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Abstract
Current causal discovery methods for time series
data can effectively address a variety of scenarios;
however, they remain constrained by inefficien-
cies. The significant inefficiencies arise primarily
from the high computational costs associated with
binning, the uncertainty in selecting appropriate
time lags, and the extensive sets of candidate vari-
ables. To achieve both high efficiency and ef-
fectiveness of causal discovery, we introduce an
accelerator termed ARROW. It incorporates an
innovative concept termed “Time Weaving” that
efficiently encodes time series data to well capture
the dynamic trends, thereby mitigating computa-
tional complexity. We also propose a novel time
lag discovery strategy utilizing XOR operations,
which derives a theorem to obtain the optimal
time lag and significantly enhances the efficiency
using XOR operations. To optimize the search
space for causal relationships, we design an effi-
cient pruning strategy that intelligently identifies
the most relevant candidate variables, enhancing
the efficiency and accuracy of causal discovery.
We applied ARROW to four different types of time
series causal discovery algorithms and evaluated
it on 25 synthetic and real-world datasets. The
results demonstrate that, compared to the original
algorithms, ARROW achieves up to 153x speedup
while achieving higher accuracy in most cases.

1. Introduction
Learning the causal relationships on multivariate time se-
ries holds significant practical value in the field of time
series mining (Assaad et al., 2022; Zhou & Chen, 2022;
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Yao et al., 2024c). Causal discovery not only deepens our
understanding of dynamic relationships among multiple
variables (Zhao et al., 2023) but also provides scientific
evidence to solve practical problems (Castro et al., 2023;
Martı́nez-Sánchez et al., 2024; Huang et al., 2019). For
example, in Alzheimer’s disease research, exploring causal
interactions between brain regions can help reveal patho-
logical mechanisms and optimize treatment strategies (Liu
et al., 2024). Furthermore, the study of causal relationships
can assist downstream tasks (e.g., forecasting, anomaly de-
tection, etc.) (Qiu et al., 2024; 2025; Yi et al., 2024; Xia
et al., 2025; Yao et al., 2023; 2024b). By discovering causal
relationships within multivariate time series, deeper feature
information can be provided, considerably enhancing the
performance and accuracy of downstream tasks. This causal-
driven analysis method is becoming one of the core tools
for solving complex time series problems. Recent research
in the field of time series causal discovery has effectively re-
vealed causal relationships under different conditions. How-
ever, through case studies conducted on various methods
and datasets, we found that significant bottlenecks still exist
in terms of efficiency due to the following limitations:

• High Computational Costs of Binning. Currently, most
causal discovery methods (Runge, 2018; Runge et al.,
2019; Martı́nez-Sánchez et al., 2024) rely on statistical
techniques such as conditional independence testing and
mutual information, often using discretization (i.e., bin-
ning) of continuous numerical data for analysis. A major
issue with this approach is that the computational com-
plexity of independence testing increases significantly as
the binning granularity becomes finer, as shown in Fig-
ure 1(a), especially when dealing with large-scale time
series data. Additionally, the above binning-based meth-
ods struggle to capture dynamic causal structures.
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• Uncertainty in Appropriate Time Lag Selection. The
selection of time lag has a significant impact on the results
of most causal discovery methods (Hyvärinen et al., 2008).
However, current methods (Martı́nez-Sánchez et al., 2024;
Gerhardus & Runge, 2020) usually rely on brute-force
search, where all possible time lag values are traversed
to construct the best summary graph. This approach has
clear drawbacks: first, the Brute-Force search results in an
unacceptable computational time when dealing with large-
scale time series data as shown in Figure 1(b); second, it
lacks a theoretical mechanism to determine the optimal
time lag to generate the best summary graph, thus making
the results less convincing and reliable. For example,
when applying the PCMCI algorithm to a dataset with a
time lag of 6, identifying the correct time lag can achieve
an accuracy of up to 0.99. However, an incorrect time lag
5 may result in an accuracy drop of 49%.

• Extensive Sets of Candidate Variables. Current causal
discovery algorithms (Martı́nez-Sánchez et al., 2024; Tank
et al., 2021) typically utilize different combinations of all
variables to form candidate sets. As the number of vari-
ables increases, the size of the candidate parent node set
grows exponentially. For instance, given d variables, 2d

tests are required; if T time lag needs to be determined,
the number of tests increases to 2dT . The dimensional-
ity explosion of the candidate set can compromise the
accuracy of causal discovery by obscuring true causal
relationships (Runge et al., 2019).

Our approach: To address these limitations, we propose
a time series causal discovery accelerator called ARROW.
This accelerator can seamlessly integrate with most time
series causal discovery algorithms, significantly improving
efficiency without compromising the performance of the
original algorithm. The key idea is to capture the contextual
trends of a value in a binary tuple. Based on the binary
representation, we can efficiently and effectively extract
time lags and uncover causal relationships.

We first introduce time weaving, an innovative method for
encoding individual time points. This method divides the
data into the smallest units with contextual information by
considering the trend changes between three consecutive
points in the time series; each unit represents the trend be-
tween these three points. Here, we use 1 bit to represent the
trend between two consecutive points, where 1 indicates an
upward trend and 0 represents a downward trend. Based on
the time-weaving encoding, we analyze the patterns of trend
changes between variables using XOR operations and de-
rive a theorem to determine the optimal time lag (Yao et al.,
2024a). Specifically, when determining time lag, we first
rank the potential causal relationships between variables,
and then select a representative subset based on the ranking
results. Finally, we propose an efficient pruning strategy.
This strategy optimizes the causal relationship search by

intelligently selecting the most promising candidate set,
rather than considering all variables in the candidate parent
node set. By focusing on the variables that contribute most
to causal discovery, we can effectively reduce the size of
the search space, improving the efficiency and accuracy of
causal relationship discovery. We applied ARROW to four
different types of causal discovery algorithms. Experimental
results on 25 synthetic and real-world datasets demonstrate
that ARROW significantly enhances efficiency while main-
taining the original performance of the algorithms.

2. Related work
Time series causal discovery algorithms. Mainstream
time series causal discovery methods include constraint-
based (Runge et al., 2019; Runge, 2020; Entner & Hoyer,
2010; Gerhardus & Runge, 2020), score-based (De Campos
& Ji, 2011; Gao et al., 2022; Pena et al., 2005; Hyvärinen
et al., 2010), granger-based (Tank et al., 2021; Xu et al.,
2019; Marcinkevičs & Vogt, 2021; Wang et al., 2018; Xu
et al., 2016), and information-theoretic (Martı́nez-Sánchez
et al., 2024; Chaves et al., 2015) approaches. Constraint-
based methods constrain the causal structure using condi-
tional independence tests, relying on statistical and condi-
tional independence to infer causal relationships by remov-
ing non-directly related edges and applying directional rules
(such as d-separation (Liu et al., 2024)). Score-based meth-
ods quantify model fit and complexity by defining scoring
functions (Neath & Cavanaugh, 2012; Burnham & Ander-
son, 2004) and use search strategies (such as greedy search)
to find the optimal directed acyclic graph (DAG) in the
model space. In contrast, Granger-based methods utilize the
lag effect in time series data, determining if one variable sig-
nificantly explains the changes in another variable through
linear regression or forecasting performance, thus inferring
causal relationships. Information-theoretic methods infer
causal relationships by calculating the information gain or
mutual information between variables, offering advantages
in handling nonlinear relationships, multivariate dependen-
cies, and robustness to noise. While these four types of
methods can effectively address causal discovery under dif-
ferent conditions, they remain constrained by inefficiencies.
We aim to propose a general acceleration solution that can
address the current efficiency issues in causal discovery.

