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Abstract

Mamba [22] state-space models (SSMs) have recently outperformed state-of-the-1

art (SOTA) Transformer large language models (LLMs) in various tasks and been2

widely adapted. However, Mamba’s downstream learning capabilities remain ei-3

ther unexplored–e.g., mixed-precision (MPFT) and parameter-efficient fine-tuning4

(PEFT)–or under-evaluated–e.g., in-context learning (ICL). For the latter, recent5

works [45, 19] reported Mamba’s ICL rivals SOTA Transformer LLMs using non-6

standard benchmarks. In contrast, we show that on standard benchmarks, pretrained7

Mamba models achieve only 38% of the ICL performance improvements (over8

zero-shot) of comparable Transformers.9

Enabling MPFT and PEFT in Mamba architectures is challenging due to recurrent10

dynamics and highly customized CUDA kernels, respectively. However, we prove11

that Mamba’s recurrent dynamics are robust to small input changes using dynamical12

systems theory. Empirically, we show that performance changes in Mamba’s13

inference and fine-tuning due to mixed-precision align with Transformer LLMs.14

Furthermore, we show that targeting key memory buffers in Mamba’s customized15

CUDA kernels for low-rank adaptation regularizes SSM parameters, thus achieving16

parameter efficiency while retaining speedups. We show that combining MPFT and17

PEFT enables up to 2.15 times more tokens-per-second and 65.5% reduced per-18

token-memory compared to full Mamba fine-tuning, while achieving up to 81.5%19

of the ICL performance improvements (over zero-shot) of comparably fine-tuned20

Transformers.21

1 Introduction22

Innovating on previous state-space models (SSMs) [23, 11], Mamba [22] has been recently proposed23

as an accurate, sub-quadratic alternative to Transformer large language models (LLMs). Mamba was24

initially shown to greatly outperform comparable Transformer LLMs [5] across a large number of25

standard natural language benchmarks. Subsequently, pretrained Mamba models have been widely26

adapted across different data modalities [42, 65, 36, 46, 37], tasks [60, 62, 48, 63, 57, 37, 2], and27

architectures [1, 45, 40].28

However, despite such rapid and widespread adaptation, evaluation of Mamba’s ability to perform29

standard downstream learning abilities exhibited by Transformer-based LLMs have either not been30

extensively conducted on standard natural benchmarks or are completely lacking. For instance, while31

recent works [45, 19, 30] have evaluated Mamba’s ability to perform in-context learning (ICL), such32

studies focused extensively on either non-natural tasks [30, 17] or non-standard benchmarks [25].33
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Furthermore, evaluation of Mamba’s mixed-precision fine-tuning (MPFT) and performance efficient34

fine-tuning (PEFT) capabilities are currently lacking. For the former, MPFT (and, by extension,35

mixed-precision inference) are made difficult due to potential sensitivities of Mamba’s recurrent36

dynamics, where [21, 29] suggest full precision (FP32) is required to perform stable training. For37

the latter, PEFT via standard low-rank adaptation (LoRA) [28] is made difficult within Mamba’s38

SSM layer (referred to herein as the MambaBlock) due highly customized SSM CUDA kernels which39

provide competitive performance to attention-based speedups [10] at the cost of standard adapter40

support. However, PEFT and MPFT are arguably two of the most widely utilized techniques for LLM41

alignment [53] and customization [55], and are typically combined to drastically decrease hardware42

demands needed to fine-tune modern LLMs [12].43

Herein, we extensively explore Mamba’s downstream learning capabilities across standard natural44

benchmarks. For ICL, we show that, in contrast to recent non-standard studies showing Mamba45

models rival state-of-the-art (SOTA) LLMs of similar parameter counts, the pretrained benefits of46

Mamba few-shot learning are significantly less than comparable Transformer LLMs across47

standard natural benchmarks; averaged across the benchmarks and parameter counts in Table 1,48

Mamba models only achieve 38% of the performance improvements (relative to zero-shot)49

of comparable Transformer models from the Pythia suite [5]. However, we show in the sequel50

that Mamba models can more than halve this gap through efficient fine-tuning, achieving as51

much as 81.5% of the average few-shot learning improvement (relative to zero-shot) of comparable52

Transformers.53

For MPFT, we leverage theory from dynamical systems to show that small input changes in a54

MambaBlock do not lead to exponentially deviating outputs. Empirically, we validate this theoretical55

result; compared to full-precision, deviations due to mixed-precision for Mamba inference and56

fine-tuning are on par with those demonstrated by Transformer LLMs (Section 6). For PEFT, we57

show that by targeting the largest memory buffer exploited by Mamba’s highly customized CUDA58

kernels, LoRA may be used for extremely efficient fine-tuning, while simultaneously regularizing59

the majority of Mamba’s SSM parameters via weight tying. We show that this leads to extremely60

efficient PEFT, resulting in up to 2.15 times faster training and 65.5% reduced memory compared to61

the largest evaluated Mamba model without MPFT or PEFT.62

2 Background63

Downstream learning for LLMs. Since the release of the Transformer architecture [54], attention-64

based LLMs have exhibited several downstream learning abilities–in particular, PEFT, MPFT, and65

ICL–which allow the rapid adaptation of foundation models towards specific applications. PEFT using66

adapters [24] allows a large pretrained model to be efficiently adapted for a particular downstream67

task by freezing the full model and training only a small number of extra parameters. Arguably the68

most widely used such PEFT method is LoRA [28], which injects trainable low-rank matrices into69

