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ABSTRACT

Black-box differentially private generative models often appears more private than
worst-case accounting suggests, leaving a gap between formal Differential Privacy
(DP) budgets and the observed weakness of membership inference attacks. We
address this gap from a test-centric f -DP perspective. On the training side, we
show that Differentially Private Stochastic Gradient Descent (DP–SGD) provides
function-level stability, which can be quantified through loss-path kernels rather
than parameter proximity. On the sampling side, the high-dimensional latent ran-
domness of modern generators yields approximate Gaussian behavior, enabling a
clean reduction to Gaussian DP. Combining these ingredients gives an effective
signal parameter with small slack. The resulting envelopes predict that black-box
distinguishability decreases with dataset size and effective latent dimension, and
grows only sublinearly across multiple releases, while leaving formal DP budgets
unchanged. Simulations and empirical tests confirm these predictions and align
with observed attack performance, suggesting that our framework offers a practi-
cal and conservative tool for auditing the privacy of DP-trained generative models.

1 INTRODUCTION

As generative models become widespread, protecting training data with standards like Differential
Privacy (DP) (Dwork, 2006) is more critical than ever. A widely adopted practice is training or
fine-tuning with Differentially Private Stochastic Gradient Descent (DP-SGD) (Abadi et al., 2016),
which adds calibrated noise to clipped per-example gradients. By post-processing, a model trained
with DP-SGD inherits the DP guarantees regardless of how it is later used.

Most modern models are deployed as black boxes, served through APIs where attackers can only
see the outputs. The model’s parameters and training data are kept hidden. While this setup limits
white-box attacks, it poses a new problem for privacy analysis: determining the practical privacy
strength when an attacker cannot control the latent randomness used during generation.

Many studies on privacy-preserving generative models evaluate the utility-privacy tradeoff primarily
through downstream quality metrics, often without a deeper analysis of the resulting privacy guar-
antees in practical settings. Examples range from PATE-style generators and GAN variants, as well
as diffusion-based approaches and evaluation frameworks (Jordon et al., 2018; Chen et al., 2020;
Harder et al., 2021; Vinaroz et al., 2022; Dockhorn et al., 2023; Greenewald et al., 2024). At the
same time, empirical evidence (Annamalai et al., 2024) reports a striking black-box phenomenon:
even with large accounting budgets (e.g., ε = 4), strong membership inference attacks can perform
near random guessing. One view is that current attacks are still not strong enough. Alternatively, an-
other view is that the effective privacy is stronger than the accounting suggests. Related theoretical
hints exist in stylized linear models (Pierquin et al., 2025), where high-dimensional random inputs
can reduce leakage in the f -DP sense.

Our view is test-based and does not violate the post-processing principle, where the formal DP
parameters remain unchanged in the worst case, but the strength of black-box testing may drop
sharply in real pipelines. We explain this gap within the f -DP framework (Dong et al., 2022).
We focus on the canonical setting of DP-SGD training, which provides a clean and representative
case for analysis. In practice, two factors affect the testing tradeoff curve as shown in Figure 1.
First, DP-SGD induces function-level stability: generators trained on neighboring datasets are close
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in a geometry tied to their training paths. Second, generation relies on high-dimensional latent
randomness that the attacker does not control, which dilutes distinguishability at inference time.

To make this precise for modern networks, we use path kernels to connect training dynamics with
function space. Unlike the static neural tangent kernel (NTK) (Jacot et al., 2018), path kernels ag-
gregate gradient features along the optimization trajectory and better reflect finite-width learning.
We work with loss path kernel (LPK) (Chen et al., 2023; 2025) to analyze the stability of DP-SGD,
which has made significant progress in areas such as neural network generalization and neural ar-
chitecture search. Leveraging Gaussianization tools on the latent input, we obtain hypothesis-testing
guarantees that align with the empirical robustness reported in Annamalai et al. (2024). Although
our analysis focuses on DP-SGD, we conjecture this amplification effect extends to other DP training
mechanisms. Future work can continue with a similar analytical perspective to extend our analysis
and conclusions to other DP generation mechanisms and their variants. We summarize our main
contributions as follows.

• We leverage the hypothesis–testing (f -DP/GDP) perspective to analyze black-box use of
DP-trained deep generative models, showing that distinguishability is jointly governed by
DP–SGD stability and latent randomness rather than worst-case accounting alone.

• We establish function-level stability in the LPK geometry, providing an explicit 1/n rate
under fixed subsampling and a direct bridge from training trajectories to output-level tests
without requiring parameter proximity.

• By combining quantitative Gaussianization bounds with LPK stability, we derive GDP en-
velopes whose effective parameter decreases with dataset size and effective input dimen-
sion; the derivation isolates small slack (γd, ω) that are tracked empirically.

• We extend the analysis to multiple releases and validate the predictions on DP–SGD-trained
VAEs, observing sublinear

√
m composition of the effective signal and identifying regimes

where slack accumulation limits amplification.

DP-SGD 


z
② Hiding random z
during inferencing
makes it harder to
distinguish.
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during training.
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guarantee
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Figure 1: Generative models trained with DP-SGD are more difficult to attack in black-box settings.

2 RELATED WORK

2.1 DP GENERATIVE MODELS

Early differentially private synthetic data generation focused on estimating private statistics for tab-
ular data (Zhang et al., 2016; McKenna et al., 2021). More recent efforts leverage expressive gener-
ative neural networks trained with differential privacy such as PATE (Papernot et al., 2017; Jordon
et al., 2018; Long et al., 2021), DP-SGD (Torkzadehmahani et al., 2019; Dockhorn et al., 2023; Jiang
& Sun, 2023) or other methods (Chen et al., 2020; Cao et al., 2021; Harder et al., 2021; Vinaroz et al.,
2022; Jiang et al., 2023; Greenewald et al., 2024). Grounded in the post-processing theorem, these
methods preserve the formal budget during sampling and can mitigate white-box and, more restric-
tively, black-box attacks. However, empirical studies report that black-box membership inference
attacks are often far weaker than worst-case accounting suggests (Annamalai et al., 2024). Our work

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

does not propose a new generative algorithm; rather, it explains this apparent amplification, showing
how stability and randomness combine to reduce distinguishability in the black-box setting.

2.2 NEURAL NETWORK KERNELS

A parallel line of work has developed kernel perspectives on neural network training. Neural tangent
kernels (NTK) and neural network Gaussian processes (NNGP) characterize the infinite-width limit
(Neal, 1996; Jacot et al., 2018; Lee et al., 2018), but at finite width the kernel at initialization drifts
and fails to capture feature learning. This motivated kernel constructions that track the entire training
trajectory rather than just the starting point. Path kernels and, in particular, the loss path kernel
(LPK) integrate gradient features over time, providing a geometry that better reflects finite-width
optimization (Chen et al., 2023; 2025). These ideas have been applied to study generalization and
stability, highlighting that two models trained on neighboring datasets can be compared in a common
reproducing kernel Hilbert space (RKHS). Our analysis builds on this kernel viewpoint: we show
that DP–SGD clipping and noise induce function-level stability in the LPK geometry, and we use
this as the entry point for bounding black-box distinguishability.

2.3 GAUSSIANIZATION TOOLS

Quantitative Gaussian approximations have been studied via the Malliavin–Stein method (Chatter-
jee, 2009) and second-order Gaussian Poincaré inequalities (Nourdin & Peccati, 2012). Vidotto
(2020) sharpened this approach with improved constants, and Bordino et al. (2024) applied it to ob-
tain non-asymptotic CLTs for shallow Gaussian networks. Favaro et al. (2025) further extended the
analysis to deep architectures, providing quantitative CLTs for modern overparameterized models
such as Variational Autoencoders (VAEs) and diffusion samplers. We build on this line by inte-
grating quantitative CLT bounds into f -DP tradeoff analyses, yielding dimension-aware privacy
envelopes for black-box generative models.

3 PRELIMINARIES

3.1 NEURAL TANGENT KERNEL AND LOSS PATH KERNEL

Neural tangent kernel (NTK) (Jacot et al., 2018) is a standard tool for analyzing wide networks. For
fθ : Rd → R with parameters θ, the NTK at initialization is

KNTK(x, x
′) =

〈
∇θfθ(x)

∣∣
θ0
, ∇θfθ(x

′)
∣∣
θ0

〉
,

where θ0 is the random initialization. In the infinite-width limit this kernel stays constant during
training, yielding linearized dynamics. In finite width, however, the NTK at initialization may not
capture the full trajectory geometry. Loss Path Kernels (LPK) (Chen et al., 2023) address this by
integrating gradient features over the entire training path:

Kℓ,T (z, z
′) =

∫ T

0

〈
∇wℓ(w(t), z), ∇wℓ(w(t), z

′)
〉
dt,

where w(t) is the parameter trajectory and ℓ the per-example loss. LPK reflects evolving geometry
and gives sharper generalization and stability guarantees (Chen et al., 2023; 2025).

3.2 f -DIFFERENTIAL PRIVACY

Differential privacy (DP) (Dwork, 2006) is the standard privacy notion. Dong et al. (2022) intro-
duced the f -DP framework, which characterizes privacy via hypothesis testing.
Definition 1 (f -DP). A mechanism M satisfies f -DP if for all neighboring D ∼ D′,

T (P,Q)(α) ≥ f(α), ∀α ∈ [0, 1],

where P = M(D), Q = M(D′), and T (P,Q)(α) is the minimal type-II error at type-I error ≤ α.

Gaussian DP (GDP) is the special case where f is the tradeoff curve between N (0, 1) and N (µ, 1)
with privacy parameter µ. Pierquin et al. (2025) proposes a key property which is robustness to
approximation errors:
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Lemma 1 (Total Variation Robustness). If dTV(P, P̃ ) ≤ γ and dTV(Q, Q̃) ≤ γ, then for all
α ∈ (γ, 1− γ),

T (P,Q)(α) ≥ T (P̃ , Q̃)(α+ γ)− γ.

Thus one may approximate complex output distributions by Gaussian surrogates, losing only O(γ)
in tightness.

