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Abstract

Controlling dynamical systems in real-time across multiple scenarios is critical
to enable adaptive control strategies, ensuring stability and efficiency. However,
parametric optimal control problems require several system simulations to tailor
optimal actions in response to varying scenarios, which are often computationally
demanding – or even intractable – due to the high-dimensionality of spatio-temporal
dynamics. In this work, we exploit SHallow REcurrent Decoder networks-based
Reduced Order Modeling (SHRED-ROM) to synthesize a real-time policy for
high-dimensional and parametric dynamics, relying solely on limited state sensor
readings. After training the model on few optimal examples given by an expert
demonstrator, as typically considered in imitation learning, SHRED-ROM mimics
the expert behavior with effective distributed control actions in real-time and in
new scenarios, mitigating the curse of dimensionality. The performance of the
proposed policy is finally assessed on a challenging density control test case.

Introduction
Accurate simulators of dynamical systems are fundamental to predict state evolutions, guide paramet-
ric analyses, quantify model uncertainties, and design control strategies. Many physical systems are
described in terms of Partial Differential Equations (PDEs) modeling the spatio-temporal evolution of
the state y : Ω× [0, T ] → R in the domain Ω and in the time interval [0, T ]. Solving PDEs requires
numerical methods such as, e.g., finite element and spectral methods [7, 10]. In essence, through a
discretization of the state variable y(x, tk) → y(tk) ∈ RNy , with Ny the number of spatial degrees
of freedom and t1, ..., tNt

a uniform grid over [0, T ], the PDE turns into a (possibly nonlinear) high-
dimensional system of equations to be solved [10]. The high-dimensionality of the resulting system
entails a demanding – or even prohibitive – computational burden. The computational bottleneck
becomes even more severe when considering optimal control problems parametrized by a vector
of scenario parameters µ ∈ Rp due to their intrinsically iterative nature, which requires multiple
simulations of the system to be controlled [6, 13], and due to the necessary control adaptations in
response to variations in the underlying scenario. Traditional numerical methods are therefore not suit-
able for solving high-dimensional and parametric optimal control problems related to safety-critical
applications with strict timing requirements, such as autonomous vehicles, robotics, plasma control,
and aerospace, as delays in the control computations may imply a significant loss of performance and
robustness.

To speed up the resolution of PDEs, projection-based Reduced Order Models (ROMs) have been
widely utilized in the literature [1, 2, 11]. Given the matrix collecting the state snapshots {yµi

k =

y(tk,µi)}
i=1,...,Np

k=1,...,Nt
for Nt time instants and Np parameter values, it is possible to reduce the data

dimensionality through its Singular Values Decomposition (SVD), also known as Proper Orthogonal
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Decomposition (POD) [2, 5, 7, 11]. Specifically, the first r left singular vectors are the directions
of maximum variability in the data, and represent an optimal (in a least-square or statistical sense)
basis where to project the state snapshots and Galerkin-project the PDE. Doing so, one can retrieve a
r-dimensional system to be solved at every time step, which is computationally tractable whether
r ≪ Ny. The same rationale can be extended to systems of optimality conditions, speeding up the
resolution of distributed control problems [11]. However, projection-based ROMs require complete
knowledge of the underlying physics and are limited by the linearity assumption, lacking accuracy
and efficiency when dealing with nonlinear and convective phenomena. To mitigate these limitations,
Deep Learning-based ROMs (DL-ROMs) have been proposed as efficient nonlinear, non-intrusive and
data-driven alternatives [3, 4]. While being faster, more accurate and more flexible than projection-
based ROMs, DL-ROMs still require full parametric knowledge to infer the state evolution, are
uninformed to the actual system behavior, and typically require demanding hyperparameter tuning.

In this work, we employ shallow recurrent decoders [8, 12, 14] to synthesize a policy capable of
predicting (possibly distributed) control actions in multiple scenarios, relying solely on sparse state
sensors, while being agnostic to parameter values.

Shallow recurrent decoder networks-based reduced order modeling
SHallow REcurrent Decoder networks-based Reduced Order Modeling (SHRED-ROM) [8, 12, 14]
aims at reconstructing high-dimensional and parametric spatio-temporal fields yµ

k for k = 1, ..., Nt

in real-time and in multiple scenarios starting from limited sensor measurements, which are often
available in real-world applications. Differently from state-of-the-art sensing strategies, SHRED-
ROM exploits the past history of L sensor readings, i.e. sµk−L:k = {s(tk−L,µ), ..., s(tk,µ)}, where
s(tk−L,µ) = 0 if k ≤ L. Specifically, SHRED-ROM combines a Long Short Term Memory network
(LSTM) fT and a Shallow Decoder Network (SDN) fX to encode the temporal history of sensor data
and reconstruct the spatio-temporal quantity of interest in multiple scenarios, that is

yµ
k ≈ ỹµ

k = fX(fT (s
µ
k−L:k)) for k = 1, ..., Nt.

Compressive training strategies based on, e.g., POD may be considered to compress the decoder
output, enabling model training at laptop level computing with minimal hyperparameter tuning [8, 12].
Beyond reconstructing state data from its own measurements, it is possible to reconstruct one quantity
from sensors monitoring a coupled field [8, 12, 14]. Taking advantage of this property, we here
propose a strategy to synthesize parametric policies in the context of imitation learning, enabling
real-time distributed feedback control strategies across multiple scenarios in the low-data limit.

