
Under review as a conference paper at ICLR 2021

EXPRESSIVE YET TRACTABLE BAYESIAN DEEP
LEARNING VIA SUBNETWORK INFERENCE

Anonymous authors
Paper under double-blind review

ABSTRACT

The Bayesian paradigm has the potential to solve some of the core issues in mod-
ern deep learning, such as poor calibration, data inefficiency, and catastrophic
forgetting. However, scaling Bayesian inference to the high-dimensional parameter
spaces of deep neural networks requires restrictive approximations. In this paper,
we propose performing inference over only a small subset of the model parameters
while keeping all others as point estimates. This enables us to use expressive
posterior approximations that would otherwise be intractable for the full model. In
particular, we develop a practical and scalable Bayesian deep learning method that
first trains a point estimate, and then infers a full covariance Gaussian posterior
approximation over a subnetwork. We propose a subnetwork selection procedure
which aims to maximally preserve posterior uncertainty. We empirically demon-
strate the effectiveness of our approach compared to point-estimated networks and
methods that use less expressive posterior approximations over the full network.

1 INTRODUCTION

Deep neural networks (DNNs) still suffer from critical shortcomings that make them unfit for
important applications. For instance, DNNs tend to be poorly calibrated and overconfident in their
predictions, especially when there is a shift in the train and test distributions (Nguyen et al., 2015;
Guo et al., 2017). To reliably inform decision making, DNNs must be able to robustly quantify
the uncertainty in their predictions, which is particularly important in safety-critical areas such as
healthcare or autonomous driving (Amodei et al., 2016; Filos et al., 2019a; Fridman et al., 2019).

Bayesian modeling (Ghahramani, 2015; Gal, 2016) presents a principled way to capture predictive
uncertainty via the posterior distribution over model parameters. Unfortunately, due to their non-
linearities, exact posterior inference is intractable in DNNs. Despite recent successes in the field
of Bayesian deep learning (Blundell et al., 2015; Gal & Ghahramani, 2016; Osawa et al., 2019;
Maddox et al., 2019; Dusenberry et al., 2020), existing methods are only made scalable to modern
DNNs with large numbers of parameters by invoking unrealistic assumptions. This severely limits the
expressiveness of the inferred posterior and thus deteriorates the quality of the induced uncertainty
estimates (Ovadia et al., 2019; Fort et al., 2019; Foong et al., 2019a; Ashukha et al., 2020a).

Due to the heavy overparameterization of DNNs, their accuracy is well-preserved by a small sub-
network (Cheng et al., 2017). Additionally, recent work by Izmailov et al. (2019) has shown how
performing inference over a low dimensional subspace of the weights can result in accurate uncer-
tainty quantification. These observations prompt the following question for a DNN’s uncertainty:
Can a full DNN’s model uncertainty be well-preserved by a small subnetwork’s model uncertainty?
We answer this question in the affirmative. We show both theoretically and empirically that the full
network posterior can be well represented by a subnetwork’s posterior. As a result, we can use more
expensive but faithful posterior approximations over just that subnetwork. We show that this achieves
better uncertainty quantification than if we use cheaper, but more crude, posterior approximations
over the full network.

The contributions of this paper are as follows:

1. We propose a new Bayesian deep learning approach that performs Bayesian inference over
only a small subset of the model weights and keeps all other weights deterministic. This
allows us to use expressive posterior approximations that are typically intractable in DNNs.

1

Under review as a conference paper at ICLR 2021

x1 x2

h2h1 h3

y

0.50.5

0.30.3 0.90.90.10.1 0.30.3

0.50.5

0.70.7
0.50.5

0.10.1

(a) Point Estimation

x1 x2

h2h1 h3

y

0.50.5

0.30.3 0.90.90.10.1 0.30.3

0.50.5

0.70.7
0.50.5

0.10.1

(b) Subnetwork Selection

x1 x2

h2h1 h3

y

0.50.5
0.10.1 0.30.3

0.70.7

(c) Bayesian Inference

x1 x2

h2h1 h3

y

0.50.5
0.10.1 0.30.3

0.70.7

(d) Prediction

Figure 1: Schematic illustration of our proposed approach. (a) We train a neural network using
standard techniques to obtain a point estimate of the weights. (b) We identify a small subset of the
weights. (c) We estimate a posterior distribution over the selected subnetwork via Bayesian inference
techniques. (d) We make predictions using the full network of mixed Bayesian/deterministic weights.

2. As a concrete instantiation of this framework, we develop a practical and scalable Bayesian
deep learning method that uses the linearized Laplace approximation to infer a full-
covariance Gaussian posterior over a subnetwork within a point-estimated neural network.

3. We formally characterize the discrepancy between the posterior distributions over a subnet-
work and the full network (in terms of their Wasserstein distance) in the linearized model,
and derive a theoretically motivated strategy to select a subnetwork that minimizes this
discrepancy under certain assumptions.

4. We empirically show, on various benchmarks, that our method compares favourably against
point-estimated networks and other Bayesian deep learning methods, experimentally confirm-
ing that expressive subnetwork inference is superior to crude inference over full networks.

2 SUBNETWORK POSTERIOR APPROXIMATION

Bayesian neural networks (BNNs) aim to capture model uncertainty, i.e., uncertainty about the choice
of weightsW which arises due to multiple plausible explanations of the training data {y,X}. Here,
y is the dependent variable (e.g. classification label) andX is the feature matrix. A prior distribution
p(W) is specified over the BNN’s weights. We wish to infer their full posterior distribution

p(W|y,X) ∝ p(y|X,W) p(W) . (1)

To make predictions, we then estimate the posterior predictive distribution that averages the network’s
predictions across all possible settings of the weights, weighted by their posterior probability, i.e.

p(y∗|X∗,y,X) =

∫
W

p(y∗|X∗,W)p(W|y,X)dW . (2)

Unfortunately, due to the size of modern deep neural networks, it is not only intractable to infer
the exact posterior distribution p(W|y,X) in Eq. (1), but it is even computationally challenging
to properly approximate it. As a consequence, crude posterior approximations such as complete
factorization are commonly employed (Blundell et al., 2015; Hernández-Lobato & Adams, 2015;
Kingma et al., 2015; Khan et al., 2018; Osawa et al., 2019), i.e. p(W|y,X) ≈∏D

d=1 q(wd) where
wd denotes the d-th weight in the D-dimensional neural network weight vector W ∈ RD (the
concatenation and flattening of all layers’ weight matrices). Clearly, this is a very wishful assumption;
In practise, it suffers from severe pathologies (Foong et al., 2019a;b).

In this work, we question the implicit assumption that a good posterior approximation needs to
include all BNN parameters. Instead, we aim to perform inference only over a small subset of the
weights. This approach is well-motivated for two reasons:

1. Overparameterization: Maddox et al. (2020) have shown that, in the neighborhood of local
optima, there are many directions that leave the NN’s predictions unchanged. Moreover,
NNs can be heavily pruned without sacrificing test-set accuracy (Frankle & Carbin, 2019).
Thus, the majority of a NN’s predictive power might be isolated to a small subnetwork.

2

Under review as a conference paper at ICLR 2021

2. Inference over submodels: Previous work1 has provided evidence that inference can be
effective even when not done on the full parameter space. Izmailov et al. (2019) performed
inference over a low-dimensional projection of the weights. Neural-linear models, which
give a Bayesian treatment to only the last layer of a DNN, have shown to be competitive
with full-network approaches (Riquelme et al., 2018; Ober & Rasmussen, 2019).

We thus combine these ideas, making the following two-step approximation of the posterior in Eq. (1):

p(W|y,X) ≈ p(WS |y,X)
∏
r

δ(wr − w∗r) ≈ q(WS)
∏
r

δ(wr − w∗r) . (3)

The first approximation decomposes the full neural network posterior p(W|y,X) into a posterior
p(WS |y,X) over the subnetwork WS and delta functions δ(wr − w∗r) over all remaining weights
{wr}r, keeping them at fixed values w∗r ∈ R. This can be viewed as pruning the variances of the
weights {wr}r to zero, which is in contrast to ordinary weight pruning methods that set the weights
{wr}r themselves to zero. The second approximation is a result of posterior inference over the
subnetwork still being intractable. In turn, we introduce the approximate distribution q(WS). Yet, as
the subnetwork is much smaller than the full network, we can afford to make q(WS) expressive and
able to capture rich dependencies across the weights within the subnetwork.

3 SUBNETWORK INFERENCE VIA LAPLACE APPROXIMATION

To obtain a method that is as practical as possible, we propose to use inference techniques that can
estimate a posterior distribution post-hoc from a point-estimated network. The Laplace approximation
(MacKay, 1992) is well-suited to this task as it derives the approximate posterior from the local
optimization landscape. Other inference procedures, such as SWAG (Maddox et al., 2019), could also
be used. Nevertheless, we focus on Laplace due to it being a well-studied, fundamental technique.

