0) Initial state

6

(6) Pour the contents of

conical flask B into the funnel

Figure 8: Visualization of the make-cucumber-slices task.

17

C.2 Table

• Make coffee

– Initial state: The coffee machine and capsules are placed on the tabletop, with the capsule
chamber placed on the cup.

– Criteria: place the coffee capsule into the capsule chamber, insert it into the coffee machine,
place a cup under the coffee machine’s dispenser, and finally turn on the coffee machine.

– Subgoals: (1) Grasp the coffee capsule; (2) Place the coffee capsule in the capsule chamber;
(3) Grasp the capsule chamber; (4) Insert the capsule chamber into the coffee machine; (5)
Place the cup under the coffee machine’s water outlet; (6) Grasp the lever; (7) Turn on the
coffee machine.

0 1

5

2

43

6 7

(1) Grab the coffee capsule
(2) Place the coffee capsule

in the capsule chamber

(4) Insert the capsule chamber

into the coffee machine

(3) Grasp the capsule

chamber

(5) Place the cup under the

coffee machine’s water outlet

(6) Grasp the lever
(7) Turn on the

coffee machine

(0) Initial state

0 1

5

2

43

6 7

(1) Place the banana on

 the plate

(2) Place the mango on

the plate

(4) Place the brush in

 the drawer
(3) Open the drawer

(5) Place the cup in

the drawer

(6) Close the drawer (7) Grasp the brush

(0) Initial state

8

(8) Sweep the tabletop

0 1

5

2

43

(1) Place conical flask A

under the funnel

(2) Pour the contents of the

test tube into beaker A

(4) Pour the contents of

beaker B into conical flask B

(3) Pour the contents of

beaker A into conical flask B

(5) Shake the mixed solution

in conical flask B

(0) Initial state

6

(6) Pour the contents of

conical flask B into the funnel

0 1

5

2

43

6 7

(1) Place the cutting board

on the table
(2) Turn on the faucet

(4) Place the cucumber on

the cutting board
(3) Turn off the faucet

(5) Remove the knife from

the knife rack

(6) Cut the cucumber
(7) Place the knife back on

the knife rack

(0) Initial state

0 1

5

2

43

6 7

(1) Grasp the bowl
(2) Pour sauce from the bowl

to the pie

(4) Spread sauce(3) Grasp the brush (5) Open the microwave

(6) Place the pot in the

microwave
(7) Close the microwave

(0) Initial state

7

(8) Turn on the microwave

0 1

5

2

43

6 7

(1) Place the pot in the sink
(2) Align the faucet with

 the pot

(4) Turn off the faucet(3) Turn on the faucet (5) Place the pot on the table

(6) Wipe the pot with

a brush

(7) Place the pot on the

pot rack

(0) Initial state

Figure 9: Visualization of the make-coffee task.

• Clean table

– Initial state: Bananas, mangoes, cups, and paint brushes are scattered on the table. In
addition, there is a drawer, a plate, and a dust brush on the table.

– Criteria: Put the fruits (banana and mango) back into the plate, and put the tools (cup and
paint brush) back into the drawer, and sweep the tabletop with the dust brush.

– Subgoals: (1) Place the banana on the plate; (2) Place the mango on the plate; (3) Open the
drawer; (4) Place the brush in the drawer; (5) Place the cup in the drawer; (6) Close the
drawer; (7) Grasp the brush; (8) Sweep the tabletop.

18

0 1

5

2

43

6 7

(1) Grab the coffee capsule
(2) Place the coffee capsule

in the capsule chamber

(4) Insert the capsule chamber

into the coffee machine

(3) Grasp the capsule

chamber

(5) Place the cup under the

coffee machine’s water outlet

(6) Grasp the lever
(7) Turn on the

coffee machine

(0) Initial state

0 1

5

2

43

6 7

(1) Place the banana on

 the plate

(2) Place the mango on

the plate

(4) Place the brush in

 the drawer
(3) Open the drawer

(5) Place the cup in

the drawer

(6) Close the drawer (7) Grasp the brush

(0) Initial state

8

(8) Sweep the tabletop

0 1

5

2

43

(1) Place conical flask A

under the funnel

(2) Pour the contents of the

test tube into beaker A

(4) Pour the contents of

beaker B into conical flask B

(3) Pour the contents of

beaker A into conical flask B

(5) Shake the mixed solution

in conical flask B

(0) Initial state

6

(6) Pour the contents of

conical flask B into the funnel

0 1

5

2

43

6 7

(1) Place the cutting board

on the table
(2) Turn on the faucet

(4) Place the cucumber on

the cutting board
(3) Turn off the faucet

(5) Remove the knife from

the knife rack

(6) Cut the cucumber
(7) Place the knife back on

the knife rack

(0) Initial state

0 1

5

2

43

6 7

(1) Grasp the bowl
(2) Pour sauce from the bowl

to the pie

(4) Spread sauce(3) Grasp the brush (5) Open the microwave

(6) Place the pot in the

microwave
(7) Close the microwave

(0) Initial state

7

(8) Turn on the microwave

0 1

5

2

43

6 7

(1) Place the pot in the sink
(2) Align the faucet with

 the pot

(4) Turn off the faucet(3) Turn on the faucet (5) Place the pot on the table

(6) Wipe the pot with

a brush

(7) Place the pot on the

pot rack

(0) Initial state

Figure 10: Visualization of the clean-table task.

