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Figure 1: An overview of our approach. From (a) multi-view images of multiple scenes with
different object placements, ViFu recovers the appearance and 3D geometry of (c) clean static back-
grounds and (d) 360� foreground objects. Radiance fields representation supports free-view render-
ing of the recovered background scene and foreground objects.

ABSTRACT

In this paper, we propose a method to segment and recover a static, clean back-
ground and 360� objects from multiple scene observations. Recent works have
used neural radiance fields to model 3D scenes and improved the quality of novel
view synthesis, while few studies have focused on modeling the invisible or oc-
cluded parts of the training images. These under-modeled parts constrain both
scene editing and rendering view selection. Our basic idea is that, by observing
the same set of objects in various arrangement, so that parts that are invisible in
one scene may become visible in others. By fusing the visible parts from each
scene, occlusion-free rendering of both background scene and foreground objects
can be achieved.
We decompose the multi-scene fusion task into two main components: (1) ob-
jects/background segmentation and alignment, where we leverage point cloud-
based methods tailored to our novel problem formulation; (2) radiance fields fu-
sion, where we introduce visibility field to quantify the visible information of ra-
diance fields, and propose visibility-aware rendering for multiple scene fusion,
ultimately obtaining clean background and 360� object rendering. Comprehen-
sive experiments were conducted on synthetic and real datasets, and the results
demonstrate the effectiveness of our method.
The code will be release for research purposes upon paper acceptance.

1 INTRODUCTION

Recently, the advance of neural rendering with implicit representation has received attention for
its numerous real-world applications, including virtual reality, games, movies, and more. One of
the pioneering works is neural radiance field (NeRF) Mildenhall et al. (2020), which uses a neural
network to model the 3D space as a continuous radiance field, enabling the reconstruction of the
detailed geometry and appearance of a scene from multi-view images. There has been significant
follow-up work to explore the extension of NeRF in the direction of fast optimization Yu et al.
(2021); Müller et al. (2022); Chen et al. (2022); Sun et al. (2021), generalization Yu et al. (2020);
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Wang et al. (2021b), dynamic scenes Park et al. (2020); Tretschk et al. (2020); Pumarola et al.
(2020), human body Xu et al. (2022); Peng et al. (2021); Noguchi et al. (2022b) or articulated
objects Noguchi et al. (2021; 2022a) modeling, appearance editing Liu et al. (2021); Kobayashi
et al. (2022), shape editing Xu & Harada (2022); Yuan et al. (2022), etc.

In particular, compositional scene modeling is one of the popular directions in which individual parts
of a scene, such as a background scene or foreground objects, are independently modeled rather than
treating the entire scene as a whole. It represents the whole scene as a composition of background
scene and foreground objects, enabling applications such as scene segmentation Zhi et al. (2021),
object movement or removal Yang et al. (2021); Wu et al. (2022), independent object rendering Jang
& de Agapito (2021), etc.

While an increasing number of works have attempted to use NeRF for compositional scene model-
ing, an obvious but challenging issue has been left unaddressed: background or objects occluding
each other can result in parts of the scene that cannot be observed from the training images, thereby
causing under-modeled parts in the scene. As a result, the movement/removal of objects, or render-
ing from certain viewpoints can expose these under-modeled parts, leading to poor rendering results
with artifacts (e.g., Fig. 2 (c)). Especially in tasks requiring clean backgrounds or manipulation of
object placement, such as indoor scene reconstruction or robotics applications, this issue becomes
particularly pronounced. Specifically, we consider two cases of under-modeling: (1) under-modeled
background scene, such as the desktop, where the contact surface with the foreground objects is in-
visible during training, leading to artifacts when removing or moving foreground objects; (2) under-
modeled foreground objects, where the invisible surface is exposed when rendering with changing
the object’s pose (e.g., laying it down), causing artifacts. To the best of our knowledge, no previous
studies have attempted to address these issues.

In this work, we explore compositional scene modeling from the perspective of recovering clean
backgrounds and 360� objects. Recovering the above unseen parts from a single scene is challenging
and laborious, as it usually requires a hand-designed or learned scene prior, as in image completion
tasks. Instead of a single scene, we consider a set of scenes where the background remains static
while objects are placed in different positions and poses. Here, the object placement satisfies two
conditions: (1) there is no part of the background that is always occluded by the object in all scenes,
and similarly (2) there is no part of the objects surface that is invisible in all scenes (i.e., every part of
the background/objects is visible in at least one scene). These two conditions correspond to the two
under-modeled cases above, and this multi-scene setup ensures that we have enough information to
recover the geometry and appearance of clean background and 360� objects.

