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Abstract

Bayesian inference promises a framework for principled uncertainty quantification1

of neural network predictions. Barriers to adoption include the difficulty of fully2

characterizing posterior distributions on network parameters and the interpretability3

of posterior predictive distributions. We demonstrate that under a discretized prior4

for the inner layer weights, we can exactly characterize the posterior predictive5

distribution as a Gaussian mixture. This setting allows us to define equivalence6

classes of network parameter values which produce the same training error, and to7

relate the elements of these classes to the network’s scaling regime—defined via8

ratios of the training sample size, the size of each layer, and the number of final9

layer parameters. Of particular interest are distinct parameter realizations that map10

to low training error and yet correspond to distinct modes in the posterior predic-11

tive distribution. We identify settings that exhibit such predictive multimodality,12

and thus provide insight into the accuracy of unimodal posterior approximations.13

We also characterize the capacity of a model to “learn from data” by evaluating14

contraction of the posterior predictive in different scaling regimes.15

1 Introduction16

Uncertainty is key to learning. Questions of how to quantify neural network prediction uncertainty17

are inextricable from questions of how expressive models learn to generalize [28, 29, 22]. Progress18

on these questions has been made through analysis of relatively simple networks, including random19

features models [23] and neural tangent kernels [15], which demonstrate the double descent phe-20

nomenon [5, 4, 19, 6, 1]. An array of uncertainty metrics have been proposed for neural networks, as21

detailed by [11], but most approaches rely on heuristics which make interpretation challenging even22

in simple networks.23

Bayesian neural networks (BNNs) promise a principled framework for obtaining predictive distri-24

butions conditioned on training data [20, 18, 2]. Realizing this promise has been complicated by25

the need to design appropriate prior and likelihood models and to characterize multimodal posterior26

distributions. Locating all modes via sampling is generally intractable, though mode connectivity and27

algorithm choice may aid in discovering parameter values that successfully generalize [10, 14, 25, 21].28

Many strategies for approximate inference in BNNs have also been developed. The Laplace ap-29

proximation [9, 17] represents the predictive distribution with a single mode. Variational inference30

methods [13, 3, 7] are more flexible, but typically capture at most a few posterior modes. Such31

approaches seem to risk underestimating uncertainty, though the debate about “cold posteriors” has32

raised the possibility that narrower distributions may produce better generalization [27]. Partially33

Bayesian networks [16, 26] could offer uncertainty estimates without introducing the challenge of34

learning distributions over all parameters. Broadly, however, there is a need for tools that provide35

insight into what these approximations of the Bayesian posterior miss.36
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In this work, we demonstrate that adopting a discrete prior on the inner layer weights of a BNN is a37

useful tool for accessing the predictive distribution without exhaustively sampling parameter space.38

Such priors allow us to identify cases where different posterior modes map to distinct modes in the39

predictive distribution. Then we can determine when predictions based on a single posterior mode40

will fail. To the authors’ knowledge, this approach to analyzing multimodality is unique, though41

the different treatment of inner and final layer parameters during inference bears some resemblance42

to work on subnetwork inference [8, 26], partial Bayesian networks [16, 26], and random features43

models [23]. Furthermore, characterizing the posterior predictive distribution allows us to identify44

settings where the predictive uncertainty does not contract as the network and training set size grow45

proportionally. This behavior raises the question of whether overparameterized BNNs can produce46