Step #1: Point Estimation. The first step of the procedure is to train a neural network to obtain a
point estimate of the weights, denoted WMAP . This estimate should respect the Bayesian model
given in Eq. (1), and therefore we optimize the maximum a-posteriori (MAP) objective:

WMAP = argmaxW [log p(y|X,W) + log p(W)] . (4)

This can be done using standard stochastic gradient-based optimization methods commonly-used in
modern deep learning (Goodfellow et al., 2016). This step is illustrated in Fig. 1 (a).

Step #2: Subnetwork Selection. The second step is to identify a small subnetworkWS . Ideally,
we would like to identify the subnetwork whose posterior is ‘closest’ to the full-network posterior. We
formalize this argument in Section 4 and describe a principled strategy that, under certain conditions,
minimizes the 2-Wasserstein distance between the sub- and full-network posteriors. All other weights
not belonging to that subnetwork are then assigned fixed values: the MAP estimates obtained in Step
#1. See Fig. 1 (b) for an illustration of this step.

Step #3: Bayesian Inference. Given the subnetwork point estimateW S
MAP , we use the Laplace

approximation to infer a full-covariance Gaussian posterior distribution over the subnetwork WS :

p(WS |y,X) ≈ q(WS) = N
(
WS ;W

S
MAP , H

−1) (5)

where the posterior covariance matrix H−1 ∈ RD×D corresponds to the inverse of the average
Hessian of the negative log posterior, i.e. H = NE

[
−∂2 log p(y|X,W)/∂W 2

]
+ λI . Here, the

expectation is w.r.t. the data generating distribution and λ is the precision of a zero-mean factorized
Gaussian prior p(W) = N (W;0, λ−1I). In practice, we approximate the Hessian H with the
generalized Gauss-Newton (GGN) matrix H̃ (Schraudolph, 2002), i.e.

H̃ =

N∑
n=1

J>n HnJn + λI, with Jn =
∂f(xn,W)

∂W
and Hn =

∂2L(yn,f(xn,W))

∂2f(xn,W)
(6)

1See Section 6 for a more thorough discussion of related work.

3

Under review as a conference paper at ICLR 2021

where Jn ∈ RO×D is the Jacobian of the neural network features f(xn,W) ∈ RO w.r.t. the weights
W , andHn ∈ RO×O is the Hessian of the loss L(yn,f(xn,W)) w.r.t. the features f(xn,W).The
GGN H̃ has clear practical advantages over the Hessian H; see Martens & Sutskever (2011) and
Martens (2016). Using the Laplace approximation with the GGN Hessian can be viewed as an
implicit local linearization of the underlying neural network f(x,W) at its MAP estimateWMAP ,

fMAP
lin (x,W) = f(x,WMAP) + JWMAP

(x)(W −WMAP) (7)

where JWMAP
(x) = ∂f(x,WMAP)/∂WMAP ∈ RO×D (Immer et al., 2020). Note that the model

in Eq. (7) is linear in W , as only the term JWMAP
(x)W depends linearly onW , while the other

terms are constant w.r.t.W and can thus be subsumed into an additive bias term (Khan et al., 2019).
The GGN approximation thus locally turns the underlying probabilistic model from a Bayesian neural
network into a (generalized) linear model, with basis function expansion JWMAP

(x) of covariate x
(Immer et al., 2020). Put differently, linearized Laplace in the neural network f(x,W) is equivalent
to ordinary Laplace in the linear model fMAP

lin (x,W) in Eq. (7), as the GGN H̃ corresponding to
f(x,W) in Eq. (6) is equivalent to the Hessian H corresponding to fMAP

lin (x,W) in Eq. (7) (Khan
et al., 2019). This is a useful property that will allow us to derive a principled subnetwork selection
strategy in Section 4. This step is illustrated in Fig. 1 (c). We emphasize that this whole procedure
(i.e. Steps #1-#3) is a perfectly valid mixed inference strategy, performing full Laplace inference over
the selected subnetwork and MAP inference over all remaining weights.

Step #4: Prediction. Given the linearized Laplace approximation over the subnetwork WS in
Eqs. (5) and (6), i.e. q(WS) = N (WS ;W

S
MAP , H̃

−1), we can then compute the posterior predictive
distribution. While, traditionally, one would compute the predictive distribution using the original
Bayesian neural network likelihood, i.e. p(y|X,W) = p(y|f(x,W)), Immer et al. (2020) recently
suggested that, since inference was (implicitly) done in the GGN-linearized model, it is more princi-
pled to instead predict using the linearized likelihood Eq. (7), i.e. p(y|X,W) = p(y|fMAP

lin (x,W)).
This provides a formal justification for the empirical superiority of this approach observed previously
(Lawrence, 2001; Foong et al., 2019b). We thus obtain the linearized predictive distribution

p(y∗|X∗,y,X) ≈
∫
W

p(y∗|fMAP
lin (X∗,W))N (WS ;W

S
MAP , H̃

−1)
∏
r

δ(wr−w∗r) dW . (8)

There are two ways to compute Eq. (8): Firstly, via a Monte Carlo approximation p(y∗|X∗,y,X) '
1
M

∑M
m=1 p(y

∗|fMAP
lin (X∗, W̃m)) by sampling W̃m from N (W S

MAP , H̃
−1) and

∏
r δ(wr − w∗r),

the latter of which is trivial. Secondly, due to linearity of p(y∗|fMAP
lin (X∗,W)), there are closed-

form expressions which are exact for Gaussian likelihoods (i.e. regression) and approximate for
categorical ones (i.e. classification) (Bishop, 2006; Gibbs, 1998). This step is illustrated in Fig. 1 (d).

4 PRINCIPLED SUBNETWORK SELECTION FOR LINEAR(IZED) MODELS

We next analyze the subnetwork inference procedure described in Section 3 for the case of a
generalized linear model (GLM) (Nelder & Baker, 1972), which models the expected response yn
given the basis function expansion of the covariates φn = φ(xn) as

E[yn|φn] = g−1(wTφn). (9)

Here, w ∈ RD is the vector of model parameters (which subsumes a scalar bias β0 for notational
convenience) and g−1(·) denotes a link function such that g−1 : R 7→ µy|φ. In particular, we consider
a Bayesian GLM, by specifying a prior distribution p(w) over model parameters and aiming to infer
the posterior distribution p(w|y,Φ) ∝ p(y|Φ,w)p(w), where Φ = [φ1, ...φN]T .

1. Point Estimation. Obtain the MAP estimate, wMAP = argmaxw log p(y|Φ,w) + log p(w).
For commonly-used link functions (e.g. the identity in case of a Gaussian likelihood for re-
gression, or the sigmoid/softmax function in case of a categorical likelihood for classification)
and commonly-used priors (e.g. a Gaussian), the log-posterior ∝ log p(y|Φ,w) + log p(w) is
concave. This allows for simple gradient-based MAP optimisation. It also makes a full-covariance
Gaussian, estimated via Laplace, a faithful approximation to the true, uni-modal posterior, i.e.

p(w|y,Φ) ≈ p̃(w|y,Φ) = N (w;wMAP , H
−1) (10)

4

Under review as a conference paper at ICLR 2021

where H is the Hessian defined in Section 3. Note that for the GLM we consider, the Hessian H
is equivalent to the GGN H̃ defined in Eq. (6), meaning that an ordinary Laplace approximation is
equivalent to a linearized Laplace approximation (Martens, 2016). For the case of an identity link
function (i.e. a Gaussian likelihood with noise variance σ2

0) and a Gaussian prior w ∼ N (0,Λ−10),
the MAP estimate even has a closed-form expression, wMAP = (ΦTΦ + σ2

0Λ0)
−1ΦTy. Here,

the Laplace approximation in Eq. (10) exactly corresponds to the true posterior, i.e. p̃(w|y,Φ) =
p(w|y,Φ). We will thus refer to the posterior p̃(w|y,Φ) in Eq. (10) as the full posterior.

2. Subnetwork Selection. Select a subset of S model weights via a method of choice, yielding
a binary vector m ∈ RD where md = 1 if the d-th weight is part of the subset, and md = 0
otherwise. For convenience, we define the binary mask matrix MS =mm> ∈ RD×D which
contains 1s in the rows/columns corresponding to the S subnetwork weights2, and 0s otherwise.

