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ABSTRACT

A broad class of unsupervised deep learning methods such as Generative Adver-
sarial Networks (GANs) involve training of overparameterized models where the
number of parameters of the model exceeds a certain threshold. Indeed, most suc-
cessful GANs used in practice are trained using overparameterized generator and
discriminator networks, both in terms of depth and width. A large body of work
in supervised learning have shown the importance of model overparameterization
in the convergence of the gradient descent (GD) to globally optimal solutions.
In contrast, the unsupervised setting and GANs in particular involve non-convex
concave mini-max optimization problems that are often trained using Gradient
Descent/Ascent (GDA). The role and benefits of model overparameterization in
the convergence of GDA to a global saddle point in non-convex concave problems
is far less understood. In this work, we present a comprehensive analysis of the
importance of model overparameterization in GANs both theoretically and em-
pirically. We theoretically show that in an overparameterized GAN model with a
1-layer neural network generator and a linear discriminator, GDA converges to a
global saddle point of the underlying non-convex concave min-max problem. To
the best of our knowledge, this is the first result for global convergence of GDA in
such settings. Our theory is based on a more general result that holds for a broader
class of nonlinear generators and discriminators that obey certain assumptions (in-
cluding deeper generators and random feature discriminators). Our theory utilizes
and builds upon a novel connection with the convergence analysis of linear time-
varying dynamical systems which may have broader implications for understand-
ing the convergence behavior of GDA for non-convex concave problems involving
overparameterized models. We also empirically study the role of model overpa-
rameterization in GANs using several large-scale experiments on CIFAR-10 and
Celeb-A datasets. Our experiments show that overparameterization improves the
quality of generated samples across various model architectures and datasets. Re-
markably, we observe that overparameterization leads to faster and more stable
convergence behavior of GDA across the board.

1 INTRODUCTION

In recent years, we have witnessed tremendous progress in deep generative modeling with some
state-of-the-art models capable of generating photo-realistic images of objects and scenes (Brock
et al., 2019; Karras et al., 2019; Clark et al., 2019). Three prominent classes of deep generative
models include GANs (Goodfellow et al., 2014), VAEs (Kingma & Welling, 2014) and normalizing
flows (Dinh et al., 2017). Of these, GANs remain a popular choice for data synthesis especially in the
image domain. GANs are based on a two player min-max game between a generator network that
generates samples from a distribution, and a critic (discriminator) network that discriminates real
distribution from the generated one. The networks are optimized using Gradient Descent/Ascent
(GDA) to reach a saddle-point of the min-max optimization problem.
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Figure 1: Overparameterization in GANs. We train DCGAN models by varying the size of the
hidden dimensionk (larger thek, more overparameterized the models are, see Fig. 8 for details).
Overparameterized GANs enjoy improved training and test FID scores(the left panel), generate
high-quality samples(the middle panel)and have fast and stable convergence(the right panel).

One of the key factors that has contributed to the successful training of GANs is modeloverpa-
rameterization, de�ned based on the model parameters count. By increasing the complexity of
discriminator and generator networks, both in depth and width, recent papers show that GANs can
achieve photo-realistic image and video synthesis (Brock et al., 2019; Clark et al., 2019; Karras
et al., 2019). While these works empirically demonstrate some bene�ts ofoverparameterization,
there is lack of a rigorous study explaining this phenomena. In this work, we attempt to provide a
comprehensive understanding of the role ofoverparameterizationin GANs, both theoretically and
empirically. We note that whileoverparameterizationis a key factor in training successful GANs,
other factors such as generator and discriminator architectures, regularization functions and model
hyperparameters have to be taken into account as well to improve the performance of GANs.

