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Abstract

Emotion Recognition in Conversations (ERC)001
is a necessary step for developing empathetic002
human-computer interaction system. The exist-003
ing methods on ERC primarily focus on captur-004
ing the context-level and speaker-level informa-005
tion from utterances. However, these methods006
ignore the causes of human emotion change, re-007
sulting in insufficient in capturing useful infor-008
mation for emotional prediction. In this work,009
we propose more explanatory Emotional Inter-010
action Network (DialogueEIN) based on two011
main stages to capture the contexual informa-012
tion over intra- and inter-speaker dependencies013
directly from utterances, and to explore and014
analyze the differentiated contributions over015
the both kinds of information to boost better016
understanding of current utterance in conversa-017
tion. Experimental results on two benchmark018
datasets demonstrate the effectiveness and su-019
periority of our proposed model.020

1 Introduction021

Emotion recognition in conversations (ERC) aims022

at predicting emotion of each utterance in a multi-023

party conversation. With the growing popularity024

of human-like artificial intelligence (AI) research,025

the topic of emotion recognition in conversations026

has attracted more and more attention from the re-027

searchers (Zhang et al., 2019; Li et al., 2020; Zhang028

and Chai, 2021), especially in recent years. There-029

fore, accurately identifying the utterance emotion030

in coversation is a essential step in various fields031

such as health care (Rashkin et al., 2018; Lin et al.,032

2019), empathetic chat agents (Althoff et al., 2016;033

König et al., 2016) and so on.034

Unlike vanilla emotion recognition of utterances035

(Wu et al., 2006; Mohammad and Turney, 2010;036

Kratzwald et al., 2018), ERC needs to fully con-037

sider not only the internal characteristics of utter-038

ances, but more importantly, the contextual clues039

of the utterance in the conversation and the tem-040

porality in speakers’ turns or speaker-specific in-041
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Figure 1: Interaction among different variables during a
dyadic conversation between persons A and B. Grey and
white circles represent hidden and observed variables,
respectively. P represents personality, U represents
utterance, S represents interlocutor state, I represents
interlocutor intent, E represents emotion.

formation. As a result, ERC is more complex and 042

difficult as natural conversations are usually gov- 043

erned by several different factors or pragmatics 044

(Poria et al., 2019b) that play an important role in 045

a dyadic conversation. Such a scheme is illustrated 046

in Figure 1 that reveals the causes of human emo- 047

tions in the process of dyadic conversation. We 048

find that these factors, such as the speaker’s per- 049

sonality, intention and so on, affect the emotional 050

dynamics of participants through unique interac- 051

tion. Like most of recent works (Majumder et al., 052

2019; Ghosal et al., 2019) have been devoted to 053

capturing the context-level and speaker-level cues 054

by deep learning methods. However, these meth- 055

ods do not consider the intrinstic interaction and 056

ignore the flow of contextual and sequential infor- 057

mation from utterances in a coversation, resulting 058

in insufficient in understanding of the context. 059

Further, speaker information is particularly nec- 060

essary for modelling in the ERC task, because emo- 061

tional dynamics of conversations consist of two im- 062

portant aspects: intra-speaker (or self-) dependency 063
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Utterances

I feel like I'm not doing anything. Like I'm not 

giving anything into this world.  [frustrated]

You are, you're going to class, you're learning, 

you're getting better. When you finally get that role

you're going to be prepared. [neutral]

Yeah, but what if I never make it? … I'm never 

going to be able to have a job. [frustrated]

Oh my God, Anna, you're still young. Don't even 

think about that. [neutral]

Time is passing by. Every year it’s a part left than I 

can do. [frustrated]

You're only twenty five, okay? Some people don't 

start until they're thirty five. [neutral]

PBPA

Really? [surprised]

T

T+2

T+4

T+6

T+1

T+3

T+5

The green and gray arrows represent the

process of self-dependency and inter-

speaker dependency, respectively.

The thickness of the arrow represents the size of the weight.

