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Abstract

Bayesian inference promises a framework for principled uncertainty quantification
of neural network predictions. Barriers to adoption include the difficulty of fully
characterizing posterior distributions on network parameters and the interpretability
of posterior predictive distributions. We demonstrate that under a discretized prior
for the inner layer weights, we can exactly characterize the posterior predictive
distribution as a Gaussian mixture. This setting allows us to define equivalence
classes of network parameter values which produce the same training error, and to
relate the elements of these classes to the network’s scaling regime—defined via
ratios of the training sample size, the size of each layer, and the number of final
layer parameters. Of particular interest are distinct parameter realizations that map
to low training error and yet correspond to distinct modes in the posterior predic-
tive distribution. We identify settings that exhibit such predictive multimodality,
and thus provide insight into the accuracy of unimodal posterior approximations.
We also characterize the capacity of a model to “learn from data” by evaluating
contraction of the posterior predictive in different scaling regimes.

1 Introduction

Uncertainty is key to learning. Questions of how to quantify neural network prediction uncertainty
are inextricable from questions of how expressive models learn to generalize [61, 62, 50]. Progress
on these questions has been made through analysis of relatively simple networks, including random
features models [51] and neural tangent kernels [36], which demonstrate the double descent phe-
nomenon [7, 6, 45, 11, 1]. An array of uncertainty metrics have been proposed for neural networks,
as detailed by [21], but most approaches rely on heuristics which make interpretation challenging
even in simple networks.

Bayesian neural networks (BNNs) promise a principled framework for obtaining predictive distri-
butions conditioned on training data [46, 44, 4]. Realizing this promise has been complicated by
the need to design appropriate prior and likelihood models and to characterize multimodal posterior
distributions. Locating all modes via sampling is generally intractable, though mode connectivity and
algorithm choice may aid in discovering parameter values that successfully generalize [20, 35, 54, 48].
Many strategies for approximate inference in BNNs have also been developed. The Laplace ap-
proximation [16, 43] represents the predictive distribution with a single mode. Variational inference
methods [29, 5, 14] are more flexible, but typically capture at most a few posterior modes. Such
approaches seem to risk underestimating uncertainty, though the debate about “cold posteriors” has
raised the possibility that narrower distributions may produce better generalization [59]. Partially
Bayesian networks [39, 57] could offer uncertainty estimates without introducing the challenge of
learning distributions over all parameters. Broadly, however, there is a need for tools that provide
insight into what these approximations of the Bayesian posterior miss.
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In this work, we demonstrate that adopting a discrete prior on the inner layer weights of a BNN is a
useful tool for accessing the predictive distribution without exhaustively sampling parameter space.
Such priors allow us to identify cases where different posterior modes map to distinct modes in the
predictive distribution. Then we can determine when predictions based on a single posterior mode
will fail. To the authors’ knowledge, this approach to analyzing multimodality is unique, though
the different treatment of inner and final layer parameters during inference bears some resemblance
to work on subnetwork inference [15, 57], partial Bayesian networks [39, 57], and random features
models [51]. Furthermore, characterizing the posterior predictive distribution allows us to identify
settings where the predictive uncertainty does not contract as the network and training set size grow
proportionally. This behavior raises the question of whether overparameterized BNNs can produce
“confident predictions,” i.e., predictions whose posterior distribution contracts around the truth as the
network and data set size grow.

Section 2 outlines our model and approach to inference. Sections 3 and 4 examine the impact of
network and training set size on predictive uncertainty for a discretized Gaussian prior and then
for a prior which puts mass on optimal parameter values. We conclude with a discussion of the
implications of multimodality for approximate inference tools and the role of Bayesian uncertainty in
successful generalization.

2 Predictive distribution of Bayesian neural network

We consider an L-layer neural network in a regression setting,

ŷ = w⊤xL, (1)
xℓ = σ(Θ⊤

ℓ−1xℓ−1) − bℓ, 1 < ℓ ≤ L, (2)

where x1 ∈ Rd is the network input, ŷ ∈ R is the output, and σ is a nonlinear activation function
that operates component-wise. The trainable parameters include the final layer weights w ∈ Rp and
interior parameters Θ := {Θℓ ∈ Rdℓ×dℓ+1 , bℓ ∈ Rdℓ}Lℓ=1. Note that d1 = d and dL = p. We make
the prior assumption that

w ∼ N (0, p−1Ip), P(Θ = Θ(j)) = ρj ,

J∑
j=1

ρj = 1, (3)

where each Θ(j) is a fixed realization of the interior parameters. Crucially, the discrete prior on Θ
allows us to derive an analytical representation of the Bayesian posterior predictive distribution.