Recall that the above key issues come from the invisible part caused by occlusion. To address
this issue, given the volumetric nature of the radiance field, we propose visibility field, a volumetric
representation for quantifying the visibility in scenes. With the proposed visibility field, we compare
the visibility of the corresponding part across multiple scenes and fuse the parts with higher visibility
to achieve clean background and 360� objects rendering. We dub our proposed idea of visible
part fusion as ViFu. The basic idea of ViFu is shown in Fig. 2. Furthermore, we leverage the
multi-scene setting and propose a method for segmenting objects and backgrounds by exploiting
the differences in object placement across each scene. Our segmentation approach is based on
the geometric differences w.r.t. clean backgrounds obtained via fusion, which is computationally
efficient and simple, and does not require any pre-trained 3D segmentation model.

To verify the effectiveness of ViFu, we created several sets of synthetic scenes containing various ob-
jects. We observe that ViFu automatically and accurately segments the background and each object,
and achieves pleasing recovery of clean backgrounds and free-view rendering of 360� foreground
objects. We also captured videos to create a set of real-world datasets, and the experimental results
show that the proposed method also gives promising results for real-world scenes.

In summary, our main contributions are listed as follows:

• We studied the under-modeled invisible parts of NeRF and introduced the setting of com-
plementing the invisible parts by fusing multiple scene information.

• We introduce visibility field, a volumetric representation to quantify the visibility of scenes,
and propose novel visibility-aware rendering, which leverages the visibility field to achieve
the fusion of visible parts of multiple scenes.

2



Under review as a conference paper at ICLR 2024

• We created synthetic and real datasets to validate our idea, and the experimental results
show the effectiveness of the proposed method.

2 RELATED WORK

Neural radiance field revisited. Recently, neural rendering with implicit representations has re-
ceived significant attention due to its detailed representation of the geometry and appearance of the
scene Sitzmann et al. (2019); Yariv et al. (2020); Mildenhall et al. (2020). The most representative
work is neural radiance field (NeRF) Mildenhall et al. (2020), which uses neural networks to model
the scene as a continuous mapping from position and view direction to radiance color and volume
density, enabling geometric and appearance reconstruction and photorealistic novel view rendering.
Several follow-up works have been proposed to improve the foundation of NeRF, enabling fast op-
timization Yu et al. (2021); Müller et al. (2022); Chen et al. (2022); Sun et al. (2021), appearance
decoupling Verbin et al. (2021), dynamic scene modeling Pumarola et al. (2020); Park et al. (2020);
Tretschk et al. (2020), and more. Nevertheless, these methods have limitations as they model the
scene as a whole and do not allow for segmentation or editing of specific parts of the scene.

Object-centric scene representation. A new category of object-centric modeling methods has
been proposed to enhance the reasoning and editing capabilities of scenes. Specifically, composi-
tional scene modeling methods Zhang et al. (2020); Guo et al. (2020); Niemeyer & Geiger (2021);
Wang et al. (2021c); Zhang et al. (2021); Wu et al. (2022) regard the entire scene as a mixture of
background and foreground objects, facilitating object-level scene understanding; some methods
encode semantic information into scenes, enabling feature-based object query or segmentation Zhi
et al. (2021); Wang et al. (2022; 2021a). Another direction explores object-level manipulations on
scene content, enabling editing to object appearance Liu et al. (2021); Bao et al. (2023) or geom-
etry Xu & Harada (2022); Yuan et al. (2022). These advancements have made notable progress in
manipulating NeRF-based representations, however, our primary concern is that manipulating the
original scenes (i.e., object movement or deformation) can inadvertently expose unseen parts and
thus lead to artifacts.

Scene completion for radiance fields. To address the issue of under-modeled parts being exposed,
recent studies have approached it as a 3D inpainting problem and proposed solutions for radiance
field representations. NeRF-In Liu et al. (2022) uses masks to segment the foreground objects and
performs inpainting to obtain an unoccluded background, while SPin-NeRF Mirzaei et al. (2022) im-
proves on this by introducing the concept of perceptual inpainting to enhance the rendering results.
However, these methods only consider the completion of the background part and do not address the
invisible parts of the objects. Furthermore, the shadows cast by the original objects still appear as
noticeable artifacts in the resulting inpainted regions Liu et al. (2022); Mirzaei et al. (2022).