3.3 DIFFERENTIALLY PRIVATE STOCHASTIC GRADIENT DESCENT

DP–SGD (Abadi et al., 2016) is the default for training private deep models. At each iteration t,
a minibatch Bt (Poisson rate q = b/n) is drawn, per-example gradients are clipped, and Gaussian
noise is added:

gt =
1
b

∑
ξ∈Bt

clipC(∇wℓ(wt; ξ)), g̃t = gt + σC
b ζt, ζt ∼ N (0, I),

wt+1 = wt − ηtg̃t.

Here C is the clipping threshold, σ the noise multiplier, and ηt the learning rate. Privacy can be
tracked through accountant methods such as RDP (Mironov, 2017), PRVs (Gopi et al., 2021) or
f -DP. For our purposes, clipping and noise enforce training stability, which links DP–SGD with
privacy amplification under latent randomness.

4 THE MECHANISMS OF PRIVACY AMPLIFICATION IN NEURAL NETWORKS

4.1 PROBLEM DEFINITION AND ASSUMPTIONS

We focus on a single-release black-box mechanism first. Neighboring datasets D and D′ are trained
with DP–SGD under the same initialization. At deployment, the trained model produces an output
XD = fwD

(Z),and XD′ = fwD′ (Z), where fw is the generative model, Z ∼ N (0, Id) is a latent
Gaussian input hidden from the adversary. The adversary does not access X directly, but evaluates
a fixed scalar score s(·) (e.g. a calibration loss or a linear probe), giving the released quantities

YD = s(XD), YD′ = s(XD′).

Although we present the scalar case for clarity, the extension to vector outputs X ∈ Rm is justi-
fied by a later Gaussianization step: once the two distributions are approximated by equal-variance
Gaussians, the effective separation depends only on a one-dimensional projection ⟨u,X⟩. More
generally, our results apply to any fixed scalar score s(X) with bounded output derivative (including
linear probes), and the ensuing RKHS bounds are uniform in u. Thus the scalar analysis provides
valid bounds for vector outputs while keeping the notation simple. We adopt the standard coupled
execution (identical mini-batches and DP noise for D and D′), which affects only the analysis and
not the mechanism itself. More detailed discussion can be found at Appendix B.2.

The LPK aggregates gradient features along the optimization path,

Kℓ,T (z, z
′) =

∫ T

0

⟨∇wℓ(w(t), z),∇wℓ(w(t), z
′)⟩dt,

and provides a natural geometry for comparing outputs induced by different datasets. Since the LPK
depends on the dataset, we place both D and D′ in the common RKHS of the dominating kernel

K⊕
ℓ,T := KD

ℓ,T + KD′

ℓ,T .

All RKHS norms and kernel expectations in what follows are taken with respect to K⊕
ℓ,T .

Assumption 1 (Model and Gaussian regularity). fθ is a finite-width, differentiable neural network
with 1-Lipschitz activations. The release score s : Rout → R is β-smooth in its argument and has
bounded gradient ∥∇xs(x)∥ ≤ Λs. For Z ∼ N (0, Id), let YT (Z) := s(fwT

(Z)). We assume the
following moments are finite:

E
∥∥∇zYT (Z)

∥∥4 < ∞, E
∥∥∇2

zYT (Z)
∥∥4
HS

< ∞,

where gradients in z act on the composite map z 7→ s(fwT
(z)).
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Assumption 2 (Near-isotropic kernel scale in effective dimension). There exists CT > 0 such that
for probes W,W ′ i.i.d.∼ Π (the sampling law used at release time), the following scaling relations
hold for the loss path kernel built from the training loss ℓtrain:

EK⊕
ℓ,T (W,W ) = Θ(CT deff), EW,W ′K⊕

ℓ,T (W,W ′) = Θ(CT ),

where deff := EK⊕
ℓ,T (W,W )

/
EW,W ′K⊕

ℓ,T (W,W ′).

Assumption 3 (Lipschitz continuity of loss gradients). There exists Lℓ < ∞ such that for all
t ∈ [0, T ] and inputs z,

∥∇wℓtrain(wD(t); z)−∇wℓtrain(wD′(t); z)∥ ≤ Lℓ ∥wD(t)− wD′(t)∥.
This holds with Lℓ ≤ Λtrain Lg if ∥∇f ℓtrain(f, z)∥ ≤ Λtrain and ∥∇wf(w, z) − ∇wf(w

′, z)∥ ≤
Lg∥w − w′∥.

Assumption 1 provides the Gaussian regularity for the released scalar YT (Z) = s(fwT
(Z)), which

we use in the Gaussianization step and in controlling the concentration of the relevant quantities.
Assumption 2 relates the LPK’s diagonal scale to the effective input dimension deff and ensures
that the variance side does not degenerate. Assumption 3 controls the Lipschitz continuity of per-
example training-loss gradients along the path, which is used in the stability recursion.

4.2 PATH KERNEL STABILITY IN DP–SGD

To connect path-wise stability of training losses with black-box scores, we pass from the loss path
kernel to score path kernels. By the chain rule ∇ws(w; z) =

(
∂fs
)
(fw(z), z)∇wf(w, z), and if

∥∂fs∥ ≤ Λs while the network satisfies Assumption 1, then the score kernel

Ks,T (z, z
′) :=

∫ T

0

⟨∇ws(w(t); z), ∇ws(w(t); z
′)⟩dt

is dominated in Loewner order by the loss kernel: Ks,T ⪯ c2sKℓ,T for some cs = O(Λs). Hence

∥∆s∥H(K⊕
s,T ) ≤ cs ∥∆ℓ∥H(K⊕

ℓ,T ),

so any LPK-space stability bound automatically upper-bounds discrepancies of admissible scores.

This reduction motivates carrying out the analysis directly in H(K⊕
ℓ,T ): under clipping, subsampling,

and Gaussian noise, neighboring datasets yield generators whose score discrepancies are controlled
at the function level, without requiring their parameter trajectories to remain close.

In DP–SGD, each step uses Poisson sampling with rate q = b/n, applies clipping with threshold
C > 0 to per-example gradients, and adds Gaussian noise at the mini-batch level. In what follows
we focus on the fixed subsampling rate. For neighboring datasets D,D′, we use a coupled execution
with identical mini-batches and noise.

Let ED
T :=

∫ T

0
∥ẇD(t)∥2 dt and ED′

T :=
∫ T

0
∥ẇD′(t)∥2 dt, and write E⊕

T := ED
T + ED′

T . Set
∥η∥2 = (

∑T−1
t=0 η2t )

1/2, where {ηt} is the learning-rate schedule.

Proposition 1 (LPK stability under DP–SGD). Under Assumption 3 and the coupled execution,

E
∥∥∆ℓ

∥∥
H(K⊕

ℓ,T )
≤ BT

n
(1)

with

BT = 2C

√E⊕
T ∥η∥2 e c1L

2
ℓ∥η∥

2
2 +

√∑
t η

2
t

q

 , (2)

where c1 > 0 is a constant independent of n, T . If
∑

t η
2
t = O(1), then e c1L

2
ℓ∥η∥

2
2 = O(1).

Proof Sketch. Write ϕD
t (z) = ∇wℓ(wD(t); z) and similarly for D′. Along each path,

ℓ(wT ; z)− ℓ(w0; z) =

∫ T

0

⟨ϕD
t (z), ẇD(t)⟩dt,

5
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and the difference between D and D′ admits the symmetric representation in the RKHS of K⊕
ℓ,T .

Cauchy–Schwarz in feature space gives ∥∆ℓ∥H(K⊕
ℓ,T ) ≤

√
E⊕

T times a factor controlled by the
velocity discrepancy. The one-step recursion for ∆t = wt(D)− wt(D

′),

E∥∆t+1∥2 ≤ (1 + cL2η2t )E∥∆t∥2 + c η2t (2C/b)2q,

avoids any Grönwall factor in ST ; iterating yields E
∑

t η
2
t ∥gt − g′t∥2 ≲

(
2C
n

)2
eO(L2∥η∥2

2)
∑

t η
2
t +(

2C
n

)2∑
t η

2
t

q . Combining with the feature-space bound gives equation 1.

Proposition 1 shows that, under clipping, noise, and subsampling, the LPK distance between models
trained on neighboring datasets decays at rate 1/n. The dependence on the learning-rate schedule
enters through

∑
t η

2
t , which remains O(1) under standard decaying schedules. This function-level

stability is the interface to the high-dimensional Gaussian input geometry used in the next section.

4.3 GAUSSIAN APPROXIMATION ERROR

To connect stability bounds with testing tradeoffs, we approximate the law of each scalar release by
a Gaussian with matched mean and variance, and quantify the resulting approximation error.

Let Z ∼ N (0, Id) be independent of the training data and consider a scalar release

YD = s
(
fwD

(Z)
)
∈ R, YD′ = s

(
fwD′ (Z)

)
∈ R,

where fwT
is the trained generator and s is the fixed scalar score used at release time. Write µD =

EYD, σ2
D = Var(YD) (and analogously for D′). Define the Gaussian approximation error

γd := max
{
dTV

(
(YD − µD)/σD, N (0, 1)

)
, dTV

(
(YD′ − µD′)/σD′ , N (0, 1)

)}
.

We record two complementary total-variation bounds for the single-release scalar output Y . The
first applies to deterministic maps Y = g(Z) and rests on second-order Poincaré (Nourdin &
Peccati, 2012) on Gaussian space (in our setting one may take g(z) = s(fwT

(z))). The second
exploits a conditionally Gaussian (variance–mixture) structure that captures many samplers (VAE
decoders, diffusion reverse steps, temperature noise), and yields an O(1/deff) rate under mild vari-
ance–concentration. While the variance–mixture bound aligns naturally with modern generators
and is easy to verify, the second-order Poincaré bound can deliver faster asymptotic rates when
higher-order derivative moments are controlled; the two are thus complementary.

Proposition 2 (Generic bound via second-order Poincaré). Let Z ∼ N (0, Id) and Y = g(Z) with
σ2 := Var(Y ) > 0. Define

Lx :=
(
E∥∇zg(Z)∥4

)1/4
, Hx :=

(
E∥∇2

zg(Z)∥4HS

)1/4
.

Then

dTV

(
L(Y ), N (EY, σ2)

)
= O

(Lx Hx

σ2

)
.

In particular, if Lx = O(1) and Hx = O(d−β
eff ) for some β ∈ (0, 1] and σ2 = Θ(deff), then

dTV = O
(
d
−(1+β)
eff

)
.

