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Abstract

myNLP is a free, open-source natural language
processing (NLP) library focused on the Myan-
mar language. The library is implemented
in Python programming language and bench-
marked on the available Myanmar corpora. In
this paper, we provide outlines and compar-
isons of different approaches for each of the
language processing functionalities as well as
the datasets and pre-trained models. The li-
brary is constructed in a hierarchical structure
including language processing functions and
models for different NLP tasks. It will be pub-
licly released and available on GitHub, with
some larger models hosted on Hugging Face.

1 Introduction

In recent years, there have been many advance-
ments in the Natural Language Processing (NLP)
field with the advent of Multilingual Language
Models (MLLMs) and Large Language Models
(LLMs). Although there are many NLP tools and
libraries, most of them are designed for languages
with many resources. With the limited amount of
data for the experiments, low-resource languages
were left behind.

Myanmar language, which is a low-resource lan-
guage is the official language of the Republic of
the Union of Myanmar (Constitution of Myanmar
(2008)) and is spoken by two-thirds of the popu-
lation (SIL International (2024)). Despite its sig-
nificance, there is a lack of a comprehensive NLP
toolkit for the Myanmar language. Therefore, in
this paper, we aim to introduce an NLP library for
the Myanmar language which will fill the gap for
many language processing tasks.

In myNLP, we included important preprocessors
for linguistic analysis and pre-trainings, such as tok-
enization, part-of-speech tagging, and name-entity
recognition. In the following sections, we describe
the design and implementation of our library. We

also evaluate the performance of our library on var-
ious tasks and compare it with the earlier studies.

2 Functionalities

We used both rule-based and data-driven ap-
proaches for our library. Data-driven models were
trained on the open-source corpus as described in
Table 1. The experiment details will be discussed
in the next sections.

2.1 Tokenization

myNLP supports text tokenization for different
units including grapheme clusters, syllables, words,
and sentences.

2.1.1 Grapheme Clusters Tokenization

ICU (International Components for Unicode) (IBM
Corporation et al. (1999)) is a library that pro-
vides robust and efficient Unicode support. ICU
grapheme segmentation involves dividing text into
grapheme clusters, which are sequences of one
or more Unicode code points that represent a sin-
gle user-perceived character. Grapheme clusters
are the atomic units of matching in Unicode. We
used PyICU! which is the python extension imple-
mented in C++ that wraps the C/C++ ICU library.

2.1.2 Syllable Tokenization

Myanmar language characters (consonants, vow-
els, and diacritic marks) form Myanmar language
syllables. Since the Myanmar language is mono-
syllabic, i.e., the syllable is the unbreakable unit
in the Myanmar language, syllable segmentation is
important for Myanmar language text processing.
Thu et al. (2021) proposed the syllable-breaking
regular expression patterns for Nine major ethnic
languages of Myanmar in Perl. We implemented
the authors’ proposal for the Myanmar language
syllable tokenization structure in Python to include
it in our library.
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2.1.3 Word Tokenization

In the Myanmar language, a word consists of one
or more syllables (Green (2005)). myNLP sup-
ports three-word tokenization approaches based on
n-gram dictionaries with myWord Thu (2021), ma-
chine learning with Conditional Random Fields
(CRF) (Fukuda et al. (2007)), and deep learn-
ing with Bidirectional Long Short-Term Memory
(Bi-LSTM) (Ma et al. (2018)). Ma et al. (2018)
compares various neural network architectures for
Chinese word segmentation and finds that a Bidi-
rectional Long Short-Term Memory (Bi-LSTM)
model has better accuracy results compared to other
models. From the orthographical point of view,
since the Myanmar language and Chinese have the
common intrinsic problem of defining the word
boundary (Ding et al. (2016)), we used deep se-
quence labeling as in Ma et al. (2018).

2.1.4 Phrase Tokenization

myNLP also supports phrase tokenization for
phrase-based NLP tasks. Our phrase tokenizer is
built on the myWord tool using the unsupervised
approach with Normalized Pointwise Mutual Infor-
mation (NPMI) proposed by Bouma (2009).