Transformer layers to approximate weight updates.70

To further decrease the computational demands necessary for LLM fine-tuning and inference, MPFT71

via mixed-precision (i.e., FP16 or BF16) [31, 43] and quantized low-precision [12] have proven72

effective strategies to reduce GPU memory and runtime requirements without deleterious effects on73

downstream performance [12, 59]. Additionally, mixed-precision approaches have paved the way for74

hardware-aware optimizations within the self-attention module [10], greatly mitigating the quadratic75

complexity of Transformer LLMs. Together, PEFT and MPFT have created a rich ecosystem with76

which varying combinations of these approaches may be used to meet the computational constraints77

of a given training system. We note that post-fine-tuning quantization approaches [13] may be further78

used to decrease Transformer LLM computational demands, but such approaches are not considered79

in this work.80

ICL provides an adaptable alternative to fine-tuning. Rather than fine-tune the LLM directly, ICL81

augments a prompt with n relevant examples (called shots) preceding the query of interest. Given82

sufficiently large models and pretraining data [8, 58], Transformer LLMs have proven adept at83

learning new concepts on the fly provided such few-shot prompting. However, it is worth noting84

that ICL inference time increases dramatically as the number of shots grows (due to self-attention’s85

quadratic complexity) and PEFT (when possible) is known to produce more accurate downstream86

learning results [8, 41].87
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Table 1: In-context learning performance for pretrained Mamba and Pythia models. Models are
collected into parameter classes for head-to-head comparison using the groupings in [22]. Model
checkpoints were evaluated on all benchmarks and few-shot settings using the LM evaluation harness
from Eleuther AI [16]. LAMBADA zero-shot is more effective for the model sizes considered (further
discussed in [61, 8]) and thus excluded from few-shot performance averages. Highlighted in bold is
the top-performing few-shot learner per benchmark and model grouping.

Model N -shot LAMBADA LAMBADA HellaSwag PIQA Arc-E Arc-C WinoGrande 0-shot incr.
ppl Ó acc Ò acc Ò acc Ò acc Ò acc Ò acc Ò Mean % Ò

Mamba
130M

0 16.07 44.3 35.3 64.5 48.0 24.2 44.8 –
1 19.34 38.3 35.2 64.3 47.1 23.5 51.3 -1.4
3 23.13 35.4 35.1 65.1 49.0 24.0 50.7 -0.2
5 24.38 36.2 34.8 64.9 49.2 23.9 50.5 -0.5

Pythia
160M

0 38.20 32.7 30.2 61.8 43.4 23.8 51.0 –
1 47.21 28.2 30.6 62.2 43.4 23.7 49.3 -0.4
3 63.70 24.7 30.5 61.9 44.8 22.9 51.3 0.1
5 66.30 25.3 30.4 62.6 43.4 23.1 50.8 -0.2

Mamba
370M

0 8.14 55.6 46.5 69.5 55.0 27.9 55.5 –
1 9.74 49.8 45.9 69.3 57.4 26.5 54.6 -0.8
3 10.89 48.5 46.2 69.6 58.7 28.5 53.6 1.0
5 11.36 48.5 46.2 69.4 58.3 28.0 56.0 1.3

Pythia
410M

0 10.83 51.5 40.6 66.9 52.0 24.1 53.4 –
1 12.26 47.1 40.5 68.0 53.8 25.6 52.4 1.8
3 14.39 43.2 40.9 67.9 55.1 26.9 54.0 4.2
5 14.62 44.1 40.8 68.1 54.6 26.6 53.4 3.5

Mamba
790M

0 6.01 61.7 55.1 72.1 61.2 29.6 56.0 –
1 7.06 56.2 54.5 72.5 63.3 30.1 56.9 1.4
3 8.05 54.8 54.2 72.2 63.4 31.6 57.2 2.4
5 8.83 53.4 54.6 72.5 64.6 32.1 57.5 3.4

Pythia
1B

0 7.92 56.3 47.2 70.7 57.0 27.0 53.4 –
1 8.99 51.8 47.3 70.7 57.1 28.2 53.4 1.0
3 10.48 48.2 47.5 71.2 59.2 28.0 54.3 2.2
5 10.86 48.4 47.3 71.4 58.7 28.4 53.1 1.9

Mamba
1.4B

0 5.04 65.0 59.1 74.2 65.5 32.9 58.6 –
1 5.83 60.6 58.20 74.7 64.5 33.0 61.2 -0.5
3 6.62 58.9 58.8 73.7 66.1 34.4 60.9 0.6
5 6.98 58.4 59.0 74.0 66.4 35.5 60.5 1.4

Pythia
1.4B

0 6.09 61.7 52.1 70.9 60.5 28.5 57.4 –
1 6.96 56.3 52.1 71.4 62.0 29.5 57.5 1.4
3 7.89 54.4 52.6 70.9 63.9 31.1 56.8 2.9
5 8.02 54.4 52.8 71.0 63.2 31.3 57.8 3.3

Mamba
2.8B

0 4.23 69.2 66.2 75.2 69.7 36.3 63.4 –
1 5.01 63.9 65.7 75.5 69.8 37.2 63.7 0.6
3 5.53 63.0 65.5 75.2 70.8 38.1 64.8 1.6
5 5.70 62.7 66.2 76.2 70.9 38.3 64.6 2.1