Figure 2: In this conversation, PA is always frustrated
due to the self-dependency before time T + 5. At time
T +6, however, PA is emotionally influenced (i.e., inter-
speaker dependency) by PB at time T + 5 and thus
changes her emotion from frustrated to surprised.

and inter-speaker dependency (Morris and Keltner,064

2000). This phenomenon is illustrated in Figure065

2. We can observe that at every turn in the con-066

versation, the individual speaker subconsciously067

assigns corresponding weights to intra-speaker and068

inter-speaker dependencies respectively, so as to069

determine whether the emotion will change. Com-070

pared to the recently published works on ERC (Lu071

et al., 2020; Zhang and Chai, 2021; Li et al., 2022),072

these methods all ignore this factor.073

The Arguments of Perception and Cognition074

(Montemayor and Haladjian, 2017) suggests that075

our brain’s activity architecture is complex, but it076

can be abstracted into two stages: perceptual activ-077

ity and cognitive activity, which are independent of078

each other but affect. In fact, the cognitive process079

of human beings to objective things is also the fu-080

sion process of multiple information (Han, 2010).081

Motivated by them, in this paper, we propose the082

more explanatory Emotional Interaction Network083

(DialogueEIN) for ERC task. The proposed Di-084

alogueEIN consists of two main stages, i.e, the085

interactive representation perception and the inter-086

active representation fusion. In the interactive rep-087

resentation perception stage, we employ three gated088

recurrent units (GRUs) (Dey and Salem, 2017) to089

capture the contextual information over intra- and090

inter-speaker directly from utterances, respectively.091

All these three different types of GRUs are inter-092

twined to simulate the human-like intrinstic inter-093

action in a recurrent manner. In the interactive rep-094

resentation fusion stage, we first adopt the attention095

mechanism to retrieve and integrate the emotional096

clues from the intra- and inter-speaker context, re- 097

spectively. We surmise that since attention acts 098

on different objects, the two integrated emotional 099

clues will have a certain degree of complementarity. 100

This is confirmed in Section 5.4. Therefore, we em- 101

ploy Transformer (Devlin et al., 2019), which can 102

learn the informative high-dimensional representa- 103

tions from the hidden features, to further analyze 104

the differentiated contribution across the both kinds 105

of information to boost better understanding of cur- 106

rent utterance in conversation. 107

The major contributions are summarized as: 1) 108

A more explanatory DialogueEIN that considering 109

the causes of human emotion change is proposed. 110

2) The effectiveness of proposed model is demon- 111

strated on two benchmark datasets. 112

2 Related Work 113

In 1988, (Minsky, 1988) pointed, "The question is 114

not whether intelligent machines can have any emo- 115

tions, but whether machines can be intelligent with- 116

out emotions". Since then, emotion recognition, as 117

a frontier research, has received increasingly atten- 118

tion from researchers, which can be divided into 119

two phases, i.e., vanilla emotion recognition and 120

emotion recognition in conversations (ERC). 121

For vanilla emotion recognition, some works 122

(Wu et al., 2006; Mohammad and Turney, 2010; 123

Shaheen et al., 2014; Kratzwald et al., 2018) uti- 124

lized sentiment-lexicon or modern deep learning 125

to extract the internal emotion characteristics of 126

utterances. However, these methods failed to work 127

well in realistic scenario. For emotion recognition 128

in conversations, existing works can be further at- 129

tributed to sequence-based and graph-based meth- 130

ods. The former (Majumder et al., 2019; Wang 131

et al., 2020; Lu et al., 2020; Li et al., 2022) gener- 132

ally employed RNN or Transformer along with 133

attention to capture the context and speaker in- 134

formation over utterances in a conversation. The 135

latter (Ghosal et al., 2019; Lian et al., 2020; Hu 136

et al., 2021) generally adopted graph neural net- 137

works (Kipf and Welling, 2016; Schlichtkrull et al., 138

2018) to capture emotion information by modeling 139

speaker information using dependecies of edges. 140

Compared to vanilla emotion recognition, ERC 141

has achieved huge performance improvements, 142

yet still faces significant challenges (Poria et al., 143

2019b). This main reason is that emotions from 144

the human subjective states (Scherer et al., 2001) 145

are highly abstract and require more clues for the 146
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model to understand, unlike the tangible such as147