“confident predictions,” i.e., predictions whose posterior distribution contracts around the truth as the47

network and data set size grow.48

Section 2 outlines our model and approach to inference. Sections 3 and 4 examine the impact of49

network and training set size on predictive uncertainty for a discretized Gaussian prior and then50

for a prior which puts mass on optimal parameter values. We conclude with a discussion of the51

implications of multimodality for approximate inference tools and the role of Bayesian uncertainty in52

successful generalization.53

2 Predictive distribution of Bayesian neural network54

We consider an L-layer neural network in a regression setting,55

ŷ = w⊤xL, (1)
xℓ = σ(Θ⊤

ℓ−1xℓ−1) − bℓ, 1 < ℓ ≤ L, (2)

where x1 ∈ Rd is the network input, ŷ ∈ R is the output, and σ is a nonlinear activation function56

that operates component-wise. The trainable parameters include the final layer weights w ∈ Rp and57

interior parameters Θ := {Θℓ ∈ Rdℓ×dℓ+1 , bℓ ∈ Rdℓ}Lℓ=1. Note that d1 = d and dL = p. We make58

the prior assumption that59

w ∼ N (0, p−1Ip), P(Θ = Θ(j)) = ρj ,

J∑
j=1

ρj = 1, (3)

where each Θ(j) is a fixed realization of the interior parameters. Crucially, the discrete prior on Θ60

allows us to derive an analytical representation of the Bayesian posterior predictive distribution.61

Our training set has the form {(x(i)
1 , y(i))}ni=1 where we assume that62

y(i) = g(x
(i)
1 ) + ε(i), ε(i)

iid∼ N(0, γ2), (4)

for some (unknown) data-generating function g : Rd → R. For convenience, we define Xℓ :=63

[x
(1)
ℓ , . . . , x

(n)
ℓ ] ∈ Rdℓ×n, for any ℓ ∈ [L], and Y := (y(1), . . . , y(n)) ∈ Rn. The training data can64

thus be written more concisely as (X1, Y ). Let x̃1 ∈ Rd be an input value at which we will test our65

network predictions and let ỹ ∈ R denote the corresponding output. Under our model assumptions,66

the posterior predictive density for ỹ is a J-component Gaussian mixture:67

π(ỹ |X1, Y, x̃1) =

J∑
j=1

P(Θ(j) |X1, Y ) π(ỹ |X1, Y, x̃1,Θ
(j)), (5)

For each j, Bayesian linear regression yields68

π(ỹ |X1, Y, x̃1,Θ
(j)) = N

(
ỹ; p−1x̃⊤

LXL(p
−1X⊤

LXL + γ2I)−1Y,

γ2I + γ2p−1x̃⊤
L (p

−1XLX
⊤
L + γ2I)−1x̃L

)
, (6)

where dependence on x̃1 in the mean and variance terms above enters via x̃L, as described in (2).69

Note that both XL and x̃L depend on Θ(j). By Bayes’ rule, the mixture weights are70

P(Θ(j)
∣∣X1, Y ) =

ρj π(Y |X1,Θ
(j))

π(Y |X1)
=

1 +
∑
k ̸=j

ρkπ(Y |X1,Θ
(k))

ρjπ(Y |X1,Θ(j))

−1

, (7)
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where71

π(Y |X1,Θ
(j)) = N

(
Y ;0, p−1XT

LXL + γ2I
)
=: L(XL(Θ

(j))) (8)

is the marginal likelihood function for Θ(j).72

Assuming that ρj = 1/J for all j ∈ [J ], the jth mode of the posterior predictive will have a large73

weight only if L(XL(Θ
(j))) is large compared with the marginal likelihood of all other candidate Θ74

values.75

3 Multimodality under a discretized Gaussian prior76

At this stage, it is not obvious whether multimodal distributions on (w,Θ) map to multimodal77

distributions in the space of predictions, e.g., the distribution of ỹ at at given input x̃1. 1 As (5) shows,78

the posterior predictive distribution is the average over predictive distributions obtained by fixing79

each Θ(j) and inferring w. Thus, the predictive distribution can be interpreted as an average over80

random features models, where the weight of the jth model is determined by how compatible Θ(j) is81

with Y compared to each Θ(k ̸=j). It is natural to ask for which regimes of n, p, and d it is possible82

to obtain multiple realizations of Θ that each produce high marginal likelihoods L(Θ), but map to83

distinct predictive modes.84

In this section, we consider two layer networks where bias parameters are set to 0 and the remaining85

components of {Θ(j)}Jj=1 are fixed by independently sampling from N (0, c/d) for some constant86

c. We set each ρj = 1/J . Note that this choice of prior may be considered a discretization of a87