Our training set has the form {(x(i)
1 , y(i))}ni=1 where we assume that

y(i) = g(x
(i)
1 ) + ε(i), ε(i)

iid∼ N(0, γ2), (4)

for some (unknown) data-generating function g : Rd → R. For convenience, we define Xℓ :=

[x
(1)
ℓ , . . . , x

(n)
ℓ ] ∈ Rdℓ×n, for any ℓ ∈ [L], and Y := (y(1), . . . , y(n)) ∈ Rn. The training data can

thus be written more concisely as (X1, Y ). Let x̃1 ∈ Rd be an input value at which we will test our
network predictions and let ỹ ∈ R denote the corresponding output. Under our model assumptions,
the posterior predictive density for ỹ is a J-component Gaussian mixture:

π(ỹ |X1, Y, x̃1) =

J∑
j=1

P(Θ(j) |X1, Y ) π(ỹ |X1, Y, x̃1,Θ
(j)), (5)

For each j, Bayesian linear regression yields

π(ỹ |X1, Y, x̃1,Θ
(j)) = N

(
ỹ; p−1x̃⊤

LXL(p
−1X⊤

LXL + γ2I)−1Y,

γ2 + γ2p−1x̃⊤
L (p

−1XLX
⊤
L + γ2I)−1x̃L

)
, (6)

where dependence on x̃1 in the mean and variance terms above enters via x̃L, as described in (2).
Note that both XL and x̃L depend on Θ(j). By Bayes’ rule, the mixture weights are

P(Θ(j)
∣∣X1, Y ) =

ρj π(Y |X1,Θ
(j))

π(Y |X1)
=

1 +
∑
k ̸=j

ρkπ(Y |X1,Θ
(k))

ρjπ(Y |X1,Θ(j))

−1

, (7)
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where

π(Y |X1,Θ
(j)) = N

(
Y ;0, p−1XT

LXL + γ2I
)
=: L(XL(Θ

(j))) (8)

is the marginal likelihood function for Θ(j).

Assuming that ρj = 1/J for all j ∈ [J ], the jth mode of the posterior predictive will have a large
weight only if L(XL(Θ

(j))) is large compared with the marginal likelihood of all other candidate Θ
values.

3 Multimodality under a discretized Gaussian prior

At this stage, it is not obvious whether multimodal distributions on (w,Θ) map to multimodal
distributions in the space of predictions, e.g., the distribution of ỹ at at given input x̃1.1 As (5) shows,
the posterior predictive distribution is the average over predictive distributions obtained by fixing
each Θ(j) and inferring w. Thus, the predictive distribution can be interpreted as an average over
random features models, where the weight of the jth model is determined by how compatible Θ(j) is
with Y compared to each Θ(k ̸=j). It is natural to ask for which regimes of n, p, and d it is possible
to obtain multiple realizations of Θ that each produce high marginal likelihoods L(Θ), but map to
distinct predictive modes.

In this section, we consider two layer networks where bias parameters are set to 0 and the remaining
components of {Θ(j)}Jj=1 are fixed by independently sampling from N (0, c/d) for some constant
c. We set each ρj = 1/J . Note that this choice of prior may be considered a discretization of a
Gaussian prior, a common minimally informative choice for BNNs [4]. As is generally the case for
Monte Carlo schemes, it is intractable to fully explore the continuous parameter space represented by
a Gaussian prior, but larger J will correspond to greater coverage. For our experiments, we choose
J = 200 000. The columns of X and x̃1 are drawn from standard Gaussian distributions, and Y and
ỹ are chosen to have unit variance. We consider the rectified linear unit (ReLU) activation function,
and set c = 2π/(π − 1) so that the prior predictive distribution has unit variance.

Figure 1 summarizes the findings of these experiments. The left and center columns show predictive
distributions at a given x̃1 for select (p, n) pairs and d = 100. Each indigo region represents the
predictive distribution corresponding to a candidate Θ(j); darker shades indicate larger weights
as given by (7). The black curve marks the full posterior predictive distribution. Clearly, in our
setting, Bayesian inference can produce multimodal predictive distributions. Each posterior predictive
distribution demonstrates smaller variance than the prior predictive distribution; thus, conditioning
on training data has produced a reduction in uncertainty. Appendix A.1 provides examples of the
posterior predictive distributions at additional test points and for larger network sizes.

The rightmost column of Figure 1 documents a more extensive exploration of the impact of n, p,
and d. For d ∈ {10, 100, 1000} and ratios n/d and p/d ranging from 0.5 to 2, we plot the log of the
number of candidates Θ(j) which produce a Gaussian mixture component with weight larger than
10−6. Note that the total number of trainable parameters in the network we consider is p(d + 1),
so each network considered is overparameterized. If we restrict our attention to inference in the
final layer weights w, however, only the entries below the right leaning diagonal of each heatmap
correspond to overparameterized networks.