Recently, there has been a large body of work insupervisedlearning (e.g. regression or classi�ca-
tion problems) studying the importance of model overparameterization in gradient descent (GD)'s
convergence to globally optimal solutions (Soltanolkotabi et al., 2018; Allen-Zhu et al., 2019; Du
et al., 2019; Oymak & Soltanolkotabi, 2019; Zou & Gu, 2019; Oymak et al., 2019). A key ob-
servation in these works is that, under some conditions, overparameterized models experiencelazy
training (Chizat et al., 2019) where optimal model parameters computed by GD remain close to a
randomly initialized model. Thus, using a linear approximation of the model in the parameter space,
one can show the global convergence of GD in such minimization problems.

In contrast, training GANs often involves solving a non-convex concavemin-maxoptimization prob-
lem that fundamentally differs from a single minimization problem of classi�cation/regression. The
key question is whether overparameterized GANs also experience lazy training in the sense that
overparameterized generator and discriminator networks remain suf�ciently close to their initializa-
tions. This may then lead to a general theory of global convergence of GDA for such overparame-
terized non-convex concave min-max problems.

In this paper we �rst theoretically study the role of overparameterization for a GAN model with a
1-hidden layer generator and a linear discriminator. We study two optimization procedures to solve
this problem: (i) using a conventional training procedure in GANs based on GDA in which gen-
erator and discriminator networks perform simultaneous steps of gradient descent to optimize their
respective models, (ii) using GD to optimize generator's parameters for the optimal discriminator.
The latter case corresponds to taking a suf�ciently large number of gradient ascent steps to update
discriminator's parameters for each GD step of the generator. In both cases, our results show that
in an overparameterized regime, the GAN optimization converges to a global solution. To the best
of our knowledge, this is the �rst result showing the global convergence of GDA in such settings.
While in our results we focus on one-hidden layer generators and linear discriminators, our theory is
based on analyzing a general class of min-max optimization problems which can be used to study a
much broader class of generators and discriminators potentially including deep generators and deep
random feature-based discriminators. A key component of our analysis is a novel connection to ex-
ponential stability of non-symmetric time varying dynamical systems in control theory which may
have broader implications for theoretical analysis of GAN's training. Ideas from control theory have
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also been used for understanding and improving training dynamics of GANs in (Xu et al., 2019; An
et al., 2018).

Having analyzed overparameterized GANs for relatively simple models, we next provide a compre-
hensive empirical study of this problem for practical GANs such as DCGAN (Radford et al., 2016)
and ResNet GAN (Gulrajani et al., 2017) trained on CIFAR-10 and Celeb-A datasets. For example,
the bene�t of overparamterization in training DCGANs on CIFAR-10 is illustrated in Figure 1. We
have three key observations: (i) as the model becomes more overparameterized (e.g. using wider
networks), thetraining FID scores that measure the training error, decrease. This phenomenon
has been observed in other studies as well (Brock et al., 2019). (ii) overparameterization does not
hurt thetestFID scores (i.e. the generalization gap remains small). This improved test-time per-
formance can also be seen qualitatively in the center panel of Figure 1, where overparameterized
models produce samples of improved quality. (iii) Remarkably, overparameterized GANs, with a lot
of parameters to optimize over, have signi�cantly improved convergence behavior of GDA, both in
terms of rate and stability, compared to small GAN models (see the right panel of Figure 1).

In summary, in this paper

� We provide the �rst theoretical guarantee of simultaneous GDA's global convergence for an
overparameterized GAN with one-hidden neural network generator and a linear discrimi-
nator (Theorem 2.1).

� By establishing connections with linear time-varying dynamical systems, we provide a
theoretical framework to analyze simultaneous GDA's global convergence for a general
overparameterized GAN (including deeper generators and random feature discriminators),
under some general conditions (Theorems 2.3 and A.4).

� We provide a comprehensive empirical study of the role of model overparameterization
in GANs using several large-scale experiments on CIFAR-10 and Celeb-A datasets. We
observe overparameterization improves GANs' training error, generalization error, sample
qualities as well as the convergence rate and stability of GDA.

