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ABSTRACT

The traditional retrieval-augmented generation (RAG) paradigm, which typically
engages in the comprehension of relevant text chunks in response to received
queries, inherently restricts both the depth of knowledge internalization and rea-
soning capabilities. To address this limitation, our research transforms the text
processing in RAG from passive chunking to proactive understanding, defining
this process as document memory extraction with the objective of simulating
human cognitive processes during reading. Building upon this, we propose the
Mixtures of scenario-aware document Memories (MoM) framework, engineered
to efficiently handle documents from multiple domains and train small language
models (SLMs) to acquire the ability to proactively explore and construct docu-
ment memories. The MoM initially instructs large language models (LLMs) to
simulate domain experts in generating document logical outlines, thereby direct-
ing structured chunking and core content extraction. It employs a multi-path sam-
pling and multi-perspective evaluation mechanism, specifically designing com-
prehensive metrics that represent chunk clarity and extraction completeness to
select the optimal document memories. Additionally, to infuse deeper human-like
reading abilities during the training of SLMs, we incorporate a reverse reasoning
strategy, which deduces refined expert thinking paths from high-quality outcomes.
Finally, leveraging diverse forms of content generated by MoM, we develop a
three-layer document memory retrieval mechanism, which is grounded in our the-
oretical proof from the perspective of probabilistic modeling: compared to the
strategy of fusing embeddings prior to retrieval, independently retrieving mem-
ories from each layer and subsequently fusing them can more effectively reduce
information loss. Extensive experimental results across three distinct domains
demonstrate that the MoM framework not only resolves text chunking challenges
in existing RAG systems, providing LLMs with semantically complete document
memories, but also paves the way for SLMs to achieve human-centric intelligent
text processing.

1 INTRODUCTION

Retrieval-Augmented Generation (RAG), as a technical paradigm that combines information re-
trieval with generative models, effectively mitigates inherent limitations of large language models
(LLMs), such as insufficient data freshness (He et al., 2022), hallucinations (Chen et al., 2023b;
Liang et al., 2024), and the lack of domain-specific knowledge (Li et al., 2023). As the core architec-
ture for knowledge-intensive tasks (Oche et al., 2025), its effectiveness is fundamentally influenced
by the optimization boundaries of the retrieval mechanism. Research has shown that the quality of
the retrieved text segments directly determines the upper limit of the performance of RAG systems
(Lin et al., 2023; Qu et al., 2024). Optimal segmentation of documents into semantically complete
and coherent segments not only enhances the generation accuracy of LLMs but also significantly
improves the system’s processing efficiency while reducing computational resource consumption
(Xu et al., 2023; Su et al., 2024).

However, a profound cognitive gap still persists in current RAG practices. Most of these methods
reduce document processing to a mechanistic preprocessing step (Gao et al., 2023; Lyu et al., 2024).
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This passive approach of segmenting first and then understanding is contrary to the cognitive process
of human experts (Dong et al., 2024; Singh et al., 2025). When studying a complex document,
human experts actively construct a mental model: they first grasp the macro-level logical structure,
then identify key arguments, and ultimately form a structured memory that is interconnected and
hierarchical (Spens & Burgess, 2024; Tang & Kejriwal, 2024). To bridge this gap, we advocate
for a shift in the text processing approach of RAG from passive text chunking to active memory
extraction. This study aims to address the core issues arising from the traditional RAG paradigm:
How can we enable the model to actively transform an unstructured text stream into a semantically
complete and logically coherent structured knowledge, namely, document memory, in a manner
similar to domain experts? And how can we efficiently imbue small language models (SLMs) with
this deep understanding capability?

To achieve this goal, we propose the Mixtures of scenario-aware document Memories (MoM) frame-
work. Initially, to establish a macro-level understanding of the document, we instruct LLMs to
assume the role of a domain-specific expert. LLMs conduct an in-depth analysis and generate a
well-structured document outline. This outline not only serves as an index of the content but also
lays the foundation for subsequent processing steps. Secondly, guided by the logical outline, we ini-
tiate multi-path memory extraction and evaluation. To ensure the quality of the final extraction, we
design two unique metrics for comprehensive evaluation and automatic selection. This approach en-
sures the domain adaptability of the framework, enabling it to accurately grasp the core knowledge
structure and key points of different professional documents. Thirdly, with the aim of transferring
this advanced cognitive capability from LLMs to SLMs, we employ reverse engineering to construct
a logically rigorous Chain reasoning of Memory extraction (CoM), which can assist SLMs in think-
ing. Finally, to fully leverage the multi-level content produced by MoM, we develop a three-layer
document memory retrieval algorithm consisting of the logical outline, core content, and the original
text. Meanwhile, our theoretical analysis demonstrates that this strategy can more effectively avoid
information loss, thereby achieving precise retrieval of the target knowledge.

We summarize contributions of this work as follows:

• We propose active memory extraction as an alternative to passive text chunking. By achiev-
ing a global understanding of domain-specific documents, we construct structured docu-
ment memory. Additionally, leveraging reverse reasoning techniques, we enable SLMs to
autonomously perform this complex task.