Pythia
2.8B

0 5.04 64.7 59.3 73.9 64.2 32.9 59.8 –
1 5.66 60.9 59.4 73.8 66.8 34.8 59.0 1.7
3 6.20 59.1 59.9 74.7 67.4 34.9 60.8 2.9
5 6.52 59.1 60.2 74.5 67.1 35.0 61.3 3.1
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State-space Models. Structured state-space sequence (S4) models [23, 14] are SSMs which leverage88

linear time-invariant (LTI) systems to combine the computational advantages of Transformers–i.e.,89

highly parallelizable training–and recurrent neural networks (RNNs)–i.e., subquadratic autoregressive90

inference using recurrency. Within the S4 layer, an input signal is discretized and LTI parameters91

representing the input’s latent dynamics are learned. Owing to the S4 block’s latent dynamics being92

LTI, the S4 block’s output may be thus compactly represented as a single convolution between the93

input and an SSM convolution kernel (a matrix whose entries are products of LTI learnable parameters94

resulting from unrolling the state-space equations). However, despite hardware efficiency and95

long-dependency-modeling improvements, LTI-based S4 models remained inferior to Transformers96

of comparable parameter-sizes for natural language tasks, even when augmenting S4 layers with97

attention-layers for hybrid architectures [22].98

Innovating on these previous S4 approaches, Mamba utilizes time-varying parameters to model99

latent dynamics, thus broadening the ability to capture nuanced changes evolving in discrete-time.100

Without LTI dynamics, however, the input-output representation via the SSM convolution kernel is no101

longer applicable, thus voiding previous hardware-aware S4 optimizations [14]. To enable hardware102

efficiency with time-varying SSM parameters, [22] thus introduced extensively customized CUDA103

kernels which implement highly parallelized prefix sums to compute recurrent states.104

3 Mamba state-space models105

For model dimension d and maximum input sequence length T , the MambaBlock defines state-space106

parameters A,Bt,Ct,∆t P Rdˆd for t P t1, . . . , T u. The matrix ∆t controls the discrete step-107

size. Given an input sequence u1, . . . ,uT P Rd, the following linear mapping through latent states108

x1, . . . ,xT P Rd is used to produce the output y1, . . . ,yT P Rd:109

xt “ Ātxt´1 ` B̄tut (1)

yt “ C̄txt, (2)

where ∆̄t “ softpluspLinearp∆tqq P Rdˆd, Āt “ exp p∆̄tAq and B̄t “ A´1pĀ ´ IqBt. In110

practice, A,Bt,Ct and ∆t are diagonal matrices.111

Hardware-aware optimizations. As matrices Bt,Ct and ∆t are time-varying, S4 optimizations via112

the SSM convolution kernel [11] are no longer applicable. However, by diagonality, each dimension113

may be computed in parallel. Furthermore, the recurrence along every dimension is a prefix sum (also114

called a scan), which is highly parallelizable [7]. [15] thus capitalizes on this through extensively115

customized CUDA kernels wherein the majority of temporal variables are carefully laid out in a large116

buffer of GPU memory and manipulated. Instantiated as a PyTorch linear layer’s weight matrix, this117

memory buffer W P Rnˆ3d is used to store and access the diagonal elements of Bt,Ct and ∆t for118

all t P t1, . . . , T u, such that119

Wrt ´ 1, : ds “ diagp∆tq,Wrt ´ 1, d : 2ds “ diagpBtq,Wrt ´ 1, 2d : 3ds “ diagpCtq, (3)

where Wr0, : ds “ diagp∆1q,Wrn ´ 1, d : 2ds “ diagpBT q, and so on.120

The customized Mamba prefix scan kernel heavily relies on this memory layout to optimize the121

access pattern of W in Equations 5 and 6.We note that, rather than adjusting Mamba’s low-level122

CUDA kernels themselves to integrate LoRA within the highly optimized prefix scan, we can instead123

directly target W. Doing so, we have the following, where the proof is available in Appendix A.124

Theorem 1. Consider the weight matrix W of a MambaBlock from Equation 3. Targeting W for125

LoRA during fine-tuning ties adaptation weights across Bt,Ct and ∆t.126

4 Stable dynamics in the MambaBlock127

The Mamba foundation models were pretrained in full FP32 precision. Consequently, official Mamba128

implementations have cautioned against fine-tuning or training in reduced precision [21, 29], with129

potential sensitivities of MambaBlock recurrent dynamics remaining an open question. We answer130

the latter using theory from dynamical systems. For Mamba’s discrete dynamic system in Equations 5131

and 6, define132

xt “ Fθpxt´1,utq, (4)
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where θ denotes the time-varying parameters described in Section 3. For input sequence u1, . . . ,uT133

and initial latent state vector x0, we thus write134

xT “ FθpFθp. . . Fθpx0,u1qqq – FT´1
θ px0,u1q.

The rate of divergence between two scalar ε-close inputs to a discrete dynamical system is bounded135

by the system’s maximal Lyapunov exponent λmax [44]. Given λmax and two initial values px0,u1q136

and px0 ` ε,u1 ` εq, the maximum deviation between these points grows as [33, 50]:137

max |FN
θ px0,u1q ´ FN

θ px0 ` ε,u1 ` εq| P Opε exp pNλmaxqq.