Network and training set size clearly influence the number of modes that are significant in the posterior
predictive distribution. When d = 10 we see that for several of the n and p values considered, up
to 98% of the the candidate inner layer parameters make significant contributions to the posterior
predictive distribution. By contrast, for larger input dimensions, when n is close to p we often find
only one significant mode, leading to a unimodal posterior predictive distribution. These findings
are expected if we recall the dependence of (7) on L(Θ). If p is sufficiently larger than n, many
candidates Θ(j) will produce large L(Θ) due to final layer overparameterization. Since X⊤

L−1Θ
(j)

is full rank with high probability, if n is much larger than p, it becomes challenging to identify a
single candidate Θ(j) which could reproduce the training data; but many of the available candidates
produce similar L(Θ) and thus contribute to the posterior predictive. The line n = p represents a

1In this paper, we focus only on marginal predictive distributions. It is straightforward, however, to
characterize the joint distribution of predictions at any collection of different input values.
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Figure 1: Left and center: posterior predictive distributions for input dimension d = 100 at select
training set size n and final layer width p, as indicated by each title. The black line shows the
pdf which is a mixture of Gaussians. Each shaded distribution is a component of this mixture
with transparency corresponding to its weight. Right: Heatmaps depicting the log of the number
of component distributions which have weight larger than 10−6 for specified network dimensions.
Observation noise variance is set to γ2 = 0.01 for these results.

phase transition around which one or a few candidates are likely to outperform the others. Appendix
A.2 provides more discussion of the impact of this transition from under- to overparameterization (in
terms of final layer weights).

It is notable that the region where few candidates produce significant modes becomes larger as the
network and training set sizes increase. Among our results, mixtures with a smaller number of
component modes tend to have smaller predictive variance, as discussed in Appendix A.2. This
empirical observation suggests contraction of the posterior predictive as n increases. However, we
also find that the range of L(Θ) values widens with n, so we can expect that as n increases, the
number of candidates J necessary to adequately cover parameter space will also increase.

These numerical experiments suggest that the full posterior predictive distribution often will not
be well represented by an approximation that is based on a single candidate parameter value Θ(j)

producing low training error. Of course, our model for inference does not fully capture the predictive
distribution that would be obtained with a continuous prior distribution. It is possible that if we
increased J or identified candidate network parameters Θ(j) with more specific structure, we would
find one dominating component of the predictive distribution, or instead see a “filling in” of the
predictive distribution. That is, there might be components between existing components that render
the continuous predictive distribution unimodal. If such a “filling in” occurs, however, approximations
based on one particularly good candidate Θ(j) would still underestimate the true posterior uncertainty.
This possibility opens questions of whether overparameterized BNNs can successfully “forget
their priors” to learn from data, and whether a fully Bayesian model of uncertainty is suitable for
producing low generalization error. In the next section, we will contrast these initial experiments
with predictive distributions found by deliberately constructing inner layer parameter candidates with
greater structure.
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Figure 2: Top left and bottom: Predictive distributions based on candidate parameters constructed to
achieve (11). The full distribution is plotted in black and components are shaded according to their
weight in indigo. We consider 10 rotations, 10 preimage samples, and 10 column space samples to
construct the distribution — a total of 1000 samples. Top right: The scale of predictive distributions
for select d and p/n where n/d = 0.7. We plot the mean and standard error obtained from 10
realizations of Y for which we find the median predictive variance across 10 realizations of x̃1.

4 Constructing optimal parameters

As discussed above, candidate network parameters produced by drawing a finite set of samples from
a Gaussian prior might omit a parameter value that would qualitatively change the behavior of the
posterior predictive. To address this limitation, we can use our observation that the weight of each
component of the posterior predictive distribution (5) depends on the marginal likelihood of the
corresponding candidate (7). Now, we identify a set of candidates Θ(j) which have high marginal
likelihood by construction, and show that a prior which puts mass on these candidates produces a
multimodal predictive distribution. A first step toward identifying these candidates is to consider the
upper bound

max
Θ

1

n
logL(XL(Θ); X1, Y ) ≤ max

XL

1

n
logL(XL; X1, Y ). (9)

As detailed in Appendix A.3, the matrix X∗
L solving the optimization problem on the right satisfies

X∗⊤
L X∗

L = Y Y ⊤(1− γ2(Y ⊤Y )−1). (10)

The existence of one or more Θ∗ that map to this optimal XL depends on the choice of activation
function. If we consider ReLU activation and assume that bias parameters are 0, then all elements of
XL(Θ

∗) must be nonnegative. If the elements of Y are drawn from a centered distribution with unit
variance, the probability that all elements of (10) are nonnegative is vanishingly small. Since X⊤