animals or objects recognized in the other fields148

(Zhai et al., 2021). Therefore, this work presents149

the more explanatory DialogueEIN from the per-150

spective of human emotion derivation.151

3 Methodology152

3.1 Problem Statement153

Figure 2 illustrates one short natural conversation154

between two people, where each utterance is la-155

beled with an emotional overtones. Formally, given156

a conversation U = [u1, u2, . . . , uN ] with M par-157

ticipants or speakers P = [p1, p2, . . . , pM ], where158

N is the number of utterances in the converstaion159

and M ≥ 2. And each utterance ut is spoken by the160

speaker p∅(ut), where ∅ represents the mapping161

relationship between the speaker and utterance, and162

p∅(ut) ∈ P . The task of ERC aims to detect the163

most likely emotion label yt of the constituent ut-164

terance ut in a conversation U from the emotion165

category set Y .166

3.2 Textual Feature Extraction167

Following previous works (Kim, 2014), a multi-168

channel convolutional neural network (CNN) with169

filters sizes of {3, 4, 5} and 50 feature maps in each170

is employed to extract the context-independent n-171

gram textual features from the transcript of the172

utterances. Concretely, the 300 dimensional pre-173

trained 840B GloVe vectors (Pennington et al.,174

2014) are fed into this networks. Then, a global175

max-pooling followed by ReLU activation (Nair176

and Hinton, 2010) further process these feature177

maps. Finally, these features are concatenated and178

projected into a dm dimensional dense layer to179

form the representation of an utterance. Also, we180

represent {ut}Nt=1, ut ∈ Rdm as the representation181

of the N utterances.182

3.3 Model183

Now, we propose our Emotional Interaction184

Network (DialogueEIN) for ERC task. The overall185

framework is illustrated in Figure 3. DialogueEIN186

is comprised of three main integral components: in-187

teractive representation perception (section 3.3.1),188

interactive representation fusion (section 3.3.2) and189

emotion classifier (section 3.3.3). The details of190

the proposed framework are described below.191

3.3.1 Interactive Representation Perception192

As shown in Figure 1, our daily conversation is193

governed by interaction among different variables.194

Some of these variables which can be perceived 195

are observable, while others which can be awared 196

are hidden. We assume that the flow of these vari- 197

ables is limited by two constraints: 1) the intra- 198

speaker dependency; 2) the inter-speaker depen- 199

dency; where the inter-speaker dependency are di- 200

rectly influenced by the way of interaction among 201

these controlling variables. So, in the perception 202

stage, as shown in Figure 3a, we employ two dif- 203

ferent types of speaker-GRUs1 to capture the intra- 204

and inter-speaker dependencies, respectively, and 205

another interaction-GRU to perceive the flow of 206

these variables. 207

Intra-speaker GRU In the course of a conversa- 208

tion, individual speaker usually has own unique 209

personality, and the speaker’s emotion is easily af- 210

fected by own subjective state (Scherer et al., 2001). 211

So we employ the intra-speaker GRUP to capture 212

the self-dependency from the adjacent utterances of 213

the same speaker, and expect the GRUP is aware 214

of the potential personality of individual during the 215

model training. 216

Based on the current input utterance features 217

ut ∈ Rdm , the intra-speaker state p∅(ut),t−1 can be 218

updated to p∅(ut),t as follows: 219

p∅(ut),t = GRUP

(
ut, p∅(ut),t−1

)
, (1) 220

where DP is the hidden size of GRUP cell, 221

{p∅(ut),t−1, p∅(ut),t} ∈ RDP , and p∅(ut),t is ini- 222

tialized with null vector for all the participants. 223

Meanwhile, the intra-listener state at the current 224

time t is consistent with that at the previous time 225

t− 1 as 226

pj,t = pj, t−1, (2) 227

where j ∈ [1, . . . ,M ] and j ̸= ∅(ut). 228

Interaction GRU In the interactive representation 229

perception stage, the interaction GRU is a core 230

step. In this part, we employ the GRU cell GRUQ 231

to encode those observable variables to adequate 232

understand the contextual information of the ut- 233

terances in a way that simulates human-like inter- 234

action. Intuitively, this modeling method is more 235

interpretable. 236

Firstly, we use attention mechanism to capture 237

context ct relevant to the current utterance ut based 238

on the avaliable representation q∗,<t−1 of the con- 239

textual preceding utterances (U<t−1
∗ ) from partic- 240

ipants that including both the speaker and the lis- 241

1Taking into account the effectiveness and efficiency, GRU
is used here as the basic RNN structure.
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Figure 3: The framework of the DialogueEIN model.

tener. The attention is calculated as:242

φ = softmax
(
uTt Wφ[q∅(u1),1, . . . , q∅(ut−2),t−2]