• We develop a three-layer document memory retrieval mechanism and provide theoretical
proof from the perspective of probabilistic modeling. Compared to the traditional strat-
egy of fusing information before retrieval, independently retrieving from different memory
layers and then fusing the results can more effectively reduce information loss, thereby
achieving more precise knowledge localization.

• To validate the effectiveness of the MoM framework, we conduct experiments and analyses
on three datasets from different domains. By obtaining data through multiple channels,
we construct 40K training samples and train multiple MemReaders. The results indicate
that MoM can adaptively process texts with different structures and domains, generate
high-quality document memory, and also demonstrate the feasibility of achieving human-
centered high-quality text processing through SLMs.

2 RELATED WORKS

Text Chunking in RAG. As a critical prerequisite for RAG, text chunking profoundly influences
the ultimate performance of the system. Mainstream RAG systems and development libraries (such
as LlamaIndex and LangChain) commonly adopt traditional chunking strategies, which includes
fixed-size chunking, recursive chunking, or segmentation based on grammatical boundaries like
sentences and paragraphs (Guu et al., 2020; Lewis et al., 2020; Gao et al., 2023; Lyu et al., 2024).
These methods are inherently context-independent and completely overlook the deep-seated seman-
tic coherence and logical structure of the content. To overcome the aforementioned drawbacks, the
research community has begun exploring semantic chunking approaches, such as merging text based
on the similarity of sentence embedding vectors (Xiao et al., 2023) or decomposing text into atomic
factual units like propositions (Chen et al., 2023a). Although these methods outperform traditional
strategies in preserving local semantics, they generally follow a bottom-up construction logic. They
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focus on the relationships between adjacent text units but lack a macroscopic understanding of the
document’s overall architecture. Consequently, even though they can generate locally coherent seg-
ments, when these segments are combined, they may still deviate from the document’s overall theme
or chapter logic, resulting in logically incomplete or biased knowledge chunks. Even attempts to use
LLMs for iterative segmentation still essentially seek breakpoints locally, failing to fundamentally
solve this issue while incurring substantial computational costs (Duarte et al., 2024).

Memory of RAG. To overcome the limitations of LLMs’ finite context windows and endow them
with capabilities for continuous learning and long-term interaction, constructing memory systems
has emerged as a pivotal research direction in the development of RAG. However, through a sys-
tematic examination of existing memory frameworks, we find that the current research focus sig-
nificantly leans towards managing short-term and long-term memory in dialogue scenarios. Rep-
resented by systems such as Mem0 (Chhikara et al., 2025), LangMem 1, MemoryScope (Li Yu,
2025), and MemoBase 2, considerable complexity has been developed in conversational memory
management, exemplified by Mem0’s four-stage memory updating and conflict detection, Memo-
ryScope’s importance scoring and temporal decay mechanisms, and graph-structured reasoning in
Mem0g (Chhikara et al., 2025). In contrast, memory construction for documents remains at a rela-
tively nascent stage, with relatively simplistic processing approaches. MemGPT (Packer et al., 2023)
employs a paging mechanism to process information segment by segment, while Zep 3 constructs
a document collection for vector-based retrieval, which essentially still adheres to the traditional
RAG paradigm of chunking first and understanding later, rather than constructing a holistic, struc-
tured memory for documents. Even MemoRAG (Qian et al., 2025), which focuses on documents,
primarily relies on pointers to navigate and associate between pre-segmented text fragments. This
emphasis on conversations over documents reveals a research gap: the lack of an advanced mecha-
nism for proactively constructing structured, semantically coherent memories for documents within
the field. Our proposed scenario-aware document memory extraction framework can serve as a text
processing module for these systems, facilitating the development of the entire field.

3 MOM FRAMEWORK

3.1 DOCUMENT MEMORY

The core objective of the MoM framework is to simulate the process by which domain experts deeply
read and digest documents, transforming unstructured raw text D into a structured, multi-level, and
easily retrievable knowledge, which we refer to as document memory, denoted as Mdoc. The entire
framework can be viewed as a process of learning a mapping function fMoM : D → Mdoc, which
encompasses three key stages: memory extraction, CoM construction, and model training.

3.1.1 TASK DEFINITION

Document memory is not merely a simple segmentation of the original text but rather a structured
knowledge system that has undergone deep understanding, refinement, and reconstruction. Its core
characteristics are domain-specificity, structural organization, and completeness. Formally, we de-
fine the document memory corresponding to a document D as a triplet: Mdoc = {O,C,A}, where:

• O (Outline): Represents the macro-logical structure of the document. It is an ordered set
composed of core topics, O = {o1, o2, . . . , on}, providing a high-level view and indexing
framework for document information organization.

• C (Core Content): Represents core viewpoints of the document. It is a highly condensed
set of knowledge points extracted from the content corresponding to each outline node oi,
C = {c1, c2, . . . , cn}.