Acceleration strategy. Current acceleration methods are
mainly based on hardware acceleration, including CPU-
based (Le et al., 2016; 2018; Madsen et al., 2015; Schmidt
et al., 2019), GPU-based (Zarebavani et al., 2019; Hagedorn
& Huegle, 2021; Schmidt et al., 2018; Hu et al., 2021), and
FPGA-based (Guo & Luk, 2022; Guo et al., 2023b;a) ap-
proaches. For instance, ParallelPC (Le et al., 2016; 2018)
is the first method to implement parallel causal discovery,
where the core idea is to execute conditional independence
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(CI) tests in parallel. cuPC (Zarebavani et al., 2019) is the
first method to accelerate causal discovery using GPUs, and
it employs a lossless transformation of the PC-stable algo-
rithm with two optimizations: first, if a CI test between a
pair of variables returns true, cuPC immediately cancels all
remaining tests; second, CI tests with the same condition-
ing set are executed within the same local thread, reducing
thread management costs. gpuPC (Hagedorn & Huegle,
2021) is a GPU-based tool designed for discrete data, and
its CI tests require auxiliary data structures (e.g., contin-
gency tables), which consume substantial GPU memory.
CSF (Guo & Luk, 2022) is the first FPGA-based acceler-
ation method for constraint-based causal discovery, effec-
tively utilizing FPGA on-chip storage and parallel process-
ing capabilities while reducing communication costs. The
CSF implementation achieves higher speed than cPU-based
and GPU-based approaches. These hardware acceleration
methods primarily address efficiency issues in CI (Runge,
2018; Spirtes et al., 2001) independence testing, but they
are not universally applicable, especially for score-based
and Granger-based methods. In contrast, the acceleration
method we propose is based on data-level optimization,
making it more general and applicable to all causal dis-
covery methods. It can also be combined with hardware
acceleration methods to further enhance efficiency.

3. Preliminaries and Background
A Structural Causal Model (SCM) is a graphical represen-
tation that illustrates causal relationships, capturing how
interventions on one or more variables affect the values of
other variables within the data generation process (Pearl,
2009; Gong et al., 2023). Formally, an SCM is repre-
sented as a 4-tuple (V,U, F, P (U)), where V and U denote
the sets of endogenous and exogenous variables, respec-
tively, P (U) represents the distribution of exogenous vari-
ables, and F is the set of mapping functions. Specifically,
each endogenous variable is formally defined by the model
xi := fi(PA(xi)), i = {1, . . . , |V |}, where |V | denotes
the number of endogenous variables, while PA(xi) repre-
sents the set of parents of xi and PA(xi) ⊆ U ∪ V . The
function fi ∈ F denotes a function between its structural
parents PA(xi).

For each SCM, we can construct a directed acyclic causal
graph (DAG) G by associating a vertex with each xi and
directing edges from each parent variable in PA(xi) (the
causes) to the corresponding child xi (the effect).

In the causal graph of SCM, each variable is conditionally
independent of its non-effects, given its direct causes (Pearl,
2009). In other words, a variable is independent of variables
that do not directly influence it, once its parents (i.e., direct
causes) are known. This principle is crucial for causal dis-
covery as it allows the identification of causal effects from
observational data. Formally, the causal Markov condition
asserts that the joint distribution can be factorized as:

P (x) =

|V |∏
i

P (xi | PA (xi))

We study the problem of causal discovery on time series.
Thus, we first define the multivariate time series below.

Definition 3.1 (Multivariate Time Series). A multivari-
ate time series (MTS) X with d variables is defined as:
X = {xt}T−1

t=0 = {(xt
1, x

t
2, . . . , x

t
d)

⊤}T−1
t=0 , where t repre-

sents a discrete time point, T is the total length of X in
the time dimension, and each xt is a d-dimensional vector
(xt

1, x
t
2, . . . , x

t
d) at time point t.

Assumption 3.2 (Markov Property). The Markov prop-
erty of time series assumes that the future slice xt+1 de-
pends on the current state xt but does not depend on the
history (x1, . . . ,xt−1), i.e, P (xt+1 | xt,xt−1, . . . ,x1) =
P (xt+1 | xt) (Figueiredo et al., 2018).

Definition 3.3 (Time Lag). Causal effects do not occur
instantaneously, but rather unfold gradually over time for
MTS (Peters et al., 2013). Given xt

i = fi(x
t−k
j , ui), where

k represents the time lag, indicating that the impact of xi on
xj is delayed by k time points.

Combined with the Assumption 3.2, we focus on exploring
causality in MTS with a time lag k, where the current point
xt is influenced by the value xt−k. Notably, different pairs
of variables may exhibit distinct time lags in some cases.

Definition 3.4 (Summary Graph). Let G := (V,E) be the
associated summary graph of an SCM model (Peters et al.,
2013). The vertex set V := X, the edge set E contains
xi → xj(i ̸= j) iff xi ∈ PA(xj).

The primary goal of time series causal discovery is to con-
struct a summary graph that intuitively represents the causal
relationships between different variables.

Definition 3.5 (Causal Discovery from MTS). Given a
MTS data X, assume that causal relationships between vari-
ables are given by the following structural equation model:
xi(t) := fi(PA(xt−k

i ), Ni), i = {1, . . . , d}, 0 ≤ k < T ,
PA(xt−k

i ) is the set of direct parents of xt−k
i , Ni denotes

the independent noise and can represent either measurement
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noise or driving noise without losing generality. Causal
discovery from MTS aims to find the Summary Graph.

Note that, the summary graph can be denoted as an adja-
cency matrix A ∈ Zd×d. The (i, j)-th entry of the matrix
A is 1 if past observations of xi affect xt

j , and 0 otherwise.
We say that ‘xi causes xj’ if Aij = 1.

Example 1. We propose an SCM for air quality causal
discovery. The model includes three endogenous variables
(i.e., air pollution concentration P , temperature T , and hu-
midity H), and two exogenous variables (wind speed W
and precipitation R). The model can be represented as a
4-tuple SCM = ⟨V,U, F, P (U)⟩, where V = {P, T,H}
are the endogenous variables, U = {W,R} are the exoge-
nous variables, F represents the mapping functions, and
P (U) is the joint distribution of exogenous variables. The
air pollution concentration P is influenced by temperature,
humidity, wind speed, and precipitation, with the functional
relationship given by Pt := fP (Tt−1, Ht−1,Wt−1, Rt−1);
The temperature T is influenced by its own previous value
and humidity, expressed as Tt := fT (Tt−1, Ht−1); The hu-
midity H is affected by temperature, its own previous value,
and precipitation, represented as Ht := fH(Ht−1, Rt−1).
The causal relationships based on SCM are illustrated in
the following directed acyclic graph (DAG) as shown in
Figure 2(a), where each directed edge indicates the causal
dependency between variables at different time points.

The summary graph depicted in Figure 2(b) represents a con-
densed version of the directed acyclic graph (DAG) (Vowels
et al., 2022) shown in Figure 2(a). In this summary graph,
the vertices correspond to the variables, while the edges
capture the direct causal dependencies between them.

Our problem. The main focus of our paper is not on the
causal discovery algorithms themselves but on addressing
the efficiency challenges in MTS causal discovery, caused
by the high computational cost of binning, the uncertainty in
time lag selection, and the extensive sets of candidate vari-
ables. Different from the hardware-level acceleration, we
aim to develop a data-level acceleration framework that
enhances the efficiency of any causal discovery algorithm
while preserving its accuracy.

4. ARROW Method
We proceed to detail our adaptive accelerator ARROW, in-
cluding three components (i.e., time weaving, time lag dis-
covery, and candidates pruning) as shown in Figure 3.

4.1. Time Weaving

For two variables with a causal relationship, a change in
the value of one variable will directly or indirectly cause
a change in the value of the other variable after a certain

time delay. This change in value effectively reflects the
variable’s trend. Based on this observation, we propose
a new concept termed Time Weaving to capture the local
dynamic characteristics between time points. It encodes a
specific time point via the trend changes of its preceding
and succeeding points. This approach preserves the core
characteristics of individual time points while integrating
the local contextual relationships within the time series. We
formally define Time Weaving below.

Definition 4.1 (Time Weaving). Given a MTS data
with d variables, denoted as X = {xt}T−1

t=0 =
{(xt

1, x
t
2, . . . , x

t
d)

⊤}T−1
t=0 . We introduce a weaving window

w and represent xt
i (1 ≤ i ≤ d and w ≤ t ≤ T − w) us-

ing its trend tr relative to the values xt−w
i and xt+w

i at the
(t−w)th and (t+w)th timestamps, i.e., xt

i can be encoded as
(tri⟨t−w, t⟩, tri⟨t, t+w⟩). Specifically, the trend tri⟨t, t′⟩
equals to 1 if xt

i > xt′

i , otherwise tri⟨t, t′⟩ = 0, where t
and t′ are arbitrary time points. Therefore, the time weaving
value Xtw of X is defined as a list of tuples:

Xtw = {(tr ⟨t− w, t⟩ , tr ⟨t, t+ w⟩)}T−w
t=w , (1)

where tr = (tr1, ..., trd).