2.1.5 Sentence Tokenization

Sentence Tokenization is useful for various kinds
of NLP applications such as machine translation,
automatic speech recognition, and information ex-
traction. Aung et al. (2023) proposed mySentence,
the first sentence segmentation corpus with RDR,
CREF, and Hidden Markov Models (HMM) tagging
methods compared with Neural Machine Transla-
tion (NMT) approaches. It was found that neu-
ral sequence tagging experiments made by Thu
et al. (2023a) outperform the traditional tagging
and NMT methods. Our library developed a word-
level neural sequence labeling model using Bi-
LSTM architecture and it is trained and evaluated
on mySentence corpus.

2.2 Tagging

myNLP supports Part-Of-Speech (POS) Tagging
and Name-Entity Recognition (NER), which are
important language processing methods for linguis-
tic analysis and information retrieval.

2.2.1 POS Tagging

POS Tag represents the syntactic category of the
word. We used myPOS version 3 with 16 POS

Tags defined by Hlaing et al. (2022b). The au-
thors proposed that the Ripple-Down Rules (RDR)
POS Tagger has better results than neural network
approaches. For myNLP, we implemented three
different approaches - CRF, RDR, and Bi-LSTM
by training and evaluating on the same corpus.

2.2.2 Name-Entity Recognition

Name-Entity Recognition in myNLP can provide
name entity information for the users with 9 Name-
Entity tags with BIOES tagging scheme. We
trained and implemented CRF and Bi-LSTM mod-
els on our developing myNER corpus version 1.0.
We plan to release it together with the myNLP
framework.

2.3 Transliteration

Myanmar language is a tonal language with four
tones: low, high, creaky, and stopped (checked).
Varied tones impart distinct meanings to syllables
with identical phonemic structures. Therefore pho-
netic information are important for Myanmar lan-
guage linguistics studies. For the further phonolog-
ical studies, myNLP contributes the Transliteration
and Grapheme-to-Phoneme conversion module.

myNLP supports two types of mapping-based
transliteration methods (Sawada (2021) and ALA-
LC (2011)) and two Bi-LSTM models for
Grapheme-to-Phoneme (G2P) conversion and
Grapheme-to-IPA (G2IPA) conversion. Bi-LSTM
conversion models are trained and evaluated on
myG2P word-level dictionary version 2.0 devel-
oped by Htun et al. (2021).

2.4 Dependency Parsing

Universal Dependency (UD) parsing is used in var-
ious kinds of NLP tasks especially for language
understanding and generation by providing a struc-
tured representation of the relationships between
words. myNLP provides both graph-based and
transition-based dependency parsing models.

2.5 Spelling Checking

Spelling error detection and correction are crucial
components of text normalization for training con-
textual models. myNLP offers word-level spelling
correction utilizing the SymSpell algorithm devel-
oped by Garbe (2012). Building upon previous re-
search by native experts, we have adopted the most
promising approach, specifically the Damerau-
Levenshtein method, along with unigram and bi-



gram dictionaries manually curated and proposed
by novice experts (Mon et al. (2021)).

2.6 String Similarity

Wai et al. (2020) presented the development of
string similarity measures based on phoneme sim-
ilarity. Based on their study, myNLP provides
string similarity scores for all kinds of mappings
- phonetic, sound, and vowel position mappings
with various kinds of edit distance including Lev-
enshtein distance, Damerau-Levenshtein distance,
Hamming distance, Jaro-Winkler distance, cosine
similarity, and Jaccard distance.

2.7 Paraphrase Classification

We implemented the Random Forest (RF) classifier,
Siamese Convolutional Neural Network (CNN),
and Bi-LSTM conducted in the research of Htay
et al. (2022). We used RF as our paraphrase classi-
fication model because it outperformed the perfor-
mance of the Siamese models.