LXL

is an estimate of the covariance of Y , we conjecture that if we add the constraint that its elements
must be nonnegative to the right hand side of (9), we obtain

X∗⊤
L X∗

L ≈ σ(Y Y ⊤)(1− γ2(Y ⊤Y )−1). (11)

Note that we require n ≤ dL−1 to be guaranteed a solution Θ∗ which maps to the right hand side
above. We test (11) empirically in Appendix A.4.
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We may now consider an equivalence class [Θ]L of network parameters Θ that map to X∗⊤
L X∗

L as
defined in (11). All elements of this class will have identical training error and marginal likelihood,
L(Θ). The parameters of ReLU networks are both permutation and scale invariant [52]; thus, multiple
realizations of (Θ, w) map to both identical training error and identical test predictions. But it is also
possible to construct {Θ(j)}Jj=1 that map to the same training error without relying on permutation
and scale invariance. Specifically, we can consider unitary rotations of XL which preserve the
nonegativity of its elements, samples of the preimage of the activation function, and samples of the
column space of XL−1. Using these constructions, we will demonstrate that not all elements of [Θ]L
correspond to identical predictive distributions.

Figure 2 describes posterior predictive distributions for a two layer network with a prior on the inner
layer parameters that puts mass on elements of [Θ]L. For a comparison of this prior to a continuous
Gaussian prior, see Appendix A.5. We consider the combinatorial space of parameter candidates
created from 10 rotations of X∗

2 , 10 samples of the preimage of ReLU, and 10 samples of the column
space of X1. The top left subfigure shows the posterior predictive distribution for the same network
size and x̃1 considered in the lower left corner of Figure 1. As in Section 3, we find examples of
different candidates Θ(j) which map to distinct predictive distributions. In contrast to Section 3, we
also find this behavior for networks where n = p, as shown by plots on the bottom row of Figure 1.
These results suggest that for many BNNs, the true Bayesian uncertainty of the posterior predictive
distribution will be influenced by multiple modes of the posterior, moderated by the prior.

To understand the influence of the prior, we must examine predictive variance. Large variance
indicates that the training data is not sufficient to distinguish between the parameter candidates given
weight by the prior. Too much prior influence may produce poor generalization. The proportional
asymptotics limit—where n, p, d → ∞ while the ratios between these values remain fixed and
finite—has been an important setting for examining the generalization of two layer neural networks
[45, 23]. Significantly, when we consider parameter candidates from [Θ]L, the posterior predictive
distribution does not contract as n, d, and p increase proportionally. One example is shown in the
bottom row of Figure 1, and more examples are available in Appendix A.5. The top right plot in
Figure 2 summarizes the scale of the posterior predictive distributions for selected network sizes and
n/d = 0.7. The distributions do not tend to contract as n grows; rather, for large d there may be
an increase in variance as the number of last layer parameters increases. The latter behavior may
occur because the number of network parameters is p(d+ 1), so the degree of overparameterization
is increasing with p/n and d. Further exploration of the impact of the prior on predictive variance
and generalization will be a focus of our future work.

5 Related work

Overparameterization creates challenges for implementation and interpretation of Bayesian neural
networks. In the classical, underparameterized setting, vague priors can be forgotten through
inference, but overly restrictive (and hence misspecified) model classes can produce “confidently
wrong” behavior [38, 55, 56], i.e., posterior predictives that concentrate away from the truth. We can
address misspecification by considering more expressive function classes, such as neural networks,
but as a consequence, multiple class members may perfectly fit the training data. In practice, many
approaches to obtaining point and distribution estimates for neural networks have proven effective
[47, 19, 34, 39, 15], though prediction calibration is often used to evaluate the “effectiveness” of
uncertainty quantification. Our results suggest that the full Bayesian predictive distribution may
be poorly calibrated, and further work is necessary to understand how the distributions constructed
through approximate methods differ from this full distribution.

5.1 Symmetries in parameter space

Our work questions whether overparameterized BNNs “forget” their prior when network size scales
with the training set size. To understand the impact of raw parameter count on the predictions of
a network, it is crucial to consider the mapping from model parameters to the space of predictive
functions. Several works have described symmetries in network architectures: distinct points in
parameter space which map to identical predictive functions [28]. While the mechanisms which
produce symmetries are fully understood for networks with smooth or saturating activation [9, 18,
41, 3], knowledge of these mechanisms is incomplete for ReLU networks [49, 53, 25], though [25]
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provide a non-exhaustive summary. Further, [53] demonstrate that it is possible to reverse engineer a
ReLU network up to symmetries by querying its outputs. Network symmetries motivate the definition
of functional dimension, the degrees of freedom induced in function space by small perturbations at
some location in parameter space [26, 25]. This line of work suggests that function space may be
easier to explore than parameter space [35] or that parameter space may become easier to explore
when symmetries are removed [2, 52, 22].