Example 2. Given a MTS data X with d = 3 variables and
a sequence length of T = 5 as shown in the Figure 3(a):

X =

 0.23 2.89 2.01 2.31 1.89
1.01 1.78 1.21 0.35 1.31
−0.12 −0.88 0.13 1.37 0.03

 ,

Assume that the weaving window w = 1. For the value
x1
1 = 2.89 at t = 1 in the first variable, its trend encoding

relative to t − w = 0 and t + w = 2, and thus, it can
be encoded as (1, 0), as tr1⟨0, 1⟩ = 1 and tr1⟨1, 2⟩ =
0. Similarly, for the value x1

2 = 1.78, its trend weaving
value is (1, 0), as tr2⟨1, 2⟩ = 1 and tr2⟨2, 3⟩ = 0. Thus,
the time weaving representation of X at t = 1: X0

tw =
((1, 0), (1, 0), (0, 1))⊤. The overall Xtw of X is:

Xtw =

(1, 0) (0, 1) (1, 0)
(1, 0) (0, 0) (1, 0)
(0, 1) (1, 1) (0, 1)

 .

Time weaving is the key component of the causal discov-
ery of the time series accelerator termed ARROW. In this
way, we transform the values of the time series into tuples
composed of binary 0 and 1. This transformation not only
discretizes continuous time series values into 0 and 1, elimi-
nating uncertainties in bucketization but also enhances the
consistency and efficiency of data processing. Furthermore,
after the transformation of the time-weaving, the data in-
corporates contextual information, no longer representing
a single value, which improves the effectiveness of causal
discovery. The time weaving format can be directly used
for downstream causal discovery algorithms.
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Figure 3. The overview of ARROW

4.2. Time Lag Discovery

We observe that if two variables exhibit a significant causal
relationship at a time delay of k, their individual trends at
specific time points must align or oppose each other. Based
on this observation, we need to address two key questions.

• Q1: How to define the relationship between their trends?
• Q2: How to use the trends to identify the time lag?

To address Q1, we first define the trend of a point vt us-
ing the concept of time-weaving, categorizing it into three
distinct states: (0,0), (1,1), and (1,0)/(0,1). As illustrated
in Figure 3(b), the relationship between two points can
be described by one of ten possible pairwise combina-
tions: (0,0)-(0,0), (0,0)-(0,1), (0,0)-(1,0), (0,0)-(1,1), (0,1)-
(0,1), (0,1)-(1,0), (0,1)-(1,1), (1,0)-(1,0), (1,0)-(1,1), and
(1,1)-(1,1). Here, the pairwise combination is symmetric,
i.e., (0,0)-(1,0) equals to (1,0)-(0,0). When the trends of
the two points are either fully aligned or completely op-
posite—such as (0,0)-(0,0), (0,0)-(1,1), (0,1)-(0,1), (0,1)-
(1,0), or (1,0)-(1,0)—their XOR operation will yield re-
sults like ‘00 ∧ 00 = 00’ or ‘10 ∧ 01 = 11’, which
are always either ‘00’ (indicating similarity) or ‘11’ (in-
dicating opposition). On the other hand, if the trends are
only partially aligned—for example, (0,0)-(0,1), (0,0)-(1,0),
or (1,1)-(1,0)—their XOR operation produces results like
‘01 ∧ 00 = 01’ or ‘00 ∧ 10 = 10’, which are either ‘01’
or ‘10’ (indicating a difference). Therefore, the relation-
ship between two points can be classified into three distinct
categories based on their XOR results:

• Similar (0,0) : The trends are fully aligned.
• Opposite (1,1): The trends are completely reversed.
• Different ((0,1) or (1,0)): The trends show partial align-

ment or deviation.

It solves Q1, on how to define the trend relationship
Xor(v, v′, k) between two variables v and v′ in a time lag
k, where k indicates the impact of v on v′ is delayed by k
timestamps (cf. Def. 3.3). Here, Xor(v, v′, k) at time t is
computed via the XOR operation on time-weaving represen-
tations of vt−k and v′t.

To further address Q2, we propose a novel time lag dis-

covery strategy aimed at quickly and accurately identifying
the specific range of time lags. This strategy effectively
detects time delays in causal relationships, helping to reveal
complex dynamic interactions.

Theorem 4.2. Given two variables v and v′ in a MTS data
X, if v and v′ have a causal relationship in a time lag k, then
either P (Xor(v, v′, k) = (0, 0)) or P (Xor(v, v′, k) =
(1, 1)) will exceed 1

3 − ϵ, where ϵ is a value approaching 0.

The proof is in Appendix B. This addresses Q2, on how
to use the trends to identify the optimal time lag. In other
words, the optimal k value makes either P (Xor(v, v′, k) =
(0, 0)) or P (Xor(v, v′, k) = (1, 1)) larger than 1

3 − ϵ for
any variable pairs with the causal relationship (we set 0.33
in our method). Leveraging the XOR results to determine
causal relationships between variables is highly efficient due
to the use of bitwise operations. Additionally, by integrating
the joint distribution with the XOR outcome, this approach
accurately identifies optimal time lags, offering an effective
and efficient method for uncovering causal relationships.

4.3. Candidates Pruning

Although the most likely time lag between each pair of
variables can be inferred, if there is no causal relationship
between v and v′, the inferred time lag is likely to be incor-
rect. Therefore, to minimize such errors, candidates pruning
of the variables is necessary. Algorithm 1 is designed to
filter significant variable pairs based on their time-lagged re-
lationships in a MTS data. It takes two inputs: Xtw, the time
weaving representations of X, and Thr, a pruning threshold
for the percentage of valid variable pairs. The output is a set
of filtered variable pairs, denoted as C.

Step 1: Time Lag Discovery. We first iterate over all pos-
sible variable pairs (v, v′) from the d variables. For each
pair, it evaluates all potential time lags k ranging from 1 to
T − ω + 1, where T is the time series length and ω is the
window size. For each possible lag value k, it computes the
XOR operation between two variables to identify patterns
in their binary representation. It then calculates the percent-
ages of specific binary tuple occurrences—(0,0), (1,1), and
(0,1)/(1,0)—and stores them as R0[v, v′, k], R2[v, v′, k],
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Algorithm 1 Candidates Pruning
Input: Time-weaving representations of MTS: Xwa, prun-

ing threshold for variable percentage: Thr
Output: Filtered variable pairs: C

▽ Step 1: Time lag discovery
1: for any variable pair (v, v′) do
2: for any possible time lag k ∈ [1, T − ω + 1] do
3: Compute Xor⟨v, v′⟩ for time lag k
4: Calculate percentages of (0,0), (1,1), and

(0,1)/(1,0) tuples: R0[v, v′, k], R2[v, v′, k],
R1[v, v′, k]

5: end for
6: end for
7: R[v, v′, k]← max(R0[v, v′, k], R2[v, v′, k])
8: Identify (v, v′) and k with the highest value in

R[v, v′, k], and store as C ← {(v, v′), k}
▽ Step 2: Variable candidates pruning

9: for each candidate (v, v′) in C do
10: if R[v, v′] > 0.33 and |C| < Thr · d2 then
11: Retain (v, v′)
12: else
13: Remove (v, v′) from C
14: end if
15: end for
and R1[v, v′, k] (lines 1–5). For each time lag, the algo-
rithm selects the maximum value between R0[v, v′, k] and
R2[v, v′, k] as R[v, v′, k] (line 7). The variable pairs and
their corresponding time lags with the highest R[v, v′, k]
values are stored in the initial candidate set C (line 8).

Step 2: Variable Pairs Pruning. We further filter the
candidates in C. For each candidate pair (v, v′), it checks
two conditions: (1) whether the value of R[v, v′] exceeds
0.33, and (2) whether the total number of candidates |C|
is below the threshold Thr · d2. If both conditions are met,
the pair is retained in the final set; otherwise, it is removed
(lines 10–14).

This algorithm analyzes time-lagged relationships in a mul-
tivariate time series to filter significant variable pairs. It
computes XOR values to evaluate patterns and prunes re-
sults based on predefined thresholds, ensuring only the most
relevant variable pairs are retained in the output.