)
,

(3)
243

ct = φ[q∅(u1),1, . . . , q∅(ut−2),t−2]
T , (4)244

where q∅(ui),i is the preceding i < (t − 1) hid-245

den state of the interaction GRUQ, DQ is the size246

of the hidden state, q∅(ui),i ∈ RDQ , ct ∈ RDQ ,247

and ct is assigned a null vector before time t < 3.248

Then, based on the above context representation,249

the speaker intermediate memory ht can be ob-250

tained by a dense layer as:251

ht = Wτ [ut⊕p∅(ut),t−1⊕q∅(ut−1),t−1⊕ct]+bτ ,
(5)252

where Dτ is the hidden size of dense layer,253

⊕ denotes vectors concatenation and Wτ ∈254

RDτ×(Dm+DP+2DQ), bτ ∈ RDτ are the learnable255

parameters. This intermediate memory representa-256

tion can, on the one hand, effectively fuse different257

types of information and, on the other hand, reduce258

the dimension of the interaction state that aims to259

cut back the memory consumption during computa-260

tion. Finally, the current interaction state q∅(ut),t−1261

can be updated to the new state q∅(ut),t via the262

interaction GRUQ. For speaker,263

q∅(ut),t = GRUQ

(
ht, q∅(ut),t−1

)
, (6)264

where q∅(ut),t is initialized with null vector for all265

the participants. For listener, the update mechanism266

of interaction state is similar to that of intra-listener267

state.268

Inter-speaker GRU Due to self-dependency, par-269

ticipants in a conversation tend to stick a particu-270

lar emotional state, unless some external stimulus,271

usually the other participants, invoke a change (Po-272

ria et al., 2019b). In other words, the emotion273

shift in a conversation has often strong correlation 274

with the inter-speaker dependency. Therefore, the 275

inter-speaker GRU is necessary to perceive the phe- 276

nomenon. 277

Now, based on the obtained the interaction state 278

q∅(ut),t which contains rich context information on 279

all the preceding utterances from the interaction 280

GRUQ, the inter-speaker state gt can be updated 281

via the inter-speaker GRUG as: 282

gt = GRUG

(
q∅(ut),t, gt−1

)
, (7) 283

where DG is the hidden size of GRUG, 284

{gt−1, gt} ∈ RDG , and gt is initialized with null 285

vector, similarly. 286

Bidirectional Clues Perception Given the cur- 287

rent utterance ut, the above computation (equa- 288

tion (1)-(7)) can be simplied as pt, gt = 289

Perception(ut; ct, ht, qt). In this work, we design 290

the interactive representation perception stage to 291

catpture the context and the speakers information 292

from two directions, i.e., the forward GRUs and 293

backward GRUs. The outputs are represented as: 294

−→pt ,−→gt =
−−−−−−−−→
Perception (ut; ct, ht,

−→qt ) , (8) 295

←−pt ,←−gt =
←−−−−−−−−
Perception (ut; ct, ht,

←−qt ) , (9) 296

The final representations of the intra-speaker state 297

and the inter-speaker state based on both forward 298

and backward driection at time t are concatenated 299

along the feature dimension, denoted as: 300

pt = [−→pt ⊕←−pt ], (10) 301

gt = [−→gt ⊕←−gt ], (11) 302

3.3.2 Interactive Representation Fusion 303

The process of information fusion is essentially a 304

cognitive process of objective things (Han, 2010), 305

which will sublimate the understanding of per- 306

ceived information to a certain extent. And, the 307
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complementarity of information from different308

views will be captured by the processing of rep-309

resentation fusion. Therefore, in the interactive rep-310

resentation fusion stage, as shown in Figure 3b, we311

design the hierarchical module, by cascading the at-312

tention and Transformer, to intergrate the emotional313

clues from intra- and inter-speaker dependencies314

and to fully explore the internal relationship be-315

tween these clues to produce a description of the316

consistency of the predicted current utterance.317

Firstly, we employ the Context Sensitive Atten-318

tion (CSAttention) to retrieve and integrate the con-319

textual clues from the other surrounding statements320

in the conversation, due to the inherent problem of321

poor performance of RNNs in propagating long-322

term context. For the intra-speaker state:323

β = softmax
(
pTt W [p1, p2, . . . , pN ]