• A (Atomic Chunks): Represents the structured, fine-grained content segmentation of the
original document D guided by O. A = {a1, a2, . . . , an} exhibit stronger semantic cohe-
sion compared to traditional segmentation methods.

1https://github.com/langchain-ai/langmem
2https://github.com/memodb-io/memobase
3https://github.com/getzep/zep
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Figure 1: Overview of the entire process of our MoM framework: Logical outline generation, multi-
path memory extraction and evaluation, reverse CoM construction, as well as three-layer retrieval
mechanism.

3.1.2 SCENARIO-AWARE DOCUMENT MEMORY EXTRACTION

To generate high-quality document memory, we design an extraction process that incorporates expert
simulation, multi-path sampling, and multi-dimensional evaluation.

We initially leverage a highly capable LLM, designated as the guiding model MG, to emulate the
expertise of specialists within particular domains. Through the crafting of scenario-aware prompts,
we steer MG to perform a comprehensive analysis of the input document D, resulting in the gener-
ation of its logical outline O. Following this, with O serving as a structural framework, we instruct
MG to further distill and refine the core content C as well as the corresponding atomic chunks A
for each individual outline.

Considering the randomness and limitations of single generation, we introduce a multi-path sam-
pling strategy. By adjusting the decoding parameters of MG, we generate N candidate document
memory sets {M(1)

doc,M(2)
doc, . . . ,M(N)

doc } for the same document D. To select the optimal solution from
these candidates, we design two key quantitative evaluation metrics:

Atomic Chunks Clarity. This metric aims to evaluate the semantic rationality of the segmentation
among atomic chunks A. An ideal segmentation should ensure high semantic cohesion within each
chunk and clear semantic boundaries between chunks. We leverage a language model Meval to
assess the marginal probability of the semantic boundary existing between any two consecutive
chunks ai and ai+1. The clarity score is defined as follows:

Sclarity(Mdoc) =
1

n− 1

n−1∑
i=1

PMeval(bi,i+1|ai, ai+1)

where n is the total number of atomic chunks, and bi,i+1 denotes the event that a semantic boundary
exists between chunks ai and ai+1. A higher score indicates a clearer and more logical overall
chunking structure of the document.

Core Content Completeness. This metric is used to evaluate the effectiveness and conciseness
of the core content C in covering the information of the original document D. It is achieved by
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calculating the conditional perplexity of generating the entire chunks A given C, and introducing a
penalty term for the length of the core content. Its formal definition is as follows:

Scomp(Mdoc) =
1

n

n∑
i=1

1

PPL(ai|ci) · log(|ci|)

where|ci| is the total number of tokens in the core content. A higher score signifies that, on average,
each core content provides strong, concise support for its respective original chunk.

Optimal Document Memory Selection. We rank all N candidate memories {M(i)
doc} in descending

order based on Sclarity and Scomp, respectively, resulting in two independent ranking lists. Subse-
quently, we draw on the reciprocal rank fusion algorithm (Cormack et al., 2009) to calculate a
comprehensive score for each candidate. For any candidate M(i)

doc, its comprehensive ranking score
SRRF is defined as:

SRRF(M
(i)
doc) =

1

k + rank(i)
clarity

+
1

k + rank(i)comp

where rank(i)
clarity and rank(i)

comp are the positions of M(i)
doc in the ranking lists for clarity and complete-

ness, respectively, and k is a smoothing constant (typically set to 60). All candidates will be finally
ranked according to their SRRF scores.

3.1.3 REVERSE CONSTRUCTION OF COM

To enable SLMs to master such complex knowledge construction capabilities, merely providing
supervised data consisting of inputs D and outputs Mdoc is insufficient. In order to instill deeper
human-like reading abilities, we introduce the reverse construction strategy of CoM. Specifically,
we once again leverage the guiding model MG, providing it with the original document D and the
optimal document memory Mdoc, and generating the reasoning path P through specific prompts.
This reasoning path constitutes high-quality CoM data and becomes an essential component for
training SLMs.

3.1.4 MEMREADER

Based on the aforementioned process, we construct approximately 40K high-quality training sam-
ples by employing DeepSeek-R1 to act as MG. Each sample is composed of a triplet (D,P,Mdoc).
Our objective is to transform a SLM into a MemReader, enabling it to directly generate reasoning
paths and document memories from raw documents. For a training sample, let the input be s (the
document D and related instructions), and the target output sequence be o (the concatenation of P
and Mdoc). The loss function is defined as:

LF(θ) = −1

τ

τ∑
t=1

logP (ot|o<t, s; θ)

where ot represents the t-th token in the target sequence o, o<t denotes the prefix of the target
sequence up to position t − 1, s is the input context, θ represents the learnable parameters of the
SLM, and τ denotes the length of the target output sequence o.