Inspired by Favaro et al. (2025), a more specific and less assumption-intensive bound for condition-
ally Gaussian outputs is as follows.

Proposition 3 (Variance–mixture bound for conditionally Gaussian outputs). Suppose that, for some
auxiliary sampler state S, the release is conditionally Gaussian with A = σ2(S) ≥ 0:

Y | S ∼ N
(
0, A

)
, σ2 := Var(Y ) = E[A] > 0.

Then

dTV

(
L(Y ), N (0, σ2)

)
≤ 8Var(A)

σ4
= O

(Var(A)

σ4

)
.

In particular, if Var(Y ) = Θ(deff) and Var(A) = O(deff), then dTV = O
(
d−1
eff

)
.

6
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Remark. Proposition 2 is assumption-light in structure but depends on curvature moments of g;
when specified assumptions are hold, it is potentially faster than 1/deff . Proposition 3 relies on a
conditional-Gaussian structure; this structure holds in many generators (e.g., VAEs, diffusion with
Gaussian injections), making the bound practically convenient though sometimes looser asymptot-
ically. Both bounds are scale-invariant through the σ−2 factors and integrate seamlessly with our
f -DP robustness transfer.

We next combine Gaussianization with an equal-variance alignment. For a scalar Y with Var(Y ) =
σ2 > 0, define the standardized Gaussianization error

γ(Y ) := dTV

(
(Y − EY )/σ, N (0, 1)

)
.

Given the releases YD = s(fwD(T )(Z)) and YD′ = s(fwD′ (T )(Z)), set

γd := max
{
γ(YD), γ(YD′)

}
.

To compare with equal-variance Gaussian surrogates, write

σ2
D := Var(YD), σ2

D′ := Var(YD′), σ̄2 := 1
2 (σ

2
D + σ2

D′).

Define the equal-variance slack

ω := c0
|σ2

D − σ2
D′ |

σ̄2
, (3)

for a universal constant c0 > 0. Its scaling can be bounded in expectation as ω = Õ
(
1/(n

√
CT deff)

)
,

as established in Lemma 8.

Lemma 2 (Reduction to equal-variance Gaussian surrogates). With γd and ω as above, for any
α ∈ (γd + ω, 1− γd − ω),

T
(
PYD

, PYD′

)
(α) ≥ T

(
N (EYD, σ̄2), N (EYD′ , σ̄2)

)(
α+ γd + ω

)
− (γd + ω).

Proof Sketch. Apply TV–robustness to pass from (PYD
, PYD′ ) to (N (EYD, σ2

D),N (EYD′ , σ2
D′))

incurring a horizontal/vertical shift γd; then replace each marginal by its equal-variance version,
which adds ω.

4.4 FROM PATH STABILITY TO TEST INDISTINGUISHABILITY

We now switch from path-wise stability to the indistinguishability of the released scores YD =
s(fwD(T )(W )) and YD′ = s(fwD′ (T )(W )) under probe inputs W ∼ Π (as in Assumption 2).
The key quantity is the GDP parameter that controls the optimal tradeoff curve. Throughout this
subsection the RKHS is the common space H

(
K⊕

ℓ,T

)
introduced in §4.1, and kernel expectations

are taken with respect to K⊕
ℓ,T .

Theorem 1 (Privacy amplification under effective dimension). Under Assumptions 1–2, with fixed
subsampling rate q = b/n, and with γd, ω defined above, for any α ∈ (γd + ω, 1− γd − ω),

T
(
PYD

, PYD′

)
(α) ≥ Gµeff

(α+ γd + ω) − (γd + ω), µeff ≲

∥∥∆f
∥∥
H(K⊕

ℓ,T )√
EK⊕

ℓ,T (W,W )
.

Combining Proposition 1 with Assumption 2 yields the upper-envelope scaling

Eµeff ≲
1

n
√
CT deff

.

Proof Sketch. By Lemma 2, it suffices to compare the equal-variance Gaussian pair N (EYD, σ̄2)
vs. N (EYD′ , σ̄2) at the shifted level α+ γd + ω, whose tradeoff is Gµ with µ = |EYD − EYD′ |/σ̄.
Bounding the mean gap and the variance scale in H(K⊕

ℓ,T ) via Lemmas 9–10 and Assumption 2
gives the displayed µeff . Injecting Proposition 1 finishes the proof.

The quantities γd and ω capture the Gaussianization error and the equal-variance adjustment,
which act only as small horizontal/vertical shifts in the tradeoff curve (Lemma 2). Typically
γd = O(1/deff) (or faster under smoothness) and E[ω] = Õ(1/(n

√
CT deff)), so both are higher-

order. The dominant term is the effective parameter: while Theorem 1 certifies µeff = O(d
−1/2
eff ), in
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practice it often decays faster, since CT may grow with deff , near-isotropy may hold with slack, and
DP noise further reduces ∥∆f∥H. Thus empirical curves usually lie below the d

−1/2
eff guide, and the

theorem should be read as an upper envelope rather than a tight rate.

4.5 COMPOSITION ACROSS MULTIPLE RELEASES

We now quantify black-box distinguishability when m i.i.d. probe inputs are released. Let
W1, . . . ,Wm

i.i.d.∼ Π and define

YD =
(
s(fwD

(W1)), . . . , s(fwD
(Wm))

)
,YD′ =

(
s(fwD′ (W1)), . . . , s(fwD′ (Wm))

)
.

From Theorem 1, we have the single-release envelope with Gaussianization slack γd and equal-
variance slack ω from §4.3. Write ε := γd + ω. For m releases, the product-level slack

Γm := max
{
dTV

(
PYD

, P̃⊗m
)
, dTV

(
PYD′ , Q̃

⊗m
)}

+ max
{
dTV

(
P̃⊗m, P̄⊗m

)
, dTV

(
Q̃⊗m, Q̄⊗m

)}
, (4)

compares the true distributions to their Gaussian and equal-variance surrogates. By a hybrid argu-
ment and Hellinger tensorization (App. C.4), there exists a constant c1 > 0 such that

Γm ≤ c1 min
{
mε, 2

√
mε

}
. (5)

Theorem 2 (GDP envelope for m releases with explicit slacks). Under the assumptions of Theo-
rem 1 and independent probe draws across releases, for any α ∈ (Γm, 1− Γm),

T
(
PYD

, PYD′

)
(α) ≥ G

µ
(m)
eff

(
α+ Γm

)
− Γm, µ

(m)
eff ≤

√
mµ

(1)
eff . (6)

Moreover, combining Theorem 1 with Assumption 2,

Eµ
(m)
eff ≲

√
m

n
√
CT deff

.

From Proposition 3 or Proposition 2, one typically has γd = O(1/deff) or O
(
d
−(1+β)
eff

)
, while (cf.

App. C.3) ω = Õ
(
1/(n

√
CT deff)

)
in expectation. Hence, for large deff and moderate m,

Γm = O
(
min{m/deff ,

√
m/deff }

)
, (7)

with the dominant contribution from γd. Together, these bounds show that the signal side composes
sublinearly (µ(m)

eff ∝
√
m), while the slack side remains small as long as m ≪ deff , so that the

overall envelope remains close to the ideal GDP curve.

5 SIMULATION AND EMPIRICAL EVIDENCE

We provide a minimal set of simulations to illustrate the behavior predicted by our theory. All
experiments are based on a small VAE trained on MNIST using DP-SGD. Quantities in Theorem 1
are estimated post hoc using Gaussian probes Z ∼ N (0, Id) and a smooth calibration score, without
per-example access. Implementation details are deferred to Appendix D.1.

Envelope vs. empirical tradeoff. Figure 2a compares our adjustable GDP envelope with the formal
accountant baseline and the empirical black-box MIA result by Annamalai et al. (2024). The new
bound lies above the baseline and matches the empirical curve more closely, showing that LPK-
based stability combined with latent randomness captures the observed amplification effect.

Scaling with effective dimension and dataset size. Our theory predicts two complementary decay
behaviors. First, Theorem 1 implies that µeff decreases at least as O(d

−1/2
eff ) under near-isotropy.

Figure 2b confirms this trend: µ̂eff decreases monotonically with deff , and the empirical slope is
often steeper, consistent with the remark following Theorem 1. Second, Proposition 1 predicts that
the LPK discrepancy decays as 1/n. Figure 2c supports this prediction: Monte Carlo estimates of
∥∆f∥H follow an approximate 1/n slope on log–log axes, with mild deviations due to the learning-
rate schedule.

8
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Figure 2: Simulation results validating the theoretical analysis.

Gaussianization and variance slacks. Propositions 2 and 3 yield bounds on the Gaussian approxi-
mation error γd, while Lemma 2 introduces the equal-variance slack ω. Figure 2d shows both quan-
tities remain small in practice (γd = O(1/deff) or faster; ω further suppressed by 1/n), supporting
their role as higher-order correction terms in the GDP reduction.

Multiple releases. Theorem 2 states that the effective parameter composes sublinearly, µ(m)
eff ≤

√
mµ

(1)
eff , with product-level slack Γm small whenever m ≪ deff . We illustrate this relationship

in Figure 2e. We use the Area Under the Curve (AUC) of the tradeoff curve to measure privacy
protection, which is A(T ) :=

∫ 1

0
T (α) dα. A larger value indicates stronger privacy protection.

As m increases, privacy protection gradually weakens, converging to the baseline level at a certain
threshold. This is primarily because the increase in Γd causes the new tradeoff curve to gradually
drift overall until it no longer contributes to the envelope.

6 CONCLUSION

We revisited privacy amplification in differentially private generative models from a test-centric f -
DP perspective. By combining function-level stability under DP–SGD with high-dimensional latent
randomness, we derived GDP-style envelopes that capture the empirically observed gap between
black-box MIAs and worst-case accounting. Our results highlight that distinguishability decays
with dataset size and effective input dimension, and that stability can be tracked post hoc using path
kernels and Gaussian probes. Together, these findings offer a principled explanation for why DP-
trained generators often appear more private in practice, and provide a quantitative tool for guiding
model selection, hyperparameter tuning, and risk assessment in realistic pipelines.