3. Bayesian Inference. Compute the posterior over the subnetwork via a Laplace approximation:
pS(w|y,Φ) = N (w;wMAP ,MS �H−1) . (11)

Firstly, note that the mean of the subnetwork posterior in Eq. (11) is the MAP estimate wMAP

and thus equal to the mean of the full posterior p̃(w|y,Φ) in Eq. (10). Secondly, note that the
covariance matrix of the subnetwork posterior in Eq. (11) is the element-wise productMS�H−1,
which masks the (co-)variances of all weights not belonging to the subnetwork to zero, effectively
making them deterministic. More precisely, the subnetwork covariance matrix,MS �H−1, is a
D ×D matrix that is equal to the full posterior covariance matrix H−1 in the rows/columns of
the S weights in the subnetwork, and zero in the rows/columns of all other D − S weights.

We consider what we term the posterior gap—the Wasserstein distance3 (in particular the squared
2-Wasserstein distance) between the posterior distribution over the full network and the posterior
distribution over the subnetwork. The proofs for all results below will be presented in Appendix A.
Proposition 1 (Posterior Gap). For a subnetwork of size S < D, the Wasserstein gap between the
full posterior p̃(w|y,Φ) in Eq. (10) and the subnetwork posterior pS(w|y,Φ) in Eq. (11) is:

W [p̃(w|y,Φ) || pS(w|y,Φ)] =
∑D

d=1 (1 +mdd)σ
2
d − trace(2(H−1(MS �H−1))1/2) . (12)

The optimal subnetwork should then minimize the posterior gap in Eq. (12). However, for full
covariance matrices H−1 and a large number of weights D, this will generally be infeasible as
Eq. (12) depends on all entries of the D ×D-matrix H−1, which is intractable to compute/store. To
derive a practical subnetwork selection strategy, we assume the covariance matrix to be diagonal.
Corollary 1.1 (Optimality of Maximum Variance Subnetwork Selection under Decorrelation). For a
generalized linear model with posterior covariance matrix H−1 = diag(σ2

1 , . . . , σ
2
D), the optimal

subnetwork under the Wasserstein gap is comprised of the S weights with the largest variances σ2
d.

Finally, since a GGN-linearized neural network, as in Eq. (7), corresponds to a GLM with basis ex-
pansion φn = JWMAP

(xn) = ∂f(xn,WMAP)/∂WMAP (see Step #3 in Section 3), Corollary 1.1
implies that under decorrelation, the optimal subnetwork comprises of the weights with the largest
variances. In practice, even just computing the diagonal of the covariance matrix is challenging, so we
use a diagonal Laplace approximation which instead computes the inverse of the diagonal of the GGN
(see e.g. Ritter et al. (2018)). Finally, note that we only have to make the decorrelation assumption for
the purposes of subnetwork selection – when doing posterior inference over the selected subnetwork,
we estimate a full covariance matrix for maximal expressiveness, as described in Step #3 in Section 3.
In our experiments in Section 5, we empirically show that making the decorrelation assumption for
subnetwork selection but then using a full-covariance Gaussian for inference performs significantly
better than directly making the decorrelation assumption for inference (e.g. mean-field variational
inference, diagonal Laplace).

5 EMPIRICAL ANALYSIS

We empirically assess the effectiveness of subnetwork inference compared to point-estimated NNs
and methods that do less expressive inference over the full network. We consider three tasks: 1)
small-scale toy regression, 2) medium-scale tabular regression, and 3) large-scale image classification.

2For consistency, we will keep referring to the S selected linear model weights as a ”subnetwork”.
3We use the Wasserstein distance instead of the more common Kullback–Leibler divergence because the

Wasserstein is well-defined for degenerate distributions and is an actual distance metric (i.e. symmetric).

5

Under review as a conference paper at ICLR 2021

−2

0

2

Full Cov (2600) Wass 50% (1300) Wass 3% (78) Wass 1% (26) MAP (0)

−2 0 2

−2

0

2

Diag (2600)

−2 0 2

Rand 50% (1300)

−2 0 2

Rand 3% (78)

−2 0 2

Rand 1% (26)

−2 0 2

Final layer (50)

Figure 2: Predictive distributions (mean ± std) for 1D regression. The numbers in brackets denote
the number of parameters over which inference was done (out of 2600 in total). Wasserstein-based
subnetwork inference maintains richer predictive uncertainties at smaller parameter counts.

5.1 HOW DOES SUBNETWORK INFERENCE RETAIN POSTERIOR PREDICTIVE UNCERTAINTY?

We first assess how the predictive distribution of a full-covariance Gaussian posterior over a selected
subnetwork qualitatively compares to that obtained from 1) a full-covariance Gaussian over the
full network (Full Cov), 2) a factorised Gaussian posterior over the full network (Diag), 3) a full-
covariance Gaussian over only the (Final layer) of the network (Kristiadi et al., 2020), and 4) a point
estimate (MAP). For subnetwork inference, we consider both Wasserstein (Wass) (as described in
Section 4) and uniform random subnetwork selection (Rand) to obtain subnetworks that comprise
of only 50%, 3% and 1% of the model parameters. Note that while for this toy example, we could
in principle use the full covariance matrix for the purpose of subnetwork selection, we still just use
its diagonal (as described in Section 4) for consistency. Our NN consists of 2 ReLU hidden layers
with 50 hidden units each. We employ a homoscedastic Gaussian likelihood function where the
noise variance is optimised with maximum likelihood. We use GGN Laplace inference over network
weights (not biases) in combination with the linearized predictive distribution in Eq. (8). Thus, all
approaches considered share their predictive mean, allowing us to better compare their uncertainty
estimates. All approaches share a single prior precision of λ = 3.

We use a synthetic 1D regression task with two separated clusters of inputs (Antorán et al., 2020),
allowing us to probe for ‘in-between’ uncertainty (Foong et al., 2019b). Results are shown in Fig. 2.
Subnetwork inference preserves more of the uncertainty of full network inference than diagonal
Gaussian or final layer inference while doing inference over fewer weights. By capturing weight
correlations, subnetwork inference retains uncertainty in between clusters of data. This is true for both
random and Wasserstein subnetwork selection. However, the latter preserves more uncertainty with
smaller subnetworks. Finally, the strong superiority to diagonal Laplace shows that making a diagonal
assumption for subnetwork selection but then using a full-covariance Gaussian for inference (as we
do) performs much signficantly better than making a diagonal assumption for the inferered posterior
directly. These results suggest that expressive inference over a carefully selected subnetwork
retains more predictive uncertainty than crude approximations over the full network.

5.2 SUBNETWORK INFERENCE IN LARGE MODELS VS FULL INFERENCE OVER SMALL MODELS

Secondly, we study the following natural question: “Why should one use subnetwork inference in a
large model when one can just perform full network inference over a smaller model?” We explore
this by considering 4 fully connected models of increasing size. These have numbers of hidden
layers hd={1, 2} and hidden layer widths wd={50, 100}. For a dataset with input dimension id,
the number of weights is given by D=(id+1)wd+(hd−1)w2

d. Our 2 hidden layer, 100 hidden unit
models have a weight count of the order 104. Full covariance inference in these models borders the
limit of computational tractability on commercial hardware. We first obtain a MAP estimate of each

6

Under review as a conference paper at ICLR 2021

model’s weights and our homoscedastic likelihood function’s noise variance. We then perform full
network GGN Laplace inference for each model. We also use our proposed Wassertein rule to prune
every network’s weight variances such that the number of variances that remain matches the size
of every smaller network under consideration. In all cases, we employ the linearized predictive in
Eq. (7). Consequently, networks with the same number of weights make the same mean predictions.
Increasing the number of weight variances considered will thus only increase predictive uncertainty.

0 600 1200 3100 11200

posterior dim

−0.995

−0.990

−0.985

−0.980

−0.975

−0.970

−0.965

LL

wine

0 600 1200 3100 11200

posterior dim

−0.995

−0.990

−0.985

−0.980

−0.975

wine-gap

0 450 900 2950 10900

posterior dim

0.8

0.9

1.0

1.1

kin8nm

0 450 900 2950 10900

posterior dim

0.7

0.8

0.9

1.0

kin8nm-gap

0 500 1000 3000 11000

posterior dim

−2.950

−2.925

−2.900

−2.875

−2.850

−2.825

−2.800

protein

0 500 1000 3000 11000

posterior dim

−3.175

−3.150

−3.125

−3.100

−3.075

−3.050

protein-gap

wi :50, hi :1 wi :100, hi :1 wi :50, hi :2 wi :100, hi :2

Figure 3: Mean test log-likelihood values obtained on UCI datasets across all splits. Different
markers indicate models with different numbers of weights. The horizontal axis indicates the number
of weights over which full covariance inference is performed. 0 corresponds to MAP parameter
estimation, and the rightmost setting for each marker corresponds to full network inference.