5. Experiments
5.1. Experimental Setting

Datasets. We generate random summary graphs to simulate
causal relationships using both linear and non-linear struc-
tural causal models (SCMs). For linear causal relationships,
the SCM is defined as: xt

i =
∑

xj∈PA(xi)
αijxj (t− kij)+

Ni, where αij is a constant, kij denotes the time lag, and
Ni is a noise selected from {uniform, gauss, exp, gamma}

randomly. For non-linear causal relationships, we adopt the
Erdos-Renyi model (Erd6s & Rényi, 1960; Liu et al., 2024)
to generate the graph structure. Each non-linear SCM is
defined as: xt

i =
∑

xj∈PA(xi)
fijxj (t− kij) +Ni, where

fij is randomly chosen from {linear, sin, tanh, sqrt}, kij
denotes time lag and Ni is also noise sampled from the same
distributions as in the linear case. In addition to the syn-
thetic datasets, we also conduct validation on the real-world
Dream3 1 dataset.

Baselines. We select a representative algorithm from
each of the four causal discovery approaches M for our
study: the constraint-based algorithm PCMCI (Runge
et al., 2019; Runge, 2020), the Granger-based algorithm
NGC (Tank et al., 2021), the score-based algorithm VAR-
LiNGAM (Hyvärinen et al., 2010), and the information-
theoretic algorithm SURD (Martı́nez-Sánchez et al., 2024).
For each algorithm, we compare the performance of the
original version with its accelerated counterpart using the
Arrow accelerator, focusing on improvements in both effi-
ciency and accuracy. Detailed descriptions of the methods
can be found in Appendix C.1.

Metrics. We evaluate the efficiency of causal graph gen-
eration based on runtime (in seconds). Additionally, their
time lag discovery and causal graph generation performance
is assessed using three metrics: True Positive Rate (TPR),
False Positive Rate (FPR), and Area Under the Curve (AUC).
Details are shown in Appendix C.2.

Settings. We synthesized a dataset with 10 variables and a
time length of 1000. The window size w for time weaving
was set to 1. In addition, we conducted experiments with
constant time lags and multiple time lags. For the constant
time lags, the lags between variables is fixed, and it can be
selected from the set {3, 5, 7, 9, 15, 20}. In contrast, the
multiple time lags represent varying lags between variables,
with the lag value being chosen from the set {3, 5, 7, 9,
15, 20} as the range for the time lags. The experiments
on varying time-lagged edges are deferred to Appendix D,
while in the main experiments, we set k to {5, 15}. The
source code of ARROW is available 2.

5.2. Overall Performance

Efficiency Evaluation. For MTS data with linear causal
relationships, as shown in Table 1, ARROW significantly
improves the efficiency of causal discovery because its ac-
celeration strategy efficiently reduces the search space for
time lag and variable candidates, streamlining the compu-
tation process. SURD with ARROW achieves remarkable
acceleration, with a nearly 70x speedup observed on the
SURD dataset. This is primarily due to its ability to preemp-

1https://www.synapse.org/Synapse:syn3033083/files/
2https://github.com/XiangguanMu/arrow
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Table 1. Performance on the datasets with linear casual relationships

Constant Lags

Time lag 5 15

Metric Time ↓ Lag AUC ↑ Graph AUC ↑ Time ↓ Lag AUC ↑ Graph AUC ↑
PCMCI 245.99±15.85 0.9350±0.053 0.9169±0.067 266.55±19.85 0.9275±0.031 0.9088±0.043

PCMCI+ARROW 6.6734±0.026 0.9775±0.018 0.9863±0.013 6.6969±0.021 0.9725±0.018 0.9906±0.010

SURD 424.90±1.837 0.5000±0.000 0.5038±0.008 422.59±0.677 0.5000±0.000 0.5200±0.017
SURD+ARROW 6.1656±0.013 0.9825±0.016 0.9644±0.013 6.1874±0.022 0.9700±0.042 0.9636±0.072

NGC 12.905±0.317 0.5000±0.000 0.7513±0.088 12.946±0.293 0.5000±0.000 0.8056±0.040
NGC+ARROW 0.7971±0.056 0.9750±0.027 0.9975±0.008 0.7931±0.066 0.9850±0.017 0.9906±0.018

VARLiNGAM 9.7244±0.439 0.9800±0.022 0.9606±0.021 9.3213±0.164 0.5000±0.000 0.4956±0.011
VARLiNGAM+ARROW 6.2020±0.013 0.9775±0.021 0.9819±0.014 6.2664±0.015 0.9850±0.023 0.9281±0.062

Multiple Lags

Time lag 5 15

Metric Time ↓ Lag AUC ↑ Graph AUC ↑ Time ↓ Lag AUC ↑ Graph AUC ↑
PCMCI 388.41±83.10 0.7550±0.042 0.7381±0.040 441.16±55.09 0.6575±0.048 0.6369±0.067

PCMCI+ARROW 6.4486±0.031 0.8050±0.029 0.8088±0.030 6.4285±0.029 0.9125±0.023 0.9250±0.012

SURD 425.72±0.875 0.5050±0.010 0.5369±0.026 428.54±1.353 0.5000±0.000 0.5181±0.017
SURD+ARROW 6.1871±0.033 0.8925±0.016 0.9025±0.014 6.1711±0.024 0.9550±0.019 0.9394±0.023

NGC 13.043±0.339 0.5025±0.008 0.8263±0.046 13.021±0.278 0.5025±0.007 0.7688±0.031
NGC+ARROW 0.7482±0.014 0.8800±0.027 0.9469±0.036 0.7477±0.013 0.8775±0.028 0.9638±0.027

VARLiNGAM 9.1697±0.155 0.9925±0.016 0.9856±0.018 9.3054±0.129 0.6100±0.051 0.6100±0.051
VARLiNGAM+ARROW 6.2439±0.037 0.8900±0.025 0.8388±0.107 6.2743±0.044 0.8850±0.060 0.8294±0.135

tively filter and prioritize candidate lags, avoiding exhaus-
tive searches that slow down the original algorithm. Ad-
ditionally, ARROW’s acceleration strategy ensures greater
stability compared to the original algorithm because it ap-
plies the same optimization method for both constant lags
and multiple lags settings, thereby minimizing variations in
performance. VARLiNGAM outperforms other algorithms
in terms of running time due to its Independent Component
Analysis (ICA) strategy, but it still requires traversing the
time lag range to find the optimal time lag. In contrast,
VARLiNGAM with ARROW avoids the traversal to further
accelerate the entire process. Note that, although ICA ac-
celerates the casual discovery of VARLiNGAM, it is not a
general optimization technique, which cannot be applied
to other types of methods. Thus, our ARROW is a general
accelerator that can significantly improve the efficiency of
causal discovery on all the methods.

Similarly, when dealing with nonlinear causal relationships,
ARROW’s acceleration strategy still demonstrates significant
efficiency as shown in Table 2, especially for PCMCI. This
is because PCMCI uses partial correlation for CI test, which
is more suited for linear causal relationships. When han-
dling non-linear causal relationships, additional non-linear

extensions are required, which significantly increase the
computational cost.

Effectiveness Evaluation in Time Lag Discovery. As
shown in Tables 1 and 2,ARROW consistently outperforms
the original algorithm in terms of AUC for time lag discov-
ery (i.e., Lag AUC) in most cases, when handling linear
or nonlinear causal relationships across various lag sizes
in both constant and multiple lags settings. This perfor-
mance improvement is particularly noticeable on the SURD
algorithm, where the maximum improvement reaches 46%.
This is because: (i) as the number of variables increases,
the conditional probability distribution computed by SURD
tends to dilute the relevant variable information; (ii) the
brute-force search method does not guarantee the discovery
of the optimal time lag if “optimal” is not well defined. In
addition, VARLiNGAM with Arrow performs worse than
VARLiNGAM when the time lag is small, primarily because
VARLiNGAM is suited for data with non-Gaussian noise,
while the time weaving representation of Arrow may in-
fluence the original noise distribution, affecting the perfor-
mance. However, when the time lag is larger, the robustness
of causal relationships between variables is enhanced, sig-
nificantly reducing the interference of the time weaving
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Table 2. Performance on the datasets with non-linear casual relationships

Constant Lags

Time lag 5 15

Metric Time ↓ Lag AUC ↑ Graph AUC ↑ Time ↓ Lag AUC ↑ Graph AUC ↑
PCMCI 1310.7±304.4 0.9156±0.064 0.9029±0.054 996.89±182.9 0.8772±0.056 0.8595±0.051

PCMCI+Arrow 9.6132±3.044 0.9342±0.035 0.8999±0.037 22.925±18.55 0.9167±0.046 0.8882±0.042