Thus, when λmax ą 0, nearby trajectories exponentially separate and, when λmax ď 0, nearby138

trajectories ultimately converge to the same fixed point or periodic cycles.139

The maximal Lyapunov exponent is defined as140

λmax – lim
TÑ8

1

T
log

›

›

›

›

›

T
ź

t“0

Bxt

Bxt´1

›

›

›

›

›

2

,

where }}2 denotes the spectral norm for matrices. For an arbitrary MambaBlock, we prove the141

following:142

Theorem 2. Let pxt´1,utq be the latent state and input at an arbitrary time t P t1, . . . , T u within a143

MambaBlock. Then small changes pxt´1`ε,ut`εq produce deviations which are exponentially non-144

increasing over discrete-time. That is, max |FN
θ pxt´1,utq´FN

θ pxt´1`ε,ut`εq| P Opε exp pNζqq,145

for some scalar ζ ď 0.146

The proof of Theorem 2 is available in Appendix B, where the maximal Lyapunov exponent for an147

arbitrary MambaBlock is first proven to be non-positive. The main result subsequently follows.148

Consequences for automatic mixed-precision. During a forward pass, automatic mixed-precision149

(AMP) saves time and memory by computing forward activations in half-precision (FP16 or BF16).150

During a backward pass, AMP computes gradients in half-precision and up-casts to full-precision151

prior to updating. In contrast to full-precision fine-tuning, MPFT within the MambaBlock thus results152

in small differences to the inputs u1, . . . ,uT fed into the SSM scan (which are passed through a153

SwiGLU), ∆̄t (which is passed through a softplus), and the gradients calculated during training.154

For a discrete dynamical system with λmax ą 0, changes due to AMP compound after repeated155

expansion of the recurrent state, thus leading to exponential deviations between quantities calculated156

using mixed- versus full-precision. We note that Transformers are not recurrent, and thus not157

susceptible to such issues. Yet, just as differences introduced by quantization/mixed-precision produce158

output differences in Transformer results, differences are expected in Mamba results using different159

precision strategies. However, by Theorem 2, such differences do not exponentially compound over160

discrete-time within the MambaBlock.161

5 Related Work162

Several recent works [45, 19, 30, 40] have studied Mamba’s ability to perform ICL. However, none163

of these have extensively studied Mamba’s ICL capabilities either on standard NLP benchmarks or on164

pure MambaBlock foundation models. In particular, foundational Mamba models’ ICL abilities were165

tested in [45] to learn simple function classes (e.g., logistic regression and decision trees [17]) and in166

[19] to learn non-standard NLP benchmarks (i.e., task vectors [25]). While [45, 19] report Mamba’s167

ICL abilities rival SOTA Transformers, their utilized benchmarks were proposed as supplemental168

ICL studies after Transformer LLMs’ success on standard NLP benchmarks [8]. Indeed, direct169

evaluation of Mamba foundation models on standard NLP benchmarks does not lead to higher gains170

over zero-shot performance relative to comparable Transformer LLMs (demonstrated in Table 1).171

Lyapunov exponents have previously been considered for classic RNN structures (e.g., vanilla172

RNNs, LSTMs, GRUs, PLRNNs, etc.) [44, 56], to determine when such models exhibit chaotic173

dynamics and the impact on the exploding/vanishing gradient phenomena*. For more recent S4 neural174

*We note that this continues a long line of research exploring RNNs sensitivity to initial conditions and their
subsequent ability to produce chaotic output [47, 34, 3, 4], although previous work did not leverage Lyapunov
exponents.
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models, [18] used Hurwitz matrices to characterize the numerical stability of linear time-invariant175

(LTI) S4 models. However, such analysis is not applicable to time-varying models, such as Mamba,176

nor does it characterize the effects of sensitive dependence on initial conditions (e.g., divergence of177

two ε close inputs). To the best of our knowledge, no previous works have used Lyapunov exponents178

to explore the effects of mixed-precision on recurrent neural models or Mamba architectures.179

As in [22], the majority of subsequent Mamba works have focused on pretraining MambaBlocks using180

full precision [65, 62, 1, 40]. Notably, the official implementation of Jamba [40], the Transformer-181

Mamba hybrid, supports mixed- and 8-bit precision, but avoids MambaBlocks when applying such182

quantization [32]. Similarly, the official Mamba sources advise using full precision within the183

MambaBlock [29, 21], cautioning against using mixed-precision due to potential recurrent sensitivities.184

To the best of our knowledge, no existing works have either theoretically explored the effects small185

input changes (e.g., due to mixed-precision) have on Mamba’s recurrent dynamics, empirically186

explored such effects downstream impact on fine-tuning and inference, or explored pure Mamba187

networks fine-tuning abilities relative to Transformer LLMs.188

6 Experiments189

To demonstrate the implications of Theorem 2, we explore the performance difference between190

running inference with full-precision pretrained weights and using mixed-precision (FP16 and BF16)191

weights. Model performance is measured as percent accuracy using the MMLU [26] dataset.192

The difference in model performance is reported as the mean divergence (i.e., absolute difference)193

between the original full-precision and respective mixed-precision model, averaged over {0, 1, 3,194

5}-shot percent accuracy. Thus, a divergence greater than one denotes an average difference195

greater than one entire percentage of accuracy.196

Mamba pretrained checkpoints are compared to pretrained Transformer models of similar parameter197

counts and no more than „300B total pretraining tokens (Pythia [5], OLMo [20] 336B-token198

checkpoint, and Phi 1.5 [39]). We note that Pythia and Mamba models were both pretrained using199

the same corpus [15], allowing the fairest comparison between SSMs and Transformers. To limit200

extraneous numerical effects within experiments (e.g., due to parameter aggregation across multiple201

GPUs), all models were run using a single GPU (Nvidia A10G, 24 GB total memory). All models202

were evaluated using the LM evaluation harness from Eleuther AI [16]. Further experimental details203

are available in Appendix C. The results are available in Table 2.204

Table 2: Mean full-precision (FP32) divergence in MMLU performance for mixed-precision inference.
Divergence is averaged over {0, 1, 3, 5}-shot performance. Pretrained checkpoints are used for
Mamba (M), Pythia (P), OLMo [20], and Phi-1.5 [39] (Phi) models.