Scene fusion for radiance fields. Some recent works also attempt to fuse NeRF, such as NeR-
Fusion Zhang et al. (2022) or NeRFuser Fang et al. (2023). The objective of these methods is to
integrate the individual 3D representations of various local components within a vast scene, thereby
obtaining a comprehensive scene rendering. Hence, the main focus of these methods lies in modeling
large-scale scenes effectively. Conversely, our approach is centered around addressing occlusions
caused by objects within the scene, aiming to reconstruct an occlusion-free background scene and
360� foreground objects by leveraging the visible parts across different scenes.

3 METHOD

Consider a static background scene and M � 1 foreground objects that are placed in different
positions and poses resulting in N � 2 different scenes (e.g., Fig. 1 (a)). For each scene, we capture
Li multi-view images {Il} and run the structure-from-motion method independently for each scene
to obtain the camera parameters (intrinsics and extrinsics) {Cl}, where i 2 {1, ..., N} denotes scene
index and l 2 {1, ..., Li} denotes camera index of scene i. From the calibrated multi-view images,
we optimize neural radiance fields (NeRF) {Si} for each scene. Radiance field is an implicit scene
representation that maps spatial position x 2 R3 and view direction d 2 S2 to radiance color
c = (r, g, b) and volume density � as S : (x,d) 7! (c,�).
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Figure 2: The basic idea of ViFu. With pre-computed scene/objects alignment, we compare the
visibility of the corresponding parts using the proposed visibility field, and fuse the higher visibility
parts of each scene to form the clean background and 360� objects. The details of visibility-aware
rendering are shown in Fig. 3.

Our method takes N optimized radiance fields {Si} as input, automatically splits the scenes into a
static background and M foreground objects, and recovers a non-occluded background scene and
360� objects that can be seen from arbitrary view point.

Assumption. For our problem formulation, we make the following two ideal assumptions: (1)
diverse object positions: this ensures visibility of the background scene, implying that every part
of the background scene is observable in at least one scene (i.e., no permanently occluded regions);
this also facilitates the segmentation of foreground objects, as will be introduced in Sec. 3.2. (2)
diverse object poses: this guarantees that every part of the object’s surface is observable in at least
one scene (e.g., no permanently facing-down surfaces).

The assumptions are natural for household objects in everyday scenes: static objects that remain
unchanged, such as refrigerators or tables, are considered part of the background; while objects that
are frequently moved, such as the toys in Fig. 1, are treated as foreground objects.

3.1 METHOD OVERVIEW

Our objective is to perform background/foreground segmentation from multiple scenes and obtain a
clean background and 360� objects via fusion. In the general context of 3D modeling, this process
can be divided into two main steps: the first involves internal scene reasoning, specifically the
segmentation of background/foreground within each scene; the second entails inter-scene reasoning,
which involves matching the segmented background and individual objects among different scenes
(i.e., pose alignment for background scene and foreground objects), and subsequently accomplishing
the final fusion.

In the following section, we introduce our solutions, specifically tailored for the recent 3D repre-
sentation of the radiance field. To be more precise, we leverage a point cloud-based approach to
perform scene segmentation and alignment (Sec. 3.2), and introduce a novel measure for quantify-
ing the visibility of the radiance fields (Sec. 3.3), which is used in the proposed scene fusion method
(Sec. 3.4).

3.2 OBJECT SEGMENTATION AND ALIGNMENT

The first step involves background/foreground segmentation and obtaining the relative poses of fore-
ground objects and background scene within each scene. This allows us to align them to their
respective common coordinate systems, which are utilized for subsequent fusion purposes (See
Fig. 2). For the segmentation and alignment of the radiance fields, we found that existing point
cloud-based methods already yield satisfactory results. For simplicity, we introduce here the mini-
mal segmentation and alignment techniques below; however, other more advanced alternatives can
also be employed.

We provide a high-level overview of the entire process here, with specific calculations detailed in
the supplementary materials. First, we employ Marching Cubes Lorensen & Cline (1987) to con-
vert the radiance field of each scene into a mesh, from which we extract point clouds by surface
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sampling. While the placement of individual foreground objects may vary, a substantial overlap of
point clouds belonging to the static background scene is sufficient for achieving inter-scene pose
alignment through point cloud registration algorithms. Based on the derived relative poses, we uti-
lize the method outlined in Sec. 3.4 to obtain the fused clean background scene, and from which we
similarly extract the point cloud corresponding to the background scene. By comparing the differ-
ences between the point clouds of each scene and the clean background scene, we can obtain all the
point clouds that belong to the foreground objects. Subsequently, a point cloud clustering algorithm
allows us to obtain point clouds that belong to each individual foreground object separately. Fi-
nally, for each foreground object across scenes, the Hungarian matching algorithm and point cloud
registration techniques are used to determine their correspondences and relative poses {Ti,j}. Here
j 2 {1, ...,M} denotes the object index.