SURD 424.14±0.423 0.5000±0.000 0.5000±0.000 428.09±1.220 0.5000±0.000 0.4991±0.019
SURD+ARROW 6.3629±0.059 0.9470±0.039 0.7310±0.109 6.3844±0.145 0.9315±0.048 0.7642±0.060

NGC 12.980±0.318 0.5000±0.000 0.4391±0.003 12.960±0.293 0.5000±0.000 0.4406±0.001
NGC+ARROW 0.7430±0.013 0.9563±0.036 0.4485±0.033 0.7415±0.013 0.9131±0.047 0.3889±0.075

VARLiNGAM 9.0475±0.171 0.9944±0.011 0.9834±0.013 9.0925±0.104 0.5000±0.000 0.4970±0.013
VARLiNGAM+ARROW 6.2198±0.021 0.9133±0.057 0.8974±0.020 6.2424±0.021 0.9352±0.053 0.9057±0.022

Multiple Lags

Time lag 5 15

Metric Time ↓ Lag AUC ↑ Graph AUC ↑ Time ↓ Lag AUC ↑ Graph AUC ↑
PCMCI 1076.7±196.8 0.655±0.068 0.6651±0.075 1368.8±222.4 0.6575±0.048 0.6368±0.067

PCMCI+ARROW 7.6967±1.387 0.8774±0.058 0.8344±0.059 16.591±13.15 0.9157±0.063 0.8680±0.066

SURD 426.65±1.340 0.5063±0.013 0.4915±0.013 423.34±0.141 0.5000±0.000 0.4840±0.010
SURD+ARROW 6.1981±0.032 0.8836±0.030 0.7108±0.046 6.2153±0.036 0.9477±0.049 0.6877±0.060

NGC 13.155±0.340 0.5000±0.000 0.4379±0.002 12.906±0.304 0.5000±0.000 0.4398±0.003
NGC+ARROW 0.7410±0.013 0.8916±0.090 0.4382±0.004 0.7478±0.014 0.8983±0.033 0.4060±0.017

VARLiNGAM 9.0378±0.129 0.9292±0.077 0.9198±0.073 9.0330±0.191 0.5549±0.054 0.5609±0.052
VARLiNGAM+ARROW 6.2423±0.014 0.8135±0.047 0.9064±0.038 6.2934±0.026 0.8931±0.044 0.9122±0.023

representation on the original distribution.

Effectiveness Evaluation in Summary Graph Genera-
tion. Similar to the performance in time lag discovery, the
AUC for summary graph generation (i.e., Graph AUC) also
outperforms the original algorithm, as shown in Tables 1
and 2. This improvement benefits from ARROW’s strategies
in time lag discovery and candidate pruning. In addition,
the improvement is consistent across datasets with both con-
stant lags and multiple lags settings, handling both linear and
nonlinear causal relationships, demonstrating ARROW’s ro-
bustness and efficiency in generating reliable causal graphs.

5.3. Experiments on the Real-world Dataset

We validate the acceleration performance of the ARROW
framework on the real-world time series dataset Dream3.
The results as shown in Figure 4 demonstrate that ARROW
achieves 7x to 300x speedup across various methods, with
particularly remarkable performance on the SURD method.
This is because the SURD method relies on a brute-force
approach for time lag selection, whereas ARROW signifi-
cantly improves search efficiency and accuracy through its
optimized time lag mining algorithm and pruning strategy.
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Figure 4. Causal discovery performance on Dream3

Furthermore, in terms of summary graph performance, AR-
ROW successfully retains the performance of the original
algorithms and even achieves better results on the VAR-
LiNGAM method. This is because VARLiNGAM is suitable
for datasets with non-Gaussian noise while the Dream3
dataset contains heterogeneous noise components.

6. Conclusion
We propose a general accelerator for time series causal dis-
covery algorithms termed ARROW. First, we introduce a
novel concept called “Time Weaving”, which transforms
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data from a single time point into a binary tuple with con-
textual information. Next, we propose a time lag discovery
strategy that analyzes contextual trend patterns between dif-
ferent variables. We derive a theorem to find the optimal
time lag and provide rigorous proofs. Additionally, we de-
velop a variable candidates pruning algorithm to effectively
reduce the candidate set for causal discovery, further improv-
ing computational efficiency. Finally, experiments on both
synthetic and real datasets demonstrate that ARROW can
significantly accelerate various causal discovery algorithms
while maintaining high accuracy.
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Erd6s, P. and Rényi, A. On the evolution of random graphs.
Publ. Math. Inst. Hungar. Acad. Sci, 5:17–61, 1960.

Figueiredo, F., Resende Borges, G., OS Vaz de Melo, P.,
and Assunção, R. Fast estimation of causal interactions
using wold processes. Advances in Neural Information
Processing Systems, 31, 2018.

Gao, T., Bhattacharjya, D., Nelson, E., Liu, M., and Yu, Y.
Idyno: Learning nonparametric dags from interventional
dynamic data. In International Conference on Machine
Learning, pp. 6988–7001. Pmlr, 2022.

Gerhardus, A. and Runge, J. High-recall causal discovery
for autocorrelated time series with latent confounders.
Advances in Neural Information Processing Systems, 33:
12615–12625, 2020.

Gong, C., Yao, D., Zhang, C., Li, W., and Bi, J. Causal
discovery from temporal data: An overview and new
perspectives. arXiv preprint arXiv:2303.10112, 2023.

Guo, C. and Luk, W. Accelerating constraint-based causal
discovery by shifting speed bottleneck. In Proceedings
of the 2022 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, pp. 169–179, 2022.

Guo, C., Cupello, D., Luk, W., Levine, J., Warren, A., and
Brookes, P. Fpga-accelerated causal discovery with con-
ditional independence test prioritization. In 2023 33rd
International Conference on Field-Programmable Logic
and Applications (FPL), pp. 182–188. IEEE, 2023a.

Guo, C., Luk, W., Warren, A., Levine, J., and Brookes, P. Co-
design of algorithm and fpga accelerator for conditional
independence test. In 2023 IEEE 34th International Con-
ference on Application-specific Systems, Architectures
and Processors (ASAP), pp. 102–109. IEEE, 2023b.

Hagedorn, C. and Huegle, J. Gpu-accelerated constraint-
based causal structure learning for discrete data. In Pro-
ceedings of the 2021 SIAM International Conference on
Data Mining (SDM), pp. 37–45. SIAM, 2021.

Hu, L., Zou, L., and Liu, Y. Accelerating triangle count-
ing on gpu. In Proceedings of the 2021 International
Conference on Management of Data, pp. 736–748, 2021.

Huang, B., Zhang, K., Gong, M., and Glymour, C. Causal
discovery and forecasting in nonstationary environments

9



Accelerator for Time Series Causal Discovery with Time Weaving

with state-space models. In International conference on
machine learning, pp. 2901–2910. Pmlr, 2019.

Hyvärinen, A., Shimizu, S., and Hoyer, P. O. Causal mod-
elling combining instantaneous and lagged effects: an
identifiable model based on non-gaussianity. In Proceed-
ings of the 25th international conference on Machine
learning, pp. 424–431, 2008.

Hyvärinen, A., Zhang, K., Shimizu, S., and Hoyer, P. O.
Estimation of a structural vector autoregression model
using non-gaussianity. Journal of Machine Learning
Research, 11(5), 2010.

Le, T. D., Hoang, T., Li, J., Liu, L., Liu, H., and Hu, S. A
fast pc algorithm for high dimensional causal discovery
with multi-core pcs. IEEE/ACM transactions on compu-
tational biology and bioinformatics, 16(5):1483–1495,
2016.

Le, T. D., Xu, T., Liu, L., Shu, H., Hoang, T., and Li, J.
Parallelpc: an r package for efficient causal exploration in
genomic data. In Trends and Applications in Knowledge
Discovery and Data Mining: PAKDD 2018 Workshops,
BDASC, BDM, ML4Cyber, PAISI, DaMEMO, Melbourne,
VIC, Australia, June 3, 2018, Revised Selected Papers 22,
pp. 207–218. Springer, 2018.

Liu, M., Sun, X., Hu, L., and Wang, Y. Causal discov-
ery from subsampled time series with proxy variables.
Advances in neural information processing systems, 36,
2024.