Real-time control of distributed parametric systems with SHRED-ROM
Parametric optimal control problems can be formulated as (discrete, for the sake of simplicity)
PDE-constrained optimizations in the form

J(y,u,µ) → min s.t. G(y,u,µ) = 0

where J(y,u,µ) ∈ R is the loss function to minimize by optimally designing the control u(t,µ) ∈
RNu , while G(y,u,µ) = 0 stands for the discrete governing equation in implicit form. The optimal
action can be computed through the Karush-Kuhn-Tucker system of optimality conditions ∇yJ(y,u,µ) + (∂yG(y,u,µ))⊤λ = 0 (adjoint equation)

∇uJ(y,u,µ) + (∂uG(y,u,µ))⊤λ = 0 (optimality condition)
G (y,u,µ) = 0 (state equation)

where λ(t,µ) ∈ RNλ is the discrete adjoint vector. The coupling of state and control in the KKT
system allows SHRED-ROM to map sparse state measurements into the corresponding distributed
control actions in multiple scenarios, thus retrieving the policy

uµ
k = u(tk,µ) ≈ ũµ

k = fX(fT (s
µ
k−L:k)) for k = 1, ..., Nt.

To train SHRED-ROM in a supervised manner, we consider a few optimal examples given by an
expert demonstrator, as typically considered in imitation learning. Note that the need for optimal
training data may represent a limiting factor, especially when dealing with synthetic data, and
alternative strategies are required whenever such examples are not available. Figure 1 provides
a graphical summary of the proposed feedback control strategy. Thanks to SHRED-ROM sensor
efficiency, as well as the independence on parameter values, limited state sensor readings are all you
need to control high-dimensional and parametric systems in real-time.
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Figure 1: Real-time optimal control with SHRED-ROM. We exploit expert demonstrations in Np

scenarios to train the sequence (LSTM) and decoder (SDN) blocks of SHRED-ROM. Compressive
training strategies based on POD are considered to compress the decoder output. After training, the
synthesized policy provides distributed optimal controls in multiple scenarios unseen during training,
relying solely on the history of sparse state sensor readings.

Numerical results
To assess the performance of the proposed controller, we consider a high-dimensional and parametric
density control problem. Starting from a Gaussian density centered in the middle of the square
[−1, 1]2 with variance 0.05, the density y evolves up to T = 50 seconds according to the advection-
diffusion PDE

yt +∇ · (−η∇y + vy + uy) = 0

with homogeneous Neumann boundary conditions and viscosity η = 0.001. The density is therefore
transported by a parametric fluid flow with velocity v(µ), whose dynamics is modeled via steady
Navier-Stokes equations, with kinematic viscosity ν = 1.0 and no-slip boundary conditions on
external walls. The fluid velocity implicitly depends on three rotating cylinders in the domain, whose
constant velocities are regarded as scenario parameters µ.

As visible in the first row of Figure 2, the uncontrolled setting entails significant density dispersion
in the domain. Our goal is to design the distributed velocity u(t,µ) ∈ RNu , with Nu = 59344,
minimizing density dispersion and boundary collisions in multiple scenarios, i.e. for different
combinations of cylinder velocities in the range [−1, 1]. To do so, we generate 100 optimal examples
through the adjoint method [9] with unitary time step, we split the trajectories into training,validation
and test sets with ratio 80:10:10, and we train SHRED-ROM to predict the optimal velocity field
starting from the state measurements and the coordinates of 1 mobile sensor, placed in the center of
the domain at t = 0 and passively steered by the underlying transport effect. Alternatively, one can
also consider sparse fixed sensors monitoring the state evolution. To speed up training, we reduce
the control dimensionality through POD with compression ratio equal to 99.5% (r = 300 ≪ Nu),
yielding a mean relative reconstruction error on test data equal to 3.38%. After training SHRED-ROM
with lag L = 10, it is possible to deploy the obtained policy in test scenarios unseen during training.
As visible in Figure 2, SHRED-ROM can effectively minimize the density dispersion and boundary
collisions over time, with performance similar to the target optimal solutions in the test set.

Conclusions
In this work, we propose a parametric feedback control strategy in the low-data limit, agnostic to
parameter values. Specifically, in the context of imitation learning, we exploit SHRED-ROM to mimic
expert demonstrations and predict distributed control actions in multiple scenarios, relying solely on
limited state sensor readings. After training, it is possible to control in closed-loop high-dimensional
and parametric systems, designing effective optimal control strategies in real-time.
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Figure 2: Density control. Uncontrolled states (first row), optimal target states (second row), con-
trolled states with SHRED-ROM policy (third row), target optimal controls (fourth row), and SHRED-
ROM control predictions (fifth row) in two different test scenarios µ = [−0.06, 0.06,−0.70]⊤ and
µ = [−0.74, 0.01, 0.83]⊤ at t = 10 and t = 30 seconds. The mobile sensor trajectories are depicted
in orange. The control velocity fields are represented through vector fields, with the underlying
colours corresponding to their magnitude.
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