)
, (12)324

p̃t = β[p1, p2, . . . , pN ]T , (13)325

where W ∈ R2DP×2DP is the trainable parameter326

and p̃t ∈ R2DP . We simplify the above computa-327

tion as:328

p̃t = CSAttention(pt; [p1, p2, . . . , pN ]), (14)329

Similarly, for the inter-speaker state:330

g̃t = CSAttention(gt; [g1, g2, . . . , gN ]), (15)331

where g̃t ∈ R2DG . p̃t and g̃t hold rich emotional332

clues over intra- and inter-speaker dependencies,333

respectively.334

Then, in order to uncover the intrinsic relation-335

ship between these clues and the extent of their336

contribution to the correct prediction of the emo-337

tion label of the current utterance, we employ the338

TRAnsforMer (TRAM) module from BERT (De-339

vlin et al., 2019) to learn the informative high-340

dimensional representation. In addition, we intro-341

duce a special embedding [CLS] to make the model342

free from any bias between them. The input is con-343

stituted by adding the [CLS] at the head, which is344

{[CLS, g̃t, p̃t]}. The process of computation can345

be denoted as:346

et = TRAM(CLS, g̃t, p̃t), (16)347

where et ∈ 2DG (DG is equal to DP for this348

work) is the fusion vector that indicates the high-349

dimensional representation from the intra-speaker350

state and the inter-speaker state, the TRAM is com-351

prised of several identical Transformer layers with352

a final hidden layer named as the BertPooler, and353

et is the output of the last hidden layer at the CLS354

position.355

3.3.3 Emotion Classifier 356

Finally, based on the above output representation 357

et from the interactive representation fusion stage, 358

we use an fully-connceted network and a softmax 359

layer as the emotion classifier to predict the emo- 360

tion label of each utterance, as follows: 361

ft = GELU(Wfet + bf ), (17) 362

ŷt = softmax(Wyft + by), (18) 363

where ŷt is the predicted emotion, Wf ∈ 364

RDf×2DG , bf ∈ RDf , Wy ∈ R|Y|×Df , by ∈ R|Y| 365

and |Y| is the length of the emotion category set Y . 366

During training, the cross-entropy along with 367

L2-regularization is adpoted as the measure of loss 368

(L). The loss function is defined as: 369

L = − 1∑L
l=1 ν(l)

L∑
i=1

ν(i)∑
j=1

yl
i,j log

(
ŷl
i,j

)
+ λ∥θ∥2

(19) 370

where L is the number of samples or conversations, 371

ν(i) is the number of utterances in the sample i, 372

yi,j is the one-hot vector for the ground truth, λ 373

is the L2 regularizer weight, and θ is the set of all 374

learnable parameters. 375

4 Experimental Settings 376

4.1 Datasets 377

The proposed DialogueEIN is evaluated on two 378

different benchmark datasets, i.e., IEMOCAP 379

(Busso et al., 2008) and MELD (Poria et al., 380

2019a). Detailed statistics for both datasets are 381

reported in the Table 1. In this work, we only focus 382

on the textual modality for emotion recognition in 383

conversations. 384

IEMOCAP2 (Busso et al., 2008) The Interac- 385

tive Emotional dyadic Motion CAPture (IEMO- 386

CAP) database is an acted, multi-modal and multi- 387

speaker database that consists of ten unique speak- 388

ers, belonging to five sessions. The utterances of 389

each conversation are annotated by multiple anno- 390

tators into six categorical labels, namely angry, 391

happy, sad, neutral, excited and frustrated. 392

Following previous works (Majumder et al., 2019), 393

we take the first eight speakers from session one to 394

four and the last two speakers from session five as 395

the training set and the test set, respectively. 396

MELD3 (Poria et al., 2019a) Multimodal Emotion- 397

Lines Dataset (MELD) is a extensions and enhance- 398

ment of EmotionLines (Hsu et al., 2018) dataset. 399

2https://sail.usc.edu/iemocap/
3https://github.com/declare-lab/MELD
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Dataset # Dialogues # Utterances # Num.
Speakers

# Avg.
Length # Classestrain val test train val test

IEMOCAP 120 31 5,810 1,623 2 50 6
MELD 1,153 280 11,098 2,610 9↑ 10 7

Table 1: The detailed statistics of two datasets; ↑ in-
dicates the maximum number of speakers involved in
each conversation.