C.3 Chemistry Lab

• Chemistry experiments (Chem. exp.)

– Initial state: On the desktop, there are two beakers, two conical flasks, a test tube rack
equipped with a test tube, along with a retort stand fitted with a funnel.

– Subgoals: (1) Place conical flask A under the funnel. (2) Pour the contents of the test tube
into beaker A. (3) Pour the contents of beaker A into conical flask B. (4) Pour the contents
of beaker B into conical flask B. (5) Shake the mixed solution in conical flask B. (6) Pour
the contents of conical flask B into the funnel.

0 1

5

2

43

6 7

(1) Grab the coffee capsule
(2) Place the coffee capsule

in the capsule chamber

(4) Insert the capsule chamber

into the coffee machine

(3) Grasp the capsule

chamber

(5) Place the cup under the

coffee machine’s water outlet

(6) Grasp the lever
(7) Turn on the

coffee machine

(0) Initial state

0 1

5

2

43

6 7

(1) Place the banana on

 the plate

(2) Place the mango on

the plate

(4) Place the brush in

 the drawer
(3) Open the drawer

(5) Place the cup in

the drawer

(6) Close the drawer (7) Grasp the brush

(0) Initial state

8

(8) Sweep the tabletop

0 1

5

2

43

(1) Place conical flask A

under the funnel

(2) Pour the contents of the

test tube into beaker A

(4) Pour the contents of

beaker B into conical flask B

(3) Pour the contents of

beaker A into conical flask B

(5) Shake the mixed solution

in conical flask B

(0) Initial state

6

(6) Pour the contents of

conical flask B into the funnel

0 1

5

2

43

6 7

(1) Place the cutting board

on the table
(2) Turn on the faucet

(4) Place the cucumber on

the cutting board
(3) Turn off the faucet

(5) Remove the knife from

the knife rack

(6) Cut the cucumber
(7) Place the knife back on

the knife rack

(0) Initial state

0 1

5

2

43

6 7

(1) Grasp the bowl
(2) Pour sauce from the bowl

to the pie

(4) Spread sauce(3) Grasp the brush (5) Open the microwave

(6) Place the pot in the

microwave
(7) Close the microwave

(0) Initial state

7

(8) Turn on the microwave

0 1

5

2

43

6 7

(1) Place the pot in the sink
(2) Align the faucet with

 the pot

(4) Turn off the faucet(3) Turn on the faucet (5) Place the pot on the table

(6) Wipe the pot with

a brush

(7) Place the pot on the

pot rack

(0) Initial state

Figure 11: Visualization of the Chemistry Lab task.

19

D Visualization of experimental results

Figure 12: Manipulated objects in SE setting.

Figure 13: Manipulated objects in US setting.

20

Open oven

Press button

Open drawer

Open microwave

Put fruit on plate

Stack block

Put tray in oven Turn on oven

Sweep table Insert box

Brush pan Sauce spread

Put toy to drawer Pour from cup to cup

Figure 14: Visualization of manipulation task results in seen environments.

21

Open oven

Press button

Open drawer

Open microwave

Put fruit on plate

Stack block

Put tray in oven Turn on oven

Sweep table Insert box

Brush pan Sauce spread

Put toy to drawer Pour from cup to cup

Figure 15: Visualization of manipulation task results in unseen environments.

22

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We harnesses VLMs to directly learn even fine-grained action levels, only
given a limited number of human videos.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: please refer to Sec. 5
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]

23

Justification: This paper does not involve theoretical derivations.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Experimental setup please refer to Sec. 4 and Appendix B, and implementation
details please refer to Appendix A
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

24

Answer: [Yes]

Justification: Our code and data will be made pubilcly accessible.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Experimental setup please refer to Sec. 4 and Appendix B, and implementation
details please refer to Appendix A

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: please refer to Sec. 4

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

25

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: please refer to Appendix B.2

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research presented in this paper adheres to the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: We do not foresee obvious undesirable ethical or social impacts at this moment.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

26

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper does not involve the release of data or models that have a high risk
for misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The creators and original owners of assets used in the paper are properly
credited, and the license and terms of use are explicitly mentioned and properly respected.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

27

paperswithcode.com/datasets

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This paper does not introduce any new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The experiments and research in this paper do not involve human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The experiments and research in this paper do not involve human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

28

	Introduction
	Related Work
	Learning from Human videos
	Visual Imitation Learning with VLMs

	VLMimic
	Human-object Interaction Grounding
	Skill Learner with Hierarchical Representations
	Skill Adapter with Iterative Comparison

	Experiments
	Simulation Manipulation Tasks
	Real-world Manipulation Tasks
	Real-world Long-Horizon Tasks
	Robustness against viewpoint variance
	Real-world failure cases
	Ablation Studies

	Conclusion
	Implementation details
	Experimental Setup
	Baseline setup
	Real-world experimental setup

	Details of the long-horizon task designs
	Kitchen
	Table
	Chemistry Lab

	Visualization of experimental results