Gaussian prior, a common minimally informative choice for BNNs [2]. As is generally the case for88

Monte Carlo schemes, it is intractable to fully explore the continuous parameter space represented by89

a Gaussian prior, but larger J will correspond to greater coverage. For our experiments, we choose90

J = 200 000. The columns of X and x̃1 are drawn from standard Gaussian distributions, and Y and91

ỹ are chosen to have unit variance. We consider the rectified linear unit (ReLU) activation function,92

and set c = 2π/(π − 1) so that the prior predictive distribution has unit variance.93

Figure 1 summarizes the findings of these experiments. The left and center columns show predictive94

distributions at a given x̃1 for select (p, n) pairs and d = 100. Each indigo region represents the95

predictive distribution corresponding to a candidate Θ(j); darker shades indicate larger weights96

as given by (7). The black curve marks the full posterior predictive distribution. Clearly, in our97

setting, Bayesian inference can produce multimodal predictive distributions. Each posterior predictive98

distribution demonstrates smaller variance than the prior predictive distribution; thus, conditioning99

on training data has produced a reduction in uncertainty. Appendix A.1 provides examples of the100

posterior predictive distributions at additional test points and for larger network sizes.101

The rightmost column of Figure 1 documents a more extensive exploration of the impact of n, p,102

and d. For d ∈ {10, 100, 1000} and ratios n/d and p/d ranging from 0.5 to 2, we plot the log of the103

number of candidates Θ(j) which produce a Gaussian mixture component with weight larger than104

10−6. Note that the total number of trainable parameters in the network we consider is p(d + 1),105

so each network considered is overparameterized. If we restrict our attention to inference in the106

final layer weights w, however, only the entries below the right leaning diagonal of each heatmap107

correspond to overparameterized networks.108

Network and training set size clearly influence the number of modes that are significant in the posterior109

predictive distribution. When d = 10 we see that for several of the n and p values considered, up110

to 98% of the the candidate inner layer parameters make significant contributions to the posterior111

predictive distribution. By contrast, for larger input dimensions, when n is close to p we often find112

only one significant mode, leading to a unimodal posterior predictive distribution. These findings113

are expected if we recall the dependence of (7) on L(Θ). If p is sufficiently larger than n, many114

candidates Θ(j) will produce large L(Θ) due to final layer overparameterization. Since X⊤
L−1Θ

(j)115

is full rank with high probability, if n is much larger than p, it becomes challenging to identify a116

single candidate Θ(j) which could reproduce the training data; but many of the available candidates117

produce similar L(Θ) and thus contribute to the posterior predictive. The line n = p represents a118

1In this paper, we focus only on marginal predictive distributions. It is straightforward, however, to
characterize the joint distribution of predictions at any collection of different input values.
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Figure 1: Left and center: posterior predictive distributions for input dimension d = 100 at select
training set size n and final layer width p, as indicated by each title. The black line shows the
pdf which is a mixture of Gaussians. Each shaded distribution is a component of this mixture
with transparency corresponding to its weight. Right: Heatmaps depicting the log of the number
of component distributions which have weight larger than 10−6 for specified network dimensions.
Observation noise variance is set to γ2 = 0.01 for these results.

phase transition around which one or a few candidates are likely to outperform the others. Appendix119

A.2 provides more discussion of the impact of this transition from under- to overparameterization (in120

terms of final layer weights).121

It is notable that the region where few candidates produce significant modes becomes larger as the122

network and training set sizes increase. Among our results, mixtures with a smaller number of123

component modes tend to have smaller predictive variance, as discussed in Appendix A.2. This124

empirical observation suggests contraction of the posterior predictive as n increases. However, we125

also find that the range of L(Θ) values widens with n, so we can expect that as n increases, the126

number of candidates J necessary to adequately cover parameter space will also increase.127