It contains more than 1400 conversations in which400

multiple speakers are participated and 13000 ut-401

terances from Friends TV series. Every utterance402

of each conversation is annotated by any of these403

seven emotions labels, namely anger, disgust,404

sadness, joy, neutral, surprise and fear. The405

pre-defined train/val split provided in the MELD406

dataset is used in this work.407

4.2 Baseline and State-of-the Art methods408

For a comprehensive evaluation, we compare the409

performance of our DialogueEIN with the follow-410

ing baseline methods.411

bc-LSTM (Poria et al., 2017) A Bi-directional412

LSTM is employed to capture the contextual in-413

formation of utterances from their surroundings in414

the same conversation.415

bc-LSTM+Att (Poria et al., 2017) As the variant416

of bc-LSTM, the bi-directional contextual LSTM417

followed by attention mechanism are used to cal-418

culate the attention scores by matching the context419

utterances with the current utterance. Both mod-420

els are speaker-independent, because they do not421

consider the speaker’s information.422

CMN (Hazarika et al., 2018b) CMN adopts the two423

distinct GRUs followed by attention for two speak-424

ers to extract and filter the contextual information425

from the conversation history. However, this model426

is difficult to extend to multi-party dataset.427

ICON (Hazarika et al., 2018a) ICON, as an ex-428

tension of CMN, feds the outputs from individual429

speakers GRUs to another GRU in order to incor-430

porate self and inter-speaker influences in a conver-431

sation. Similarly, ICON also is two-party model.432

DialogueRNN (Majumder et al., 2019) Dia-433

logueRNN employs three GRUs to track the global434

contextual information, the speaker’s state, and the435

emotional state of each utterance, respectively.436

DialogueGCN (Ghosal et al., 2019) DialogueGCN437

uses GCN (Schlichtkrull et al., 2018) to model438

the representation of each utterance as node of the439

graph and the dependence between speakers as440

edges for emotion recognition in conversations.441

BiERU (Li et al., 2022) In this state-of-the art work,442

a generalized neural tensor block followed by a 443

two-channel classifier is designed to perform con- 444

text compositionality and emotion classification, 445

respectively. BiERU is also party-ignorant model. 446

4.3 Implementation Details 447

The model parameters of the core are set as shown 448

in Table 2. In addition, we choose the Adam as the 449

optimizer with an initial learning rate of {0.0001, 450

0.0001}, L2 weight decay of {0.00001, 0.0005} 451

and dropout rate of {0.05, 0.2} for IEMOCAP and 452

MELD datasets, respectively. The batch size is set 453

as 30. For fair comparison with baseline methods, 454

we use the utterance-level textual representation, 455

which is shared by these methods and can be ob- 456

tained from the open-source project4.

Dataset The Perception Stage The Fusion Stage
DP DQ DG layer head-attention

IEMOCAP 500 500 500 4 8
MELD 150 150 150 3 4

Table 2: The core model parameters setting in both
datasets during training.

457

5 Results and Analysis 458

5.1 Experimental Results 459

The experimental results compared with baseline 460

in IEMOCAP and MELD are shown in Table 3. 461

Our proposed DialogueEIN consistently achieves 462

better performance than baseline on both datasets. 463

For IEMOCAP, our proposed DialogueEIN sur- 464

passes the best model BiERU by 0.4%, 0.9%, and 465

other baseline models by at least 1.7%, 1.5% in 466

terms of accuracy and f1-score, resepctively. Fur- 467

thermore, our model outperforms in three of the six 468

F1 metrics out of all. In particular, for the excited, 469

our model achieves 85.62% accuracy, which is at 470

least 6.7% improvement over all the baseline mod- 471

els. In contrast, bc-LSTM and bc-LSTM+Att un- 472

doubtedly exhibit worst performance because they 473

do not consider speaker information. CMN, ICON, 474

DialogueRNN and DialogueGCN model speaker 475

information and global contextual information in 476

different ways. Therefore, they exhibit better per- 477

formance than the first two baselines. BiERU sim- 478

plifies the step of capturing the context by employ- 479

ing a generalized neural tensor block and a two- 480

channel feature extractor, achieving best perfor- 481

mance in all baselines. However, the obtained con- 482

text also lacks of some emotional clues because the 483

4https://github.com/declare-lab/conv-emotion
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Methods
IEMOCAP MELD

Happy Sad Neutral Angry Excited Frustrated Average Average
Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1

bc-LSTM 29.17 34.43 57.14 60.87 54.17 51.81 57.06 56.73 51.17 57.95 67.19 58.92 55.21 54.95 58.93 57.06
bc-LSTM+Att 30.56 35.63 56.73 62.90 57.55 53.00 59.41 59.24 52.84 58.85 65.88 59.41 56.32 56.19 59.54 56.85

CMN 25.00 30.38 55.92 62.41 52.86 52.39 61.76 59.83 55.52 60.25 71.13 60.69 56.56 56.13 - -
ICON 22.22 29.91 58.78 64.57 62.76 57.38 64.71 63.04 58.86 63.42 67.19 60.81 59.09 58.54 - -