We employ 3 tabular datasets of increasing size (input dimensionality, n. points): wine (11, 1439),
kin8nm (8, 7373) and protein (9, 41157). We consider their standard train-test splits (Hernández-
Lobato & Adams, 2015) and their gap variants (Foong et al., 2019b), designed to test for out-of-
distribution uncertainty. Details are provided in Appendix C.4. For each split, we set aside 15% of
the train data as a validation set. We use these for early stopping when finding MAP estimates and
for selecting the weights’ prior precision. We keep other hyperparameters fixed across all models and
datasets. Results are in Fig. 3.

We present mean test log-likelihood (LL) values, as these take into account both accuracy and
uncertainty. Larger models tend to perform better when doing MAP inference, with wine-gap and
protein-gap being exceptions. We also find larger models improve over their respective MAP LLs
more than small ones when performing approximate inference over the same numbers of weights.
We conjecture this is due to an abundance of degenerate directions (weights) in the weight posterior
of all models (Maddox et al., 2020). Full network inference in small models captures information
about both useful and non-useful weights. In larger models, our subnetwork selection strategy allows
us to dedicate a larger proportion of our resources to modelling informative weight variances and
covariances. In 3 out of 6 datasets, we find abrupt increases in LL as we increase the number of
weights over which we perform inference, followed by a plateau. Such plateaus might be explained
by all of the most informative weight variances having already been accounted for. These results
suggest that, given the same amount of compute, larger models benefit more from subnetwork
inference than small ones.

5.3 SCALING TO IMAGE CLASSIFICATION WITH DISTRIBUTION SHIFT

We now assess the robustness of large convolutional neural networks with subnetwork inference to
distribution shift on image classification tasks compared to the following baselines: point-estimated
networks (MAP), Bayesian deep learning methods that do less expressive inference over the full
network: MC Dropout (Gal & Ghahramani, 2016), diagonal Laplace, VOGN (Osawa et al., 2019)
(all of which assume factorisation of the weight posterior), and SWAG (Maddox et al., 2019) (which
assumes a diagonal plus low-rank posterior). We also benchmark deep ensembles (Lakshminarayanan
et al., 2017). The latter is considered state-of-the-art for uncertainty quantification in deep learning
(Ovadia et al., 2019; Ashukha et al., 2020a). We use ensembles of 5 DNNs, as suggested by
(Ovadia et al., 2019), and 16 samples for MC Dropout, diagonal Laplace and SWAG. We use a
Dropout probability of 0.1 and a prior precision of λ = 40, 000 for diagonal Laplace, found via grid
search. We apply all approaches to ResNet-18 (He et al., 2016), which is composed of an input
convolutional block, 8 residual blocks and a linear layer, for a total of 11,168,000 parameters. For
subnetwork inference, we compute the linearized predictive distribution in Eq. (8) via the closed-form

7

Under review as a conference paper at ICLR 2021

0.00

0.25

0.50

0.75

er
ro

r

Rotated MNIST

Ours
Diag-Lap
Dropout
Ours (Rand)

Ensemble
MAP
SWAG
VOGN

0.2

0.4

Corrupted CIFAR10

0 30 60 90 120 150 180

rotation (◦)

−7.5

−5.0

−2.5

0.0

LL

0 1 2 3 4 5

corruption

−3

−2

−1

Figure 4: Results on the rotated MNIST (left) and the corrupted CIFAR (right) benchmarks of
Ovadia et al. (2019), showing the mean ± std of the error (top) and log-likelihood (bottom) across
three different seeds. Subnetwork inference retains better uncertainty calibration and robustness to
distribution shift than point estimated networks and other Bayesian deep learning approaches.

approximation for integrals between Gaussians and multi-class cross-entropy likelihoods described
in (Gibbs, 1998). We use Wasserstein subnetwork selection to retain only 0.38% of the weights,
yielding a subnetwork with only 42,438 weights. This is the largest subnetwork for which we can
tractably compute a full covariance matrix. Its size is 42, 4382 × 4 Bytes ≈ 7.2 GB. We use a prior
precision of λ = 500, found via grid search. Finally, to assess to importance of principled subnetwork
selection, we also consider the baseline where we select the subnetwork uniformly at random (called
Ours (Rand)). We perform the following two experiments, with results in Fig. 4. See Appendix B for
additional results.

Rotated MNIST: Following Ovadia et al. (2019); Antorán et al. (2020), we train all methods on
MNIST and evaluate their predictive distributions on increasingly rotated digits. While all methods
perform well on the original MNIST test set, their accuracy degrades quickly for rotations larger
than 30 degrees. In terms of LL, ensembles perform best out of our baselines. Subnetwork inference
obtains significantly larger LL values than almost all baselines, including ensembles. The only
exception is VOGN, which achieves slightly better performance. It was also observed in Ovadia et al.
(2019) that mean-field variational inference (which VOGN also is an instance of) is very strong on
MNIST, but its performance deteriorates on larger datasets. Subnetwork inference makes accurate
predictions in-distribution while assigning higher uncertainty than the baselines to out-of-distribution
points. Corrupted CIFAR: Again following Ovadia et al. (2019); Antorán et al. (2020), we train
on CIFAR10 and evaluate on data subject to 16 different corruptions with 5 levels of intensity each
(Hendrycks & Dietterich, 2019). Our approach matches a MAP estimated network in terms of
predictive error as local linearization makes their predictions the same. Ensembles and SWAG are the
most accurate. Even so, subnetwork inference differentiates itself by being the least overconfident,
outperforming all baselines in terms of log-likelihood at all corruption levels. Here, VOGN performs
rather badly; while this might appear in stark contrast to its strong performance on the MNIST
benchmark, the behaviour that mean-field VI performs well on MNIST but not on larger datasets was
also observed in Ovadia et al. (2019).

On both benchmarks, we furthermore find that randomly selecting the subnetwork performs sub-
stantially worse than using our more principled subnetwork selection strategy. This highlights the
importance of the way subnetworks are selected. These results suggest that subnetwork inference
results in better uncertainty calibration and robustness to distribution shift than other popular
uncertainty quantification approaches.

6 RELATED WORK

Bayesian Deep Learning. There have significant efforts to characterise the posterior distribution
over NN weights p(W |D). Hamiltonian Monte Carlo (Neal, 1995) remains the golden standard

8

Under review as a conference paper at ICLR 2021

for approximate inference in BNNs to this day. Although asymptotically unbiased, sampling based
approaches are difficult to scale to the large datasets (Betancourt, 2015). As a result, approaches
which find the best surrogate posterior among an approximating family (most often Gaussians)
have gained popularity. The first of these was the Laplace approximation, introduced by MacKay
(1992), who also proposed approximating the predictive posterior with that of the linearised model
(Khan et al., 2019; Immer et al., 2020). The popularisation of larger NN models has made surrogate
distributions that capture correlations between weights computationally intractable. Thus, most
modern methods make use of the mean field assumption (Blundell et al., 2015; Hernández-Lobato &
Adams, 2015; Gal & Ghahramani, 2016; Mishkin et al., 2018; Osawa et al., 2019). This comes at the
cost of limited expressivity (Foong et al., 2019a) and empirical under-performance (Ovadia et al.,
2019; Antorán et al., 2020) of uncertainty estimates. Our proposed approach recovers predictive
posterior expressivity while maintaining tractability by lowering the dimensionality of the weight
space considered. This allows us to scale up approximations that do consider weight correlations
(MacKay, 1992; Louizos & Welling, 2016; Maddox et al., 2019; Ritter et al., 2018).

Neural Network Linearization. In the limit of infinite width, NNs converge to Gaussian process
(GP) behaviour (Neal, 1995; Matthews, 2017; Garriga-Alonso et al., 2018). Recently, these results
have been extended to finite width BNNs when the surrogate posterior is Gaussian (Khan et al., 2019).
We draw upon these results to formulate a subnetwork selection strategy for BNNs. Neural linear
methods perform inference over only the last layer of a NN, while keeping all other layers fixed
(Snoek et al., 2015; Riquelme et al., 2018; Ovadia et al., 2019; Ober & Rasmussen, 2019; Pinsler
et al., 2019; Kristiadi et al., 2020). These represent a different generalised linear model in which the
basis functions are defined by the l−1 first layers of a NN. They can also be viewed as a special case
of subnetwork inference, in which the subnetwork is simply defined to be the last NN layer.