These numerical experiments suggest that the full posterior predictive distribution often will not128

be well represented by an approximation that is based on a single candidate parameter value Θ(j)129

producing low training error. Of course, our model for inference does not fully capture the predictive130

distribution that would be obtained with a continuous prior distribution. It is possible that if we131

increased J or identified candidate network parameters Θ(j) with more specific structure, we would132

find one dominating component of the predictive distribution, or instead see a “filling in” of the133

predictive distribution. That is, there might be components between existing components that render134

the continuous predictive distribution unimodal. If such a “filling in” occurs, however, approximations135

based on one particularly good candidate Θ(j) would still underestimate the true posterior uncertainty.136

This possibility opens questions of whether overparameterized BNNs can successfully “forget137

their priors” to learn from data, and whether a fully Bayesian model of uncertainty is suitable for138

producing low generalization error. In the next section, we will contrast these initial experiments139

with predictive distributions found by deliberately constructing inner layer parameter candidates with140

greater structure.141
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Figure 2: Top left and bottom: Predictive distributions based on candidate parameters constructed to
achieve (11). The full distribution is plotted in black and components are shaded according to their
weight in indigo. We consider 10 rotations, 10 preimage samples, and 10 column space samples to
construct the distribution — a total of 1000 samples. Top right: The scale of predictive distributions
for select d and p/n where n/d = 0.7. We plot the mean and standard error obtained from 10
realizations of Y for which we find the median predictive variance across 10 realizations of x̃1.

4 Constructing optimal parameters142

As discussed above, candidate network parameters produced by drawing a finite set of samples from143

a Gaussian prior might omit a parameter value that would qualitatively change the behavior of the144

posterior predictive. To address this limitation, we can use our observation that the weight of each145

component of the posterior predictive distribution (5) depends on the marginal likelihood of the146

corresponding candidate (7). Now, we identify a set of candidates Θ(j) which have high marginal147

likelihood by construction, and show that a prior which puts mass on these candidates produces a148

multimodal predictive distribution. A first step toward identifying these candidates is to consider the149

upper bound150

max
Θ

1

n
logL(XL(Θ); X1, Y ) ≤ max

XL

1

n
logL(XL; X1, Y ). (9)

As detailed in Appendix A.3, the matrix X∗
L solving the optimization problem on the right satisfies151

X∗⊤
L X∗

L = Y Y ⊤(1− γ2(Y ⊤Y )−1), (10)

The existence of one or more Θ∗ that map to this optimal XL depends on the choice of activation152

function. If we consider ReLU activation and assume that bias parameters are 0, then all elements of153

XL(Θ
∗) must be nonnegative. If the elements of Y are drawn from a centered distribution with unit154

variance, the probability that all elements of (10) are nonnegative is vanishingly small. Since X⊤
LXL155

is an estimate of the covariance of Y , we conjecture that if we add the constraint that its elements156

must be nonnegative to the right hand side of (9), we obtain157

X∗⊤
L X∗

L ≈ σ(Y Y ⊤)(1− γ2(Y ⊤Y )−1). (11)

Note that we require n ≤ dL−1 to be gauranteed a solution Θ∗ which maps to the right hand side158

above. We test (11) empirically in Appendix A.4.159
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We may now consider an equivalence class [Θ]L of network parameters Θ that map to X∗⊤
L X∗

L as160

defined in (11). All elements of this class will have identical training error and marginal likelihood,161

L(Θ). The parameters of ReLU networks are both permutation and scale invariant [24]; thus, multiple162

realizations of (Θ, w) map to both identical training error and identical test predictions. But it is also163

possible to construct {Θ(j)}Jj=1 that map to the same training error without relying on permutation164

and scale invariance. Specifically, we can consider unitary rotations of XL which preserve the165

nonegativity of its elements, samples of the preimage of the activation function, and samples of the166

column space of XL−1. Using these constructions, we will demonstrate that not all elements of [Θ]L167

correspond to identical predictive distributions.168

Figure 2 describes posterior predictive distributions for a two layer network with a prior on the inner169

layer parameters that puts mass on elements of [Θ]L. For a comparison of this prior to a continuous170