Model M P M P M P OLMo M P Phi M P

Size 130m 160m 370m 410m 790m 1b 1.4b 1.5b 2.8b

FP16 µ 0.03 0.35 0.05 0.06 0.21 0.05 0.04 0.04 0.07 0.03 0.15 0.12
BF16 µ 0.05 1.45 0.20 0.20 0.66 0.16 0.13 0.31 0.13 1.05 1.17 0.11

From Table 2, inferencing in Pythia using FP16 and BF16 result in an average 0.13 and 0.41 full-205

precision divergence, respectively. Mamba displays similar averages in comparison: inferencing in206

Mamba using FP16 and BF16 result in an average 0.10 and 0.48 divergence, respectively. Interestingly,207

both SSM and Transformer architectures exhibit large divergence spikes–i.e., mean divergence greater208

than a percentage point–when using BF16, which occurs once for Mamba and Phi 1.5 models and209

twice for Pythia models. In the following, we show that such spikes may be mitigated for Mamba210

SSMs by combining mixed-precision with parameter-efficient adapters during fine-tuning.211

Non-divergent Mamba fine-tuning. We next explore the implications of Theorem 2 on fine-tuning,212

wherein mixed-precision is especially critical; MPFT combined with PEFT adapters have been shown213

to drastically reduce Transformer fine-tuning times [12]. We are thus interested in the divergence214

between Mamba models fully fine-tuned (i.e., no adapters, all model weights are trained) in full-215

precision and models fine-tuned using mixed-precision and/or PEFT adapters. We focus on utilizing216

LoRA [28], which is arguably the most widely used PEFT framework for LLMs.217
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Figure 1: Mean full-precision (FP32) divergence in MMLU performance for Mamba and Pythia
models. Models are fine-tuned over the Alpaca dataset [51] using different combinations of MPFT
and PEFT. Full fine-tuning (i.e., no PEFT adapters) is denoted as Full.

Using the Alpaca dataset [51], Mamba 160M, 410M, and 790M models are fine-tuned for three epochs218

with a maximum sequence length of 512. We denote the targeting of all linear layers (ALL) for LoRA219

as ALL LoRA, the targeting of a subset of linear layers (SLL) for LoRA as SLL LoRA, and no adapters220

as Full (i.e., full fine-tuning). Both ALL and SLL LoRA adapt the large memory buffer described in221

Theorem 1.222

Each fine-tuning run occurred on a single A10G GPU. To further limit extraneous numerical effects,223

the same batch size is used for all FP32, FP16, and BF16 experiments for a given model size. While224

this leads to hardware underutilization (i.e., non-saturated GPU memory for mixed-precision and225

LoRA experiments), this is necessary to guarantee no divergence is due to differences in parameter226

update schedules. For comparison, Pythia 160M, 410M, and 1B models are fine-tuned using the227

same experimental setup. The training recipe for all models was adapted from [53], with the228

AdamW_torch optimizer and a cosine annealing schedule. Further experimental details are229

available in Appendix C.230

For each Mamba and Pythia model, Figure 1 shows the mean divergence calculated between the231

respective FP32 Full and mixed-precision ALL/SLL LoRA fine-tuned models, averaged over {0, 1, 3,232

5}-shot MMLU accuracy. Across mixed-precisions and adapter settings, Mamba displays comparable233

divergences to Pythia models. E.g., for FP16, Mamba demonstrates an average divergence of 0.1,234

compared to 0.14 for Pythia. Similarly, for BF16, Mamba demonstrates an average divergence235

of 0.18, compared to 0.28 for Pythia. Importantly, Mamba models do not exhibit large deviation236

spikes after fine-tuning (in contrast to Pythia models).237

Hardware throughput and memory-utilization improvements. With comparable divergences238

to Transformers and stable dynamics, we show that MPFT and PEFT may be used to significantly239

increase GPU-training throughput for Mamba SSMs. To demonstrate such improvements, we utilize240

the previous fine-tuning settings for the Alpaca dataset. However, we now adjust the batch size to241

maximize throughput per MPFT and PEFT configuration.242

For each MPFT and PEFT configuration, the average tokens-per-second (ATPS) is calculated as the243

total tokens used for fine-tuning divided by total training time, and the maximum memory-per-token244

(MMPT) is calculated as the maximum GPU memory utilization incurred (over the entire fine-tuning245

run) divided by the total number of tokens in each mini-batch. Results are plotted in Figure 6.246

Both throughput and memory utilization improve as the number of Mamba parameters increases247

in Figure 6. Compared to the full-precision full fine-tuning of Mamba 790M (the largest model248

supported by an A10G’s memory capacity), evaluated MPFT and PEFT combinations result in249

an average 2.15 times more training tokens-per-second while reducing per-token memory250

utilization by an average 62.7%. Across all model sizes, evaluated MPFT and PEFT combinations251

result in an average 1.74 times more training tokens-per-second while reducing per-token memory252

utilization by an average 47.2% compared to respective full-precision fine-tuned runs.253

6.1 Fine-tuning narrows the ICL gap between Mamba and Transformers254

We next explore how MPFT and PEFT affect Mamba ICL performance. All Mamba pretrained255

models are instruction fine-tuned using ALL LoRA and the OpenHermes dataset [52] (which consists256

of 242,000 supervised samples). We use the training recipe of [53], which includes BF16 utilization.257
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Figure 2: Timing and memory usage calculated Mamba model-sizes and PEFT combinations. Each
model was trained using the Alpaca dataset [51] dataset for three epochs and maximum sequence
length 512. For each PEFT combination, the batch size was tuned to maximize GPU occupancy.