A key direction for future research is the development of sharper Gaussian approximation tech-
niques and more refined treatments of composition effects. This is especially critical for conditional
generative models, where auxiliary variables could amplify attack power. Such research holds the
promise of yielding both tighter theoretical guarantees and broader practical applicability.
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A GENERAL STATEMENTS AND BROADER CONTEXT

A.1 REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we have included all necessary materials in the appendices
and supplementary files. Complete proofs for all theoretical results are available in the appendix.
The supplementary material contains the full source code for our numerical simulations and exper-
iments. Further details on the experimental setup and hyperparameters are provided in Appendix
D.1.

A.2 DECLARATION ON THE USE OF AI-ASSISTED TECHNOLOGIES

During the preparation of this work, the authors used ChatGPT and Gemini as writing assistants to
enhance the text’s readability and linguistic accuracy. The use of this tool was confined to improving
grammar and rephrasing sentences for clarity. All AI-generated suggestions were reviewed and
edited by the authors, who take full responsibility for the scientific integrity and entire content of
this publication, as stipulated by the ICLR Code of Ethics.

B THEORETICAL BACKGROUND AND SETUP

B.1 A PRIMER ON LOSS PATH KERNELS (LPK)

One of the core analytical tools in this paper is the Loss Path Kernel (LPK) (Chen et al., 2023). We
provide a brief background and clarifies its role in our work.

B.1.1 MOTIVATION: BEYOND STATIC KERNELS

A well-known tool in the theoretical analysis of neural networks is the Neural Tangent Kernel
(NTK) (Jacot et al., 2018). The NTK characterizes the evolution of infinite-width neural networks
under gradient descent, revealing a deep connection to kernel methods. However, a primary limita-
tion of NTK theory is its reliance on the infinite-width limit, where network parameters are assumed
to stay close to their initialization values. This makes the NTK a static kernel, largely fixed at the
beginning of training, which struggles to fully capture the complex feature learning that occurs in
finite-width networks during practical training.

The LPK was introduced to overcome this limitation. Unlike the NTK, the LPK is a dynamic, data-
and algorithm-dependent kernel. It is not fixed at a single point in time but is defined by integrating
gradient information over the entire optimization path. This allows the LPK to capture the full
training dynamics, offering a more precise and informative lens for analyzing the generalization and
stability of neural networks.

B.1.2 DEFINITION OF THE LPK

The central idea of the LPK is to measure the similarity between two data points by comparing their
respective loss gradients throughout the entire training process.
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Definition 2 (Loss Path Kernel (LPK)). Suppose the parameters of a neural network, w, follow a
continuous path w(t) for t ∈ [0, T ], determined by a training set S and an optimization algorithm.
For any two data points z and z′, the Loss Path Kernel along this path is defined as:

KT (z, z
′;S) ≜

∫ T

0

⟨∇wl(w(t), z),∇wl(w(t), z′)⟩dt,

where l(w(t), z) is the loss of the model with parameters w(t) on data point z, and ⟨·, ·⟩ denotes
the inner product of the gradient vectors.

By definition, the LPK is a valid kernel function as it is symmetric and its corresponding kernel
matrix is positive semi-definite.

B.1.3 CONNECTION TO RKHS

As a valid kernel, the LPK naturally defines a RKHS. More importantly, it establishes a key equiva-
lence: the loss function of a neural network trained by gradient flow at any time T is equivalent to a
general kernel machine equipped with the LPK. This equivalence is powerful because it allows the
analysis of complex neural network dynamics to be translated into the analysis of functions within
the more structured framework of an RKHS.

B.1.4 ROLE IN THIS WORK

In our study of differential privacy, the LPK plays an indispensable role. A central thesis of this paper
is that the DP-SGD algorithm induces function-level stability. This means that when a model is
trained on two neighboring datasets, D and D′, the resulting functions fwD and fwD′ are close in a
function space, even if their parameters wD and wD′ are far apart in parameter space.

The LPK provides the theoretical framework to precisely quantify this notion of ”function-level
closeness.” Specifically:

• Provides the Geometric Space: The RKHS defined by the LPK is the appropriate geome-
try for measuring the distance between the two model functions. Our analysis is grounded
in the common RKHS of the dominating kernel K⊕

ℓ,T .

• Connects Training Dynamics to Output Stability: Our key stability result, Proposi-
tion 1, is derived directly from analyzing the DP-SGD dynamics within the LPK RKHS.
By bounding the norm distance ∥∆ℓ∥H(K⊕

ℓ,T ) between the two loss functions in this space,
we can directly derive bounds on the distinguishability of the models’ outputs.

• Frees the Analysis from Parameter Proximity: By using the LPK, our analysis does not
need to assume that ∥wD −wD′∥ is small. This makes our framework better suited to the
non-convex optimization landscape of deep learning and provides a more solid foundation
for explaining the privacy amplification effects observed in black-box settings.

In summary, the LPK serves as the crucial bridge connecting the dynamics of DP-SGD training to
the black-box privacy guarantees of the final generative model.

B.2 ADDITIONAL DETAILS ABOUT THE PROBLEM DEFINITION AND ASSUMPTIONS

In the main text we distinguished between the raw model output

XD = fwD
(Z), XD′ = fwD′ (Z),

and the released scalar values

YD = s(XD), YD′ = s(XD′).

Here fw is the generative model, Z ∼ N (0, Id) is the latent input, and s(·) is a fixed score used by
the adversary. This separation emphasizes that the actual black-box outputs can be high-dimensional
(e.g. images), while our analysis concerns scalar statistics derived from them.

Although we focus on the scalar case in the main text, this is without loss of generality. For vector
outputs Y ∈ Rm, after Gaussianization, the problem reduces to equal-variance Gaussians, for which
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the optimal test is linear, and the separation parameter is

µvec = sup
u∈Sm−1

|E⟨u, YD⟩ − E⟨u, YD′⟩|√
Var(⟨u, Y ⟩)

.

Since our RKHS bounds hold uniformly over u, the scalar analysis extends directly to vectors.

The loss path kernel (LPK) used in the analysis is defined in terms of the per-example training loss
ℓtrain, not the release score s. It aggregates per-example gradients along the optimization path,

Kℓ,T (z, z
′) =

∫ T

0

⟨∇wℓtrain(w(t); z),∇wℓtrain(w(t); z
′)⟩dt,

and provides a geometry for measuring the discrepancy between neighboring training runs. The
bridge to s is given by bounded output derivatives: if ∥∇fs∥ ≤ Λ, then differences in YD, YD′ can
be controlled (up to Λ) by the same H(K⊕

ℓ,T ) norm that governs stability under ℓtrain. This explains
why the subsequent analysis, although stated in terms of the LPK, applies to the black-box releases
YD, YD′ .

In the problem definition we fixed Z ∼ N (0, Id) for clarity. Assumption 2 is stated more generally
for probes W,W ′ ∼ Π, where Π is the distribution used at release time. This formulation covers
Gaussian inputs as well as samplers with injected noise or variance mixtures. The ratio

deff :=
EK⊕

ℓ,T (W,W )

EW,W ′K⊕
ℓ,T (W,W ′)

plays the role of an effective input dimension, ensuring that the variance of released outputs does
not degenerate as dimension grows.

Finally, we recall the roles of the assumptions. Assumption 1 provides Gaussian regularity for
Malliavin–Stein bounds and for concentration of the LPK scale. Assumption 2 ties the kernel’s
diagonal scale to deff , guaranteeing non-trivial output variance. Assumption 3 controls Lipschitz
continuity of loss gradients along training, which is used to bound discrepancies in the stability
recursion. Together, these assumptions ensure that the LPK geometry faithfully captures differences
between neighboring datasets under DP–SGD training.

C PROOFS OF MAIN RESULTS

C.1 PROOF OF PROPOSITION 1

We keep the setting of §4.2. For DP–SGD with Poisson subsampling rate q = b/n, clipping thresh-
old C > 0, and batch noise multiplier σ,

wt+1 = wt − ηt

1

b

∑
ξ∈Bt

clipC(∇ℓ(wt; ξ)) + σ
C

b
ζt

 , ζt ∼ N (0, I).

Under the coupled execution (same mini-batches and same ζt on D and D′), write

∆t := wt(D)− wt(D
′), δgt := gt − g′t, δvt := ηtδgt,

so that ∆t+1 = ∆t − δvt. Throughout, c, c1, c2 > 0 denote absolute constants that may change line
to line.

Discrete-time interpolation and feature maps. On each interval [t, t+1) use the piecewise-linear
interpolation wD(s) = wt(D)+ (s− t)

(
wt+1(D)−wt(D)

)
and similarly for D′; the path energies

are

ED
T =

∫ T

0

∥ẇD(s)∥2 ds =
T−1∑
t=0

∥wt+1(D)−wt(D)∥2, ED′

T analogously, E⊕
T := ED

T +ED′

T .

Let ϕD
t (z) := ∇wℓ(wD(t), z) and ϕD′

t (z) := ∇wℓ(wD′(t), z). By definition of the LPK, the RKHS
of the dominating kernel K⊕

ℓ,T := KD
ℓ,T +KD′

ℓ,T is the Hilbert direct sum H(KD
ℓ,T )⊕H(KD′

ℓ,T ). For
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any square-integrable weight v : [0, T ] → Rdim(w),

gDv (z) :=

∫ T

0

⟨ϕD
s (z), v(s)⟩ds ∈ H(KD

ℓ,T ), ∥gDv ∥H(KD
ℓ,T ) ≤

(∫ T

0

∥v(s)∥2ds
)1/2

, (8)

and similarly for D′ (reproducing property plus the definition of Kℓ,T ).

Lemma 3 (One-step bound on the clipped batch means). Under Assumption 3, for all t,

∥δgt∥ ≤ Lℓ ∥∆t∥ +
2C

b
1{hit(t)},

where 1{hit(t)} indicates that the differing example is drawn into the batch at step t; for Poisson
subsampling, E[1{hit(t)}] = q and E[1{hit(t)}2] = q.

Proof. If the differing sample is not drawn, the two batches coincide and w 7→
1
b

∑
ξ∈Bt

clipC(∇ℓ(w; ξ)) is L-Lipschitz since clipping is a projection to the C-ball and ∇ℓ(·; ξ)
is L-Lipschitz by Assumption 3. If the batches differ by one example, their means differ by at most
2C/b.