2 THEORETICAL RESULTS

2.1 PROBLEM FORMULATION

Given n data points of the formx 1; x 2; : : : ; x n 2 Rm , the goal of GAN's training is to �nd a
generator that can mimic sampling from the same distribution as the training data. More speci�cally,
the goal is to �nd a generator mappingG� (z) : Rd ! Rm , parameterized by� 2 Rp, so that
G� (z1); G� (z2); : : : ; G� (zn ) with z1; z2; : : : ; zn generated i.i.d. according toN (0; I d) has a similar
empirical distribution tox 1; x 2; : : : ; x n

1. To measure the discrepancy between the data points and
the GAN outputs, one typically uses a discriminator mappingDe� : Rm ! R parameterized with
e� 2 Rep. The overall training approach takes the form of the following min-max optimization
problem which minimizes the worst-case discrepancy detected by the discriminator

min
�

max
e�

1
n

nX

i =1

D e� (x i ) �
1
n

nX

i =1

D e� (G� (z i )) + R( e� ): (1)

Here,R( e� ) is a regularizer that typically ensures the discriminator is Lipschitz. This formulation
mimics the popular Wasserstein GAN (Arjovsky et al., 2017) (or, IPM GAN) formulations. This
optimization problem is typically solved by running Gradient Descent Ascent (GDA) on the mini-
mization/maximization variables.

The generator and discriminator mappingsGandD used in practice are often deep neural networks.
Thus, the min-max optimization problem above is highly nonlinear and non-convex concave. Sad-
dle point optimization is a classical and fundamental problem in game theory (Von Neumann &
Morgenstern, 1953) and control (Gutman, 1979). However, most of the classical results apply to the

1In general, the number of observed and generated samples can be different. However, in practical GAN
implementations, batch sizes of observed and generated samples are usually the same. Thus, for simplicity, we
make this assumption in our setup.
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convex-concave case (Arrow et al., 1958) while the saddle point optimization of GANs is oftennon
convex-concave. If GDA converges to the global (local) saddle points, we say it is globally (locally)
stable. For a general min-max optimization, however, GDA can be trapped in a loop or even diverge.
Except in some special cases (e.g. (Feizi et al., 2018) for a quadratic GAN formulation or (Lei et al.,
2019) for the under-parametrized setup when the generator is a one-layer network), GDA is not
globally stable for GANs in general (Nagarajan & Kolter, 2017; Mescheder et al., 2018; Adolphs
et al., 2019; Mescheder et al., 2017; Daskalakis et al., 2020).

None of these works, however, study the role of model overparameterization in the global/local con-
vergence (stability) of GDA. In particular, it has been empirically observed (as we also demonstrate
in this paper) that when the generator/discriminator contain a large number of parameters (i.e. are
suf�ciently overparameterized) GDA does indeed �nd (near) globally optimal solutions. In this
section we wish to demystify this phenomenon from a theoretical perspective.

2.2 DEFINITION OF MODEL OVERPARAMETERIZATION

In this paper, we useoverparameterizationin the context of model parameters count. Informally
speaking, overparameterized models have large number of parameters, that is we assume that the
number of model parameters is suf�ciently large. In speci�c problem setups of Section 2, we pre-
cisely compute thresholds where the number of model parameters should exceed in order to observe
nice convergence properties of GDA. Note that the de�nition ofoverparameterizationbased on
model parameters count is related, but distinct from the complexity of the hypothesis class. For
instance, in our empirical studies, when we say weoverparameterizea neural network, we �x the
number of layers in the neural network and increase the hidden dimensions. Our de�nition does not
include the case where the number of layers also increases, which forms a different hypothesis class.