Gaussian prior, see Appendix A.5. We consider the combinatorial space of parameter candidates171

created from 10 rotations of X∗
2 , 10 samples of the preimage of ReLU, and 10 samples of the column172

space of X1. The top left subfigure shows the posterior predictive distribution for the same network173

size and x̃1 considered in the lower left corner of Figure 1. As in Section 3, we find examples of174

different candidates Θ(j) which map to distinct predictive distributions. In contrast to Section 3, we175

also find this behavior for networks where n = p, as shown by plots on the bottom row of Figure 1.176

These results suggest that for many BNNs, the true Bayesian uncertainty of the posterior predictive177

distribution will be influenced by multiple modes of the posterior, moderated by the prior.178

To understand the influence of the prior, we must examine predictive variance. Large variance179

indicates that the training data is not sufficient to distinguish between the parameter candidates given180

weight by the prior. Too much prior influence may produce poor generalization. The proportional181

asymptotics limit—where n, p, d → ∞ while the ratios between these values remain fixed and182

finite—has been an important setting for examining the generalization of two layer neural networks183

[19, 12]. Significantly, when we consider parameter candidates from [Θ]L, the posterior predictive184

distribution does not contract as n, d, and p increase proportionally. One example is shown in the185

bottom row of Figure 1, and more examples are available in Appendix A.5. The top right plot in186

Figure 2 summarizes the scale of the posterior predictive distributions for selected network sizes and187

n/d = 0.7. The distributions do not tend to contract as n grows; rather, for large d there may be188

an increase in variance as the number of last layer parameters increases. The latter behavior may189

occur because the number of network parameters is p(d+ 1), so the degree of overparameterization190

is increasing with p/n and d. Further exploration of the impact of the prior on predictive variance191

and generalization will be a focus of our future work.192

5 Key implications193

We have provided insight into the predictive uncertainty of Bayesian neural networks by choosing a194

continuous Gaussian prior for the final layer weights and a discrete prior for the interior parameters.195

The key implications are:196

• Much of the mass of the posterior predictive distribution can be captured without197

sampling the entire parameter space. For a given prior, we can construct parameter198

candidates with high marginal likelihood and prior weight.199

• Unimodal posterior approximations are overconfident. Multiple posterior modes con-200

tribute to the posterior predictive uncertainty of Bayesian neural networks.201

• The posterior predictive distribution does not contract as n, p, and d increase pro-202

portionally. Thus, in overparameterized networks, predictive uncertainty likely reflects an203

inability to completely forget the prior given the training data—that is, an inability to make204

confident predictions.205

Future work will target each of these implications. More extensive numerical experiments alongside206

theoretical results will consider different prior assumptions and establish minimum rates at which207

network size must grow with respect to training set size such that the predictive distribution does not208

contract. Further, we will characterize equivalence classes of parameters which map to large marginal209

likelihood for more network and training set sizes. Finally, we will quantify the impact of predictive210

uncertainty on generalization error.211
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Figure 3: Posterior predictive distributions at test point x̃(2)
1 for input dimension d = 100 at select

training set size n and final layer width p, as indicated by each title. The black line shows the pdf
which is a mixture of Gaussians. Each shaded distribution is a component of this mixture with
transparency corresponding to its weight.