Lemma 4 (Quadratic-moment recursion and its solution). Let At := E∥∆t∥2. Then

At+1 ≤
(
1 + c1L

2
ℓη

2
t

)
At + c2 η

2
t (2C/b)2 q. (9)

Consequently, with ∥η∥22 =
∑T−1

t=0 η2t ,

max
0≤t≤T

At ≤ c3

(
2C
n

)2
exp
(
c1L

2
ℓ∥η∥22

) T−1∑
s=0

η2s , (10)

T−1∑
t=0

At ≤ c4

(
2C
n

)2
exp
(
c1L

2
ℓ∥η∥22

) T−1∑
s=0

η2s . (11)

Proof. From ∆t+1 = ∆t − ηtδgt and Lemma 3,

E∥∆t+1∥2 ≤ E∥∆t∥2 + η2t E∥δgt∥2 ≤ E∥∆t∥2 + 2L2η2t E∥∆t∥2 + 2η2t

(
2C
b

)2
q,

which is equation 9. Iterating the linear recursion and using q = b/n gives equation 10–equation 11.

Lemma 5 (Velocity discrepancy energy). With δvt = ηtδgt,

E
T−1∑
t=0

∥δvt∥2 ≤ c5

(
2C
n

)2
e c1L

2∥η∥2
2

∑
t

η2t + c6

(
2C
n

)2 ∑
t η

2
t

q
. (12)

Proof. Use Lemma 3, (a+ b)2 ≤ 2a2+2b2, take expectations and sum; then apply equation 10 and
q = b/n.

Lemma 6 (Representation in the dominating LPK RKHS). Let ∆ℓT (z) := ℓ(wD(T ); z) −
ℓ(wD′(T ); z) and write ϕD

s (z) := ∇wℓ(wD(s); z), ϕD′

s (z) := ∇wℓ(wD′(s); z). In the direct-sum
RKHS H(K⊕

ℓ,T ),

∆ℓT (z) =

∫ T

0

⟨ϕD
s (z), ẇD(s)⟩ ds +

∫ T

0

⟨−ϕD′

s (z), ẇD′(s)⟩ ds,

and therefore

∥∆ℓT ∥H(K⊕
ℓ,T ) ≤

√
E⊕

T . (13)

Moreover, with v̄ := 1
2 (ẇD + ẇD′) and δv := ẇD − ẇD′ ,

∆ℓT = 1
2

∫ T

0

⟨ϕD
s + ϕD′

s , δv(s)⟩ds + 1
2

∫ T

0

⟨ϕD
s − ϕD′

s , v̄(s)⟩ds, (14)
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and hence, using Assumption 3 for ∇wℓ,

∥∆ℓT ∥H(K⊕
ℓ,T ) ≤

(∫ T

0

∥δv(s)∥2ds
)1/2

+ Lℓ

(∫ T

0

∥∆w(s)∥2ds
)1/2 (

E⊕
T

2

)1/2
. (15)

Proof. By the reproducing property for H(K⊕
ℓ,T ) and the feature-embedding identity equation 8

with features ϕD, ϕD′
, we have the pathwise representation

ℓ(wD(T ); z)− ℓ(wD(0); z) =

∫ T

0

⟨ϕD
s (z), ẇD(s)⟩ds,

ℓ(wD′(T ); z)− ℓ(wD′(0); z) =

∫ T

0

⟨ϕD′

s (z), ẇD′(s)⟩ds.

Subtracting the two and embedding both terms in the direct sum yields the first display. Applying
Cauchy–Schwarz in H(K⊕

ℓ,T ) gives equation 13. For equation 14, rewrite the sum/difference using
v̄ and δv. Finally, Assumption 3 implies ∥ϕD

s −ϕD′

s ∥ ≤ Lℓ ∥∆w(s)∥, and another Cauchy–Schwarz
in time yields equation 15.

Lemma 7 (Bounding the parameter-difference energy). Let E∆
T :=

∫ T

0
∥∆w(s)∥2ds. Then

EE∆
T ≤ c7

(
2C
n

)2
e c1L

2∥η∥2
2

∑
t

η2t + c8

(
2C
n

)2 ∑
t η

2
t

q
. (16)

Proof. On [t, t+ 1), ∆w(s) = ∆t − (s− t)δvt; integrate the square and sum, then use equation 11
and equation 12.

Conclusion of the proof of Proposition 1. Combine equation 15, Lemmas 5–7, and
√
a+ b ≤√

a+
√
b:

E ∥∆ℓT ∥H(K⊕
ℓ,T ) ≤ c9

[(
E
∑
t

∥δvt∥2
)1/2

+ Lg

√
E⊕

T

2

(
EE∆

T

)1/2]
.

Plugging equation 12–equation 16 yields, up to absolute constants,

E ∥∆ℓT ∥H(K⊕
ℓ,T ) ≤ 2C

n

√E⊕
T ∥η∥2 e c1L

2∥η∥2
2 +

√∑
t η

2
t

q

 ,

which is the displayed bound in Proposition 1 for fixed q. For fixed b, use q = b/n so that√
(
∑

t η
2
t )/q =

√
n/b ∥η∥2, and factor out 1/

√
n to obtain B̃

(b)
T .

C.2 PROOFS FOR THE ONE-SHOT GAUSSIANIZATION BOUNDS

C.2.1 PROOF OF PROPOSITION 2.

Proposition (Generic bound via second-order Poincaré). Let Z ∼ N (0, Id) and Y = g(Z) with
σ2 := Var(Y ) > 0. Define

Lx :=
(
E∥∇zg(Z)∥4

)1/4
, Hx :=

(
E∥∇2

zg(Z)∥4HS

)1/4
.

Then

dTV

(
L(Y ), N (EY, σ2)

)
= O

(Lx Hx

σ2

)
.

In particular, if Lx = O(1) and Hx = O(d−β
eff ) for some β ∈ (0, 1] and σ2 = Θ(deff), then

dTV = O
(
d
−(1+β)
eff

)
.
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Proof. Let G = (Y − EY )/σ with σ2 = Var(Y ) > 0. By the Gaussian second-order Poincaré
inequality (TV version), see (Peccati et al., 2010, Eq. (1.6)),

dTV

(
L(G),N (0, 1)

)
≤ c

(
E∥D2G∥4op

)1/4 (
E∥DG∥4

)1/4
.

Since DG = (∇g(Z))/σ and D2G = (∇2g(Z))/σ, and ∥ · ∥op ≤ ∥ · ∥HS, we get

dTV

(
L(G),N (0, 1)

)
≤ c

1

σ2

(
E∥∇2g(Z)∥4HS

)1/4(
E∥∇g(Z)∥4

)1/4
= O

(HxLx

σ2

)
.

Since dTV(L(Y ),N (EY, σ2)) = dTV(L(G),N (0, 1)), the claim follows. If moreover Lx = O(1),
Hx = O(d−β

eff ) and σ2 = Θ(deff), then dTV = O(d
−(1+β)
eff ).

C.2.2 PROOF OF PROPOSITION 3.

Proposition (Variance–mixture bound for conditionally Gaussian outputs). Suppose that, for some
auxiliary sampler state S, the release is conditionally Gaussian with A = σ2(S) ≥ 0:

Y | S ∼ N
(
0, A

)
, σ2 := Var(Y ) = E[A] > 0.

Then

dTV

(
L(Y ), N (0, σ2)

)
≤ 8Var(A)

σ4
= O

(Var(A)

σ4

)
.

In particular, if Var(Y ) = Θ(deff) and Var(A) = O(deff), then dTV = O
(
d−1
eff

)
.

Proof. Let F := Y and Zσ ∼ N (0, σ2) with σ2 := Var(Y ) = E[A] > 0. Under Y | S ∼ N (0, A)
with A ∈ L2, Proposition 5.4 of Favaro et al. (2025) gives

dTV

(
L(F ),N (0, σ2)

)
≤ 8Var(A)

σ4
.

The O
(
d−1
eff

)
rate follows once Var(Y ) = Θ(deff) and Var(A) = O(deff).

C.2.3 INTERPRETATION OF THE VARIANCE–MIXTURE PARAMETER A

In Proposition 3, the release Y is assumed to be conditionally Gaussian given an auxiliary state S,
with random variance A = σ2(S). This setting arises naturally in many generative pipelines:

• Variational autoencoders (VAE). A decoder typically outputs both a mean and a variance
parameter σ2(z) for latent input z. When we consider a scalar score Y = s(x) of the
generated sample x, the conditional distribution satisfies Y | z ∼ N (µ(z), σ2(z)), and
here A = σ2(z).

• Diffusion models. Each reverse step injects Gaussian noise, xt−1 = gθ(xt, t) + σtϵt, with
ϵt ∼ N (0, I). A final scalar score Y (e.g. a projection of x0) is a linear combination of
these injected noises, so that Y | {ϵt} ∼ N (0, A) with A determined by the noise trajectory
and coefficients along the path.

• Temperature sampling. Sampling from softmax(fθ(x)/τ) is equivalent to perturbing
logits with random noise whose variance depends on the temperature τ . For a scalar score
derived from the sampled label, we can write Y | τ ∼ N (0, τ2σ2

base), hence A = τ2σ2
base.

Thus, A represents the conditional variance contributed by stochastic elements in the generation
process. The variance–mixture bound of Proposition 3 exploits this structure: instead of controlling
high-order derivatives as in the Poincaré approach, it directly relates the Gaussian approximation
error to Var(A), which is often easier to estimate or bound in practice.

C.2.4 PROOF OF LEMMA 2.

Lemma 8 (Equal-variance shift between Gaussians). Let P̃ = N (m,σ2
1), Q̃ = N (m′, σ2

2) and
σ̄2 = 1

2 (σ
2
1 + σ2

2). Define P̄ = N (m, σ̄2), Q̄ = N (m′, σ̄2). Then there exists a universal c0 > 0
such that

dTV(P̃ , P̄ ) + dTV(Q̃, Q̄) ≤ c0
|σ2

1 − σ2
2 |

σ̄2
.
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Consequently, in our setting with YD = fD(Z), YD′ = fD′(Z), the equal-variance slack

ω := c0
|σ2

D − σ2
D′ |

σ̄2

satisfies

E[ω] = O

(
1

n
√
CT deff

)
.