3.3 VISIBILITY FIELD: QUANTIFYING VISIBILITY IN RADIANCE FIELD

Visibility is an important measure to utilize the visible part information across scenes. To quantify
the visibility information in the radiance field, we propose visibility field, a volumetric representation
that maps a 3D position to a scalar-valued visibility:

v = v(x) : R3 ! [0, 1]. (1)

The proposed visibility v(x) 2 [0, 1] is defined as the proportion of cameras that can observe point
x among all training cameras. Formally, we say that x can be observed by the camera Cl means
that (1) the projection of x falls within the interior of the image plane and (2) there is no occlusion
between x and the camera position ol 2 R3. For the condition (2), we use the pseudo-depth of the
radiance field to determine whether there is occlusion. Specifically, we cast a ray from the camera
position ol to x and compute the pseudo-depth d̂l by volume rendering, and then compare it with
the distance from the camera position to the point dl = kx � olk. For camera Cl, we use a binary-
valued function Vl(x) 2 {0, 1} to denote whether x can be observed by that camera. If dl < d̂l, this
means that x is between the object surface and the camera position, thus there is no occlusion, i.e.,
Vl(x) = 1, otherwise Vl(x) = 0. Considering all training cameras, the visibility of position x can
be computed as:

v(x) =
1

L

LX

l=1

Vl(x). (2)

Note that the visibility field is independent for each scene and we compute it for all scenes.

3.4 VISIBILITY-AWARE RENDERING
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Figure 3: Illustration of visibility-aware ren-
dering in 2D. The colors correspond to
higher/lower visibility as shown in Fig. 2.

We propose visibility-aware rendering, a method
that obtains occlusion-free rendering by compar-
ing the visibility across multiple scenes. We take
the rendering of the clean background to explain
its basic idea (Fig. 3 (Left)).

Background scene. The first step in comparing
scenes is to set them under the same coordinates.
Recall that we have obtained the relative pose be-
tween the background scenes through point cloud
registration in Sec. 3.2. Without loss of general-
ity, we take the first scene (i = 1) as a refer-
ence and align the scenes i = 2, ..., N to the co-
ordinate system of the first scene. Given that all
scenes are aligned to the reference scene, we intro-
duce visibility-aware rendering for the background
scene. An illustration is shown in Fig. 3 (Left).
For the sample point x in volume rendering, the
proposed visibility-aware rendering, in addition to
color and density, also computes the visibility of the sample point in each scene, i.e., {ci(x)},
{�i(x)} and {vi(x)}. The idea of visibility-aware rendering is simple: blend the color and density
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in each scene according to visibility. Using wi which satisfy
P

i wi = 1 to denote the weight of
each scene, blended radiance color and volume density can be written as:

ĉ(x) =
NX

i=1

wi(x)ci(x), �̂(x) =
NX

i=1

wi(x)�i(x), (3)

where wi is a weight function calculated from visibility that satisfies
P

i wi = 1:

wi(x) =
vpi (x)PN
i=1 v

p
i (x)

. (4)

Here p is a hyper-parameter that controls the weights, the larger p is, the greater the contribution of
the scene with the highest visibility; and when p ! 1, the above is equivalent to the max-selection
function. For simplicity, Fig. 3 shows the case based on max-selection.

The motivation behind the above calculation is to select the parts with less occlusion (i.e., higher
visibility) in each scene, and fuse them into the final scene. As a result, volume rendering of the
blended radiance color and volume density obtained from Eq. 3 yields a clean background scene, as
shown in Fig. 2 (b).