A Appendix / supplemental material316

A.1 PDFs under a discretized Gaussian prior317

Figure 1 shows the predictive distributions for select network and training set sizes at test location318

x̃
(1)
1 . Here, we provide the pdfs which result from inference with the prior specified in Section 3319

for the same ratios n/p at additional locations x̃(2)
1 and x̃

(3)
1 . For all examples, γ2 = 0.01. Figures320

3 and 4 show results for d = 100 while figures 5 and 6 correspond to d = 1000. As in Section 3,321

we see that multiple candidates Θ(j) contribute to the posterior predictive distributions, leading to322

multimodality in most cases considered.323
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Figure 4: Posterior predictive distributions at test point x̃(3)
1 for input dimension d = 100 at select

training set size n and final layer width p, as indicated by each title. The black line shows the pdf
which is a mixture of Gaussians. Each shaded distribution is a component of this mixture with
transparency corresponding to its weight.
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Figure 5: Posterior predictive distributions at test point x̃(2)
1 for input dimension d = 1000 at select

training set size n and final layer width p, as indicated by each title. The black line shows the pdf
which is a mixture of Gaussians. Each shaded distribution is a component of this mixture with
transparency corresponding to its weight.
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Figure 6: Posterior predictive distributions at test point x̃(3)
1 for input dimension d = 1000 at select

training set size n and final layer width p, as indicated by each title. The black line shows the pdf
which is a mixture of Gaussians. Each shaded distribution is a component of this mixture with
transparency corresponding to its weight.
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Figure 7: Heatmaps depicting the log of the number of component distributions which have weight
larger than 10−6 for specified network dimensions. Columns correspond to the input dimension, d:
10, 100, and 1000. Rows correspond to observation variance: 0.01 and 0.0001.

A.2 Identifying modes under a discretized Gaussian prior324

This section provides additional results concerning the multimodality and variance of predictive325

distributions described in Section 3. The first rows of both Figures 7 and 8 match the right column326

of Figure 1. This set of heatmaps reports the number of modes with weight larger than 10−6327

found for specified network and training set size at observation noise level γ2 = 0.01. They are328

repeated for the purpose of comparison. In Figure 7, we see that the number of modes located for329

a specific n, p, d triple is not impacted by reducing observation noise to γ2 = 0.0001. In Figure 8,330

we can see a loose relationship between the number of significant modes and the variance of the331

predictive distribution. In our numerical experiments, we have found that component distributions332

of the predictive distribution tend to have similar variance and may have distinct modes. Thus, it is333

reasonable that finding more significant modes correlates with greater predictive variance, as we see.334

For this particular example, as we increase the training set size, predictive variance tends to decrease,335

but this may be an artifact of the prior choice and finite J . Figure 9 demonstrates that the predictive336

variance can be sensitive to the choice of J .337

Figure 10 provides context for the number of modes reported in Figure 7. The heatmap shades338

correspond to the log of the standard deviation of the distribution on {n−1 logL(Θ(j))}Jj=1. For a339

given input dimension, d, and observation noise level, γ2, the largest standard deviation is found340

when n = p. This effect is likely related to the double descent phenomena: for each X1, there is one341

candidate Θ which outperforms all other candidates. As expected, the double descent phenomenon342

becomes more pronounced as regularization, γ2, decreases.343
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Figure 8: Top: The log of the number of component distributions which have weight larger than
10−6 for specified network dimensions. Bottom: The log of the variance of the posterior predictive
distribution obtained for each network size. Columns correspond to the input dimension, d: 10, 100,
and 1000. All results correspond to observation noise γ2 = 0.01.

Figure 9: The variance of the posterior predictive distribution averaged over 100 realizations of x̃1

plotted against the number of parameter candidates, J . The prior details are specified in Section 3
and the network and training set size are given in the plot title.
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Figure 10: Heatmaps depicting the log of the standard deviation of the distribution of n−1 logL(Θ)
for candidates Θ(j) sampled from a Gaussian prior as described in Section 3. Columns correspond
to the input dimension, d: 10, 100, and 1000. Rows correspond to observation variance: 0.01 and
0.0001. The diagonal where n = p shows a double descent effect which is stronger for smaller
observation noise.
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A.3 Optimal parameters344