Proof. By Pinsker, dTV(P,Q) ≤
√

1
2 KL(P∥Q). For equal-mean Gaussians,

KL(N (m,σ2
1) ∥N (m, σ̄2)) = 1

2

(
σ2
1

σ̄2
− 1− log

σ2
1

σ̄2

)
.

A Taylor expansion at σ2
1 = σ̄2 yields KL ≤ C

(σ2
1−σ̄2

σ̄2

)2
for a universal C, hence dTV(P̃ , P̄ ) ≤

c
∣∣σ2

1−σ̄2

σ̄2

∣∣. Apply the same bound to (Q̃, Q̄) and note |σ2
1 − σ̄2| + |σ2

2 − σ̄2| = 1
2 |σ

2
1 − σ2

2 |, which
gives the displayed inequality for c0 = 2c.

For the order estimate, observe that σ2
D −σ2

D′ = E[fD(Z)2− fD′(Z)2] = E⟨fD + fD′ , fD − fD′⟩.
Cauchy–Schwarz in the common RKHS gives |σ2

D − σ2
D′ | ≲

√
E∥fD + fD′∥2 ∥∆f∥H. Assump-

tion 2 bounds the first factor as Θ(
√
CT deff), while Proposition 1 yields E∥∆f∥H = O(1/n). Thus

E|σ2
D−σ2

D′ | ≲
√
CT deff/n, and dividing by σ̄2 = Θ(CT deff) gives E[ω] = O(1/(n

√
CT deff)).

C.3 PROOF OF THEORY 1

Throughout this subsection we work in the RKHS of the dominating loss path kernel,

H := H
(
K⊕

ℓ,T

)
, K⊕

ℓ,T := KD
ℓ,T + KD′

ℓ,T ,

and we write expectations with respect to Z,Z ′ i.i.d.∼ N (0, Id). Recall YD = fD(Z) and YD′ =
fD′(Z), and denote σ2

D = Var(YD), σ2
D′ = Var(YD′).

We record the kernel mean embedding and the integral-operator bridge; both are standard and stated
here for completeness.
Lemma 9 (Kernel mean embedding: bridging mean differences). Let H = H(KT ) be the RKHS of
a positive definite kernel KT , and define

µ(·) := E
[
KT (·, Z)

]
∈ H, Z ∼ N (0, Id).

Then for any g ∈ H,

E g(Z) = ⟨g, µ⟩H, ∥µ∥2H = EZ,Z′KT (Z,Z
′).

In particular, for any fD, fD′ ∈ H,
∣∣E fD(Z)− E fD′(Z)

∣∣ ≤ ∥fD − fD′∥H ∥µ∥H.

Lemma 10 (Integral operator: bridging second-moment differences). Let H = H(KT ) and define
T : H → H by

⟨g, T h⟩H := E
[
g(Z)h(Z)

]
.

Then for any fD, fD′ ∈ H,∣∣E fD(Z)2−E fD′(Z)2
∣∣ = ∣∣⟨fD+fD′ , T (fD−fD′)⟩H

∣∣ ≤ (∥fD∥H+∥fD′∥H
)
∥T ∥op ∥fD−fD′∥H,

and moreover ∥T ∥op ≤ EKT (Z,Z).

We now prove Theorem 1. Define the Gaussian approximations P̃ = N (EYD, σ2
D) and Q̃ =

N (EYD′ , σ2
D′).

Proof of Theorem 1. By Proposition 2 and Proposition 3 , set

γd := max
{
dTV

(
(YD − EYD)/σD, N (0, 1)

)
, dTV

(
(YD′ − EYD′)/σD′ , N (0, 1)

)}
,

so that dTV(PYD
, P̃ ) ≤ γd and dTV(PYD′ , Q̃) ≤ γd.
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Step 1 (Gaussianization and robustness). Applying the total-variation robustness of the tradeoff
function (Lemma 1) with ε = γd, for any α ∈ (γd, 1− γd),

T (PYD
, PYD′ )(α) ≥ T (P̃ , Q̃)(α+ γd) − γd. (17)

Step 2 (Equalizing variances). Let σ̄2 = 1
2 (σ

2
D + σ2

D′) and define P̄ = N (EYD, σ̄2), Q̄ =

N (EYD′ , σ̄2). Using the equal-mean Gaussian TV bound (Pinsker–KL or a direct TV/Hellinger
estimate), there exists an absolute constant C such that

dTV(P̃ , P̄ ) ≤ C
|σ2

D − σ̄2|
σ̄2

, dTV(Q̃, Q̄) ≤ C
|σ2

D′ − σ̄2|
σ̄2

.

Write ω := C
|σ2

D−σ̄2|+|σ2
D′−σ̄2|

σ̄2 . A second application of Lemma 1 gives, for all α ∈ (γd+ω, 1−
γd − ω),

T (P̃ , Q̃)(α+ γd) ≥ T (P̄ , Q̄)(α+ γd + ω) − ω. (18)

Combining equation 17–equation 18,

T (PYD
, PYD′ )(α) ≥ T (P̄ , Q̄)(α+ γd + ω) − (γd + ω). (19)

Step 3 (Equal-variance Gaussian pairs yield GDP). For P̄ = N (m1, σ̄
2) and Q̄ = N (m2, σ̄

2), the
Neyman–Pearson tradeoff equals Gµ with µ = |m1 −m2|/σ̄. Hence

T (PYD
, PYD′ )(α) ≥ Gµ(α+ γd + ω) − (γd + ω), (20)

where µ = |EYD−EYD′ |
σ̄ .

Step 4 (Bounding µ in H
(
K⊕

ℓ,T

)
). By Lemma 9 applied with KT = K⊕

ℓ,T ,

|EYD − EYD′ | = |⟨fD − fD′ , µK⟩H| ≤ ∥∆f∥H ∥µK∥H, ∥µK∥2H = EZ,Z′K⊕
ℓ,T (Z,Z

′).

Under Assumption 2, EZ,Z′K⊕
ℓ,T (Z,Z

′) = Θ(CT ) and σ̄2 = Θ
(
EK⊕

ℓ,T (Z,Z)
)
= Θ(CT d). There-

fore

µ ≲
∥∆f∥H(K⊕

ℓ,T )√
EK⊕

ℓ,T (Z,Z)
. (21)

Step 5 (Bounding the equalization slack ω). By Lemma 10 in H = H
(
K⊕

ℓ,T

)
,

|σ2
D − σ2

D′ | ≤
(
∥fD∥H + ∥fD′∥H

)
∥T ∥op ∥∆f∥H, ∥T ∥op ≤ EK⊕

ℓ,T (Z,Z).

Since |σ2
D − σ̄2|+ |σ2

D′ − σ̄2| = 1
2 |σ

2
D − σ2

D′ |,

ω ≲

(
∥fD∥H + ∥fD′∥H

)
∥∆f∥H

EK⊕
ℓ,T (Z,Z)

. (22)

Note that ω appears only as a horizontal slack; it does not need to be absorbed into µ.

Step 6 (Conclusion and rates). Because Gµ(·) is 1-Lipschitz in its argument and nondecreasing in
µ, equation 20 together with equation 21 implies the stated GDP lower bound with

µeff ≲
∥∆f∥H(K⊕

ℓ,T )√
EK⊕

ℓ,T (Z,Z)
.

Taking expectation over the DP–SGD randomness and invoking Proposition 1 (path-kernel stability
under clipping, noise and subsampling),

E ∥∆f∥H(K⊕
ℓ,T )

= O(1/n)

and using Assumption 2, EK⊕
ℓ,T (Z,Z) = Θ(CT d), we obtain

Eµeff = O
(

1
n
√
CT deff

)
with admissible α ∈ (γd + ω, 1− γd − ω) as in equation 19. This completes the proof.
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C.4 TECHNICAL DETAILS FOR MULTI-RELEASE ANALYSIS

This appendix supplies the technical ingredients used in §4.5, keeping the presentation close to the
single-release tools in §4.3 and App. C.3.

TV–Hellinger relations. For any probability measures P,Q on a common measurable space, with
H2(P,Q) := 1

2

∫
(
√
dP −

√
dQ)2,

H2(P,Q) ≤ dTV(P,Q) ≤
√
2H(P,Q). (23)

Hellinger tensorization for i.i.d. products. For m ≥ 1,

H2
(
P⊗m, Q⊗m

)
= 1−

(
1−H2(P,Q)

)m
. (24)

In particular, when H(P,Q) ≪ 1, H
(
P⊗m, Q⊗m

)
≤

√
mH(P,Q).

Equal-variance shift between Gaussians. We reuse Lemma 8 (App. C.3): for P̃ = N (m,σ2
1)

and P̄ = N (m, σ̄2) with σ̄2 = (σ2
1 + σ2

2)/2, there is a universal c0 > 0 such that dTV(P̃ , P̄ ) ≤
c0 |σ2

1 − σ̄2|/σ̄2 (and symmetrically for Q).

Product-level Gaussianization & equal-variance slack. Let PYD
, PYD′ be the true one-release

laws, P̃ , Q̃ their Gaussian surrogates, and P̄ , Q̄ the equal-variance Gaussians. Write ε := γd + ω,
where

γd := max
{
dTV

(
(YD − EYD)/σD,N (0, 1)

)
, dTV

(
(YD′ − EYD′)/σD′ ,N (0, 1)

)}
,

and ω is the equal-variance slack from equation 3. We prove the bound used in equation 5.

Lemma 11 (Growth of the product-level slack). There exists an absolute constant c > 0 such that

Γm := dTV

(
P⊗m
YD

, P̃⊗m
)
+ dTV

(
P⊗m
YD′ , Q̃

⊗m
)
+ dTV

(
P̃⊗m, P̄⊗m

)
+ dTV

(
Q̃⊗m, Q̄⊗m

)
≤ c min{mε, 2

√
mε}.

Proof Sketch. Hybrid (linear) bound. By triangle inequality and a replace-one-coordinate (hybrid)
argument, dTV(P

⊗m, Q⊗m) ≤ mdTV(P,Q) for any pair (P,Q). Summing the four terms yields
Γm ≤ cmε.

Hellinger (square-root) bound. For each of the four terms, apply equation 23 and equation 24:

dTV

(
P⊗m, Q⊗m

)
≤

√
2H
(
P⊗m, Q⊗m

)
≤

√
2mH(P,Q) ≤ 2

√
mdTV(P,Q).