Madsen, A. L., Jensen, F., Salmerón, A., Langseth, H., and
Nielsen, T. D. Parallelisation of the pc algorithm. In Ad-
vances in Artificial Intelligence: 16th Conference of the
Spanish Association for Artificial Intelligence, CAEPIA
2015 Albacete, Spain, November 9–12, 2015 Proceedings
16, pp. 14–24. Springer, 2015.
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A. Proofs
Theorem A.1. Given two variables v and v′ in a MTS data X, if v and v′ have a causal relationship in a time lag k, then
either P (Xor(v, v′, k) = (0, 0)) or P (Xor(v, v′, k) = (1, 1)) will exceed 1

3 − ϵ, where ϵ is a value approaching 0.

Proof. Let Γ = {(0, 0), (0, 1), (1, 0), (1, 1)} represent the possible tuple set resulting from the XOR operation between
time weaving representation of v and v′ (i.e., Xor⟨v, v′⟩) at time point t with time lag k. For any tuple τ ∈ Γ, there is
a corresponding tuple τ c that represents a completely opposite trend (e.g., (1,0)-(0,1), (0,0)-(1,1)). Then, there are three
different combination results:

P (Xor(v, v′, k) = (0, 0)) =
∑
τ∈Γ

P (xt
v′ = τ, xt−k

v = τ)

P (Xor(v, v′, k) = (1, 1)) =
∑
τ∈Γ

P (xt
v′ = τ c, xt−k

v = τ)

P (Xor(v, v′, k) ∈ {(0, 1), (1, 0)}) =
∑
τ∈Γ

P (xt
v′ ∈ Γ− {τ, τ c}, xt−k

v = τ)

(2)

where P (Xor(v, v′, k) = (0, 0)) represents the probability that the contexts of xt
v′ and xt−k

v exhibit a similar trend, while
P (Xor(v, v′, k) = (1, 1)) represents the probability of an opposite trend. P (Xor(v, v′, k) ∈ {(0, 1), (1, 0)) represents the
probability that the contexts of xt

v′ and xt−k
v share some similarities or differs in others. The joint distribution P (xt

v′ , xt−k
v )

of two variables v and v′ can be factored using the conditional probability formula as:

P (xt
v′ = τ, xt−k

v = τ) = P (xt
v′ = τ |xt−k

v = τ)P (xt−k
v = τ)

P (xt
v′ = τ c, xt−k

v = τ) = P (xt
v′ = τ c|xt−k

v = τ)P (xt−k
v = τ)

P (xt
v′ ∈ Γ− {τ, τ c}, xt−k

v = τ) = P (xt
v′ ∈ Γ− {τ, τ c}|xt−k

v = τ)P (xt−k
v = τ)

(3)

Here, P (xt−k
v ) is the marginal distribution of v, and P (xt

v′ | xt−k
v ) is the conditional distribution of v′ given the state xt−k

v

of v.

Given xt−k
v = τ , if v has a positive causal effect on v′, then the probability of xt

v′ = τ tends to be higher than that of
xt
v′ = τ ′, where τ ′ ∈ Γ− {τ, τ c}, as illustrated in Equation 4. Furthermore, the more pronounced the positive causal effect,

the closer the probability of indicating an opposite trend, P (xt
v′ = τ c|xt−k

v = τ), approaches zero.

P (xt
v′ = τ |xt−k

v = τ) > P (xt
v′ = τ ′|xt−k

v = τ), τ ′ ∈ Γ− {τ, τ c} (4)

0 < P (xt
v′ = τ c|xt−k

v = τ) < ϵ0 (5)

where ϵ0 represents a probability approaching 0. Note that P (xt
v′ = τ ′|xt−k

v = τ) could not be zero because it may be
potentially influenced by other external factors, such as noise or other variables in SCM.

Therefore, given xt−k
v = τ , the sum of the probabilities for all possible contextual trends of xt

v′ ( the similar trend, opposite
trend, or other cases) must equals to 1 as shown in Equation 6. Based on Equations 5 and 6, we can further derive Equation 7.

P (xt
v′ = τ |xt−k

v = τ) +
∑

τ ′∈Γ−{τ,τc}

P (xt
v′ = τ ′|xt−k

v = τ) + P (xt
v′ = τ c|xt−k

v = τ) = 1 (6)

P (xt
v′ = τ |xt−k

v = τ) +
∑

τi∈Γ−{τ,τc}

P (xt
v′ = τi|xt−k

v = τ) > 1− ϵ0 (7)

Given Equation 4, we can infer that given xt−k
v = τ , the conditional probability of xt

v′ = τ is greater than the average of the
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probabilities for all other possible trends as indicated in Equation 8.∑
|Γ|−1

P (xt
v′ = τ |xt−k

v = τ) > P (xt
v′ = τ |xt−k

v = τ) + P (xt
v′ = τ ′1|xt−k

v = τ) + · · ·P (xt
v′ = τ ′|Γ−{τ,τc}||x

t−k
v = τ)︸ ︷︷ ︸

|Γ|−2

P (xt
v′ = τ |xt−k

v = τ) >
1

|Γ| − 1
(P (xt

v′ = τ |xt−k
v = τ) +

∑
τ ′∈Γ−{τ,τc}

P (xt
v′ = τ ′|xt−k

v = τ))

>
1

|Γ| − 1
(1− ϵ0)

=
1

3
− ϵ, ϵ =

1

3
ϵ0

(8)

Due to
∑

τ∈Γ P (xt−k
v = τ) = 1, we can infer the Equation 9.

P (Xor(v, v′, k) = (0, 0)) =
∑
τ∈Γ

P (xt
v′ = τ, xt−k

v = τ)

=
∑
τ∈Γ

P (xt
v′ = τ |xt−k

v = τ)P (xt−k
v = τ)

> (
1

3
− ϵ)

∑
τ∈Γ

P (xt−k
v = τ)

=
1

3
− ϵ

(9)

In general, if v has a positive causal effect on v′, P (Xor(v, v′, k) = (0, 0)) should be greater than 1
3 − ϵ. Similarly, if v has

a negative causal effect on v′, P (Xor(v, v′, k) = (1, 1)) should be greater than 1
3 − ϵ. It also proves why the threshold

selected (i.e., 0.33) in the Algorithm 1 is slightly smaller than 1
3 .

B. Discussions
Our acceleration framework is compatible with various causal discovery algorithms, supports irregular time series data input,
and enables efficient concurrent causal discovery.
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(b)	Imputation	with	time	weaving

Figure 5. Imputation for irregular MTS

Adaptive to irregular MTS. Most causal discovery algorithms typically handle irregular time series by imputing the
missing values using imputation methods (Liu et al., 2024; Cheng et al., 2024; 2023), such as imputation by mean value
as illustrated in Figure 5(a). However, this approach may alter the original distribution of the data, especially when too
many consecutive missing values exists. In contrast, ARROW adopts time-weaving representations instead of imputation,
effectively preserving the original data distribution, as illustrated in Figure 5(b). For any two variables v and v′ in irregular
multivariate time series (MTS) data X, v contains 6 time points {1, 3, 4, 6, 8, 12}, while v′ contains 8 different time points
{1, 2, 4, 5, 8, 10, 11, 14}. ARROW constructs the union of their time points, T < v, v′ >= Tv ∪ Tv′ , resulting in a complete
time set {1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 14}.
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Next, the values of the variables are transformed using the time-weaving transformation. For any time point in the union set
(T < v, v′ > −Tv or T < v, v′ > −Tv′) where a variable has missing values, the missing values are filled based on the
trend between adjacent time points. For example, for variable v, the missing value at t = 5 is filled using the trend between
t = 4 and t = 6. Similarly, for variable v′, the missing values at t = 6 and t = 7 are filled using the trend between t = 5
and t = 8.

Compared to traditional imputation methods, ARROW preserves the original trends and distribution of the data through
time-weaving representations, avoiding the bias introduced by imputation assumptions. It naturally handles data with
irregular time points and better adapts to the complexity of multivariate time series data.

Adaptive to parallel acceleration. In causal discovery algorithms, CUDA-based parallel computation strategies can
significantly enhance computational efficiency, particularly when exploring causal relationships between variables. CUDA
leverages the parallel processing capabilities of GPUs to accelerate logical operations such as AND, OR, and NOT, which
are commonly applied to 0/1 data. The inherent simplicity and low memory consumption of 0/1 data make it well-suited for
parallel computation, enabling CUDA to process large-scale datasets efficiently and dramatically reduce computation time,
thereby improving scalability and real-time performance.