3.2 THREE-LAYER DOCUMENT MEMORY RETRIEVAL

Based on the document memory Mdoc = {O,C,A} generated within the MoM framework, we
construct a three-layer document memory retrieval mechanism, corresponding respectively to the
global summary O, the core content C, and the original chunks A. This design is not merely
based on empirical evidence; rather, it is also theoretically substantiated by the underpinnings of
our proposed probabilistic model.

We regard the user query q as a random vector sampled from a mixed distribution. Specifically, the
query space Q is composed of two distinct types of queries: global queries Qabs, which are designed
to represent and seek information related to the global summary O, and local queries Qquery, which
aim to represent and retrieve details pertaining to the core content C, alongside enabling access
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to the original chunks A for more granular information when necessary. We assume that these
two types of queries follow different Gaussian distributions in the embedding space: global query
qabs ∼ N (µabs,Σabs) and local query qquery ∼ N (µquery,Σquery), where µ is the mean vector
and Σ is the covariance matrix.
Hypothesis 1 (Semantic Divergence Hypothesis). We assume that the semantic centers of global
queries and local queries are significantly separated in the embedding space. Formally, it is ex-
pressed as:

∥µabs − µquery∥2 > 0

This implies that the directions of µabs and µquery are significantly different, that is, their inner-
product µT

absµquery = cos(θ) < 1.

This hypothesis is rooted in the fundamental duality of human information-seeking behavior and
linguistic expression. The user’s query intentions can typically be clearly classified into macro-level
comprehension and micro-level exploration, and these two types of vectors form two distinct clusters
in the high-dimensional embedding space. Therefore, for the hierarchical multi-vector (HMV), its
vectors Vabs and Vquery serve as unbiased estimates of the corresponding semantic centers µabs and
µquery, which can be expressed as E[Vabs] = µabs and E[Vquery] = µquery. In contrast, the single-
vector fusion (SVF) produces a fused vector Vfused that constitutes a biased, compromise estimate,
thereby diluting the representational purity of either semantic mode:

E[Vfused] = µfused = (1− w)µabs + wµquery, w ∈ (0, 1)

Theorem 1. For user queries, the HMV outperforms the SVF in terms of expected similarity. Specif-
ically, we need to prove the following two points:

• For a global query qabs, we have E[qTabsVabs] > E[qTabsVfused].

• For a local query qquery, we have E[qTqueryVquery] > E[qTqueryVfused].

Since we do not need to consider the vector length and only involve the direction representation, all
vectors are normalized to unit vectors for subsequent calculations.

Proof. First, we analyze the expected similarity of the HMV method. According to the law of total
expectation and the linearity of expectation, we can obtain:

E[qTabsVabs] = E[E[qTabsVabs|qabs]] = E[qTabsE[Vabs]] = E[qTabsµabs]

= E[qabs]
Tµabs = µT

absµabs = 1

Next, we analyze the expected similarity of the SVF method:

E[qTabsVfused] = E[qTabsE[Vfused]] = E[qTabsµfused] = E[qTabs((1− w)µabs + wµquery)]

= (1− w)E[qTabsµabs] + wE[qTabsµquery] = (1− w)(µT
absµabs) + w(µT

absµquery)

= (1− w) · 1 + w · cos(θ)

where cos(θ) = µT
absµquery. According to the Hypothesis 1, µabs and µquery point in different di-

rections, so θ > 0 and cos(θ) < 1. Since w ∈ (0, 1), we have w · cos(θ) < w. Therefore,
(1 − w) + w · cos(θ) < (1 − w) + w = 1. That is, E[qTabsVabs] > E[qTabsVfused]. The second point
can be proved in the same way.

Further, we not only demonstrate that, on average, the representation method of the HMV out-
performs the SVF but also offer a more robust probabilistic guarantee through the introduction of
probability bounds.
Theorem 2. For any small positive deviation threshold ϵ > 0, the probability that the deviation of
the retrieval result of the HMV strategy from the ideal case is greater than ϵ is lower than that of the
SVF strategy:

• P (qTabsVabs < 1− ϵ) < P (qTabsVfused < 1− ϵ)

6
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• P (qTqueryVquery < 1− ϵ) < P (qTqueryVfused < 1− ϵ)

In summary, the HMV method not only exhibits superior performance in terms of expectation but
also maintains a consistently high similarity score with extremely low probability of obtaining a low
similarity score. In contrast, the SVF model has a much higher probability of achieving a similarly
low similarity score. Detailed analysis and proof are presented in Appendix A.2.

Remark 1. The core insights of Theorem 1 and Theorem 2 lie in the fact that semantic fusion is a
costly compromise. The SVF strategy creates a semantic average by compressing globally concepts
and local details into a single vector. This fused vector occupies a compromised position in the
embedding space and fails to perfectly represent the original intentions of either side. As a result,
when a user query explicitly targets global or local information, its similarity to this compromised
vector is necessarily lower than its similarity to a dedicated vector. Our theory rigorously explains
this intuition mathematically: preserving the independence of information levels is not only benefi-
cial but also probabilistically superior as a retrieval method because it fundamentally minimizes the
loss of key features due to forced information fusion. Hence, the three-layer document memory re-
trieval mechanism can maximize the preservation of document information at different granularities,
thereby providing more accurate and comprehensive context for subsequent generation tasks.