Inference over Subspaces. The subfield of NN pruning aims to increase the computational efficiency
of NNs by identifying the smallest subset of weights which are required to make accurate predictions.
Approaches trade-off computational cost with compression efficiency, ranging from those that require
multiple training runs (Frankle & Carbin, 2019) to those that prune before training (Wang et al., 2020).
Our work differs in that it retains all NN weights but aims to find a small subset over which to perform
probabilistic reasoning. More closely related work to ours is that of Izmailov et al. (2019), who
propose to perform inference over a low-dimensional subspace of weights; e.g. one constructed from
the principal components of the SGD trajectory. Moreover, several recent approaches use low-rank
parameterizations of approximate posteriors in the context of variational inference (Rossi et al., 2019;
Swiatkowski et al., 2020; Dusenberry et al., 2020). This could also be viewed as doing inference
over an implicit subspace of weight space. In contrast, we propose a technique to find subsets of
weights which are relevant to predictive uncertainty, i.e., we identify axis aligned subspaces. Finally,
there have been recent works studying neural network sparsity / pruning from a Bayesian perspective
(Ghosh & Doshi-Velez, 2017; Polson & Ročková, 2018; Cui et al., 2020; Louizos et al., 2017;
Molchanov et al., 2017; Gomez et al., 2019; Lee et al., 2018). While these seem conceptually related
at first glance, their goal is fundamentally different to ours: While those methods aim to perform
model selection / sparsification by either explicitly or implicitly pruning unnecessary weights, our
goal is to make inference more tractable. More precisely, while those sparse Bayesian deep learning
methods prune individual weights, we instead just prune the variances of certain weights, which,
importantly retains the full predictive power of the full network to retain high predictive accuracy.

7 CONCLUSION

In this paper, we develop a practical and scalable method for expressive yet tractable probabilistic
inference in deep neural networks. We approximate the posterior over a subset of the weights while
keeping all other weights deterministic. Computational cost is decoupled from network size, allowing
us to scale expressive approximations, such as full-covariance Gaussian distributions, to real-world
sized NNs. Our approach can be applied post-hoc to any pre-trained model, making it particularly
attractive for practical use. Our empirical analysis suggests that subnetwork inference 1) is more
expressive and retains more uncertainty than crude approximations over the full network, 2) allows
us to employ larger NNs, which fit a broader range of functions, without sacrificing the quality of our
uncertainty estimates, and 3) is competitive with state-of-the-art uncertainty quantification methods,
like deep ensembles (Lakshminarayanan et al., 2017), on real-world scale problems.

9

Under review as a conference paper at ICLR 2021

REFERENCES

Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and Dan Mané.
Concrete problems in ai safety. arXiv preprint arXiv:1606.06565, 2016.

Javier Antorán, James Urquhart Allingham, and José Miguel Hernández-Lobato. Depth uncertainty
in neural networks, 2020.

Arsenii Ashukha, Alexander Lyzhov, Dmitry Molchanov, and Dmitry Vetrov. Pitfalls of in-domain
uncertainty estimation and ensembling in deep learning. In ICLR, 2020a.

Arsenii Ashukha, Alexander Lyzhov, Dmitry Molchanov, and Dmitry P. Vetrov. Pitfalls of in-domain
uncertainty estimation and ensembling in deep learning. In 8th International Conference on
Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net,
2020b.

Michael Betancourt. The fundamental incompatibility of scalable hamiltonian monte carlo and
naive data subsampling. volume 37 of Proceedings of Machine Learning Research, pp. 533–540,
Lille, France, 07–09 Jul 2015. PMLR. URL http://proceedings.mlr.press/v37/
betancourt15.html.

Christopher M Bishop. Pattern recognition and machine learning. springer, 2006.

Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight Uncertainty in
Neural Networks. In Proceedings of The 32nd International Conference on Machine Learning
(ICML), pp. 1613–1622, 2015.

Yu Cheng, Duo Wang, Pan Zhou, and Tao Zhang. A survey of model compression and acceleration
for deep neural networks. arXiv preprint arXiv:1710.09282, 2017.

Tianyu Cui, Aki Havulinna, Pekka Marttinen, and Samuel Kaski. Informative gaussian scale mixture
priors for bayesian neural networks. arXiv preprint arXiv:2002.10243, 2020.

Dheeru Dua and Casey Graff. UCI machine learning repository, 2017. URL http://archive.
ics.uci.edu/ml.

Michael W Dusenberry, Ghassen Jerfel, Yeming Wen, Yi-an Ma, Jasper Snoek, Katherine Heller,
Balaji Lakshminarayanan, and Dustin Tran. Efficient and scalable bayesian neural nets with rank-1
factors. arXiv preprint arXiv:2005.07186, 2020.

Angelos Filos, Sebastian Farquhar, Aidan N. Gomez, Tim G. J. Rudner, Zachary Kenton, Lewis
Smith, Milad Alizadeh, Arnoud de Kroon, and Yarin Gal. Benchmarking bayesian deep learning
with diabetic retinopathy diagnosis. https://github.com/OATML/bdl-benchmarks,
2019a.

Angelos Filos, Sebastian Farquhar, Aidan N Gomez, Tim GJ Rudner, Zachary Kenton, Lewis Smith,
Milad Alizadeh, Arnoud de Kroon, and Yarin Gal. Benchmarking bayesian deep learning with
diabetic retinopathy diagnosis. Preprint, 2019b.

Andrew YK Foong, David R Burt, Yingzhen Li, and Richard E Turner. On the expressiveness of
approximate inference in bayesian neural networks. arXiv, pp. arXiv–1909, 2019a.

Andrew YK Foong, Yingzhen Li, José Miguel Hernández-Lobato, and Richard E Turner. In-between
uncertainty in bayesian neural networks. ICML Workshop on Uncertainty and Robustness in Deep
Learning, 2019b.

Stanislav Fort, Huiyi Hu, and Balaji Lakshminarayanan. Deep ensembles: A loss landscape perspec-
tive. arXiv preprint arXiv:1912.02757, 2019.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. In International Conference on Learning Representations, 2019.

Lex Fridman, Li Ding, Benedikt Jenik, and Bryan Reimer. Arguing machines: Human supervision of
black box ai systems that make life-critical decisions. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition Workshops, pp. 0–0, 2019.

10

http://proceedings.mlr.press/v37/betancourt15.html
http://proceedings.mlr.press/v37/betancourt15.html
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://github.com/OATML/bdl-benchmarks

Under review as a conference paper at ICLR 2021

Yarin Gal. Uncertainty in deep learning. University of Cambridge, 1:3, 2016.

Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model
uncertainty in deep learning. In international conference on machine learning, pp. 1050–1059,
2016.

Adrià Garriga-Alonso, Carl Edward Rasmussen, and Laurence Aitchison. Deep convolutional
networks as shallow gaussian processes. In International Conference on Learning Representations,
2018.

Zoubin Ghahramani. Probabilistic machine learning and artificial intelligence. Nature, 521(7553):
452–459, 2015.

Soumya Ghosh and Finale Doshi-Velez. Model selection in bayesian neural networks via horseshoe
priors. arXiv preprint arXiv:1705.10388, 2017.

Mark N Gibbs. Bayesian Gaussian processes for regression and classification. PhD thesis, Citeseer,
1998.

Clark R Givens, Rae Michael Shortt, et al. A class of wasserstein metrics for probability distributions.
The Michigan Mathematical Journal, 31(2):231–240, 1984.

Aidan N Gomez, Ivan Zhang, Kevin Swersky, Yarin Gal, and Geoffrey E Hinton. Learning sparse
networks using targeted dropout. arXiv preprint arXiv:1905.13678, 2019.

Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning, volume 1.
MIT Press, 2016.

Priya Goyal, Piotr Dollár, Ross B. Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola,
Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch SGD: Training
ImageNet in 1 hour. CoRR, abs/1706.02677, 2017.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of modern neural
networks. In Proceedings of the 34th International Conference on Machine Learning-Volume 70,
pp. 1321–1330. JMLR. org, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on ImageNet classification. In 2015 IEEE International Conference
on Computer Vision, ICCV 2015, Santiago, Chile, December 7-13, 2015, pp. 1026–1034. IEEE
Computer Society, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common
corruptions and perturbations. arXiv preprint arXiv:1903.12261, 2019.

José Miguel Hernández-Lobato and Ryan Adams. Probabilistic backpropagation for scalable learning
of bayesian neural networks. In International Conference on Machine Learning, pp. 1861–1869,
2015.

Alexander Immer, Maciej Korzepa, and Matthias Bauer. Improving predictions of bayesian neural
networks via local linearization. ICML Workshop on Uncertainty and Robustness in Deep Learning,
2020.

Pavel Izmailov, Wesley J Maddox, Polina Kirichenko, Timur Garipov, Dmitry Vetrov, and An-
drew Gordon Wilson. Subspace inference for bayesian deep learning. In 35th Conference on
Uncertainty in Artificial Intelligence, UAI 2019, 2019.

Mohammad Emtiyaz Khan, Didrik Nielsen, Voot Tangkaratt, Wu Lin, Yarin Gal, and Akash Srivas-
tava. Fast and scalable bayesian deep learning by weight-perturbation in adam. arXiv preprint
arXiv:1806.04854, 2018.

11

Under review as a conference paper at ICLR 2021

Mohammad Emtiyaz E Khan, Alexander Immer, Ehsan Abedi, and Maciej Korzepa. Approximate in-
ference turns deep networks into gaussian processes. In Advances in neural information processing
systems, pp. 3094–3104, 2019.