Specifically, in the case of ARROW, the original data is discretized into 0 and 1 values, making it particularly compatible
with CUDA acceleration. This discretization reduces memory and bandwidth overhead, while the simplicity of logical
operations on binary data allows CUDA to perform parallel computations more effectively. As a result, ARROW benefits from
both the data transformation and parallel processing, providing an efficient solution for causal discovery tasks, especially
in large-scale and complex time series data analysis. This combination of data discretization and CUDA parallelism
significantly enhances the computational performance and processing speed of causal discovery algorithms.

C. Experimental Setting
C.1. Baselines description

In our experiments, we selected four representative algorithms for detailed study: the constraint-based algorithm PCMCI,
the information-theoretic algorithm SURD, the Granger-based algorithm NGC, and the score-based algorithm VARLiNGAM.

• PCMCI is a constraint-based causal discovery algorithm that improves the original PC algorithm for application to
time series data, aiming to uncover causal relationships between variables in time series data. The algorithm combines
conditional independence tests with machine learning methods. The key idea behind PCMCI is to use “post-effects”
(Post-Nonlinear) in time series data to capture potential nonlinear causal relationships. In the experiment, we implemented
the PCMCI algorithm based on the open-source code 3. PCMCI can generate causal graphs for all candidate time lags,
and we determine the time lag and final causal graph by selecting the densest time lag set.

• SURD is an information-theoretic causal discovery method that uses the principle of uncertainty reduction in information
theory to infer causal relationships. The algorithm infers the causal relationships between variables by calculating the
information gain between them. SURD focuses on discovering causal relationships by reducing the system’s entropy
(i.e., uncertainty), making it effective in handling nonlinear and multivariable dependencies in complex systems. We
implemented the SURD algorithm based on the open-source code 4 and implemented CUDA acceleration. We determine
the optimal time lag and summary graph using the brute-force search method usned in the SURD.

• NGC is an algorithm based on granger causality, specifically designed for causal discovery in time series data. The
Granger causality test assumes that if variable X has a causal relationship with variable Y , then past values of X can help
predict future values of Y . The NGC algorithm extends the traditional granger causality test to capture nonlinear causal
relationships between variables. This is achieved by performing granger causality testing on component-wise MLP model,
thereby enhancing the ability to model complex dynamic systems. We implemented the NGC algorithm based on the
open-source code 5. NGC can directly return the time lag and summary graph.

• VARLiNGAM is a score-based causal discovery algorithm that combines the Vector Autoregressive (VAR) model with the
Linear Non-Gaussian Acyclic Model (LiNGAM). This method uses the VAR model to describe the temporal dependencies
between variables and performs causal discovery based on the linear non-Gaussian assumption. VARLiNGAM assumes that
the error terms of the variables follow a non-Gaussian distribution, enabling it to distinguish between causal relationships.

3https://github.com/jakobrunge/tigramite
4https://github.com/Computational-Turbulence-Group/SURD
5https://github.com/shojaie/ngc
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We implemented the VARLiNGAM algorithm based on the open-source code 6. VARLiNGAM outputs a set of candidate
causal graphs, and we obtain the final causal graph by averaging these candidates. Based on the contribution of each
candidate graph, we use the time lag with the highest contribution as the optimal time lag for each position.

C.2. Metric details

In our experiments, we not only evaluated the efficiency of the algorithms but also assessed the effectiveness of causal
discovery, including the performance of summary graph generation and time lag discovery.

To evaluate the performance of different algorithms in generating causal graphs, the following metrics are commonly used.
Let the inferred edge probability from the algorithm be P (Aij), with a threshold thre ∈ (0, 1). The set of edges in the
ground truth causal graph is ET , and the set of missing edges is EM . The definitions of metrics are as follows:

TPRG =
|{(i, j) : P (Aij) ≥ thre} ∩ ET |

|ET |
,

FPRG =
|{(i, j) : P (Aij) ≥ thre} ∩ ES |

|ES |
.

(10)

TPR (True Positive Rate) represents the proportion of correctly identified edges to the total number of true edges, serv-
ing as a measure of the algorithm’s ability to recognize true edges—the higher, the better. FPR (False Positive Rate)
indicates the proportion of incorrectly identified edges to the total number of missing edges, reflecting the algorithm’s
tendency to misjudge non-existent edges—the lower, the better. The ROC curve is constructed by plotting the rela-
tionship between TPR and FPR, while AUROC (Area Under the ROC Curve) measures the area under this curve, i.e.,
AUC =

∑n−1
i=1

(FPRi+1−FPRi)·(TPRi+1+TPRi)
2 . It is a key metric for assessing the overall performance of an algorithm.

The closer the AUROC value is to 1, the better the algorithm performs.

To evaluate the performance of time lag discovery, we also use the three metrics TPR, FPR, and AUC. Let P (Aij , k)
represent the probability of an edge between i and j at time lag k, with the maximum time lag denoted as Max. The time lag
in the true edges is represented by TLT , while the time lag in the missing edges is represented by TLM . The definitions of
the time lag discovery metrics are as follows:

TPRTL =

∣∣{(i, j) : maxk∈[1,Max] P (Aij , k) > 0.33
}
∩ TLT

∣∣
|TLT |

,

FPRTL =

∣∣{(i, j) : maxk∈[1,Max] P (Aij , k) > 0.33
}
∩ TLS

∣∣
|TLS |

.

(11)

where maxk∈[1,Max] P (Aij , k) indicates iterating over all k values (from 1 to Max) and selecting the maximum probability
for each (i, j) pair. P (Aij , k) > 0.33 signifies selecting edges where the maximum probability value for the corresponding
(i, j) pair exceeds 0.33. TPR represents the proportion of edges with actual delays that are correctly detected, while FPR
represents the proportion of edges without delays that are incorrectly identified as having delays.

C.3. Experimental environment

All methods are executed on a machine equipped with an Intel(R) Core(TM) i9-10900K CPU, boasting 10 cores and a clock
speed of 3.70GHz. The system also features an NVIDIA GeForce RTX 3090 graphics card, equipped with 24GB of video
memory.

D. Extensive Experiments
D.1. Efficiency Evaluation

We do extensive experiments on the four algorithms with k selected from the set of {3, 5, 7, 9, 15, 20}. The recorded time
includes both time lag detection and causal graph discovery time, except for NGC, which is a learning method using training

6https://causal-learn.readthedocs.io/en/latest/search methods index/Causal
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Table 3. Comparison on causal discovery time
Linear+Constant Lags

Time lag 3 5 7 9 15 20
PCMCI 240.31±19.47 245.99±15.85 244.87±19.75 258.45±23.13 266.55±19.85 288.10±24.52

PCMCI+ARROW 6.6506±0.031 6.6734±0.026 6.6722±0.021 6.6966±0.026 6.6969±0.021 6.6868±0.021
SURD 424.00±2.001 424.90±1.837 425.34±2.040 423.98±1.228 422.59±0.677 421.91±0.228

SURD+ARROW 6.1697±0.026 6.1656±0.013 6.1681±0.011 6.1803±0.016 6.1874±0.022 6.1687±0.015
NGC 12.918±0.324 12.905±0.317 12.844±0.273 12.889±8.293 12.946±0.293 12.898±0.295

NGC+ARROW 0.7608±0.045 0.7971±0.056 0.7949±0.055 0.7952±0.058 0.7931±0.066 0.7484±0.013
VARLiNGAM 9.5531±0.660 9.7244±0.439 9.2401±0.137 9.2190±0.129 9.3213±0.164 9.5007±0.319

VARLiNGAM+ARROW 6.2040±0.013 6.2020±0.013 6.2192±0.020 6.2305±0.016 6.2664±0.015 6.2882±0.039
Linear+Multiple Lags

Time lag 3 5 7 9 15 20
PCMCI 306.21±38.92 388.41±83.10 416.26±36.13 442.87±85.53 441.16±55.09 491.77±95.42

PCMCI+ARROW 6.6167±0.540 6.4486±0.031 6.4982±0.026 7.2986±2.375 6.4285±0.029 6.4778±0.034
SURD 427.92±2.212 425.72±0.875 427.58±0.336 428.81±0.336 428.54±1.353 425.71±0.931