DialogueRNN 25.69 33.18 75.10 78.80 58.59 59.21 64.71 65.28 80.27 71.86 61.15 58.91 63.40 62.75 58.89 57.06
DialogueGCN 40.62 42.75 89.14 84.54 61.92 63.54 67.53 64.19 65.46 63.08 64.18 66.99 65.25 64.18 - 58.10
BiERU(SOTA) 55.44 31.56 80.19 84.13 64.73 59.66 69.05 65.25 63.18 74.32 61.06 61.54 66.09 64.59 60.08 56.65
DialogueEIN 25.00 35.64 87.35 84.58 55.21 57.92 65.88 65.69 85.62 74.96 64.83 63.17 66.36 65.16 60.88 58.36

Table 3: Comparison with the baseline methods on IEMOCAP and MELD dataset using textual modality; Acc. =
Accuracy; F1 = Weighted-average F1 score; bold font denotes the best result.

model is speaker-ignorant. Compared with base-484

line methods, the experimental results demonstrate485

the effectiveness of our proposed framework.486

For MELD, as can be seen in Table 1, the dataset487

contains conversations, with an average length of488

about 10 utterances and with up to 9 speakers each489

conversation, which means that each speaker can be490

traced back to rarely contextual information. These491

factors lead to some baseline models showing dif-492

ferent performance between MELD and IEMO-493

CAP dataset. From the result in the rightmost part494

of Table 3, some speaker-ignorant models such as495

bc-LSTM, BiERU outperform speaker-dependent496

model such as DialogueRNN in accuracy met-497

ric, which demonstrates that it is more difficult498

to model self-dependency and inter-speaker de-499

pendency in MELD. In particular, DialogueGCN500

models speakers information using dependencies501

of edges in graph networks, inherently improving502

the contextual understanding of DialogueRNN and503

thus achieves better performance than other base-504

line methods in F1 metric. Compared with all the505

baseline methods, our DialogueEIN improves by506

more than 1.3% and 0.4% in terms of accuracy and507

f1-score, respectively. We surmise that this perfor-508

mance improvement is the result of joint modeling509

in the perception stage and fusion stage. On the one510

hand, the interactive representation fusion reduces511

the difficulty of modeling speaker information, and512

on the other hand, it also improves the ability to513

capture context in the perception stage.514

5.2 Error Analysis515

To further analysis the results, the confusion ma-516

trices of classification results in Table 3 is shown517

in Figure 4a. It can be seen that the happy is al-518

ways misclassified as excited. We surmise that this519

depends on two factors. On the one hand, accord-520

ing to the Valence-Arousal representation (Gian-521

nakopoulos et al., 2009), both happy and excited522

Representation Fusion Representation Perception IEMOCAP

TRAM CSAttention Inter-speaker
GRU

Intra-speaker
GRU Acc. F1

✗ ✗ ✗ ✗ 47.13 47.09
✗ ✗ ✗ ✓ 57.49 57.42
✗ ✗ ✓ ✗ 63.65 63.28
✗ ✗ ✓ ✓ 62.6 62.38
✗ ✓ ✗ ✓ 59.7 59.6
✗ ✓ ✓ ✗ 65.25 63.99
✗ ✓ ✓ ✓ 63.4 63.37
✓ ✗ ✓ ✓ 61.74 61.34
✓ ✓ ✓ ✓ 66.36 65.16

Table 4: The results of ablated DialogueEIN.

are positive valence and arousal values emotion, 523

and thus are highly confusing. On the other hand, 524

it is caused by emotional dynamics. In Figure 4b, 525

we illustrate the percentage of successful prediction 526

of several common emotion-shifts in the testing set. 527

Observing the histogram carefully, there are sig- 528

nificant differences in the predicted emotion-shift 529

results between emotion pairs with the different 530

valence and arousal value and those with similar 531

valence and arousal value, e.g., at least 62.5% suc- 532

cess from excited change to frustrated but only 533

15.15% from excited change to happy. Further res- 534

olution of this issue remains a major challenge in 535

the field of ERC. 536

5.3 Ablation Study 537

To comprehensively understand the contribution 538

of these two stages, we conduct several ablation 539

studies on IEMOCAP dataset. 540

As shown in the first block of Table 4, 1) in 541

the first row, when removing perception stage, the 542

performance is dropped sharply (∼24.7%Acc and 543

24.5%F1). It indicates the necessity for percep- 544

tion stage. 2) In the remaining rows, when only 545

removing either inter- or intra-speaker GRU, the 546

performance is significant decrease and slight in- 547

crease, respectively. This contrasting results reveal 548

inter-speaker GRU is more important and contains 549

richer contextual cues that trigger emotion than 550

7



(a) (b)