2.8 Text Classification

We included the hate speech detection function as
a part of our text classification module. We imple-
mented and tested traditional Machine Learning
(ML) algorithms such as Support Vector Machine
(SVM), Multinomial Naive bayes (NB), and Ran-
dom Forest (RF) (Marshan et al. (2023)), as well as
fasttext classification model (Joulin et al. (2016)).

2.9 Language Classification and Embeddings

Since there is no language classification model re-
leased between the Myanmar language and other
eight ethnic languages (Beik, Dawei, Mon, Pao, Po-
Kayin, Rakhine, Sgaw-Kayin, and Shan), myNLP
provides a language classification module to im-
prove local low-resource language identification.

* Classification: We included a language clas-
sification function using character and syl-
lable n-grams with Naive Bayes (Vatanen
et al. (2010)), allowing users to choose from
n-values of 3, 4, and 5. Another method
for language classification is using character-
syllable frequencies for each ethnic language.
We also trained neural network model (Accu-
racy: 99.5%) and fasttext classification mod-
els (Joulin et al. (2016)) (Accuracy: 99.7%)
to classify the language of the input string.

* Syllable Embeddings: myNLP will also re-
lease the syllable-level embeddings for the

nine ethnic languages including the Myan-
mar language to be used in various NLP tasks
such as language classification, semantic sim-
ilarity, and machine translation. The ethnic
language corpus is segmented into syllables
using the sylbreak4all tool (Thu et al. (2021)
and trained fasttext (Bojanowski et al. (2017))
and word2vec (Mikolov et al. (2013)) on the
monolingual corpora using gensim?.

2.10 Machine Translation

In order to conduct research and development
(R&D) on machine translation for local languages,
members of the myNLP team contribute to the de-
velopment of parallel corpora between the Myan-
mar language and other major ethnic languages
such as Kachin, Kayar, Pa’O, Rawang, Sgaw
Kayin, and Shan, as well as parallel corpora be-
tween Burmese spoken dialects (Beik, Dawei, and
Rakhine) (Kyaw et al. (2020), Thu et al. (2019);00
et al. (2023)). Moreover, we also plan to release
English-Myanmar parallel corpus for medical do-
main together with this myNLP library.

The myNLP framework supports both statisti-
cal machine translation (SMT) and neural machine
translation (NMT). SMT utilizes IBM Models 1
and 2 (Koehn (2010)), tailored to accommodate
translations for local spoken dialects and one of
Myanmar’s Braille systems known as Mu-thit Moe
et al. (2021). On the other hand, myNLP’s NMT
implementation leverages OpenNMT-tf (Klein et al.
(2018); Klein et al. (2020)) and CTranslate2? li-
braries to facilitate efficient inference with Trans-
former models.

2.11 [Utilities

We also included a utilities module for language
processing tasks such as corpus cleaning, nor-
malization, language modeling, stopword removal
(Thu and Supnithi (2023)), sorting, etc.

3 Datasets

myNLP also provides datasets for the researchers to
be able to use in their further Myanmar linguistics
research. Table 1 shows the dataset available in
myNLP ecosystem. The first row in each dataset is
the train set and the second row is the test set. Some
datasets are not sentence-level corpus but word-
level dictionaries and described as N/A meaning
that these were not developed with sentences.

Zhttps://pypi.org/project/gensim/
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3.1 Word Segmentation corpus

Word segmentation corpus is manually checked and
segmented corpus by the native Myanmar language
speakers. Since there is no publically available
word segmentation corpus, we developed our word
segmented corpus using data collected from various
domains including social media websites and news
websites. For the further tokenization experiments,
we tagged our corpus based on the proposal of Pa
et al. (2015) in both character and syllable levels.

3.2 mySentence

mySentence is annotated using word only part of
myPOS version 3.0 and additional sentences from
the internet resources (Aung et al. (2023)). The
authors annotated word sequences in the corpus
into a tagged sequence of words. Each token within
the sentence was assigned one of the four tags: B
(Begin), O (Other), N (Next), or E (End).