Symmetries have also driven the linear mode connectivity hypothesis, which asserts that when
symmetries are taken into account, (nearly) all point estimates obtained by stochastic gradient descent
(SGD) lie in the same loss basin [20, 17, 2, 54]. The evidence towards this hypothesis has implications
for the behavior of trained networks: flat basins in loss space are associated with simple solutions
which satisfy Occam’s razor [30]. The work we present in this paper targets functions which are
identical at training data points, but may be distinct elsewhere. In our setting, we find multiple
distinct predictive modes, indicating that parameter symmetries are not the sole source of parameter
space multimodality. It remains to determine whether the modes we find lie in the same loss basin
once symmetries are considered, but in that case, our results would suggest that this basin contains
non-trivial functional diversity.

5.2 Modeling generalization and predictive distributions

Techniques developed within statistical physics—particularly the replica method and Gaussian
equivalence—offer models of neural network generalization error which sidestep the need for
posterior sampling [45, 23, 32, 24]. For instance, [42] marginalize over parameters in a deep linear
network, working from the outer layer inward to compute the Bayesian model evidence and to
characterize the bias and variance of the trained network under new data. Their separate treatment
of different parameter layers bears some similarity to our approach, though we consider nonlinear
networks and integrate with respect to the posterior distribution rather than the prior distribution.
Further, our work investigates the Bayesian predictive distribution. [27] use Meijer G-functions
to represent the characteristic function of the predictive distribution of deep linear models and
demonstrate that this distribution is Gaussian in certain asymptotic regimes. While deep linear
models provide useful insight into extrapolation and feature learning [42, 60], these networks will
be misspecified for many data-generating processes. Thus, we can expect that overparameterization
has a different impact on learning with these networks compared with nonlinear networks, where
only a single hidden layer is necessary to obtain a universal approximator for continuous functions
[13, 33, 31].

Recently, an extension of Gaussian equivalence to deep nonlinear networks has been conjectured
[12], but this work focuses on generalization error in an idealized setting where Bayesian inference is
guaranteed to obtain optimal error. Specifically, the error is averaged across data-generating networks
with parameters drawn from a Gaussian, the same distribution family as the prior. Input covariates
are also assumed to be standard Gaussian. Our approach can be used to study the posterior predictive
obtained from arbitrary covariate distributions and data-generating models. Investigations of these
cases will provide insight into whether the use of the full Bayesian posterior compared to approximate
methods introduces a trade-off between accuracy and calibration of the kind that [11] observe in
approximate methods applied to random features models.

5.3 Designing predictive distributions

In practical settings, the true predictive distribution is intractable, but successful substitutes can
be constructed via approximate or heuristic methods. The definition of “success” may hinge on
posterior consistency in the large data limit [8, 58, 10], which leaves open many questions about the
behavior of the true and approximate posteriors in the overparameterized regimes. Success could
also mean a balance between good accuracy and intuitive uncertainty [19, 39, 40, 34]: predictive
distributions which concentrate on Occam’s razor solutions in the interpolatory regime and remain
diffuse in the extrapolatory regime. Based on the latter notion of success, many approximate methods
outperform more faithful representations of the Bayesian predictive distribution. For instance, use
of the Laplace approximation and a linearized predictive model fixes the overly diffuse predictive
distributions obtained by consistent Monte Carlo approximation of the posterior predictive and other
implementations of the Laplace approximation [34]. Similarly, Laplace approximations based on
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hidden uncertainty units [40] and inference in partially stochastic networks [15, 57] offer tractable
methods with high accuracy and low calibration error.

In these approaches, not all parameters of the predictive function contribute to the approximation of
the uncertainty in predictions. Consequently, it is reasonable that they produce predictive distributions
which do not suffer from the diffuse uncertainty resulting from inference over overparameterized
function classes. [52] argue that partial stochasticity may be successful because it implicitly removes
parameter symmetries, though we question whether the approach may also remove non-symmetric
solutions with identical performance on the training data, of the kind we identify in Section 4.
[57] establish that certain partially stochastic architectures are universal conditional distribution
approximators, so limiting the parameters used to construct the predictive distribution does not
necessarily limit expressivity. A future application of our use of discrete priors to access predictive
distributions may be to determine whether the distributions produced by partially stochastic networks
have significant divergence from the full Bayesian predictive distribution. An additional piece of
this puzzle is the success of cold posteriors. [59] find that sharpened posteriors perform well, while
full Bayesian posteriors yield systematically worse predictions than SGD point estimates. The
authors suggest that Gaussian priors and network capacity may be responsible for the underwhelming
performance of the Bayesian approach. These results—alongside our own—suggest that while
overparameterization is key to the successful generalization of neural networks, it is a hindrance to
the construction of intuitive representations of uncertainty.