4 EXPERIMENT AND ANALYSIS

4.1 EXPERIMENTAL SETUP

Datasets and Metrics. The experiment primarily select CRUD (Lyu et al., 2024) in the news do-
main, OmniEval (Wang et al., 2024b) in the financial domain, and MultiFieldQA zh (Bai et al.,
2023) across multiple domains as the evaluation benchmarks for domain document question an-
swering. Among them, CRUD focuses on long-answer generation; OmniEval provides manually
annotated data across 5 task types and 16 financial topics, enabling a comprehensive assessment
of the retrieval and generation quality of RAG systems in the vertical domain; multifieldqa zh is
derived from the LongBench benchmark. The evaluation metrics uniformly adopt the BLEU series,
ROUGE-L, and METEOR, which respectively measure n-gram overlap, longest common subse-
quence, and the matching degree of synonyms and syntactic variations.

Baselines. We primarily compare MoM with six representative methods spanning from rule-based
to semantic-based and then to LLM-driven approaches. Original chunking 4 merely divides long
texts into fixed-length chunks while disregarding sentence boundaries. The Llama index method
(Topsakal & Akinci, 2023) maintains sentence boundaries while ensuring that the number of tokens
in each chunk is close to a preset threshold. Similarity chunking (Xiao et al., 2023) utilizes sentence
embedding models to partition texts according to semantic similarity, effectively grouping highly
relevant sentences together. LumberChunker (Duarte et al., 2024), for the first time, introduces
LLMs into the segmentation process. By using prompts, it instructs the model to judge whether
there is a topic shift segment by segment and dynamically outputs the optimal segmentation points.
MoC (Zhao et al., 2025) adopts a framework combining a small router and meta-chunkers to balance
precision and efficiency, representing a novel paradigm for parameter-efficient chunking.

Implementation Details. In our approach, the construction of core training data leverages the
DeepSeek-R1 5. To stimulate the diversity of content generated by the model, we set temperature =
0.7 and top p = 0.8. For the MemReader implementation, we select Qwen2.5-1.5B 6 and Qwen2.5-
3B 7 as base models for training. During model evaluation, we primarily utilize Qwen2.5-7B 8 and
Qwen2.5-14B 9. All language models used in the experiments are of the instruction version and
are loaded with float16 precision to optimize computational efficiency. To enable retrieval-based
QA, we construct a vector database using Milvus and choose bge-base-zh-v1.5 10 as the embedding

4https://github.com/run-llama/llama_index
5https://huggingface.co/deepseek-ai/DeepSeek-R1
6https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct
7https://huggingface.co/Qwen/Qwen2.5-3B-Instruct
8https://huggingface.co/Qwen/Qwen2.5-7B-Instruct
9https://huggingface.co/Qwen/Qwen2.5-14B-Instruct

10https://huggingface.co/BAAI/bge-base-zh-v1.5
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Table 1: Main experimental results are presented in three domain QA datasets. B-1, B-Avg, ROU.,
and MET. represent BLEU-1, BLEU-AVG, ROUGE-L, and METEOR, respectively. The best result
is in bold, and the second best result is underlined.

Chunking Methods
CRUD OmniEval MultiFieldQA

B-1 B-Avg ROU. MET. B-1 B-Avg ROU. MET. B-1 B-Avg ROU. MET.

Original 0.5022 0.3824 0.5654 0.7324 0.1906 0.1006 0.2254 0.3904 0.1707 0.0684 0.2315 0.3650

Llama index 0.5312 0.4114 0.5896 0.7449 0.1969 0.1065 0.2350 0.4040 0.1732 0.0765 0.2363 0.3726

Semantic Chunking 0.5188 0.3985 0.5823 0.7434 0.1913 0.0971 0.2240 0.3821 0.1609 0.0576 0.2191 0.3468

LumberChunker 0.5061 0.3910 0.5701 0.7399 0.1997 0.1092 0.2375 0.4085 0.1841 0.0838 0.2426 0.3809

Qwen2.5-14B 0.5329 0.4127 0.5920 0.7502 0.2048 0.1140 0.2473 0.4160 0.1883 0.0890 0.2497 0.3827

Qwen3-14B 0.5382 0.4167 0.5953 0.7531 0.1907 0.1040 0.2329 0.4080 0.1800 0.0873 0.2412 0.3759

MoC MetaChunker 0.5456 0.4225 0.6031 0.7546 0.2042 0.1128 0.2457 0.4141 0.1707 0.0728 0.2255 0.3512

MoM MemReader-1.5B 0.5483 0.4294 0.6084 0.7597 0.1857 0.0996 0.2297 0.4049 0.1749 0.0741 0.2381 0.3814

MoM MemReader-3B 0.5556 0.4327 0.6111 0.7603 0.1960 0.1029 0.2376 0.4130 0.1842 0.0772 0.2502 0.3896

model. We set top k= 8 to retrieve the most relevant contextual information. The hardware configu-
ration is divided according to task requirements: model training and text processing are carried out
on the NVIDIA A800 80G, while evaluation is completed on the MetaX C500 64G.