Performance is evaluated using the datasets from Table 1–HellaSwag [64], PIQA [6], Arc-E [9],258

Arc-C [9], and WinoGrande [49]–and report the average improvement percentage of {1, 3, 5}-shot259

versus 0-shot (AIPSS). For comparison, Pythia pretrained models are instruction fine-tuned using the260

same training recipe and ALL LoRA (i.e., all Pythia linear layers are adapted).
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Figure 3: Fine-tuning narrows the ICL gap between Mamba and Pythia. ALL LoRA models were
instruction fine-tuned on the OpenHermes [52] dataset for one epoch. Performance is reported as the
average improvement percentage of {1, 3, 5}-shot versus 0-shot over five standard benchmarks.

261

Figure 3 displays AIPSS for pretrained and instruction fine-tuned Mamba and Pythia models. As262

previously noted, pretrained Mamba models do not display similar ICL ability as comparable Pythia263

models on the evaluated standard NLP benchmarks. In particular, Mamba 2.8B, the largest pretrained264

Mamba model, displays inconsistent zero-shot improvements as the number of shots increase.265

However, after fine-tuning, all Mamba models larger than Mamba 130M consistently improve in ICL266

performance as the number of shots increase. Compared to Mamba pretrained models, which are only267

capable of 38% of the AIPSS compared to similar pretrained Pythia models, fine-tuned ALL LoRA268

Mamba models are capable of 81.5% of the AIPSS compared to similarly fine-tuned Pythia models.269

Fine-tuning robustness. We show that Mamba is robust to the choice of PEFT hyperparemters. We270

conduct an extensive hyperparameter search across the learning rate, LoRA dimension, and number of271

warmup steps. From the Cartesian-product of these three parameters, 150 hyperparameter configura-272

tions were sampled and used to fine-tune Mamba 370M over the Openhermes dataset. For comparison,273

Pythia 410M is similarly fine-tuned using the same set of 150 hyperparameter configurations.274
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Figure 4: Fine-tuning hyperparameter search for OpenHermes. Each point is a different hyperparam-
eter configuration. SLL LoRA was used for both models. The x-axis is the learning rate, the y-axis
is resulting MMLU 5-shot performance, bubble size is the LoRA dimension, and the color is the
number of warmup steps P t0, 1k, 2ku.

The MMLU 5-shot performance for each of the 150 Mamba and Pythia fine-tuned models is displayed275

in 6.1. Pythia 410M is capable of higher performance than Mamba 370M, where the average accuracy276

for the former and the latter are 26.5% and 24.8%, respectively. However, Mamba 370M is much more277

robust to the choice of hyperparameters, with a difference of 1.5% between the minimum (23.3%)278

and maximum (24.8%). In contrast, Pythia 410M fine-tuned models display a large performance279

difference of 4.7% between the minimum (22.9%) and maximum (27.6%).280

7 Discussion281

We’ve extensively explored Mamba’s downstream learning capabilities. Using dynamical systems282

theory, we’ve shown that Mamba’s recurrent dynamics are robust to small input perturbations (contrary283

to the current understanding of Mamba’s recurrent sensitivities). We’ve extensively confirmed this284

result, showing that: a) Mamba inference is robust to changes due to mixed-precision, (b) Mamba285

inference differences due to mixed-precision align with Transformers, (c) Mamba fine-tuning is robust286

to changes due to mixed-precision and PEFT, and (d) differences in downstream performance for287

Mamba due to MPFT and PEFT can be more robust than Transformers. Using both MPFT and PEFT,288

we’ve shown that instruction fine-tuning Mamba SSMs greatly narrows the previously observed ICL289

gap, going from only 38% (post pretraining) up to 81.5% (post fine-tuning) of the ICL abilities of290

similar Transformers. Furthermore, we’ve shown that combining MPFT and PEFT can more than291

halve training time and nearly triple memory efficiency for Mamba models.292

There are significant avenues for future work. In particular, adapting Mamba’s CUDA kernels to293

support more aggressive low-precision PEFT methods [12] would further decrease the hardware294

needed to train Mamba models, while providing additional speedups. Furthermore, while the largest295

pure Mamba model contains 2.8B parameters, the training speedups and improved memory utilization296

described herein may be applied to more efficiently pretrain larger pure Mamba SSMs (e.g., 7B297

parameters and greater), where Mamba models may better manifest emergent abilities previously298

displayed by Transformers (or even manifest previously unobserved abilities).299

Limitations. While we explored the use of LoRA for Mamba models, many other PEFT adapters300

exist [41, 38, 27, 35]. Furthermore, while mixed-precision using FP16 and BF16 were explored,301

lower-precision methods exist [12] (which may be enabled by adapting Mamba’s highly customized302