3.3 myPOS version 3.0

According to Htike et al. (2017), myPOS ver-
sion 1.0 contains 11,000 sentences collected from
Wikipedia®.

myNLP supports both myPOS and Univers POS
(UPOS) Tag, which are used in the UD framework
configurations. myPOS contains 15 tag sets - abb
(Abbreviation), adj (Adjective), adv (Adverb), conj
(Conjunction), fw (Foreign word), int (Interjection),
n (Noun), num (Number), part (Particle), ppm
(Post-positional Marker), pron (Pronoun), punc
(Punctuation), sb (Symbol), tn (Text Number), and
v (Verb). UPOS Tags were defined by Petrov et al.
(2012) as NOUN (nouns), VERB (verbs), ADJ (ad-
jectives), ADV (adverbs), PRON (pronouns), DET
(determiners & articles), ADP (prepositions and
postpositions), NUM (numerals), CONJ (conjunc-
tions), PRT (particles), ‘.’ (punctuations), and X
(for other categories).

3.4 myNER version 1.0

Since there is no open-source NER corpus for
Myanmar language, we developed our own NER
corpus using 9 tag sets - "LOC: Location",
"EVENT: Event", "DATE: Date", "PER: Person",
"NUM: Number", "PRODUCT: Product", "TIME:
Time", "ORG: Organization" and "O: Qutside" us-
ing BIOES tagging scheme. It is annotated based
on myPOS ver 1.0 corpus and additional sentences

4https://my.wikipedia.org/wiki

from Wikipedia. Similar to mySentence and my-
POS, myNER also tagged in word-level.

3.5 myG2P version 2.0

myG2P version 2.0 is extened version of myG2P
version 1.0 and 1.1 dictionaries. It includes IPA
column which was not in earlier versions. The dic-
tionary dataset consists of 2,353 unique syllables,
1,928 unique IPA symbols and a total of 24,803
G2IPA pairs. The syllables were modified based
on Unicode (version 13.0). myG2P was used in
VoiceTra® (Multilingual Speech Translation Appli-
cation) project of NICT, Japan (during 2014-2015).

3.6 myParaphrase version 1.0

Htay et al. (2022) conducted a semantic similar-
ity classification for the Myanmar language and
developed the first paraphrase classification cor-
pus. Paraphrase classification corpus contains more
than 41K pair sentences with paraphrase or not bi-
nary labels. myParaphrase corpus contains 15,640
paraphrase sentences and 24,821 non-paraphrase
sentences. Therefore, it can be useful to build para-
phrase classification as well as generation systems.

3.7 myRoman version 1.0

myRoman (Zaw et al. (2020)) which stands for
Myanmar Romanization is a collection of roman-
ized names in Myanmar country. Names were col-
lected not only from the domain of Bamar ethnic,
but also from Kachin, Kayah, Kayin, Chin, Mon,
and Rakhine ethnics. The authors included every
possible syllable for the names that (e.g. Hain,
Haine, and Hein) share the same spelling Myanmar
language. The corpus is segmented into syllables
as in myG2P and contains 1,489 unique syllables
in the corpus.

3.8 myPoetry version 1.0

myPoetry is a collection of Myanmar poems for cre-
ative computational poem generation ((Thu et al.,
2023b)). The corpus is composed of 1,873 poems
from 83 books written by 393 poets. The poems
are in different styles from classical to modern and
also contain translations. Chin and Rakhine (other
ethnic languages of Myanmar) poems were also
included in this version. The authors also released
a statistical and finetuned GPT2 language models
for poetry generation.

5https://voicetra.nict.go.jp/en/index.html
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Corpus Tokens Sentences

. 5,075,674 202,448

Word Segmentation 266.673 10,656
mySentence 896,025 50,081

Y 96,632 5,512
524,408 42,196

myPOS ver 3.0 12.825 1.000
212,563 13,762

myNER ver 1.0 23.745 1530
22,324 N/A

myG2P ver 2.0 2481 N/A
591,452 40,461

myParaphrase ver 1.0 10,706 1.000
50,111 N/A

myRoman ver 1.0 5.000 N/A
myPoetry ver 1.0 100,676 46,933
myUDTree ver 1.0 564,505 43,196

. 264,636 13,133
English <+ Myanmar 17.917 1,459
myHateSpeech 413,800 20,280

Table 1: Datasets available in myNLP.