4.2 MAIN RESULTS

Table 2: Correlation analysis of atomic chunks clarity
with ROUGE-L under different LLMs.

Metric
ROUGE-L

Atomic Chunks Clarity

Chunking Method Qwen2.5-3B Qwen2.5-7B Qwen2.5-14B

Original 0.4213 -0.0071 0.0085 -0.0510

Llama index 0.4326 0.2710 0.1919 0.3531

Semantic Chunking 0.4131 0.1945 0.1447 0.2380

Qwen2.5-14B 0.4351 0.3782 0.3651 0.4996

Qwen2.5-72B 0.4405 0.3484 0.3355 0.4908

Pearson Correlation Coefficient 0.7044 0.7585 0.7248

To comprehensively evaluate the effective-
ness of the MoM framework, we con-
duct extensive experiments on three QA
datasets from distinct professional do-
mains, as detailed in Table 1. The ex-
perimental results demonstrate that, on the
CRUD benchmark, our proposed Mem-
Reader exhibits a dominant advantage,
achieving the best performance across
all four evaluation metrics. It is also
noteworthy that even the smaller-scale
MemReader-1.5B delivers good perfor-
mance on this dataset, ranking second. To
further assess the MemReader’s general-
ization capability, we analyze its performance on two more challenging datasets: OmniEval and
MultiFieldQA. On the OmniEval dataset, all methods encounter difficulties, primarily due to the
substantial presence of tabular information in the financial dataset, which significantly deviates from
the training documents we utilized. Although MemReader does not achieve the highest score here,
its performance remains among the top tier. On the MultiFieldQA dataset, MemReader-3B once
again secures the best scores on two key semantic and recall metrics, ROUGE-L and METEOR.
This indicates that our method holds an advantage in accurately recalling factual information and
generating semantically similar answers. Based on the comprehensive experimental results, we ob-
serve that the MoM framework demonstrates superior performance in handling pure text-based QA
tasks across diverse domains, proving its ability to elevate the performance ceiling of RAG systems
through proactive memory extraction and retrieval.

4.3 EXPLORATION OF EVALUATION METRICS FOR MEMORY EXTRACTION

During the process of memory extraction, a central challenge lies in objectively evaluating the qual-
ity of the generated memory fragments. Although traditional metrics can measure information re-
call to a certain extent, they are often based on retrieval QA and overlook the semantic rationality
of memories themselves, thus failing to provide direct scores for rapid assessment. To address this
issue, we propose atomic chunks clarity and core content completeness, both of which can directly
score the memory extraction results within the MoM framework. Given the complex relationship
between the former and chunk quality, we conduct the further investigation. As shown in the last

8
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row of Table 2, under three evaluation models, the correlation coefficients between our metric and
ROUGE-L reach 0.7044, 0.7585, and 0.7248, respectively, all indicating strong positive correlations.
Based on this, we employ Qwen2.5-7B as the base model for metric computation when construct-
ing the document memory dataset. Additionally, we observe that the scores for the original method
are notably low, even negative in some cases, suggesting that the original paragraph segmentation
is often semantically ambiguous. In contrast, chunking methods processed by algorithms achieve
higher positive scores, demonstrating that these methods indeed create more semantically indepen-
dent units. We also conduct tests using a larger model, Qwen2.5-72B, to ensure that atomic chunks
clarity can be applied to larger-scale models.

4.4 HOW RETRIEVED CONTENT SUPPORTS ANSWERS

Table 3: Quantitative evaluation of informational sup-
port from retrieved memories for answers.

Metric Informational Support
Chunking Method Qwen2.5-7B Qwen2.5-14B Qwen2-7B

Original 3.304 3.341 2.988
Llama index 3.343 3.385 2.935
Semantic Chunking 3.580 3.695 3.024

LumberChunker 3.337 3.369 2.906
Qwen2.5-14B 3.429 3.498 2.955
Qwen3-14B 3.264 3.348 2.903
MoC MetaChunker 3.628 3.671 3.151

MoM MemReader-3B 3.149 3.247 2.795

In the evaluation framework of RAG sys-
tems, mainstream methods typically focus
on the similarity between the finally gen-
erated response and the answer. How-
ever, this end-to-end evaluation fails to
clearly attribute the system’s performance
bottleneck to either the retrieval module
or the generation module. To overcome
this challenge, we design an experiment
to directly quantify the informational sup-
port provided by the retrieved content for
the answer. Instead of examining what the
system ultimately generates, we evaluate
whether the retrieved context itself con-
tains sufficient information to derive the
correct answer. Given a query q, the RAG
system retrieves and returns a set C = {c1, c2, . . . , ck} consisting of k memories. Meanwhile, the
query corresponds to a reference answer A = (a1, a2, . . . , am). We define the informational support
score as:

Ssupport(A|C) = − 1

m

m∑
i=1

logP (ai|a1, . . . , ai−1, C)

A smaller Ssupport value indicates a higher likelihood of the correct answer being inferred from the
retrieved memories, signifying stronger support. We conduct the test on the MultiFieldQA dataset,
with the results presented in Table 3. Our proposed MoM method demonstrate superior perfor-
mance across all evaluation models, which proves that the memories extracted and organized by
MemReader-3B can provide more information for downstream tasks.