CUDA kernels). Both are interesting directions for future work. Finally, our timing and memory303

usage experiments using Alpaca did not consider the largest two Mamba models (1.4B and 2.8B) due304

to their exceeding A10G memory capacity for FP32 full fine-tuning.305

Broader Impact. The Mamba models considered are all LLMs, and thus have the same potential306

positive and negative societal impacts as other LLMs (e.g., hallucinations). Furthermore, fine-tuning307

is known to possibly erode existing LLM guardrails, and thus our methods may be adapted for this308

fine-tuning use case (as is the case for all PEFT and MPFT methods). However, our work improves the309

quality of Mamba models for downstream applications, which may be adapted for all positive LLM310

applications in society (e.g., personal assistants, task automation, code completion, etc.). Finally, our311

work decreases the computational constraints required to train and inference Mamba SSMs, which312

has implications for green ML (e.g., decreased CO2 emissions, positive climate change impact, etc.).313

410 GPU days were used to produce the results for this paper.314
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A Proof of weight-tying using LoRA in the MambaBlock477

Due to the low-level nature of Mamba’s prefix scan optimizations (discussed in Section 3), standard478

use of LoRA adapters is made difficult within Mamba’s SSM-layer. E.g., while Bt, Ct and ∆t are479

conceptually PyTorch linear layers, their bundling in a contiguous memory block and careful manip-480

ulation makes appending a LoRA adapter on any of these invidiual matrices non-trivial (particularly,481

while respecting the highly specialized layout of each LoRA adapters targeted layer). However, we482

note that the overall design of the MambaBlock’s hardware optimizations may be leveraged to both483

efficiently learn the parameter-space for the majority of time-varying parameters (thus achieving484

PEFT) and regularize parameters during training (thus improving fine-tuning generalization).485

Theorem 1. Consider the weight matrix W of a MambaBlock from Equation 3. Targeting W for486

LoRA during fine-tuning ties adaptation weights across Bt,Ct and ∆t.487

Proof. Let r be the specified LoRA dimension. Targeting this matrix for LoRA results in the adapter488

W̃ “W ` W1

“W ` UV,

where U P Rnˆr, V P Rrˆ3d, and W is frozen during fine-tuning. Thus, for index ri, js,489

W1ri, js “

r´1
ÿ

k“0

Uri, ksVrk, js.

Recall the form of W:490

Wrt ´ 1, : ds “ diagp∆tq,Wrt ´ 1, d : 2ds “ diagpBtq,Wrt ´ 1, 2d : 3ds “ diagpCtq,

where Wr0, : ds “ diagp∆1q,Wrn ´ 1, d : 2ds “ diagpBT q, and so on. For index rt ´ 1, js, we491

thus have492

W̃rt ´ 1, js “Wrt ´ 1, js ` W1rt ´ 1, js

“Wrt ´ 1, js `

r´1
ÿ

k“0

Urt ´ 1, ksVrk, js.

Thus, the weights Urt´ 1, :s are tied for any parameter W̃rt´ 1, js, j P t1, . . . , 3du, which are used493

to adapt parameters ∆1,Bt, and Ct.494

495
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B Mamba stable dynamics proof496

Recall the state-space parameters and equations for the MambaBlock; A,Bt,Ct,∆t P Rdˆd for497

t P t1, . . . , nu “ rns. Given an input sequence u1, . . . ,un P Rd, the following linear mapping498

through latent states x1, . . . ,xn P Rd is used to produce the output y1, . . . ,yn P Rd:499

xt “ Ātxt´1 ` B̄tut (5)

yt “ C̄txt, (6)

where ∆̄t “ softpluspLinearp∆tqq P dˆd, Āt “ exp p∆̄tAq, B̄t “ A´1pĀ ´ IqBt, and is the500

set of non-negative real numbers. In practice, A,Bt,Ct and ∆t are diagonal matrices.501

Furthermore, recall the following definitions:502

xt “ Fθpxt´1,utq

where θ denotes the aforementioned time-varying parameters. For input sequence ut, . . . ,uT and503

initial latent state value x0, we thus write504

xT “ FθpFθp. . . Fθpx0,u1qqq – FT´1
θ px0,u1q.

We first prove that, given two scalar ε-close inputs to a MambaBlock, their deviations do not grow505

exponentially as the number of recurrences increases (Lemma 1). The main result in the paper is506

subsequently proved.507

Lemma 1. For input px0,u1q to a MambaBlock, small changes px0 ` ε,u1 ` εq produce deviations508

which are exponentially non-increasing over discrete-time. That is, max |FN
θ px0,u1q ´ FN

θ px0 `509

ε,u1 ` εq| P Opε exp pNζqq, for some scalar ζ ď 0.510

Proof. Firstly, we note that within the MambaBlock, A is stored in log-space followed by a negative511

exponentiation prior to use. Thus, A P dˆd, where is the set of non-positive real numbers.512

Recall that for the maximum deviation, we have:513

max |FN
θ px0,u1q ´ FN

θ px0 ` ε,u1 ` εq| P Opε exp pNλmaxqq.

where the maximal Lyapunov exponent λmax is defined as:514

λmax – lim
TÑ8

1

T
log

›

›

›

›

›

T
ź

t“0

Bxt

Bxt´1

›

›

›

›

›

2

,

and }}2 denotes the spectral norm for matrices.515

Thus, to complete the proof, it suffices to show that λmax ď 0. Recall that A and ∆̄t are diagonal.516

From Equation 5, we thus have517

λmax “ lim
TÑ8

1

T
log
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›
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ź
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Let i be the dimension which corresponds to the output of the spectral norm, i.e., i “518

argmaxj“1,...,dtexp
řT

t“0p∆̄trj, jsArj, jsqu. We thus have519

λmax “ lim
TÑ8

1

T
log

›

›

›

›

›

exp
T

ÿ

t“0

p∆̄tAq

›

›

›

›

›

2

“ lim
TÑ8

1

T
log exp

T
ÿ

t“0

p∆̄tri, isAri, isq

“ Ari, is lim
TÑ8

1

T

T
ÿ

t“0

∆̄tri, is
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Ari, is is non-positive and limTÑ8
1
T