We are interested in Θ which maximizes L(Θ;X,Y ) as defined in (8). To this end, consider the345

singular value decomposition346

UΛ1/2Q⊤ =
XL√
p
, (12)

where diag(Λ) = [λ1, . . . , λp∨n]
⊤ and Q = [q1 . . . qn] ∈ Rn×n. Then,347

logL (XL(Θ);X,Y ) =
−1

2

n∑
k=1

(
log(2π) + log(λk + γ2) +

(q⊤k Y )

λk + γ2

)
. (13)

Note that because X⊤
LXL is positive semi-definite, n−1 logL (XL) ≤ − log(γ). We can determine348

that349

min
Θ

−2

n
(logL (XL(Θ);X,Y ) + log(2π))

≤ min
Λ⪰0

Q⊤Q=QQ⊤=In

1

n

n∑
k=1

(
log(λk + γ2) +

(q⊤k Y )

λk + γ2

)

= min
Q⊤Q=QQ⊤=In

1

n

n∑
k=1

min
λk≥0

(
log(λk + γ2) +

(q⊤k Y )

λk + γ2

)

= min
Q⊤Q=QQ⊤=In

1

n

n∑
k=1

log
(
q⊤k Y

)2
+ 1 (q⊤k Y )2 ≥ γ2, k ≤ p

log γ2 +
(q⊤k Y )
γ2 otherwise

= log γ2 + min
{v1≥···≥vn≥0,

γ2 ∑n
i=1 vi=Y ⊤Y }

1

n

n∑
k=1

{
log vk + 1 vk ≥ 1, k ≤ p

vk otherwise
.

In the last line, we impose the constraint v1 ≥ · · · ≥ vn ≥ 0 to prevent redundant optima. We find350

that351

argmin
X⊤

L XL

1

n

n∑
k=1

(
log(λk + γ2) +

(q⊤k Y )

λk + γ2

)
= Y Y ⊤

(
1− γ2

Y TY
.

)
(14)

Provided that Y ⊤Y ≥ γ2, this minimizer is unique. For the results reported in this work, we assume352

that Y ∈ Rn is centered with unit variance. Then, we expect Y ⊤Y ∼ O(n).353
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Figure 11: The difference in scaled log marginal likelihood (n−1 logL) based on Θ constructed to
satisfy (15) and the best performing Θ with elements sampled iid from a Gaussian prior.

A.4 Optimal parameters for ReLU354

In this section, we evaluate the conjecture made by (11). In particular, we compare the largest355

value of n−1 logL(XL) found in Section 3 to the conjectured maximum for a given set of training356

observations (X1, Y ). Recall that for a two-layer network, we must have n ≤ d for there to exist357

some Θ which maps to the conjectured maximizer, X∗
L. Thus, for this section we consider L (XL(Θ))358

such that359

X⊤
LXL = σ(PXY Y ⊤P⊤

X )

(
1− γ2

Y ⊤Y

)
(15)

where PX projects into the column space of X1. Thus, when n ≤ d, (15) reduces to (11). Note that360

we do not necessarily expect n−1 logL(XL) under (15) to be optimal when n > d.361

Figure 11 shows the difference between optimal n−1 logL(XL) under (15) and the maximum362

n−1 logL(XL) found empirically in Section 3. We consider d ∈ {10, 100, 1000}, γ2 ∈363

{0.01, 0.0001}, and ratios p/d and n/d ranging from 0.5 to 2. As expected, we find that the364

conjectured optimum is at least as large as the empirically determined maximum for n ≤ d. In365

cases where d < n, enforcing (15) leads to n−1 logL(XL) considerably smaller than our empirically366

located maximum. It is interesting to note that the distance by which the conjectured maximum367

outperforms the empirical maximum is exacerbated when d is large and n = p.368
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Figure 12: Predictive distribution based on candidate parameters constructed to achieve (11). The
full distribution is plotted in black and components are shaded according to their weight in indigo.
We consider 10 rotations, 10 preimage samples, and 10 column space samples to construct the
distribution. Results are for n = 70, p = 170, and d = 100 at locations x̃(2)

1 (left) and x̃
(3)
1 (right).