Durk P Kingma, Tim Salimans, and Max Welling. Variational dropout and the local reparameterization
trick. In Advances in neural information processing systems, pp. 2575–2583, 2015.

Agustinus Kristiadi, Matthias Hein, and Philipp Hennig. Being bayesian, even just a bit, fixes
overconfidence in relu networks. arXiv preprint arXiv:2002.10118, 2020.

Alex Krizhevsky and Geoffrey Hinton. Learning Multiple Layers of Features from Tiny Images.
Technical report, University of Toronto, 2009.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive
uncertainty estimation using deep ensembles. In Advances in Neural Information Processing
Systems, pp. 6402–6413, 2017.

Neil David Lawrence. Variational inference in probabilistic models. PhD thesis, University of
Cambridge, 2001.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Juho Lee, Saehoon Kim, Jaehong Yoon, Hae Beom Lee, Eunho Yang, and Sung Ju Hwang. Adaptive
network sparsification via dependent variational beta-bernoulli dropout. 2018.

Ekaterina Lobacheva, Nadezhda Chirkova, Maxim Kodryan, and Dmitry P Vetrov. On power laws in
deep ensembles. Advances in Neural Information Processing Systems, 33, 2020.

Christos Louizos and Max Welling. Structured and efficient variational deep learning with matrix
gaussian posteriors. In International Conference on Machine Learning, pp. 1708–1716, 2016.

Christos Louizos, Max Welling, and Diederik P Kingma. Learning sparse neural networks through
l 0 regularization. arXiv preprint arXiv:1712.01312, 2017.

David JC MacKay. A practical bayesian framework for backpropagation networks. Neural computa-
tion, 4(3):448–472, 1992.

Wesley J Maddox, Pavel Izmailov, Timur Garipov, Dmitry P Vetrov, and Andrew Gordon Wilson.
A simple baseline for bayesian uncertainty in deep learning. In Advances in Neural Information
Processing Systems, pp. 13132–13143, 2019.

Wesley J Maddox, Gregory Benton, and Andrew Gordon Wilson. Rethinking parameter counting in
deep models: Effective dimensionality revisited. arXiv preprint arXiv:2003.02139, 2020.

James Martens. Second-order optimization for neural networks. University of Toronto (Canada),
2016.

James Martens and Ilya Sutskever. Learning recurrent neural networks with hessian-free optimization.
In Proceedings of the 28th international conference on machine learning (ICML-11), pp. 1033–
1040. Citeseer, 2011.

Alexander Graeme de Garis Matthews. Scalable Gaussian process inference using variational
methods. PhD thesis, University of Cambridge, 2017.

Aaron Mishkin, Frederik Kunstner, Didrik Nielsen, Mark Schmidt, and Mohammad Emtiyaz Khan.
Slang: Fast structured covariance approximations for bayesian deep learning with natural gradient.
In Advances in Neural Information Processing Systems, pp. 6245–6255, 2018.

Dmitry Molchanov, Arsenii Ashukha, and Dmitry Vetrov. Variational dropout sparsifies deep neural
networks. In Proceedings of the 34th International Conference on Machine Learning-Volume 70,
pp. 2498–2507. JMLR. org, 2017.

12

Under review as a conference paper at ICLR 2021

Eric Nalisnick, Akihiro Matsukawa, Yee Whye Teh, Dilan Gorur, and Balaji Lakshminarayanan.
Do Deep Generative Models Know What They Don’t Know? In International Conference on
Learning Representations (ICLR), 2019.

Radford M. Neal. Bayesian Learning for Neural Networks. PhD thesis, CAN, 1995. AAINN02676.

John Ashworth Nelder and R Jacob Baker. Generalized Linear Models. Wiley Online Library, 1972.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading
Digits in Natural Images with Unsupervised Feature Learning. In NeurIPS Workshop on Deep
Learning and Unsupervised Feature Learning, 2011.

Anh Nguyen, Jason Yosinski, and Jeff Clune. Deep neural networks are easily fooled: High confidence
predictions for unrecognizable images. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 427–436, 2015.

Sebastian W Ober and Carl Edward Rasmussen. Benchmarking the neural linear model for regression.
arXiv preprint arXiv:1912.08416, 2019.

Kazuki Osawa, Siddharth Swaroop, Anirudh Jain, Runa Eschenhagen, Richard E Turner, Rio Yokota,
and Mohammad Emtiyaz Khan. Practical deep learning with Bayesian principles. arXiv preprint
arXiv:1906.02506, 2019.

Yaniv Ovadia, Emily Fertig, Balaji Lakshminarayanan, Sebastian Nowozin, D Sculley, Joshua Dillon,
Jie Ren, Zachary Nado, and Jasper Snoek. Can you trust your model’s uncertainty? evaluating
predictive uncertainty under dataset shift. In Advances in Neural Information Processing Systems,
pp. 13969–13980, 2019.

Robert Pinsler, Jonathan Gordon, Eric Nalisnick, and José Miguel Hernández-Lobato. Bayesian batch
active learning as sparse subset approximation. In Advances in Neural Information Processing
Systems, pp. 6359–6370, 2019.

Nicholas G Polson and Veronika Ročková. Posterior concentration for sparse deep learning. In
Advances in Neural Information Processing Systems, pp. 930–941, 2018.

Carlos Riquelme, George Tucker, and Jasper Snoek. Deep bayesian bandits showdown: An empirical
comparison of bayesian deep networks for thompson sampling. In International Conference on
Learning Representations, 2018.

Hippolyt Ritter, Aleksandar Botev, and David Barber. A scalable laplace approximation for neural
networks. In International Conference on Learning Representations, 2018.

Simone Rossi, Sebastien Marmin, and Maurizio Filippone. Walsh-hadamard variational inference for
bayesian deep learning. arXiv preprint arXiv:1905.11248, 2019.

Nicol N Schraudolph. Fast curvature matrix-vector products for second-order gradient descent.
Neural computation, 14(7):1723–1738, 2002.

Jasper Snoek, Oren Rippel, Kevin Swersky, Ryan Kiros, Nadathur Satish, Narayanan Sundaram,
Mostofa Patwary, Mr Prabhat, and Ryan Adams. Scalable bayesian optimization using deep neural
networks. In International conference on machine learning, pp. 2171–2180, 2015.

Jakub Swiatkowski, Kevin Roth, Bastiaan S Veeling, Linh Tran, Joshua V Dillon, Stephan Mandt,
Jasper Snoek, Tim Salimans, Rodolphe Jenatton, and Sebastian Nowozin. The k-tied normal
distribution: A compact parameterization of gaussian mean field posteriors in bayesian neural
networks. arXiv preprint arXiv:2002.02655, 2020.

Chaoqi Wang, Guodong Zhang, and Roger Grosse. Picking winning tickets before training by
preserving gradient flow. In International Conference on Learning Representations, 2020. URL
https://openreview.net/forum?id=SkgsACVKPH.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-MNIST: a novel image dataset for bench-
marking machine learning algorithms. 2017.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In Richard C. Wilson, Edwin R.
Hancock, and William A. P. Smith (eds.), Proceedings of the British Machine Vision Conference
2016, BMVC 2016, York, UK, September 19-22, 2016. BMVA Press, 2016.

13

https://openreview.net/forum?id=SkgsACVKPH

Under review as a conference paper at ICLR 2021

A PROOFS FOR THE THEORETICAL RESULTS

We now provide the proofs for the results in Section 4.

A.1 PROOF OF PROPOSITION 1

Proof. Note that the posterior distributions p̃(w|y,Φ) and pS(w|y,Φ) are both Gaussian. We thus
consider the squared 2-Wasserstein distance between two Gaussian distributions N (µ1,Σ1) and
N (µ2,Σ2), which has the following closed-form expression (Givens et al., 1984)4:

W [N (µ1,Σ1) || N (µ2,Σ2)] = ‖µ1 − µ2‖22 + trace
(
Σ1 + Σ2 − 2 (Σ1Σ2)

1/2
)
. (13)

Plugging in µ1 = µ2 = wMAP , Σ1 = H−1 and Σ2 =MS �H−1, we obtain

W [p̃(w|y,X) || pS(w|y,X)]

=W
[
N (wMAP , H

−1) || N (wMAP ,MS �H−1)
]

=(((((((((‖wMAP −wMAP ‖22 + trace
(
H−1 + (MS �H−1)− 2

(
H−1(MS �H−1)

)1/2)
= trace

(
(1 +MS)�H−1

)
− trace

(
2
(
H−1

(
MS �H−1

))1/2)
=

D∑
d=1

(1 +mdd)σ
2
d − trace

(
2
(
H−1

(
MS �H−1

))1/2)
A.2 PROOF OF COROLLARY 1.1

Proof. For H−1 = diag(σ2
1 , . . . , σ

2
D), the Wasserstein posterior gap in Eq. (12) simplifies to

W [p̃(w|y,Φ) || pS(w|y,Φ)] =

D∑
d=1

(
(1 +mdd)σ

2
d − 2mddσ

2
d

)
. (14)

The optimal subnetwork selection strategy amounts to choosing the binary vectorm = [mdd]
D
d=1 with∑D

d=1md = S (i.e., we select S out of D parameters) s.t. the posterior gap in Eq. (14) is minimized.
Observing that the contribution of the d-th parameter to the posterior gap is (1+ 1)σ2

d − 1× 2σ2
d = 0

if it is selected (i.e. if mdd = 1), and (1 + 0)σ2
d − 0× 2σ2

d = σ2
d if it is not selected (i.e. if mdd = 0),

we see that the optimal subnetwork comprises of the S weights with the largest variances σ2
d.