5 CONCLUSION

This paper aims to bridge the cognitive gap in the current RAG paradigm, namely, how to transi-
tion from passive text chunking to proactive document understanding and memory construction that
simulates human experts. To address this challenge, we design and implement an innovative MoM
framework, which successfully elevates document processing from superficial operations to deep
cognition through a holistic solution. It begins by constructing a cognitive blueprint through the
generation of a logical outline that simulates domain experts, then utilizes a multi-path extraction
and evaluation algorithm to ensure the completeness and accuracy of memory content, and finally
employs reverse reasoning strategies CoM to impart this complex cognitive ability to SLMs. Ex-
perimental results demonstrate that SLMs empowered by MoM exhibit superior understanding and
organizational capabilities when processing multi-domain documents. Meanwhile, we propose and
validate a three-layer document memory retrieval mechanism based on probabilistic modeling the-
ory. This mechanism not only makes full use of the multi-level memories generated by MoM in
engineering but also theoretically proves its superiority in reducing information loss and enhancing
retrieval accuracy. Therefore, the MoM framework not only provides an effective technical pathway
for optimizing existing RAG systems but also opens up new avenues for exploring how to construct
SLMs that are closer to human thinking patterns and possess greater autonomous cognitive abilities.
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A APPENDIX

A.1 THE USE OF LARGE LANGUAGE MODELS

To enhance the linguistic quality and readability of this paper, we employ a LLM as an auxiliary
tool during the composition of sections such as the abstract and introduction. The role of the LLM
is strictly limited to refining and improving the phrasing of the authors’ original drafts, with the aim
of enhancing clarity and fluency of expression. All academic contributions of this paper, including
all viewpoints, methodologies, and conclusions, originate solely from the authors’ independent re-
search. The author conduct a final review of all content revised with the assistance of the LLM and
assumes full responsibility for it.
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A.2 PROOF OF THEOREM 2

Proof. The random variables of our concern are the similarity scores between the global query
qabs and Vabs or Vfused under the HMV and SVF method, respectively. Let XHMV = qTabsVabs and
XSVF = qTabsVfused. According to the derivation from Theorem 1, we have E[XHMV] = 1 and
E[XSVF] = (1− w) + w · cos(θ) = 1− w(1− cos(θ)).

Both the query qabs and the vector Vabs are modeled as Gaussian distributions, and their inner product
is also a random variable following a Gaussian distribution. We define its variance as σ2

HMV =
Var(qTabsVabs). Similarly, σ2

SVF = Var(qTabsVfused).

Our goal is to set an upper bound on the probability that the value of XHMV is less than 1 − ϵ.
Applying Hoeffding’s inequality, we obtain:

P (XHMV ≤ 1− ϵ) ≤ exp

(
− ϵ2

2σ2
HMV

)
Let C = w(1− cos(θ)), then the expectation of SVF can be written as E[XSVF] = µS = 1− C.

Case 1: Small Deviation (0 < ϵ ≤ C). We standardize XSVF:

P (XSVF < 1− ϵ) = P

(
XSVF − µS

σSVF
<

1− ϵ− µS

σSVF

)
Let Φ(·) denote the cumulative distribution function of the standard normal distribution. Then, we
obtain:

P (XSVF < 1− ϵ) = Φ

(
1− ϵ− µS

σSVF

)
= Φ

(
C − ϵ

σSVF

)
In this case, C − ϵ ≥ 0. Therefore, P (XSVF < 1− ϵ) ≥ Φ(0) = 0.5. Since ϵ is a positive constant,
P (XHMV ≤ 1− ϵ) remains a low-probability event constrained by an exponentially decaying term.
Thus, a negligible tail probability is clearly smaller than a significant probability of at least 0.5.

Case 2: Large Deviation (ϵ > C). This case describes a more extreme requirement. We can view
both events as the extent to which the random variables deviate from their respective means.

The distance between XHMV and its mean 1 is at least ϵ:
P (XHMV < 1− ϵ) = P (XHMV − E[XHMV] < −ϵ)

The distance between XSVF and its mean 1− C is at least ϵ− C:
P (XSVF < 1− ϵ) = P (XSVF < µS − (ϵ− C)) = P (XSVF − E[XSVF] < −(ϵ− C))

Since ϵ > C, we know that ϵ > ϵ − C > 0. Therefore, in practical scenarios within a specialized
domain, the probability of a large deviation ϵ occurring in the specialized method HMV is much
smaller than the probability of a small deviation occurring in the general method SVF. On the other
hand, formally, the probability upper bound of XHMV decays as exp(−ϵ2), while the probability of
XSVF decays as exp(−(ϵ − C)2). Since ϵ2 > (ϵ − C)2, the decay rate of XHMV is faster, and its
probability value is smaller.