First row in each dataset is for the training dataset and
the second row for the test dataset. N/A indicates that
the datasets are token-level datasets.

3.9 myUDTree version 1.0

The myUDTree corpus (Hlaing et al. (2022a)), an
extension of prior Myanmar UD Corpus (Aye et al.
(2018)), comprises 43,196 sentences, enhancing
the Myanmar UD corpus by incorporating 11K
sentences of dependency tree data.

There are 14 Universal Part-of-Speech tags and
14 dependency relations applied such as root, acl
(clausal modifier of noun), amod (adjectival modi-
fier), advmod (adverbial modifier), case (case mark-
ing), mark (marker), compound (compound), obl
(oblique nominal), obj (object), and punct (punctu-
ation). The CoNLL-U format serves as the chosen
dependency-tree format for myUDTree corpus.

3.10 English - Myanmar Parallel corpus

San et al. (2024) developed an English-Myanmar
parallel corpus focused on the medical domain for
low-resource NLP machine translation research.
The corpus consists of more than 14 thousand sen-
tences and is segmented into syllables.

3.11 myHateSpeech

myHateSpeech is a binary classification dataset
with word-segmented sentences to classify hate
speech or not. The data were collected from so-
cial media websites such as Facebook® and labeled
manually by the native speakers.

4 Methodologies

In this section, we discuss the overview of the al-
gorithms used in myNLP library. Deep learning
framework Tensorflow (Abadi et al. (2015)) is used
to build and train deep learning models. The hyper-
parameters for each are described in Table 2.

4.1 N-grams

N-grams are fundamental in capturing the sequen-
tial nature of language and have been integrated
into various language models, classification algo-
rithms, and information retrieval systems. We ap-
plied the concept of n-grams in myNLP for word
segmentation and language classification tasks.

myWord is a tool developed by Thu (2021) and
released open-source along with the unigram and
bigram dictionaries for syllable, word, and phrase
segmentation for the Myanmar language. For word
segmentation, the author used a corpus with more
than 0.5M sentences and 12M words to generate
unigram and bigram dictionaries. The characters
from the unsegmented sentence are scored based
on the dictionaries and decoded using the Viterbi
algorithm (Viterbi (1967)) to get the most possible
combination. During scoring, the probability in
the bigram is picked if the combination is in the
bigram dictionary. If not, the probability from the
unigram dictionary will be taken.

For language classification, in other words, lan-
guage identification, we leveraged the multinomial
Naive Bayes classifier with character and syllable
n-grams as proposed in ((Vatanen et al. (2010))).

4.2 RDR Tagger

Ripple Down Rules (RDR) is an approach to build-
ing knowledge-based systems incrementally while
they are already in use. It involves the creation of
transformation rules in the form of Single Classifi-
cation Ripple Down Rules (SCRDR) based on the
concept of incremental and case-based knowledge
acquisition (Nguyen et al. (2014)).

6https ://www. facebook. com/
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Model Hyperparameters
Optimization: L-BFGS