Again summing the four contributions gives Γm ≤ c 2
√
mε. Taking the minimum of the two

completes the proof.

Product-TV sandwich (signal side). For completeness we recall a standard sandwich bound that
we use only as a tool to reason about signal accumulation under products:

Theorem 3 (Product-TV sandwich, e.g. Kontorovich (2025); Polyanskiy & Wu (2025)). Let δ =
dTV(P,Q). Then there exist absolute constants 0 < c ≤ C < ∞ such that

max
{
c min{1,

√
mδ}, Θ

(
min{1, mδ2}

)}
≤ dTV

(
P⊗m, Q⊗m

)
≤ C min{1,

√
mδ}.

This theorem explains the
√
m accumulation of the Neyman–Pearson signal in the Gaussian surro-

gate, which we express in GDP form as µ(m)
eff =

√
mµ

(1)
eff .

Putting the pieces together. Lemma 11 controls the product-level slack Γm that shifts the trade-
off; Theorem 3 controls the signal-side growth and yields the

√
m law for µeff in the Gaussian world.

A final application of the TV-robustness of the tradeoff function (Lemma 1) delivers the main-text
bound equation 6.
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Guide for audits/plots. When instantiating the envelope, we recommend using the explicit slack
Γm = min{mε, 2

√
mε} with ε = γd + ω kept outside of big-O notation, to avoid scale

confusion between m and
√
m. For typical γd = O(1/deff) and negligible ω, this reduces to

Γm = O
(
min{m/deff ,

√
m/deff}

)
, matching equation 7 in the main text.

D IMPLEMENTATION DETAILS AND APPLICATIONS

D.1 PRACTICAL TRACKING OF GDP CERTIFICATES WITH LPK

This section specifies how we estimate the LPK statistics that enter Theorem 1 and the stability
bound of §4.2 from a single DP–SGD trajectory. Let w0, . . . , wT be the parameter path, with step
sizes {ηt}. Let Z,Z ′ i.i.d.∼ N (0, Id) be independent of the training data. We fix a smooth calibration
loss ℓcal(w, z) with bounded output derivative and define the loss path kernel

Kℓ,T (z, z
′) :=

∫ T

0

〈
∇wℓcal(w(t), z), ∇wℓcal(w(t), z

′)
〉
dt,

which we discretize as Kℓ,T (z, z
′) ≈

∑T−1
t=0 ηt ⟨gt(z), gt(z′)⟩ with gt(z) := ∇wℓcal(wt, z).

Throughout, expectations over Z are with respect to the dominating kernel K⊕
ℓ,T ; in the one-run

certificate we approximate EK⊕
ℓ,T ≈ 2EKℓ,T by symmetry of the coupled execution.

D.1.1 ESTIMATING KERNEL SCALES

Draw an i.i.d. probe set {Z(m)}Mm=1 once and reuse it for all t. For each t, compute gt(Z
(m)) and

cache on CPU (no optimizer state). Define Monte Carlo estimates:

K̂ℓ,T (Z
(m), Z(m)) :=

T−1∑
t=0

ηt ∥gt(Z(m))∥2,

K̂ℓ,T (Z
(m), Z(m′)) :=

T−1∑
t=0

ηt ⟨gt(Z(m)), gt(Z
(m′))⟩,

ÊKℓ,T (Z,Z) :=
1

M

M∑
m=1

K̂ℓ,T (Z
(m), Z(m)),

ÊKℓ,T (Z,Z
′) :=

1

M(M − 1)

∑
m ̸=m′

K̂ℓ,T (Z
(m), Z(m′)).

In the common-RKHS convention we use ÊK⊕
ℓ,T (Z,Z) ≈ 2 ÊKℓ,T (Z,Z) and ÊK⊕

ℓ,T (Z,Z
′) ≈

2 ÊKℓ,T (Z,Z
′).

D.1.2 TRACKING THE STABILITY SIDE FROM ONE RUN

Proposition 1 upper-bounds E∥∆f∥H(K⊕
ℓ,T ) by a function of clipping C, noise scale σ, subsampling

rate q = b/n, and the schedule {ηt}, without requiring paired trainings at run time. We therefore
form

B̂T := 2C

√Ê⊕
T ∥η∥2 e c1L

2
ℓ∥η∥

2
2 +

√∑
t η

2
t

q

 , ∥η∥2 =
(∑

t

η2t

)1/2
,

where Ê⊕
T is a path-energy proxy recorded from the run (e.g. Ê⊕

T ≈ 2
∑

t η
2
t ∥gt(Z)∥2 averaged

over probes), and c1 is the absolute constant from the proof. When
∑

t η
2
t = O(1) the exponential

factor is O(1).
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D.1.3 ESTIMATING GAUSSIANIZATION ERROR AND EQUAL-VARIANCE SLACK

For a scalar release Y = fwT
(Z) we measure the Gaussianization error via a projection-based

proxy. Generate a fresh probe set {W (r)}Rr=1 with W (r) i.i.d.∼ N (0, Id). For vector outputs, draw
u1, . . . , uS uniformly on the unit sphere in the output space and set Ys = ⟨us, fwT

(W )⟩; for scalar
outputs take S = 1. Define

γ̂ := max
1≤s≤S

dKS

(Ys − Ȳs

σ̂s
, N (0, 1)

)
,

where dKS is the Kolmogorov–Smirnov distance, Ȳs and σ̂2
s are the empirical mean/variance. This

estimates the γd in §4.3. For the equal-variance slack, let σ2
D and σ2

D′ be the empirical variances of
YD and YD′ under the same probe seed; set

ω̂ := c0
|σ2

D − σ2
D′ |

(σ2
D + σ2

D′)/2
.

In the one-run certificate, we replace ω̂ by the plug-in bound from the proof of Lemma 2, which
yields E[ω] ≲

(
∥∆f∥H/

√
EK

)
·
(
∥fD∥H + ∥fD′∥H

)
/EK. With ∥∆f∥H replaced by B̂T and EK

by ÊK⊕
ℓ,T (Z,Z), we use

ω̂1-run := c0
R̂T B̂T

ÊK⊕
ℓ,T (Z,Z)

, R̂T :=
∥fD∥H + ∥fD′∥H√

ÊK⊕
ℓ,T (Z,Z)

,

where ∥fD∥H is estimated from the same probes via the standard kernel ridge formula (with a small
ridge λ for numerical stability).1

D.1.4 ASSEMBLING THE CERTIFICATE

Given B̂T , ÊK⊕
ℓ,T (Z,Z) and γ̂, define the one-shot effective parameter

µ̂eff :=
B̂T√

ÊK⊕
ℓ,T (Z,Z)

.

The product-level slack for m independent releases is Γ̂m := min{m(γ̂+ ω̂), 2
√
m(γ̂ + ω̂) }. The

corresponding envelope is G√
mµ̂eff

(α+ Γ̂m)− Γ̂m on α ∈ (Γ̂m, 1− Γ̂m).

D.1.5 SIMULATION DETAILS USED IN §5

All figures are computed from a single DP–SGD run of a small MLP-based VAE trained on a stan-
dard image dataset.2 We use a cosine learning-rate schedule, weight decay 10−4, clipping C = 1,
fixed subsampling rate q = b/n, and Gaussian noise σ as stated in the captions. For probe statistics
we take M ∈ {16, 32, 64} Gaussian probes, re-used across t, log every 20–40 steps, and set the
ridge λ = 10−6. For γ̂ we use projection count S ∈ {8, 16, 32} and report the worst direction
(KS);Cramér–von Mises gives consistent values and is used as a cross-check. For the deff sweeps
we vary the latent dimension while keeping architecture and training hyperparameters fixed. For the
n sweeps we hold q fixed and scale b with n.

D.1.6 DIAGNOSTICS, SMOOTHING, AND COST

Numerical stability improves if we: (i) reuse the same probe set across t; (ii) enforce nonempty
mini-batches under subsampling; (iii) apply a small ridge λ to kernel matrices; (iv) median-smooth
µ̂eff across consecutive checkpoints before the final average. Computationally, the overhead is a
first-order pass per checkpoint: O

(
M
∑

t cost(∇wℓcal(·, Z))
)
, typically < 10% wall-clock with

M ≤ 64.

1In practice we use λ ∈ [10−6, 10−5] and check that estimates are insensitive to λ within this range.
2Data details are immaterial for the certificate; we use the MNIST dataset (28×28 grayscale digits) for

reproducibility.
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D.1.7 SANITY CHECKS

Near-isotropy can be diagnosed by checking that ÊKℓ,T (Z,Z) grows approximately linearly with
the latent dimension and that the ratio ÊKℓ,T (Z,Z)/ÊKℓ,T (Z,Z

′) is roughly stable. If not, we
normalize probes or increase M . For the slacks, γ̂ should decrease with effective dimension, and ω̂
should shrink with n; large deviations usually indicate insufficient probes or early-epoch transients.

D.2 APPLICATIONS TO COMMON ARCHITECTURES

This section discusses how the assumptions behind Theorem 1 instantiate in common generative
architectures, and how the effective dimension deff should be interpreted and estimated in each case.
Throughout, near-isotropy is checked with the probe-based diagnostics of Appendix D.1, using the
ratio

deff :=
EK⊕

ℓ,T (W,W )

EW,W ′K⊕
ℓ,T (W,W ′)

, W,W ′ i.i.d.∼ Π,

and the same calibration loss ℓcal as in the experiments.

D.2.1 FULLY-CONNECTED DECODERS AND SHALLOW MLPS

For a width-m MLP with smooth activations (softplus/gelu) and standard width–dimension scal-
ing, Assumption 1 holds with bounded output derivatives and finite Gaussian gradients/Hessians;
Assumption 3 follows from local Lipschitzness of the parameter-to-output Jacobian along the path.
With random Gaussian probes W ∼ N (0, Id), the LPK scale concentrates and near-isotropy typ-
ically gives EK⊕

ℓ,T (W,W ) = Θ(CT d) and EW,W ′K⊕
ℓ,T (W,W ′) = Θ(CT ), so deff ≃ d. Under

these controls, Proposition 2 yields γd = Õ(d−1/2) (often faster when features decorrelate), and
Theorem 1 implies Eµeff = O

(
1/(n

√
d)
)

in the fixed-q regime up to higher-order slacks.