2.3 RESULTS FOR ONE-HIDDEN LAYER GENERATORS AND RANDOM DISCRIMINATORS

In this section, we discuss our main results on the convergence of gradient based algorithms when
training GANs in the overparameterized regime. We focus on the case where the generator takes the
form of a single hidden-layer ReLU network withd inputs,k hidden units, andm outputs. Speci�-
cally, G(z) = V � ReLU(W z ) with W 2 Rk � d andV 2 Rm � k denoting the input-to-hidden and
hidden-to-output weights. We also consider a linear discriminator of the formD(x ) = dT x with an
`2 regularizer on the weights i.e.R(d) = � k dk2

` 2
=2. The overall min-max optimization problem

(equation 1) takes the form

min
W 2 Rk � d

max
d2 Rm

L (W ; d) := hd;
1
n

nX

i =1

(x i � V ReLU(W z i )) i �
kdk2

` 2

2
: (2)

Note that we initializeV at random and keep it �xed throughout the training. The common approach
to solve the above optimization problem is to run a Gradient Descent Ascent (GDA) algorithm. At
iterationt, GDA takes the form

�
dt +1 = dt + � r d L (W t ; dt )
W t +1 = W t � � r W L (W t ; dt )

(3)

Next, we establish the global convergence of GDA for an overparameterized model. Note that a
global saddle point(W � ; d � ) is de�ned as

L (W � ; d) � L (W � ; d � ) � L (W ; d � )

for all feasibleW andd. If these inequalities hold in a local neighborhood, (W � ; d � ) is called a
local saddle point.

Theorem 2.1 Let x 1; x 2; : : : ; x n 2 Rm be n training data with their mean de�ned as�x :=
1
n

P n
i =1 x i . Consider the GAN model with a linear discriminator of the formD(x ) = dT x parame-

terized byd 2 Rm and a one hidden layer neural network generator of the formG(z) = V � (W z)
parameterized byW 2 Rk � d with V 2 Rm � k a �xed matrix generated at random with
i.i.d. N (0; � 2

v ) entries. Also assume the input data to the generatorf z i gn
i =1 are generated i.i.d. ac-

cording to� N (0; � 2
z I d). Furthermore, assume the generator weights at initializationW 0 2 Rk � d
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are generated i.i.d. according toN (0; � 2
w ). Furthermore, assume the standard deviations above

obey� v � w � z � k �x k` 2
=(md

5
2 logd

3
2 ). Then, as long as

k � C � md4 log (d)3

with C a �xed constant, running GDA updates per equation 3 starting from the randomW 0 above
andd0 = 02 with step-sizes obeying0 < � � 1 and� = �� �

324�k �
d + n � 1

�
n � � 2

v � � 2
z

, with �� � 1, satis�es







1
n

nX

i =1

V ReLU(W � z i ) � �x







` 2

� 5
�
1 � 10� 5 � ���

� �







1
n

nX

i =1

V ReLU(W 0z i ) � �x







` 2

: (4)

This holds with probability at least1 � (n + 5) e� m
1500 � 5k � e� c1 �n � (2k + 2) e� d

216 �
ne� c2 �md 3 log( d)2

wherec1, c2 are �xed numerical constants.

To better understand the implications of the above theorem, note that the objective of equation 2 can
be simpli�ed by solving the inner maximization in a closed form so that the min-max problem in
equation 2 is equivalent to the following single minimization problem:

min
W

L (W ) :=
1
2







1
n

nX

i =1

V ReLU(W z i ) � �x







2

` 2

; (5)

which has a global optimum of zero. As a result equation 4 in Theorem 2.1 guarantees that run-
ning simultaneous GDA updates achieves the global optimum. This holds as long as the generator
network is suf�ciently overparameterized in the sense that the number of hidden nodes is polynomi-
ally large in its output dimensionm and input dimensiond. Interestingly, the rate of convergence
guaranteed by this result is geometric, guaranteeing fast GDA convergence to the global optima.
To the extent of our knowledge, this is the �rst result that establishes the global convergence of
simultaneous GDA for an overparameterized GAN model.

While the result proved above shows the global convergence of GDA for a GAN with 1-hidden
layer generator and a linear discriminator, for a general GAN model, local saddle points may not
even exist and GDA may converge to approximate local saddle points (Berard et al., 2020; Farnia
& Ozdaglar, 2020). For a general min-max problem, (Daskalakis et al., 2020) has recently shown
thatapproximatelocal saddle points exist under some general conditions on the lipschitzness of the
objective function. Understanding GDA dynamics for a general GAN remains an important open
problem. Our result in Theorem 2.1 is a �rst and important step towards that.