B ADDITIONAL IMAGE CLASSIFICATION RESULTS

Table 1: AUC-ROC scores for out-of-distribution detection, using CIFAR10 vs SVHN and MNIST
vs FashionMNIST as in- (source) and out-of-distribution (target) datasets, respectively (Nalisnick
et al., 2019).

SOURCE TARGET OURS OURS (RAND) DROPOUT DIAG-LAP ENSEMBLE MAP SWAG

CIFAR10 SVHN 0.85±0.03 0.86±0.02 0.85±0.01 0.86±0.02 0.91±0.00 0.86±0.02 0.83±0.00
MNIST Fashion 0.92±0.05 0.75±0.02 0.82±0.12 0.75±0.01 0.90±0.09 0.72±0.03 0.97±0.01

Table 2: MNIST – no rotation.
OURS OURS (RAND) DROPOUT DIAG-LAP ENSEMBLE MAP SWAG VOGN

LL −0.07±0.01 −0.01±0.00 −0.01±0.00 −0.04±0.03 −0.01±0.00 −0.01±0.00 −0.01±0.00 −0.14±nan
error 0.01±0.00 0.00±0.00 0.00±0.00 0.01±0.01 0.00±0.00 0.00±0.00 0.00±0.00 0.01±nan
ECE 0.05±0.01 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.10±nan
brier score 0.02±0.00 0.01±0.00 0.01±0.00 0.02±0.01 0.01±0.00 0.01±0.00 0.01±0.00 0.04±nan

4This also holds for our case of a degenerate Gaussian with singular covariance matrix (Givens et al., 1984).

14

Under review as a conference paper at ICLR 2021

0 10 20 30 40 50

N

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

LL
MNIST Rotation

30
60

90
120

150
180

0 10 20 30 40 50

N

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

CIFAR10 Corruption

0
1

2
3

4
5

Figure 5: Rotated MNIST (left) and Corrupted CIFAR10 (right) results for deep ensembles (Lak-
shminarayanan et al., 2017) with large numbers of ensemble members (i.e. up to 55). Horizontal
axis denotes number of ensemble members, and vertical axis denotes performance in terms of log-
likelihood. Straight horizontal lines correspond to the performance of our method, as a reference.
Colors denote different levels of rotation (left) and corruption (right). It can clearly be observed that
the performance of deep ensembles saturates after around 15 ensemble members, meaning that adding
more members yields strongly diminishing returns. This is in agreement with recent works (Antorán
et al., 2020; Ashukha et al., 2020a; Lobacheva et al., 2020). Our method significantly outperforms
even very large deep ensembles, especially for high degrees of rotation/corruption.

0 25 50 75 100

% rejected

0.5

0.6

0.7

0.8

0.9

1.0

ac
cu

ra
cy

CIFAR10 vs SVHN

0 25 50 75 100

% rejected

0.0

0.2

0.4

0.6

0.8

1.0

MNIST vs Fashion

Ours Diag-Lap Dropout Ours (Rand) Ensemble MAP SWAG

Figure 6: Rejection-classification plots. We simulate a realistic OOD rejection scenario (Filos et al.,
2019b) by jointly evaluating our models on an in-distribution and an OOD test set. We allow our
methods to reject increasing proportions of the data based on predictive entropy before classifying
the rest. All predictions on OOD samples are treated as incorrect. Following (Nalisnick et al., 2019),
we use CIFAR10 vs SVHN and MNIST vs FashionMNIST as in- and out-of-distribution datasets,
respectively. Note that the SVHN test set is randomly sub-sampled down to a size of 10,000.

15

Under review as a conference paper at ICLR 2021

0.0

0.2

0.4

0.6

0.8
er

ro
r

Rotated MNIST

Ours
Diag-Lap
Dropout
Ours (Rand)

Ensemble
MAP
SWAG
VOGN

0.1

0.2

0.3

0.4

0.5

Corrupted CIFAR10

−8

−6

−4

−2

0

LL

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

EC
E

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0 30 60 90 120 150 180

rotation (◦)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

br
ie

r
sc

or
e

0 1 2 3 4 5

corruption

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 7: Full MNIST rotation and CIFAR10 corruption results, for ResNet-18, reporting predictive
error, log-likelihood (LL), expected calibration error (ECE) and brier score, respectively (from top to
bottom).

16

Under review as a conference paper at ICLR 2021

0 30 60 90 120 150 180

0.0

0.2

0.4

0.6

0.8

er
ro

r

0 30 60 90 120 150 180

−8

−6

−4

−2

0

LL

Ours
MAP

0 30 60 90 120 150 180

rotation (◦)

0.0

0.2

0.4

0.6

EC
E

0 30 60 90 120 150 180

rotation (◦)

0.0

0.5

1.0

1.5

br
ie

r
sc

or
e

Figure 8: MNIST rotation results for ResNet-50, reporting predictive error, log-likelihood (LL),
expected calibration error (ECE) and brier score. We choose a subnetwork containing only 0.167%
(39,190 / 23,466,560) of the parameters of the full network. We see that subnetwork inference still
results in an improvement in the calibration of predictive uncertainty. As expected, however, for
ResNet-50 the improvement over MAP is smaller than for ResNet-18 where we were able to choose
a subnetwork containing 0.38% of the parameters.

Table 3: MNIST – 15◦ rotation.
OURS OURS (RAND) DROPOUT DIAG-LAP ENSEMBLE MAP SWAG VOGN

LL −0.14±0.02 −0.05±0.00 −0.05±0.00 −0.11±0.08 −0.04±0.00 −0.05±0.00 −0.04±0.00 −0.19±nan
error 0.02±0.00 0.02±0.00 0.01±0.00 0.03±0.02 0.01±0.00 0.02±0.00 0.01±0.00 0.02±nan
ECE 0.08±0.01 0.00±0.00 0.00±0.00 0.01±0.01 0.00±0.00 0.00±0.00 0.00±0.00 0.12±nan
brier score 0.05±0.01 0.03±0.00 0.02±0.00 0.05±0.03 0.02±0.00 0.02±0.00 0.02±0.00 0.07±nan

Table 4: MNIST – 30◦ rotation.
OURS OURS (RAND) DROPOUT DIAG-LAP ENSEMBLE MAP SWAG VOGN

LL −0.42±0.04 −0.36±0.01 −0.32±0.02 −0.44±0.06 −0.28±0.02 −0.39±0.01 −0.30±0.00 −0.51±nan
error 0.11±0.01 0.10±0.00 0.09±0.01 0.12±0.01 0.08±0.01 0.10±0.00 0.08±0.00 0.14±nan
ECE 0.10±0.02 0.04±0.01 0.03±0.00 0.06±0.01 0.02±0.00 0.05±0.00 0.04±0.00 0.13±nan
brier score 0.19±0.02 0.16±0.00 0.14±0.01 0.18±0.02 0.12±0.01 0.16±0.00 0.12±0.00 0.23±nan

Table 5: MNIST – 45◦ rotation.
OURS OURS (RAND) DROPOUT DIAG-LAP ENSEMBLE MAP SWAG VOGN

midrule LL −1.09±0.03 −1.60±0.05 −1.44±0.11 −1.68±0.20 −1.36±0.07 −1.75±0.06 −1.35±0.02 −1.15±nan
error 0.36±0.01 0.35±0.01 0.33±0.01 0.35±0.03 0.31±0.01 0.35±0.01 0.29±0.00 0.40±nan
ECE 0.03±0.01 0.22±0.01 0.19±0.02 0.22±0.02 0.17±0.01 0.23±0.01 0.18±0.00 0.01±nan
brier score 0.49±0.02 0.55±0.02 0.52±0.02 0.55±0.04 0.48±0.02 0.56±0.02 0.46±0.01 0.53±nan