D.2.2 VARIATIONAL AUTOENCODERS (VAE) AND LATENT-GAUSSIAN DECODERS

When sampling uses z ∼ N (0, Idz
) and a smooth decoder x = gθ(z), the natural probe law is

Π = N (0, Idz
) pushed through the score ℓcal(w, z). Assumption 1 reduces to smoothness of the

decoder and bounded ∂f ℓcal; Assumption 3 follows from smoothness of ∇wf . The near-isotropy
scale is typically governed by dz , hence deff ≃ dz . Because the release is often a variance mixture
(conditioning on latent/temperature noise), Proposition 3 applies and gives γd = O(1/deff) under
mild variance concentration, sharpening the Gaussianization side relative to the generic bound.

D.2.3 DIFFUSION SAMPLERS

A T -step reverse diffusion with Gaussian injections admits a Gaussian probe W =
(xT , ηT , . . . , η1) ∼ N (0, Id(T+1)). The effective dimension should account for the sensitivity of
the final sample to the injected noises:

deff ≈ d

(
1 +

T∑
t=1

χt

)
, χt :=

1

d
E
∥∥∥∥∂x0

∂ηt

∥∥∥∥2
F

,

so d ≤ deff ≤ d(1 + T ), with equality on the left for deterministic schedules (e.g. DDIM). Near-
isotropy holds when the noise schedule is well-conditioned and gradients along the path are not
dominated by a narrow subset of timesteps; otherwise the anisotropy is revealed by an inflated
on/off-diagonal ratio and can be mitigated by probe normalization. Conditional Gaussianity makes
Proposition 3 natural here, giving γd = O(1/deff).

D.2.4 NORMALIZING FLOWS

Flows preserve latent dimensionality; with z ∼ N (0, Idz
) and smooth invertible maps, Assump-

tions 1 and 3 hold under standard Jacobian regularity. Near-isotropy and deff ≃ dz follow from
the probe symmetry. Since sampling is deterministic given z, the generic second-order Poincaré
bound (Proposition 2) is the appropriate Gaussianization tool; empirical calibration may be helpful
at moderate dz .
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D.2.5 AUTOREGRESSIVE TRANSFORMERS

We consider a decoder-only Transformer with randomized decoding (temperature or nucleus sam-
pling). Let x1:t−1 be the fixed context and ht the hidden state at step t. Randomness enters through
the sampling mechanism. To align with our probe-based analysis, we model this by injecting inde-
pendent Gaussian probes either (i) in the embedding stream at the sampled positions, or (ii) in the
pre-softmax logits:

et 7→ et + σembξt, or ℓt 7→ ℓt + τ ξt, ξt
i.i.d.∼ N (0, Idemb).

This “Gaussian surrogate” is standard for sensitivity and CLT analyses and closely approximates the
variability introduced by multinomial/Gumbel sampling when σemb, τ match the empirical variance.

Assumption 1 (model and Gaussian regularity) holds because attention blocks (linear maps, softmax,
layer norm, smooth activations) are differentiable and admit bounded local derivatives along the
DP–SGD path; the required ∇zg and ∇2

zg moments follow from spectral controls on the per-layer
Jacobians. Assumption 3 is met under the usual DP–SGD clipping plus weight decay, which bound
the growth of parameter-to-output Lipschitz factors. For Assumption 2, near-isotropy can be checked
empirically by comparing on/off–diagonal LPK scales under probes {ξt}; mild anisotropy can be
mitigated by whitening probes with the estimated covariance of embedding directions.

The effective dimension is governed by the embedding width and the number of stochastic decoding
steps:

deff ≈ demb

m∑
t=1

ρt, ρt ∈ [0, 1] encodes the sensitivity of the score to the t-th probe,

so demb ≤ deff ≤ mdemb. Empirically ρt reflects attention spread and temperature: lower tempera-
tures or very small top-k reduce ρt and hence deff .

On the Gaussianization side, two routes apply. (a) With logit probes ℓt+ τξt, conditional on the net-
work state the scalarized release Y is well-approximated by a Gaussian with variance proportional
to
∑

t ∥∂Y/∂ℓt∥2, yielding the variance–mixture bound γd = O(1/deff) (Prop. 3). (b) With purely
discrete sampling (no explicit Gaussian jitter), the second-order Gaussian Poincaré route (Prop. 2)
applies to the smooth functional g(ξ) obtained by a local linearization of the sampling step, again
leading to γd decaying with deff under standard smoothness.

For the LPK side, the per-step gradient features entering Kℓ,T are the parameter gradients of a
smooth calibration score built from intermediate or final hidden states (e.g., squared norm or a
fixed linear probe). Along clipped, noisy DP–SGD, the resulting function-level discrepancy in the
common RKHS obeys the same stability scaling as in the general theory; the kernel’s expected
on-diagonal scale grows like CT deff , while the off-diagonal stays at Θ(CT ).

Failure modes are informative: deterministic decoding (greedy/beam) effectively sets deff ≈0, elim-
inating amplification; highly anisotropic embeddings or attention collapse can violate near-isotropy,
which should be diagnosed via probe statistics and addressed by whitening or by injecting small
Gaussian logit noise during release. In typical temperature or nucleus sampling with modern de-
coders, the assumptions are well aligned and the predicted d

−1/2
eff envelope (or better) is observed.

D.2.6 DIAGNOSTICS, FAILURE MODES, AND HOW TO PROCEED

Across architectures, the three assumptions admit concrete checks: (i) Model and Gaussian regular-
ity (Assumption 1) reduces to verifying smooth activations, bounded ∂f ℓcal, and finite Gaussian gra-
dient/Hessian moments of the decoder w.r.t. probes; (ii) Near-isotropic kernel scale (Assumption 2)
is diagnosed by comparing Monte Carlo estimates of EK⊕

ℓ,T (W,W ) and EW,W ′K⊕
ℓ,T (W,W ′); (iii)

Lipschitz loss gradients (Assumption 3) follow from path-wise bounds on ∥∇wf∥ under clipping
and smooth blocks. If near-isotropy is violated (e.g. overly concentrated receptive fields, determin-
istic decoding, or attention collapse), one can (a) re-normalize probes to equalize variance across
coordinates or timesteps, (b) switch to a calibration score that restores variance, or (c) report the
conservative envelope with the empirically estimated deff as-is. In all cases, the certificate depends
only on CT , the probe-based kernel scales, and the LPK stability bound, and can therefore be tracked
with the lightweight procedure of Appendix D.1.
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D.3 LIMITATIONS AND FUTURE WORK

This section discusses where our assumptions may weaken, why our bounds are conservative, how
the framework may extend beyond DP–SGD, and what changes under stronger threat models.

D.3.1 ON ASSUMPTIONS

Our results hinge on Assumptions 1–3 and near-isotropy in Assumption 2. Model regularity (As-
sumption 1). While differentiability and local Lipschitzness are satisfied by common smooth ac-
tivations (e.g., GELU/Softplus), hard nonlinearities (ReLU with sharp kinks, max-pooling) or ag-
gressive normalization can inflate local Jacobians and Hessians, weakening the moment bounds that
underlie the Gaussianization rates in §2.3. In practice, replacing nonsmooth units by smooth surro-
gates along the analysis (not necessarily in training) and using empirical probe diagnostics mitigate
this issue. Near-isotropy (Assumption 2). Architectures with strong anisotropy (e.g., narrow bottle-
necks, collapsed attention heads, rank-deficient upsamplers) may yield EK⊕

ℓ,T (W,W ) ≪ CT deff ,
reducing the amplification predicted by Theorem 1. Our probe estimators (App. D.1) explicitly
quantify on/off–diagonal kernel scales; deviations can be addressed by whitening probes or by re-
porting the empirical deff in lieu of nominal latent dimension. Effective dimension. If model design
or decoding choices suppress stochasticity (e.g., deterministic/greedy decoding, very low sampling
temperatures), then deff may plateau even as the nominal dimension grows, limiting the decay of µeff

with dimension. Conversely, architectures that spread sensitivity across layers/time (e.g., diffusion
samplers with multiple Gaussian injections) increase deff .

D.3.2 ON THE LOOSENESS OF BOUNDS

Theorem 1 provides an upper envelope on µeff ; empirical tradeoffs can be strictly stronger. Several
factors contribute to conservatism: (i) constants hidden in ≲ (from Cauchy–Schwarz, union bounds,
and stability recursions) are not optimized; (ii) the Gaussianization term γd and the equal-variance
slack ω are upper-bounded via generic inequalities, whereas empirical estimates (App. D.1) are often
much smaller; (iii) the score domination step Ks,T ⪯ c2sKℓ,T introduces a factor cs that depends
on the chosen calibration loss and can be pessimistic if the downstream score s is less sensitive than
ℓcal. These choices keep the guarantees uniform across scores but may overestimate the worst-case
test power.

D.3.3 APPLICABILITY TO OTHER DP MECHANISMS

Our path-kernel view targets function-level stability and therefore extends beyond DP–SGD when
the mechanism admits a stability certificate that can be mapped to an RKHS norm over probes.
PATE. Teacher aggregation with Gaussian/Laplace noise yields a score-level sensitivity bound; one
can define an output-path kernel from the gradient of the (smoothed) voting score with respect
to latent probes and obtain a GDP envelope by repeating our reduction. CDP/zCDP and Gaussian
mechanisms. When training or release is directly privatized by Gaussian noise in the output channel,
the LPK energy CT is explicit and the same Gaussianization step applies; the envelope recovers
the classical Gaussian DP curve with dimension-aware dilution through deff . DP variants with
momentum/Adam, SGLD. Stability recursions change but still control a path energy (now including
velocity terms); replacing Proposition 1 by the corresponding stability inequality yields the same
RKHS-to-GDP transfer. Formalizing these variants is a promising direction for future work.

D.3.4 MORE COMPLEX THREAT MODELS

Our analysis is black-box: the attacker does not control or observe latent randomness. If the ad-
versary can fix seeds or access internal randomness (gray-box), the Gaussianization step weakens;
in the extreme, deterministic decoding collapses deff and removes dilution. Adaptive multi-release
attacks that correlate queries across time can increase the product-level slack beyond the i.i.d. bound
in §4.5. Extending the envelope to such adaptive or side-informed settings is an important direction
for future work.
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