Foreground objects. The core idea of visibility-aware rendering for 360� objects is basically the
same as that for background scene. Similarly, we take the coordinate systems of the foreground
objects in scene i = 1 as a reference. For foreground object j, we denote the position and view
direction of the sampled point under the reference coordinate system as xj , dj , respectively. For
scenes of i � 2, we use the computed object poses to calculate the corresponding positions xi,j and
view directions di,j in each scene as:

xi,j = Ri,jxj + ti,j , di,j = Ri,jdj , (5)

where Ri,j and ti,j are rotation and translation terms of object poses Ti,j 2 SE(3) obtained from
Sec. 3.2. Here, xi,j in fact represents the corresponding point of xj in the coordinate system of
scene i, as shown in Fig. 3 (Left). Then, the blended radiance color and volume density of Eq. 3 for
foreground object rendering can be rewritten as:

c̃(xj) =
NX

i=1

wi(xi,j)ci(xi,j), �̃(xj) =
NX

i=1

wi(xi,j)�i(xi,j). (6)

Volume rendering the fusion results obtained from Eq. 6 yields occlusion-free 360� foreground
objects, as shown in Fig. 2 (d).

Our proposed visibility-aware rendering, despite its simplicity, reasonably achieves the visible part
fusion of radiance fields. It’s noteworthy that our method share the same paradigm for both back-
ground/foreground parts, accomplishing the reconstruction of a clean background scene and 360�
foreground objects.

4 EXPERIMENTS

4.1 DATASETS

Blender synthetic datasets. We created synthetic datasets using Blender Community (2018). The
tables used as background are taken from free 3D models available online. For the foreground ob-
jects, we use 3D models from Google Scanned Objects dataset Downs et al. (2022), which contains
360� scans of common household objects. We created N = 3 sets of scenes, in which foreground
objects are under difference placement to ensure that every part of the table and object surfaces is
visible in at least one scene. We applied different lighting conditions (uniform light, spotlight, etc.)
to test the effectiveness of our method in different environments. We randomly sample camera po-
sitions on the hemisphere and render L = 100 images for the radiance field optimization. Examples
of the synthetic scenes are shown in Fig. 4 (a).
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Figure 4: Results on Blender synthetic datasets. For pairwise comparisons of foreground objects,
the top-left image shows the rendering result of the proposed method, while the bottom-right image
shows the reference image (ground truth).

(a) Input images (b) NeRF reconstruction (c) Background (d) 360° objects

Figure 5: Results on real capture datasets. (c) and (d) are obtained using the proposed method.
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Real capture datasets. We created real-world capture datasets to demonstrate the effectiveness
of our approach on real datasets. We utilized YCB objects Calli et al. (2015) and created N = 2
(for bleach cleanser) or N = 3 (for power drill) scenes by placing objects in different configu-
rations. For each scene, we captured a video around it and extracted 60-80 frames, then applied
COLMAP Schönberger & Frahm (2016); Schönberger et al. (2016) to obtain the corresponding
camera parameters registration. Examples of the real capture scenes are shown in Fig. 5 (a).

4.2 RESULTS

We show the qualitative results of Blender synthetic datasets and real capture datasets on Fig. 4
and Fig. 5, respectively. With multiple input scenes, our method can automatically recover a clean
background scene and 360� foreground objects.

4.3 ABLATION STUDIES

6FHQH����RXWGRRU�HQY�� 6FHQH����LQGRRU�HQY�� 6FHQH����LQGRRU�SRLQW�OLJKW�

)XVHG�UHVXOWV

Impact of light conditions. We created scenes
under three distinct lighting conditions: outdoor
environment mapping, indoor environment map-
ping, and a single point light source. For the
background, despite obtaining an acceptable clean
background, there exists a certain degree of arti-
facts due to the presence of shadows or reflections.
For objects, certain discontinuities arise due to
abrupt changes in lighting conditions or the inher-
ent glossiness of the objects (e.g., pink pig). Ad-
ditionally, the fused results show a lack of glossi-
ness, suggesting that even for significantly different lighting conditions or glossy objects, our fusion
method can neutralize the view-dependent term, yielding appearances close to diffuse colors, which
is typically desirable in the context of 360� object reconstruction.

Impact of weight function. We study the im-
pact of the hyper-parameter p (exponent of visi-
bility in weight function Eq. 4). We observe that
when p is relatively small (i.e., p = 4), the results
tend to blend color and density more smoothly for
each scene. The appearance changes smoothly
for foreground objects, however, it also blends
the background and non-background (i.e., empty
space) parts around them, resulting in a cloud-like
artifact. When p ! 1, visibility aware rendering selects the color and density of the scene with the
highest visibility as the result of the fusion, and such a max-selection brings discontinuous changes,
resulting in sharp changes in the appearance. We observe that p = 8 ⇠ 32 is the appropriate value
to obtain continuous appearance interpolation without cloud-like artifacts.