L1 regularization: 1.0

CRF L2 regularization: le-3
Maximum Iteration: 100

Transition Features:  Enabled

Embedding Dimension: 100

Learning rate: le-3

Batch Size: 64

Bi-LSTM Hidden Units 50
Optimization: Adam

Activation:  Softmax

Epoch: 30

Embedding Dimension: 100

Minimum Count: 1

Word N-grams: 6

Fasttext Character N-grams 3-6
Learning Rate le-1

Context Window: 5

Activation:  Softmax

Embedding Dimension: 100

Learning rate: le-3

Batch Size: 512

Siamese CNN Filters 50
Hidden Bi-LSTM Units 128
Optimization: Adam

Epoch: 10

Embedding Size: 50

Dropout Rate: 0.4

Hidden Units: 100

Fast DPNN Learning Rate: le-3
Batch Size: 64

Optimization: Adam

Epoch: 30

Dropout Rate: 0.1

Batch Size: 64

528 Optimization: Adam
Parameter Sharing: False

Embedding Size: 100

Dropout Rate: 0.33

Bi-LSTM Units: 256

arc MLT size: 500

Biaffine rel MLT size: 100
Optimization: Adam

Learning Rate: 2e-3

Batch Size: 64

Epoch: 30

Table 2: Hyperparameters of myNLP models

43 CRF

CREF are a type of probabilistic graphical model
that can be used for various tasks such as sequence
tagging, including Part-of-Speech (POS) tagging,
Named Entity Recognition (NER), and token clas-
sification tasks like Grapheme-to-Phoneme (G2P)
and Grapheme-to-IPA (G2IPA) conversion. CRF
can also be used to learn several probabilistic pa-
rameters from the training data to predict word
boundaries. We can also detect sentence bound-
aries using CRF by tagging words as sentence
boundary tags. For Myanmar language word seg-
mentation, we experimented using the feature sets
defined by Pa et al. (2015). We used pyCRFuite’
software to train the CRF models on our datasets.

44 Bi-LSTM

Bi-LSTM is a sequence processing model that con-
sists of two LSTMs: one taking the input in a for-
ward direction, and the other in a backward direc-
tion. Bi-LSTMs effectively increase the amount
of information available to the network, improving
the context available to the algorithm. They are
commonly used for tasks such as token classifica-
tion, NER, and POS tagging. The Bi-LSTM model
is based on the LSTM unit and can effectively pro-
cess long-sequence data and long-term model de-
pendencies. It is well suited for tasks that require
understanding the context from both preceding and
following words, making it a suitable architecture
for various natural language processing tasks.

4.5 Siamese Neural Networks

The Siamese CNN and Siamese RNN are both
neural network structures commonly used in para-
phrase detection also known as semantic similar-
ity detection tasks. While the Siamese CNN fo-
cuses on gauging the semantic likeness of two sen-
tences, the Siamese RNN utilizes recurrent neural
network (RNN) layers for sequential data process-
ing, serving a similar purpose in paraphrase detec-
tion (Ranasinghe et al. (2019)).

4.6 Dependency Parsing models

We trained the greedy, transition-based neural
network parser called Fast and Accurate Depen-
dency Parser using Neural Networks (Fast Accu-
rate DPNN) (Chen and Manning (2014)), biaffine
(Dozat and Manning (2016)) and jPTDP (Nguyen
and Verspoor (2018)) models. While training, the

7https: //pypi.org/project/python-CRFuite/
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myUDTree corpus is split into train(70%), valida-
tion(10%) and test(20%) datasets.

The biaffine model is a graph-based dependency
parser that uses neural attention and biaffine classi-
fiers to predict arcs and labels, achieving state-of-
the-art performance on standard treebanks. jPTDP
is a neural network based joint POS tagging and
dependency parsing model. Python 2.7 and DyNet®
software were required to train the jJPTDP model.
It is also used in spaCy®, a popular language pro-
cessing library.

5 Results and Discussion

Accuracy (Acc), Precision (P), Recall (R) and F1-
Score (F1) were used to evaluate the performance
of each classification and sequence labeling model.
It is calculated as the ratio of the number of cor-
rect predictions to the total number of predictions.
Precision measures the accuracy of positive pre-
dictions. Recall measures the proportion of actual
positives that were correctly predicted. And F1-
Score is the harmonic mean of precision and recall.
The higher the scores, the better our model. Ta-
ble 3, 4, 5and 6 compares the performance of the
models using P, R, Acc and F1 scores.