Figure 4: (a) A set of confusion matrices for Dia-
logueEIN on IEMOCAP. (b) Hiatogram of successfully
prediction having a emotion-shift from previous turn on
IEMOCAP (e.g., from EmotionA change to EmotionB).

intra-speaker GRU. And, a simple linear layer can-551

not effectively fuse the two kinds of information.552

As shown in the second block, 1) in the first553

three rows, when adding the CSAttention module,554

the performance has a certain degree of increase.555

The phenomenon shows the module can further556

integrate context from relevant surrounding repre-557

sentations based on attention score. 2) In the last558

two rows, when only adding the TRAM module,559

the performance has a slightly decline. In con-560

trast, when TRAM and CSAttention are jointly561

modeled, there is a significant performance im-562

provement over CSAttention only. In addition, for563

the emotion-shifts of the same speaker, the predic-564

tion success probability of the model with TRAM565

is 4.2% higher than that without TRAM. It indi-566

cates that the TRAM, as an indispensable part of567

the representation fusion stage, can learn informa-568

tive high-dimensional representation for better un-569

derstanding current utterance when the obtained570

features contain sufficient emotional clues.571

5.4 Case Study572

From Section 5.3 we notice that the fusion stage573

containing CSAttention and TRAM plays a crucial574

role, so we have carried out in-depth mining. Fig-575

ure 5b shows the highest CSAttention score prefer-576

ence distribution over the distance between target577

utterance and attended utterances. As expected,578

we observe that the inter-speaker CSAttention (∼579

47.7%) prefers to attend to the local context that580

are within 5 turns away from themselves. On the581

contrary, the intra-speaker CSAttention (∼ 44.1%)582

pays more attention to the long-range context that583

are 10 to 40 turns away from themselves. This584

reveals the complementary nature of the contex-585

tual cues they capture. Figure 5a shows a com-586

PA PB PA PB PB PA PB PA PB PA PB PA

fru fru fru ang fru fru fru fru fru fru ang fru

0.0

0.3

0.5

0.0

1.0

0.5

5 6 7 8 9 10 11 12 13 14 15 16

She's . . . Then why is she still single.  

New York is full of men, why isn't she 

married? …[fru]

What do you want me to do? 

What do you want-- [fru]

Look.  It's a nice day.  Why 

are we arguing? [fru]

Intra-speaker 

CSAttention

Turns

Inter-speaker 

CSAttention

Speaker

Emotion

𝑻𝑹𝑨𝑴
Target Utterance (Turn       ) Predicted

I want you to pretend like he's coming back! [ang] ang

What's going on here, Joe? [fru]6 She's not his girl.  She knows she's not. [ang]8

9

12 14

15 0.0

0.8

(a)

(b)

Figure 5: (a) The case study. (b) Highest CSAttention
score preference results between test utterance and its
context including past and future utterances.

plementary case from IEMOCAP dataset. The 587

intra-speaker CSAttention perceives self negative 588

emotion by attending to 8th and 6th turns. Mean- 589

while, the inter-speaker CSAttention is aware of 590

the arguing with PA by focusing on 12th and 14th 591

turns. Despite the absence of negative expressions 592

throughout 15th turn, after TRAM refining of the 593

integrated clues from intra- and inter-speaker CSAt- 594

tention, our DialogueEIN still makes the correct 595

emotion-shift, i.e., correctly infers the angry from 596

previous frustrated, where the BiERU misclassified 597

as frustrated. 598

6 Conclusion 599

This paper attempted to capture and mine emo- 600

tional clues from two stages of interactive repre- 601

sentation perception and interactive representation 602

fusion for emotion recognition in conversations 603

(ERC). We proposed the more explanatory emo- 604

tional interaction network (DialogueEIN) that first 605

perceived intra- and inter-speaker dependencies di- 606

rectly from the utterance, and then fully mined their 607

intrinsic relationships in order to facilitate better 608

understanding of the current utterance. It achieves 609

comparable performance in two benchmark ERC 610

datasets. Future work will explore the performance 611

of DialogueEIN on multimodal emotion recogni- 612

tion tasks. 613
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