Impact of the number of scenes. Right image
shows the impact on the results for different num-
bers of scenes N . For N = 1, we manually com-
pute the bounding boxes for the background and
foreground objects from the point cloud and ren-
dered only the original scene within them. In this
case, the invisible parts are not optimized, leading
to artifacts in the rendering results. For N > 2, we
can observe that the proposed ViFu can recover a clean background and 360� objects from multiple
scene observations.

It is noteworthy that, as the number of scenes N increases, the rendered results appear to become
brighter. We speculate that this is due to sufficient lighting generally implying less occlusion, which
means higher visibility and thus the corresponding parts are fused into the final output with higher
weight. Based on this observation, we assume that as the number of scenes and the variety of object
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poses increase, the rendering results of objects will be close to those rendered in a 360� spherical
lighting environment.

Empirically, we observe that for some objects, artifacts appear when N = 2 (red arrow in the figure).
We attribute this to the difficulty in accurately segmenting the foreground object if a certain part is
in contact with the background part in both two scenes, making it hard to determine whether it
belongs to the foreground object or background scene. A simple solution is to expose the part of the
common contact when placing objects in the third scene. Although an adhoc placement may achieve
the plausible rendering at N = 2 (as the cleanser scenes in Fig. 5), we observe that N = 3 scenes
can achieve reasonable segmentation in most cases and is therefore a recommended choice.

Impact of variations in object placement. To validate the robustness of our approach to vari-
ations in object placement, we extended our evaluation beyond the 3 original scenes presented in
Fig. 1. We created an additional 5 scenes, where objects were randomly placed. We randomly se-
lected 3 from 8 scenes for each fusion experiment. We have the following observations: under the
assumptions 3, our method consistently produced satisfactory results. However, some difficulties
arise: (1) when the orientations of foreground objects in the three selected scenes are highly repeti-
tive (e.g., bottoms consistently facing downward and thus not observable), artifacts are still present
in the rendered regions that lacked sufficient observation. This issue arises because our method relies
on fusing information from the available scenes and thus cannot predict unseen part. (2) when fore-
ground objects are placed very closely within a scene, our use of a naive point cloud segmentation
approach may potentially fail, leading to misalignment and bad fusion results. Effective segmen-
tation of closely spaced objects typically requires prior knowledge of the objects. Incorporating
pre-trained point cloud segmentation models or segmentation masks as additional information can
assist in segmenting challenging objects, thereby facilitating successful scene fusion.

5 LIMITATIONS AND FUTURE WORK

There are a few limitations that need to be addressed in future work:

First, our method does not explicitly consider the lighting condition. For static background scene,
as the lighting conditions are basically the same, reasonable rendering results can be obtained. The
above ablation study for light conditions demonstrates that our proposed weighted fusion method
can mitigate the impact of certain lighting variations to some extent. However, the rendering re-
sults of objects under extreme lighting conditions may still be unsatisfactory (e.g., the fusion result
of “construction vehicles” at the top of Fig. 4 shows an abrupt change in appearance, where spot
light illumination is used). Incorporating some of the current approaches for disentangling light
conditions might be a promising direction for future work.

Second, our fusion method assumes that we can obtain accurate scene segmentation and pose align-
ment. In most cases, the aforementioned point cloud-based approach can achieve sufficiently accu-
rate segmentation and alignment. However, some challenging scenarios may arise, such as failures
in segmentation due to close object placement (as mentioned in Sec. 4.3), or failures in pose align-
ment due to oversimple object shapes. However, the essence of these problems can all be viewed
as fundamentally challenging issues in point cloud segmentation or registration, which has been a
longstanding challenging problem in the field of computer vision. For these special cases, using
additional masks or richer point cloud features (e.g., color information) might help mitigate the
aforementioned challenges.

6 CONCLUSION

We have presented ViFu, a method for recovering clean background scene and 360� foreground
objects from multiple scene observations. We leverage point cloud-based approaches to achieve
background and foreground alignment and use the difference between scenes to obtain a back-
ground/foreground segmentation. We propose visibility field, a volumetric representation to quantify
the visibility of a scene, and introduce visibility-aware rendering to fuse the more visible parts of
multiple scenes. Our experiments on both synthetic and real datasets demonstrate the effectiveness
of our approach. While our approach is the first to focus on radiance fields for multiple scenes, there
are some remaining issues, such as not considering lighting conditions, which we plan to address in
future work.
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