A.5 Predictive distribution for optimal parameters369

Here, we summarize additional results from the setting of Section 4. The top left subfigure of Figure 2370

shows the predictive distributions for n = 70 and p = 170 at test location x̃
(1)
1 . Here, we provide the371

predictive distribution at additional locations x̃(2)
1 and x̃

(3)
1 in Figure 12. For all examples, γ2 = 0.01.372

The candidates Θ(j) for these plots are constructed from the combination of 10 rotations of XL, 10373

samples of the column space of X1, and 10 samples of the preimage space. Thus, we have a total of374

1000 candidates. To better separate the impact of each approach to constructing candidates, Figure375

13 shows predictive pdfs where each column corresponds to a different approach. For instance, in376

the first column, candidates are constructed based on 10 rotations of XL, one sample of the column377

space of X1, and one sample of the preimage space. Each row corresponds to a different test location:378

x̃
(2)
1 and x̃

(3)
1 . We see that all approaches see to contribute to predictive variance, but rotation and379

column space samples seem to yield more distinct modes than preimage samples.380

Figure 8 provides some evidence that under the setting of Section 3, as n increases, the variance of381

the predictive distribution decreases, even if p and d increase in proportion to n. The reduction in382

variance is observed in the region where n is close to p, and occurs in part because we tend to find383

unimodal predictive distributions in this region when we finitely many sample parameter candidates384

from a Gaussian distribution. It is possible that this shrinkage is an artifact of the experimental design385

as it seems unlikely we would see a reduction in uncertainty when the degree of overparameterization,386

n/(pd), increases. Figure 2 provides some evidence that when the prior puts weight on certain387

“optimal” parameters, this shrinkage does not occur. Figure 12 provides representative examples388

of predictive pdfs obtained following the setting of Section 4 when n = p. We see that there is no389

evidence of shrinkage as n increases, and most examples demonstrate multimodality.390

Finally, it is worth examining the distribution of the components of the constructed parameter391

candidates, Θ(j), and their corresponding final layer weights, w. If these constructed parameters392

are far outside typically used priors, the predictive modes they produce would not be informative393

about the behaviors of BNNs in practice. Figure 15 provides a representative comparison between the394

distribution of constructed “optimal” parameters (indigo) to the distribution of the parameters drawn395

from the prior distributions considered in Section 3 (gold). We see that the distributions are close396

though for both Θ and w, the variance of the distributions on the constructed parameters is slightly397

wider.398
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Figure 13: Predictive distributions based on 10 parameter candidates differentiated by the method of
their construction: rotation (left), sampling the column space (center), sampling the preimage (right).
For all results, n = 70, p = 170, and d = 100. Each row corresponds to a different test location:
x̃
(1)
1 , x̃(2)

1 , and x̃
(3)
1 .
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Figure 14: Predictive distributions for select n and p based on candidate parameters constructed to
achieve (11). The full distribution is plotted in black and components are shaded according to their
weight in indigo. We consider 10 rotations, 10 preimage samples, and 10 column space samples to
construct the distribution. Each row corresponds to a different input dimension; from top to bottom,
we consider d ∈ {100, 200, 300}. Each column corresponds to a test location: x̃(2)

1 (left) and x̃
(3)
1

(right).
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Figure 15: Comparison between the distribution of representative parameters constructed as described
in Section 4 (indigo) and parameters sampled from the prior used in Section 3 (gold). The left plot
shows interior parameters, Θ, while the right plot shows final layer parameters, w.

22


	Introduction
	Predictive distribution of Bayesian neural network
	Multimodality under a discretized Gaussian prior
	Constructing optimal parameters
	Key implications
	Appendix / supplemental material
	PDFs under a discretized Gaussian prior 
	Identifying modes under a discretized Gaussian prior 
	Optimal parameters
	Optimal parameters for ReLU 
	Predictive distribution for optimal parameters 