We acknowledge that the considered GAN formulation of equation 2 is very simpler than GANs
used in practice. Specially, since the discriminator is linear, this GAN can be viewed as a moment-
matching GAN (Li et al., 2017) pushing �rst moments of input and generative distributions towards
each other. Alternatively, this GAN formulation can be viewed as one instance of the Sliced Wasser-
stein GAN (Deshpande et al., 2018). Although the maximization on discriminator's parameters is
concave, the minimization over the generator's parameters is still non-convex due to the use of a
neural-net generator. Thus, the overall optimization problem is a non-trivial non-convex concave
min-max problem. From that perspective, our result in Theorem 2.1partially explains the role of
model overparameterization in GDA's convergence for GANs.

Given the closed form equation 5, one may wonder what would happen if we run gradient de-
scent on this minimization objective directly. That is running gradient descent updates of the form
W � +1 = W � � � rL (W � ) with L (W ) given by equation 5. This is equivalent to GDA but instead
of running one gradient ascent iteration for the maximization iteration we run in�nitely many. Inter-
estingly, in some successful GAN implementations (Gulrajani et al., 2017), often more updates on
the discriminator's parameters are run per generator's updates. This is the subject of the next result.

Theorem 2.2 Consider the setup of Theorem 2.1. Then as long as

k � C � md4 log (d)3

2The zero initialization ofd is merely done for simplicity. A similar result can be derived for an arbitrary
initialization of the discriminator's parameters with minor modi�cations. See Theorem 2.3 for such a result.
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(a) Discriminator trained to optimal-
ity

(b) Gradient Descent Ascent (c) diter steps of discriminator up-
date per generator iteration

Figure 2:Convergence plota GAN model with linear discriminator and 1-hidden layer generator
as the hidden dimension (k) increases.Final mseis the mse loss between true data mean and the
mean of generated distribution. Over-parameterized models show improved convergence

with C a �xed numerical constant, running GD updates of the formW � +1 = W � � � rL (W � ) on
the loss given in equation 5 with step-size� = 2��

243k �
d + n � 1

�
n � � 2

v � � 2
z

, with �� � 1, satis�es







1
n

nX

i =1

V ReLU(W � z i ) � �x







` 2

�
�
1 � 4 � 10� 6 � ��

� �







1
n

nX

i =1

V ReLU(W 0z i ) � �x







` 2

: (6)

This holds with probability at least1 � (n + 5) e� m
1500 � 5k � e� c1 �n � (2k + 2) e� d

216 �
ne� c2 �md 3 log ( d)2

with c1, c2 �xed numerical constants.

This theorem states that if we solve the max part of equation 2 in closed form and run GD on the
loss function per equation 5 with enough overparameterization, the loss will decrease at a geometric
rate to zero. This result holds again when the model is suf�ciently overparameterized. The proof of
Theorem 2.2 relies on a result from (Oymak & Soltanolkotabi, 2020), which was developed in the
framework of supervised learning. Also note that the amount of overparameterization required in
both Theorems 2.1 and 2.2 is the same.

2.4 CAN THE ANALYSIS BE EXTENDED TO MORE GENERALGANS?

In the previous section, we focused on the implications of our results for one-hidden layer generator
and linear discriminator. However, as it will become clear in the proofs, our theoretical results are
based on analyzing the convergence behavior of GDA on a more general min-max problem of the
form

min
� 2 Rp

max
d2 Rm

h(� ; d) := hd; f (� ) � y i �
kdk2

` 2

2
; (7)

wheref : Rp ! Rm denotes a general nonlinear mapping.