SURD+ARROW 6.2240±0.120 6.1871±0.033 6.1442±0.016 6.1598±0.014 6.1711±0.024 6.1761±0.034
NGC 15.108±4.025 13.043±0.339 13.010±0.273 13.059±0.282 13.021±0.278 13.039±0.273

NGC+ARROW 0.7432±0.013 0.7482±0.014 0.7473±0.014 0.7466±0.013 0.7477±0.013 0.7462±0.013
VARLiNGAM 8.8738±0.104 9.1697±0.155 9.2141±0.133 9.2228±0.110 9.3054±0.129 9.2058±0.126

VARLiNGAM+ARROW 6.2325±0.025 6.2439±0.037 6.2526±0.037 6.2522±0.420 6.2743±0.044 6.2668±0.026
Non-Linear+Constant Lags

Time lag 3 5 7 9 15 20
PCMCI 1160.8±287.2 1310.7±304.4 1386.1±384.8 1014.72±231.6 996.89±182.9 1287.8±264.2

PCMCI+ARROW 7.5468±1.346 9.6132±3.044 13.056±5.052 28.265±18.342 22.925±18.55 65.774±57.08
SURD 424.08±0.478 424.14±0.423 424.36±0.256 424.15±0.194 428.09±1.220 428.94±0.365

SURD+ARROW 6.4680±0.324 6.3629±0.059 6.3822±0.071 6.3667±0.028 6.3844±0.145 6.4870±0.129
NGC 12.895±0.281 12.980±0.318 12.855±0.308 12.899±0.290 12.960±0.293 12.832±0.292

NGC+ARROW 0.7406±0.015 0.7430±0.013 0.7390±0.013 0.7406±0.013 0.7415±0.013 0.7328±0.057
VARLiNGAM 9.1115±0.132 9.0475±0.171 9.0531±0.102 9.0653±0.104 9.0925±0.104 9.0630±0.095

VARLiNGAM+ARROW 6.2116±0.013 6.2198±0.021 6.2297±0.012 6.2448±0.024 6.2424±0.021 6.2322±0.017
Non-Linear+Multiple Lags

Time lag 3 5 7 9 15 20
PCMCI 1139.3±277.2 1076.7±196.8 1175.6±357.1 1185.7±262.1 1368.8±222.4 1033.2±263.3

PCMCI+ARROW 7.6503±1.325 7.6967±1.387 9.2900±4.339 10.7270±4.502 16.591±13.154 29.738±19.92
SURD 428.54±0.180 426.65±1.340 425.38±1.425 423.40±0.133 423.34±0.141 425.50±0.440

SURD+ARROW 6.2758±0.087 6.1981±0.032 6.2051±0.039 6.1967±0.039 6.2153±0.036 6.1909±0.028
NGC 13.246±0.326 13.155±0.340 12.973±0.275 12.964±0.312 12.906±0.304 12.985±0.306

NGC+ARROW 0.7390±0.016 0.7410±0.013 0.7439±0.013 0.7462±0.011 0.7478±0.014 0.7482±0.014
VARLiNGAM 8.8014±0.196 9.0378±0.129 8.9910±0.136 9.0197±0.137 9.0330±0.191 9.1033±0.193

VARLiNGAM+ARROW 6.2102±0.018 6.2423±0.014 6.2769±0.019 6.2796±0.016 6.2934±0.026 6.2852±0.016

time for each 100 epochs. Our method achieves up to 153x, 69x, 20x, and 1.57x speedup compared with PCMCI, SURD,
NGC, and VARLiNGAM among synthetic datasets with linear and non-linear causal relationships as shown in Table 3,
demonstrating a favorable accelerating effect.

Specifically, PCMCI with ARROW performs more stably across both linear and non-linear datasets, while PCMCI is
significantly slower on non-linear datasets than linear ones. This is because CI tests on non-linear dependency between
variables use more complicated calculations. Equipped with ARROW, MTS data is discretized into a binary representation,
simplifying the CI tests and thus achieving a swift and stable performance.

SURD takes the longest time compared to other algorithms, and its time increases rapidly as the time lag range expands. This
is because SURD uses a brute-force traversal method to detect the optimal time lag and calculates the joint and conditional
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distributions for each variable and its candidate set. However, SURD with ARROW maintains approximately 6 seconds
regardless of the time lag value. This is due to ARROW’s pruning strategy, which significantly reduces the candidate set for
each variable, exponentially decreasing the number of conditional distribution calculations.

NGC with ARROW spends less time per 100 epochs compared to the NGC. This is because the size of convolution kernel is
set according to the time lag size. NGC requires the max time lag range, whereas ARROW only to set it to k identified by the
time lag discovery strategy, which is much smaller than the max value.

VARLiNGAM outperforms other algorithms in terms of efficiency due to its ICA, linear models, and recursive regression.
However, it still requires traversing the time lag range to find the optimal lag. In contrast, VARLiNGAM with ARROW avoids
the traversing, further speeding up the discovery. Note that, although ICA and other optimization techniques accelerate the
casual discovery of VARLiNGAM, they are not general, and cannot be applied to other types of methods. To sum up, our
ARROW is a general accelerator that can significantly improve the efficiency of causal discovery on all the methods.

D.2. Effectiveness Evaluation in Time Lag Discovery

As shown in the Figures 6 and 7, the time lag discovery strategy of ARROW outperforms almost all the baselines.

PCMCI performs better on the dataset with constant lags than those with multiple lags. This is because PCMCI returns
summary graphs for each possible time lag, and does not provide an internal implementation of selecting the best time
lag for each variable. In addition, PCMCI with ARROW is more stable than PCMCI and performs better on the dataset
with multiple lags. This is because the time lag discovery strategy of ARROW can adapt to datasets with different types of
relationships.

SURD exhibits performance similar to that of a random classifier on both constant and multiple lags datasets, while SURD
with ARROW is able to select a much more accurate lag graph. This is because: i) SURD assumes the lags among variables
be equal, which makes it fail to find the optimal lag graph on datasets with multiple lags; ii) the real causation can be diluted
when the size of candidate sets becomes too large. However, ARROW can select the most appropriate time lag for each
variable pair in the candidate set by time lag discovery and candidate pruning strategies.

NGC with ARROW can achieve better time lag discovery performance than NGC on all datasets, and VARLiNGAM with
ARROW is better than VARLiNGAM when the time lag exceeds 10. This is because both NGC and VARLiNGAM deduce the
optimal lag graph by selecting the lag that contributes the most to the final summary graph, which ignores the contextual
information in the original input data. In contrast, ARROW improves time lag discovery accuracy by preserving the contextual
information of each data point through time weaving. In addition, the performance of VARLiNGAM slips sharply as the time
lag exceeds 10, due to the non-gaussianity of the data distribution being obscured in cases of long lags.

D.3. Effectiveness Evaluation in Summary Graph Generation

As shown in Figures 8 and 9, the accuracy of the summary graph generated by the original algorithm equipped with ARROW
is much better than that of the original method on most datasets.

PCMCI with ARROW performs better than PCMCI, especially on the dataset with multiple lags. This is because PCMCI does
not support multi-lag causation discovery, thus encountering a performance drop from constant-lagged to multiple-lagged
datasets, while ARROW can effectively handle causality relationships with multiple lags.

SURD has a worse performance on deducing the summary causal graph because that is constructed on the wrongly-inferred
lag graph. Moreover, the pruning strategy imported by However, if given the correct lag graph and pruned parent set inferred
by ARROW, SURD can achieve a performance burst of at most 94%. This is because ARROW concentrates the conditional
distribution on the potentially important subset of variables out of the entire, focusing the algorithm on more significant
causal relationships for each pair of variables.

Both NGC and NGC with ARROW exhibit poor performance on non-linear datasets. This is because the items on the leading
diagonal tends to be kept during the simplification of the initially fully connected causal graph. However, our synthetic
Erdos-Renyi graph would not have its diagonal element to be 1, leading to the poor performance on our non-linear datasets.

VARLiNGAM with ARROW exhibits comparable excellence with VARLiNGAM when the time lag is small. However, their
performance significantly declines as the lag increases, exhibiting a similar pattern and underlying reasons observed in the
time lag discovery.
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Figure 6. Time lag discovery performance on the dataset with linear causal relationships
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Figure 7. Time lag discovery performance on the dataset with non-linear causal relationships
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Figure 8. Summary graph performance on the dataset with linear causal relationships
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Figure 9. Summary graph performance on the dataset with non-linear causal relationships
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