řT
t“0 ∆̄tri, is ě 0, since ∆̄tri, is P @t. Thus, λmax ď 0.520

Theorem 2. Let pxt´1,utq be the latent state and input at an arbitrary time t P r1, T s within a521

MambaBlock. Then small changes pxt´1 ` ε,ut ` εq produce deviations which are exponentially522

decreasing over discrete-time, i.e., max |FN
θ px0,u1q ´ FN

θ px0 ` ε,u1 ` εq| P Opε exp pNζqq, for523

some scalar ζ ď 0.524

Proof. Let τptq be a function that maps time values such that τptq P r1, T ´ ts and τptq “ 1, τpt `525

1q “ 2, . . . , τpt ` T q “ T ´ t. Then Bτptq,Cτptq,∆τptq define a new MambaBlock with inputs526

uτptq, . . . ,uτpt`T q and subsequent recurrent states xτptq, . . . ,xτpt`T q. Applying Lemma 1 to this527

MambaBlock with pxτptq´1,uτptqq completes the proof.528

C Experimental Details529

All model checkpoints were evaluated on all benchmarks and few-shot settings using the LM530

evaluation harness from Eleuther AI [16], version 0.4.2. Pythia and Mamba Huggingface check-531

points were used for all inference and fine-tuning experiments, e.g., EleutherAI/pythia-160m532

and state-spaces/mamba-130m-hf for the smallest respective models. All fine-tuning experi-533

ments were run using package versions Transformers 4.40.0.dev0, Accelerate 0.28.0, TRL534

0.8.1, PyTorch 2.2.1+cu121, and PEFT 0.10.0.535

For MPFT, Flash Attention 2.0 [10] via flash_attn 2.5.7 was used for Pythia mod-536

els. For FP16 and BF16 inference results, Flash Attention 2.0 was used for both Pythia537

and OLMo models. For OLMo results, the 336B-token checkpoint was used by specifying538

revision=step80000-tokens336B.539

Outside of the OpenHermes hyperparameter search, all Alpaca and OpenHermes fine-tuning exper-540

iments used the following training recipe (adapted from [53]): AdamW_torch optimizer, cosine541

annealing schedule, no gradient accumulation, maximum norm of 1.0 for gradient clipping, and no542

warmup steps. Training epochs used for all Alpaca and OpenHermes experiments were three and543

one, respectively. For both Pythia and Mamba models, the learning rate and LoRA dimension r were544

scaled to improve performance of smaller models (per-model values listed in Table 3).545

For SLL LoRA, targeted Mamba layers were {x_proj, embeddings, in_proj, out_proj};546

x_proj is the large MambaBlock memory buffer which, when targeted547

by LoRA, regularizes the majority of SSM parameters during fine-tuning548

through weight tying (Theorem 1). Pythia targeted SLL LoRA layers were549

{dense, embed_in, query_key_value, dense_h_to_4h,dense_4h_to_h}, chosen to550

balance performance across model sizes.551

All experiments in Tables 1 and 2, Figures 1 and 6 were run using a signle-GPU Nvidia A10G (24552

GB total memory). For Pythia and Mamba ALL LoRA experiments in Figure 3, all experiments were553

run on an A10G, except for Mamba 2.8B, which exceeded A10G memory capacity and was run on554

an Nvidia H100 (80 GB total memory).

Table 3: Learning rate and LoRA dimension r values

Mamba size Pythia size learning rate LoRA r
130M 160M 1.0e-5 8
370M 410M 5.0e-5 16
790M 1B 1.0e-6 32
1.4B 1.4B 5.0e-6 64
2.8B 2.8B 5.0e-7 128

555

For the hyperparameter search results in Figure 6.1, all experiments were run using 8 H100 GPUs.556

SLL LoRA was used for Mamba and Pythia models. The range of hyperparameter values was as557

follows:558

• learning rate P t1e ´ 7, 2e ´ 7, 5e ´ 7, 1e ´ 6, 2e ´ 6, 5e ´ 6, 1e ´ 5, 2e ´ 5, 5e ´ 5, 1e ´559

4, 2e ´ 4, 5e ´ 4, 1e ´ 3, 2e ´ 3, 5e ´ 3u560
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• LoRA dimension r P t16, 32, 64, 128, 256u561

• warmup steps P t0, 1000, 2000u562

All other hyperparameters followed previous experiments.563

The Alpaca dataset is freely available for download at ttps://huggingface.co/datasets/564

tatsu-lab/alpaca under open-source license CC-by-NC 4.0. The OpenHermes dataset is freely565

available for download at https://huggingface.co/datasets/teknium/OpenHermes-2.5 un-566

der open-source license MIT, Apache 2.0, CC.567
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to make their results reproducible or verifiable.647
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be necessary to either make it possible for others to replicate the model with the same651

dataset, or provide access to the model. In general. releasing code and data is often652
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to reproduce that algorithm.661
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• Depending on the country in which research is conducted, IRB approval (or equivalent)878

may be required for any human subjects research. If you obtained IRB approval, you879

should clearly state this in the paper.880

• We recognize that the procedures for this may vary significantly between institutions881

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the882

guidelines for their institution.883

• For initial submissions, do not include any information that would break anonymity (if884

applicable), such as the institution conducting the review.885
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