Theorem 2.3 (Informal version of Theorem A.4) Consider a general nonlinear mappingf :
Rp ! Rm with the singular values of its Jacobian mapping around initialization obeying certain
assumptions (most notably� min (J (� 0)) � � ). Then, running GDA iterations of the form

�
dt +1 = dt + � r d h(� t ; dt )
� t +1 = � t � � r � h(� t ; dt )

(8)

with suf�ciently small step sizes� and� obeys

kf (� t ) � yk` 2
� 

�
1 �

�� 2

2

� t q
kf (� 0) � yk2

` 2
+ kd0k2

` 2
:

Note that similar to the previous sections one can solve the maximization problem in equation 7 in
closed form so that equation 7 is equivalent to the following minimization problem

min
� 2 Rp

L (� ) :=
1
2

kf (� ) � yk2
` 2

; (9)
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with global optima equal to zero. Theorem 2.3 ensures that GDA converges with a fast geometric rate
to this global optima. This holds as soon as the modelf (� ) is suf�ciently overparameterized which is
quantitatively captured via the minimum singular value assumption on the Jacobian at initialization
(� min (J (� 0)) � � which can only hold whenm � p). This general result can thus be used to
provide theoretical guarantees for a much more general class of generators and discriminators. To
be more speci�c, consider a deep GAN model where the generatorG� is a deep neural network with
parameters� and the discriminator is a deep random feature model of the formDd (x ) = dT  (x )
parameterized withd and : Rd ! Rm a deep neural network with random weights. Then the min-
max training optimization problem equation 1 with a regularizerR(d) = � k dk2

` 2
=2 is a special

instance of equation 7 with

f (� ) :=
1
n

nX

i =1

 (G� (z i )) and y :=
1
n

nX

i =1

 (x i )

Therefore, the above result can in principle be used to rigorously analyze global convergence of
GDA for an overparameterized GAN problem with a deep generator and a deep random feature
discriminator model. However, characterizing the precise amount of overparameterization required
for such a result to hold requires a precise analysis of the minimum singular value of the Jacobian
of f (� ) at initialization as well as other singular value related conditions stated in Theorem A.4. We
defer such a precise analysis to future works.

Figure 3: MLP Overparameterization on
MNIST.

Numerical Validations: Next, we numerically
study the convergence of GAN model considered
in Theorems 2.1 and 2.2 where the discriminator is
a linear network while the generator is a one hid-
den layer neural net. In our experiments, we gen-
eratex i 's from anm-dimension Gaussian distribu-
tion with mean� and an identity covariance matrix.
The mean vector� is randomly generated. We train
two variants of GAN models using (1) GDA (as con-
sidered in Thm 2.1) and (2) GD on generator while
solving the discriminator to optimality (as consid-
ered in Thm 2.2).

In Fig. 2, we plot the converged loss values of GAN
models trained using both techniques (1) and (2) as
the hidden dimensionk of the generator is varied.
The MSE loss between the true data mean and the
data mean of generated samples is used as our eval-
uation metric. As this MSE loss approaches0, the
model converges to the global saddle point. We ob-
serve that overparameterized GAN models show improved convergence behavior than the narrower
models. Additionally, the MSE loss converges to0 for larger values ofk which shows that with
suf�cient overparamterization, GDA converges to a global saddle point.

3 EXPERIMENTS

In this section, we demonstrate bene�ts of overparamterization in large GAN models. In particular,
we train GANs on two benchmark datasets: CIFAR-10 (32 � 32 resolution) and Celeb-A (64 � 64
resolution). We use two commonly used GAN architectures: DCGAN and Resnet-based GAN. For
both of these architectures, we train several models, each with a different number of �lters in each
layer, denoted byk. For simplicity, we refer tok as the hidden dimension. Appendix Fig. 8 illustrates
the architectures used in our experiments. Networks with largek are more overparameterized.

We use the same value ofk for both generator and discriminator networks. This is in line with
the design choice made in most recent GAN models (Radford et al., 2016; Brock et al., 2019),
where the size of generator and discriminator models are roughly maintained the same. We train
each model till convergence and evaluate the performance of converged models using FID scores.
FID scores measure the Frechet distance between feature distributions of real and generated data
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