A.3 MAIN EXPERIMENTAL DETAILS

In our experiments, we employ a total of five baseline methods, with their specific configurations
detailed as follows:

(a) Rule-based Chunking Methods
• Original: This method divides long texts into segments of a fixed length, such as two

hundred Chinese characters or words, without considering sentence boundaries.
• Llama index (Topsakal & Akinci, 2023): This method considers both sentence complete-

ness and token counts during segmentation. It prioritizes maintaining sentence bound-
aries while ensuring that the number of tokens in each chunk are close to a preset thresh-
old. We use the SimpleNodeParser function from Llama index, adjusting the
chunk size parameter to control segment length.

12
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(b) Dynamic Chunking Methods
• Similarity Chunking (Xiao et al., 2023): Utilizes pre-trained sentence embedding mod-

els to calculate the cosine similarity between sentences. By setting a similarity thresh-
old, sentences with lower similarity are selected as segmentation points, ensuring that
sentences within each chunk are highly semantically related. This method employs the
SemanticSplitterNodeParser from Llama index. The size of text chunks is
controlled by adjusting the similarity threshold.

• LumberChunker Duarte et al. (2024): Leverages the reasoning capabilities of LLMs to
predict suitable segmentation points within the text. We utilize Qwen2.5 models with 14B
parameters, set to full precision.

• MoC MetaChunker (Zhao et al., 2025): MoC trains a lightweight chunker model to au-
tomatically learn how to partition long texts into semantically coherent chunks without
relying on fixed lengths or predefined rules. Compared to traditional heuristic methods,
MetaChunker demonstrates stronger cross-task generalization capabilities, particularly in
downstream tasks such as RAG, serving as a representative strong baseline approach.

A.4 COLLECTION AND REFINEMENT OF TRAINING DATA

To construct a high-quality training set for document memory extraction, we first extract raw texts
from the pre-trained corpus CCI3-HQ (Wang et al., 2024a). CCI3-HQ itself comprises 500GB of
high-quality web pages and book content, encompassing approximately 100B tokens, and is accom-
panied by quality scores. From this corpus, we select 30K documents spanning multiple domains,
including news, social media, literature, academic papers, educational and scientific popularization,
legal regulations, healthcare, and more. Concurrently, we construct training and test sets from the
open-source CRUD dataset. Specifically, since CRUD provides evidence context snippets corre-
sponding to each QA pair, along with the original news repository, we can retrieve the original
news articles containing these context snippets through sentence matching. Taking two-hop QA
as an example, CRUD provides two news snippets, namely news1 and news2, which are essential
for answering the question. We then save the matched original news articles, matched news1 and
matched news2, that contain news1 and news2, respectively. Finally, from a repository of 80K orig-
inal news articles, we recall 10K news articles that contain the context snippets as the initial texts
for evaluation. From the remaining documents, we randomly select 10K data samples for training.
After obtaining 40K multi-domain mixed documents, we employ the MoM framework for high-
quality memory extraction and CoM construction, providing a reliable foundation for subsequent
supervised fine-tuning of SLMs and evaluation of document memory capabilities.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Table 4: Prompt for guiding the training and inference of MemReader in the MoM framework.

Scenario-Aware Document Memory Extraction

This is a document memory extraction task, and you are an expert in memory extraction. Firstly,
carefully analyze the content provided below and generate a logical, self-consistent, and com-
plete reasoning process to solve this problem. Then, utilizing the holistic understanding of
the document, create a memory extraction outline, and based on this outline, generate a corre-
sponding number of scenario memories for the given document.
The generation of the memory extraction outline should be approached from the perspective of
a domain expert, leveraging the global information of the original document. Each entry in the
outline should represent the role of the corresponding text chunk in the scenario memory and
its summary content.
When extracting memories from the document according to the generated outline, each scenario
memory should consist of two parts:
1. A text chunk with complete logical expression, segmented from the document according to
logical and semantic structures. Requirements: Avoid overly short text chunks and achieve a
good balance between identifying content transitions and chunk length. Each output text chunk
should be composed of the first and last few characters of the chunk, with the intermediate
content replaced by “[MASK]”.
2. A description of the core content within the corresponding text chunk.

The overall output format is as follows:
<think>

Reasoning process

</think>
<outline>

Memory retrieval outline for the document

</outline>
<scenario>

<chunk>

First few characters of text chunk 1 [MASK] Last few characters of text chunk 1

</chunk>

Description of the core content in text chunk 1

</scenario>

.......

If you understand, reply directly with the content in the specified format, using line breaks to
distinguish between different scenario memories. Do not output any other explanatory content,
and do not enclose your reply in quotation marks or other delimiters.

Document content:

<document>Document Content</document>
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