5.4 How do we make confident predictions with BNNs?

Bayesian inference promises principled uncertainty quantification, but we have shown that predictive
distributions do not contract in overparameterized settings. Many approximate methods construct
predictive distributions which perform better than fully Bayesian predictive distributions [34, 59].
These predictive distributions might use more information than the typical Bayesian neural network
information. This information may be precisely the structural qualities which make neural networks
trained with SGD successful. Implicit regularization [47] and self-induced regularization [6] are two
examples from our evolving understanding of generalization. Future work on Bayesian inference in
overparameterized models might investigate how to formally capture such structural information.

6 Key implications

We have provided insight into the predictive uncertainty of Bayesian neural networks by choosing a
continuous Gaussian prior for the final layer weights and a discrete prior for the interior parameters.
The key implications are:

• Much of the mass of the posterior predictive distribution can be captured without
sampling the entire parameter space. For a given prior, we can construct parameter
candidates with high marginal likelihood and prior weight.

• Unimodal posterior approximations are overconfident. Multiple posterior modes con-
tribute to the posterior predictive uncertainty of Bayesian neural networks.

• The posterior predictive distribution does not contract as n, p, and d increase pro-
portionally. Thus, in overparameterized networks, predictive uncertainty likely reflects an
inability to completely forget the prior given the training data—that is, an inability to make
confident predictions.

Future work will target each of these implications. More extensive numerical experiments alongside
theoretical results will consider different prior assumptions and establish minimum rates at which
network size must grow with respect to training set size such that the predictive distribution does not
contract. Further, we will characterize equivalence classes of parameters which map to large marginal
likelihood for more network and training set sizes. Finally, we will quantify the impact of predictive
uncertainty on generalization error.
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Figure 3: Posterior predictive distributions at test point x̃(2)
1 for input dimension d = 100 at select

training set size n and final layer width p, as indicated by each title. The black line shows the pdf
which is a mixture of Gaussians. Each shaded distribution is a component of this mixture with
transparency corresponding to its weight.

A Appendix / supplemental material

A.1 PDFs under a discretized Gaussian prior

Figure 1 shows the predictive distributions for select network and training set sizes at test location
x̃
(1)
1 . Here, we provide the pdfs which result from inference with the prior specified in Section 3

for the same ratios n/p at additional locations x̃(2)
1 and x̃

(3)
1 . For all examples, γ2 = 0.01. Figures

3 and 4 show results for d = 100 while figures 5 and 6 correspond to d = 1000. As in Section 3,
we see that multiple candidates Θ(j) contribute to the posterior predictive distributions, leading to
multimodality in most cases considered.
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Figure 4: Posterior predictive distributions at test point x̃(3)
1 for input dimension d = 100 at select

training set size n and final layer width p, as indicated by each title. The black line shows the pdf
which is a mixture of Gaussians. Each shaded distribution is a component of this mixture with
transparency corresponding to its weight.
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Figure 5: Posterior predictive distributions at test point x̃(2)
1 for input dimension d = 1000 at select

training set size n and final layer width p, as indicated by each title. The black line shows the pdf
which is a mixture of Gaussians. Each shaded distribution is a component of this mixture with
transparency corresponding to its weight.
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Figure 6: Posterior predictive distributions at test point x̃(3)
1 for input dimension d = 1000 at select

training set size n and final layer width p, as indicated by each title. The black line shows the pdf
which is a mixture of Gaussians. Each shaded distribution is a component of this mixture with
transparency corresponding to its weight.
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Figure 7: Heatmaps depicting the log of the number of component distributions which have weight
larger than 10−6 for specified network dimensions. Columns correspond to the input dimension, d:
10, 100, and 1000. Rows correspond to observation variance: 0.01 and 0.0001.

A.2 Identifying modes under a discretized Gaussian prior

This section provides additional results concerning the multimodality and variance of predictive
distributions described in Section 3. The first rows of both Figures 7 and 8 match the right column
of Figure 1. This set of heatmaps reports the number of modes with weight larger than 10−6

found for specified network and training set size at observation noise level γ2 = 0.01. They are
repeated for the purpose of comparison. In Figure 7, we see that the number of modes located for
a specific n, p, d triple is not impacted by reducing observation noise to γ2 = 0.0001. In Figure 8,
we can see a loose relationship between the number of significant modes and the variance of the
predictive distribution. In our numerical experiments, we have found that component distributions
of the predictive distribution tend to have similar variance and may have distinct modes. Thus, it is
reasonable that finding more significant modes correlates with greater predictive variance, as we see.
For this particular example, as we increase the training set size, predictive variance tends to decrease,
but this may be an artifact of the prior choice and finite J . Figure 9 demonstrates that the predictive
variance can be sensitive to the choice of J . Note, however, that our findings on multimodality for
various network sizes do not require J to be large. Figure 10 shows that similar patterns are seen for
J ∈ {20, 2000, 200 000} at the considered values of d, n/d, and p/d.