To evaluate the dependency parsing models, we
use UAS (Unlabeled Attachment Score) and LAS
(Labeled Attachment Score). UAS measures the
proportion of words for which the parser correctly
assigns a head, regardless of the specific depen-
dency label. On the other hand, LAS considers
both the correct assignment of a head and the ac-
curate labeling of the dependency. Table 7 shows
the comparison of our dependency parsing models
with jPTDP conducted by Hlaing et al. (2022a).

* Tokenization: For word and sentence to-
kenization, we implemented CRF and Bi-
LSTM models. Table 3 shows the perfor-
mance of myWord presented by Thu (2021),
and Accuracy and F1-score of CRF and Bi-
LSTM models to detect word boundary tag
("I") with different tag set configurations. For
the word segmentation, myWord has accuracy
of 0.98 and F1-score of 0.88 while CRF model
gained 0.96 Acc and 0.97 F1 with 2-Tag sylla-
ble based configuration and Bi-LSTM gained
both Acc and F1 0.98 with 4-tag syllable.

» Tagging: For the tagging experiments, RDR

8https://github.com/clab/dynet
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Tagger is the best model for POS Tags (Hlaing
et al. (2022b)). For NER, although the accu-
racy is good for Bi-LSTM, other scores still
show that training data of NER is highly im-
balanced.

Token Classification: Thu et al. (2016) and
Htun et al. (2021) compare the different algo-
rithms. According to our experiments in Ta-
ble 4, performances of both G2P and G2IPA
have no significant difference. CRF models
give the best results compared with RDR Tag-
ger and Bi-LSTM models.

Text Classification: Traditional ML (SVM,
NB, and RF) and fasttext models were trained
on the myHateSpeech data for binary classifi-
cation with both syllable and word units. TF-
IDF vectorization method with n-gram range
of 1 to 3 was used to train ML models and
the hyperparameters for fasttext model are as
shown in the Table 2. We found out that sylla-
ble segmentation improved text classification
and fasttext gained the best performance of
96% accuracy with syllable tokens (Table 5)
on the test data which is 20% of the corpus.

Machine Translation: Sequence to Sequence
(S2S) model was trained on our Medical
English-Myanmar parallel corpus and gained
the BLEU score 31 with the hyperparameters
described in Table 2.

Paraphrase Classification: We trained
Siamese neural networks of CNN and Bi-
LSTM with the hyperparameters described in
Table 2. Similar to the experiments conducted
by Htay et al. (2022), both models gained
good results on the closed test set but bad re-
sults on the open dataset. RF Classifier is also
trained and we confirmed that the authors’ re-
sults gained the same value on opened test
data. The RF with the features from the Harry
tool (Rieck and Wressnegger (2016)) outper-
formed the results of CNN and Bi-LSTM as
the authors proposed. Table 6 shows the re-
sults of our paraphrase classification models.

Dependency Parsing: Although the biaffine
dependency parser we trained gained better re-
sults than the best resulted model - jJPTDP by
Hlaing et al. (2022a), unlike jPTDP, our model
still depends on the performance of POS tag-
ging. jPTDP does not need to have good
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POS Tagger since itself is the joint model
trained for both POS Tagging and dependency
parsing as well as for other columns. There-
fore, tokenized raw text is enough to use the
jPTDP. Since our RDR Tagger have the sig-
nificant good result with myPOS version 3.0
corpus, we decided to use the biaffine model
as myNLP’s dependency parser.

6 Future works

This paper introduces the myNLP library, explain-
ing its features, dataset development process, and
showcasing some of the current research and de-
velopment results achieved over a decade of ef-
fort. By 2024, we aim to implement and release an
open-source library of fundamental NLP tasks such
as word segmentation, sentence breaking, POS
tagging, NER tagging, G2P conversion, UDTree
parsing, Romanization, spelling checking, hate
speech classification, GPT-2-based language model
for poetry, and machine translation for Myanmar
languages. Additionally, ongoing work includes
speech corpus development, as well as ASR (Au-
tomatic Speech Recognition) and TTS (Text-to-
Speech) modeling for the forthcoming version. In
the near future, our plans involve extending this
library to support more ethnic languages of Myan-
mar.
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