Figure 11 provides context for the number of modes reported in Figure 7. The heatmap shades
correspond to the log of the standard deviation of the distribution on {n−1 logL(Θ(j))}Jj=1. For a
given input dimension, d, and observation noise level, γ2, the largest standard deviation is found
when n = p. This effect is likely related to the double descent phenomena: for each X1, there is one
candidate Θ which outperforms all other candidates. As expected, the double descent phenomenon
becomes more pronounced as regularization, γ2, decreases.
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Figure 8: Top: The log of the number of component distributions which have weight larger than
10−6 for specified network dimensions. Bottom: The log of the variance of the posterior predictive
distribution obtained for each network size. Columns correspond to the input dimension, d: 10, 100,
and 1000. All results correspond to observation noise γ2 = 0.01.

Figure 9: The variance of the posterior predictive distribution averaged over 100 realizations of x̃1

plotted against the number of parameter candidates, J . The prior details are specified in Section 3
and the network and training set size are given in the plot title.
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Figure 10: A comparison of the number of significant modes in the posterior predictive distribution
for various network sizes and J ∈ {20, 2000, 200 000} for the setting of Section 3. Rows correspond
to different covariate dimensions, d, and columns correspond to different parameter candidate set
sizes, J . Observation variance is set to 0.01.

Figure 11: Heatmaps depicting the log of the standard deviation of the distribution of n−1 logL(Θ)
for candidates Θ(j) sampled from a Gaussian prior as described in Section 3. Columns correspond
to the input dimension, d: 10, 100, and 1000. Rows correspond to observation variance: 0.01 and
0.0001. The diagonal where n = p shows a double descent effect which is stronger for smaller
observation noise.
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A.3 Optimal parameters

We are interested in Θ which maximizes L(Θ;X,Y ) as defined in (8). To this end, consider the
singular value decomposition

UΛ1/2Q⊤ =
XL√
p
, (12)

where diag(Λ) = [λ1, . . . , λp∨n]
⊤ and Q = [q1 . . . qn] ∈ Rn×n. Then,

logL (XL(Θ);X,Y ) =
−1

2

n∑
k=1

(
log(2π) + log(λk + γ2) +

(q⊤k Y )

λk + γ2

)
. (13)

Note that because X⊤
LXL is positive semi-definite, n−1 logL (XL) ≤ − log(γ). We can determine

that

min
Θ

−2

n
(logL (XL(Θ);X,Y ) + log(2π))

≤ min
Λ⪰0

Q⊤Q=QQ⊤=In

1

n

n∑
k=1

(
log(λk + γ2) +

(q⊤k Y )

λk + γ2

)

= min
Q⊤Q=QQ⊤=In

1

n

n∑
k=1

min
λk≥0

(
log(λk + γ2) +

(q⊤k Y )

λk + γ2

)

= min
Q⊤Q=QQ⊤=In

1

n

n∑
k=1

log
(
q⊤k Y

)2
+ 1 (q⊤k Y )2 ≥ γ2, k ≤ p

log γ2 +
(q⊤k Y )
γ2 otherwise

= log γ2 + min
{v1≥···≥vn≥0,

γ2 ∑n
i=1 vi=Y ⊤Y }

1

n

n∑
k=1

{
log vk + 1 vk ≥ 1, k ≤ p

vk otherwise
.

In the last line, we impose the constraint v1 ≥ · · · ≥ vn ≥ 0 to prevent redundant optima. We find
that

argmin
X⊤

L XL

1

n

n∑
k=1

(
log(λk + γ2) +

(q⊤k Y )

λk + γ2

)
= Y Y ⊤

(
1− γ2

Y TY
.

)
(14)

Provided that Y ⊤Y ≥ γ2, this minimizer is unique. For the results reported in this work, we assume
that Y ∈ Rn is centered with unit variance. Then, we expect Y ⊤Y ∼ O(n).
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Figure 12: The difference in scaled log marginal likelihood (n−1 logL) based on Θ constructed to
satisfy (15) and the best performing Θ with elements sampled iid from a Gaussian prior.

A.4 Optimal parameters for ReLU

In this section, we evaluate the conjecture made by (11). In particular, we compare the largest
value of n−1 logL(XL) found in Section 3 to the conjectured maximum for a given set of training
observations (X1, Y ). Recall that for a two-layer network, we must have n ≤ d for there to exist
some Θ which maps to the conjectured maximizer, X∗

L. Thus, for this section we consider L (XL(Θ))
such that

X⊤
LXL = σ(PXY Y ⊤P⊤

X )

(
1− γ2

Y ⊤Y

)
(15)

where PX projects into the column space of X1. Thus, when n ≤ d, (15) reduces to (11). Note that
we do not necessarily expect n−1 logL(XL) under (15) to be optimal when n > d.

Figure 12 shows the difference between optimal n−1 logL(XL) under (15) and the maximum
n−1 logL(XL) found empirically in Section 3. We consider d ∈ {10, 100, 1000}, γ2 ∈
{0.01, 0.0001}, and ratios p/d and n/d ranging from 0.5 to 2. As expected, we find that the
conjectured optimum is at least as large as the empirically determined maximum for n ≤ d. In
cases where d < n, enforcing (15) leads to n−1 logL(XL) considerably smaller than our empirically
located maximum. It is interesting to note that the distance by which the conjectured maximum
outperforms the empirical maximum is exacerbated when d is large and n = p.
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Figure 13: Predictive distribution based on candidate parameters constructed to achieve (11). The
full distribution is plotted in black and components are shaded according to their weight in indigo.
We consider 10 rotations, 10 preimage samples, and 10 column space samples to construct the
distribution. Results are for n = 70, p = 170, and d = 100 at locations x̃(2)

1 (left) and x̃
(3)
1 (right).

A.5 Predictive distribution for optimal parameters

Here, we summarize additional results from the setting of Section 4. The top left subfigure of Figure 2
shows the predictive distributions for n = 70 and p = 170 at test location x̃

(1)
1 . Here, we provide the

predictive distribution at additional locations x̃(2)
1 and x̃

(3)
1 in Figure 13. For all examples, γ2 = 0.01.

The candidates Θ(j) for these plots are constructed from the combination of 10 rotations of XL, 10
samples of the column space of X1, and 10 samples of the preimage space. Thus, we have a total of
1000 candidates. To better separate the impact of each approach to constructing candidates, Figure
14 shows predictive pdfs where each column corresponds to a different approach. For instance, in
the first column, candidates are constructed based on 10 rotations of XL, one sample of the column
space of X1, and one sample of the preimage space. Each row corresponds to a different test location:
x̃
(2)
1 and x̃

(3)
1 . We see that all approaches see to contribute to predictive variance, but rotation and

column space samples seem to yield more distinct modes than preimage samples.

Figure 8 provides some evidence that under the setting of Section 3, as n increases, the variance of
the predictive distribution decreases, even if p and d increase in proportion to n. The reduction in
variance is observed in the region where n is close to p, and occurs in part because we tend to find
unimodal predictive distributions in this region when we finitely many sample parameter candidates
from a Gaussian distribution. It is possible that this shrinkage is an artifact of the experimental design
as it seems unlikely we would see a reduction in uncertainty when the degree of overparameterization,
n/(pd), increases. Figure 2 provides some evidence that when the prior puts weight on certain
“optimal” parameters, this shrinkage does not occur. Figure 13 provides representative examples
of predictive pdfs obtained following the setting of Section 4 when n = p. We see that there is no
evidence of shrinkage as n increases, and most examples demonstrate multimodality.

Finally, it is worth examining the distribution of the components of the constructed parameter
candidates, Θ(j), and their corresponding final layer weights, w. If these constructed parameters
are far outside typically used priors, the predictive modes they produce would not be informative
about the behaviors of BNNs in practice. Figure 16 provides a representative comparison between the
distribution of constructed “optimal” parameters (indigo) to the distribution of the parameters drawn
from the prior distributions considered in Section 3 (gold). We see that the distributions are close
though for both Θ and w, the variance of the distributions on the constructed parameters is slightly
wider.
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Figure 14: Predictive distributions based on 10 parameter candidates differentiated by the method of
their construction: rotation (left), sampling the column space (center), sampling the preimage (right).
For all results, n = 70, p = 170, and d = 100. Each row corresponds to a different test location:
x̃
(1)
1 , x̃(2)

1 , and x̃
(3)
1 .
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Figure 15: Predictive distributions for select n and p based on candidate parameters constructed to
achieve (11). The full distribution is plotted in black and components are shaded according to their
weight in indigo. We consider 10 rotations, 10 preimage samples, and 10 column space samples to
construct the distribution. Each row corresponds to a different input dimension; from top to bottom,
we consider d ∈ {100, 200, 300}. Each column corresponds to a test location: x̃(2)

1 (left) and x̃
(3)
1

(right).
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Figure 16: Comparison between the distribution of representative parameters constructed as described
in Section 4 (indigo) and parameters sampled from the prior used in Section 3 (gold). The left plot
shows interior parameters, Θ, while the right plot shows final layer parameters, w.
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