Table 6: MNIST – 60◦ rotation.
OURS OURS (RAND) DROPOUT DIAG-LAP ENSEMBLE MAP SWAG VOGN

LL −2.10±0.03 −3.85±0.18 −3.54±0.23 −4.11±0.66 −3.60±0.10 −4.29±0.21 −2.95±0.08 −1.92±nan
error 0.63±0.01 0.63±0.01 0.62±0.01 0.62±0.05 0.61±0.01 0.63±0.01 0.53±0.02 0.64±nan
ECE 0.25±0.02 0.46±0.02 0.43±0.02 0.47±0.06 0.42±0.01 0.48±0.02 0.36±0.02 0.17±nan
brier score 0.85±0.02 1.04±0.03 1.00±0.03 1.05±0.10 0.98±0.02 1.07±0.03 0.86±0.03 0.80±nan

17

Under review as a conference paper at ICLR 2021

Table 7: MNIST – 75◦ rotation.
OURS OURS (RAND) DROPOUT DIAG-LAP ENSEMBLE MAP SWAG VOGN

LL −3.02±0.07 −5.93±0.28 −5.49±0.38 −6.92±0.32 −5.74±0.15 −6.63±0.33 −4.46±0.18 −2.54±nan
error 0.80±0.02 0.79±0.01 0.79±0.01 0.81±0.00 0.78±0.01 0.79±0.01 0.72±0.02 0.77±nan
ECE 0.41±0.04 0.62±0.03 0.59±0.01 0.65±0.01 0.58±0.01 0.64±0.03 0.51±0.02 0.26±nan
brier score 1.08±0.04 1.34±0.04 1.30±0.02 1.39±0.01 1.29±0.02 1.37±0.04 1.17±0.04 0.95±nan

Table 8: MNIST – 90◦ rotation.
OURS OURS (RAND) DROPOUT DIAG-LAP ENSEMBLE MAP SWAG VOGN

LL −3.35±0.13 −6.46±0.15 −6.18±0.41 −7.32±0.67 −6.39±0.17 −7.18±0.22 −5.63±0.12 −2.91±nan
error 0.84±0.02 0.84±0.01 0.84±0.01 0.85±0.01 0.84±0.01 0.84±0.01 0.82±0.02 0.81±nan
ECE 0.43±0.03 0.64±0.04 0.62±0.01 0.66±0.03 0.62±0.01 0.66±0.04 0.60±0.01 0.29±nan
brier score 1.13±0.03 1.40±0.05 1.37±0.01 1.44±0.04 1.36±0.01 1.43±0.05 1.34±0.02 1.02±nan

Table 9: MNIST – 105◦ rotation.
OURS OURS (RAND) DROPOUT DIAG-LAP ENSEMBLE MAP SWAG VOGN

LL −3.59±0.05 −7.06±0.45 −6.70±0.52 −7.69±0.99 −7.01±0.17 −7.87±0.53 −6.28±0.19 −3.10±nan
error 0.85±0.02 0.84±0.02 0.84±0.01 0.85±0.01 0.84±0.01 0.84±0.02 0.81±0.00 0.81±nan
ECE 0.47±0.04 0.67±0.05 0.63±0.01 0.67±0.03 0.64±0.01 0.68±0.04 0.61±0.01 0.34±nan
brier score 1.17±0.05 1.44±0.07 1.38±0.02 1.44±0.04 1.40±0.01 1.46±0.07 1.34±0.02 1.07±nan

Table 10: MNIST – 120◦ rotation.
OURS OURS (RAND) DROPOUT DIAG-LAP ENSEMBLE MAP SWAG VOGN

LL −3.43±0.07 −6.73±0.53 −6.62±0.39 −7.92±0.59 −6.73±0.11 −7.53±0.63 −6.49±0.36 −3.07±nan
error 0.80±0.02 0.79±0.02 0.78±0.01 0.81±0.01 0.78±0.01 0.79±0.02 0.76±0.02 0.76±nan
ECE 0.40±0.03 0.62±0.05 0.58±0.01 0.65±0.04 0.59±0.01 0.63±0.04 0.58±0.03 0.30±nan
brier score 1.10±0.03 1.35±0.07 1.29±0.02 1.39±0.06 1.30±0.01 1.36±0.07 1.27±0.04 1.04±nan

Table 11: MNIST – 135◦ rotation.
OURS OURS (RAND) DROPOUT DIAG-LAP ENSEMBLE MAP SWAG VOGN

LL −3.24±0.06 −6.43±0.38 −6.46±0.28 −7.05±0.88 −6.57±0.10 −7.24±0.48 −6.40±0.37 −2.89±nan
error 0.71±0.02 0.71±0.02 0.70±0.01 0.71±0.01 0.70±0.01 0.71±0.02 0.70±0.02 0.67±nan
ECE 0.32±0.01 0.55±0.03 0.52±0.01 0.56±0.02 0.52±0.01 0.56±0.03 0.53±0.02 0.25±nan
brier score 0.99±0.02 1.21±0.05 1.17±0.02 1.22±0.04 1.17±0.01 1.23±0.05 1.18±0.04 0.94±nan

Table 12: MNIST – 150◦ rotation.
OURS OURS (RAND) DROPOUT DIAG-LAP ENSEMBLE MAP SWAG VOGN

LL −3.25±0.05 −6.56±0.18 −6.62±0.33 −7.04±0.36 −6.88±0.11 −7.41±0.25 −6.39±0.27 −2.69±nan
error 0.63±0.02 0.63±0.01 0.63±0.00 0.65±0.01 0.62±0.01 0.63±0.01 0.63±0.01 0.60±nan
ECE 0.29±0.01 0.50±0.01 0.48±0.01 0.52±0.01 0.48±0.01 0.51±0.01 0.49±0.01 0.23±nan
brier score 0.92±0.02 1.10±0.02 1.07±0.01 1.13±0.02 1.06±0.01 1.11±0.02 1.08±0.02 0.85±nan

Table 13: MNIST – 165◦ rotation.
OURS OURS (RAND) DROPOUT DIAG-LAP ENSEMBLE MAP SWAG VOGN

LL −3.42±0.12 −7.01±0.15 −7.08±0.39 −7.80±0.12 −7.51±0.11 −7.91±0.18 −6.63±0.24 −2.67±nan
error 0.58±0.01 0.58±0.01 0.58±0.01 0.58±0.00 0.57±0.01 0.58±0.01 0.59±0.00 0.56±nan
ECE 0.32±0.02 0.49±0.01 0.48±0.01 0.49±0.01 0.48±0.00 0.51±0.01 0.48±0.00 0.25±nan
brier score 0.90±0.02 1.05±0.01 1.04±0.01 1.05±0.01 1.03±0.01 1.07±0.02 1.03±0.01 0.82±nan

Table 14: MNIST – 180◦ rotation.
OURS OURS (RAND) DROPOUT DIAG-LAP ENSEMBLE MAP SWAG VOGN

LL −3.32±0.13 −6.63±0.18 −6.87±0.32 −7.10±0.47 −7.16±0.16 −7.43±0.20 −6.61±0.22 −2.71±nan
error 0.56±0.01 0.56±0.01 0.56±0.00 0.55±0.01 0.55±0.00 0.56±0.01 0.57±0.00 0.55±nan
ECE 0.29±0.02 0.46±0.01 0.45±0.00 0.46±0.00 0.46±0.01 0.48±0.01 0.47±0.01 0.25±nan
brier score 0.86±0.02 1.00±0.01 0.99±0.01 0.99±0.01 0.99±0.00 1.01±0.02 1.01±0.01 0.82±nan

18

Under review as a conference paper at ICLR 2021

Table 15: CIFAR10 – no corruption.
OURS OURS (RAND) DROPOUT DIAG-LAP ENSEMBLE MAP SWAG VOGN

LL −0.27±0.00 −0.43±0.01 −0.37±0.01 −0.50±0.02 −0.21±0.01 −0.46±0.02 −0.48±0.01 −0.61±nan
error 0.09±0.00 0.08±0.00 0.08±0.00 0.09±0.00 0.06±0.00 0.08±0.00 0.11±0.00 0.21±nan
ECE 0.01±0.00 0.06±0.00 0.04±0.00 0.06±0.00 0.01±0.00 0.06±0.00 0.07±0.00 0.03±nan
brier score 0.13±0.00 0.14±0.00 0.13±0.00 0.15±0.00 0.09±0.00 0.14±0.00 0.17±0.00 0.30±nan

Table 16: CIFAR10 – level 1 corruption.
OURS OURS (RAND) DROPOUT DIAG-LAP ENSEMBLE MAP SWAG VOGN

LL −0.51±0.01 −0.91±0.01 −0.80±0.02 −1.03±0.02 −0.50±0.02 −0.96±0.02 −0.89±0.02 −0.99±nan
error 0.17±0.01 0.16±0.00 0.16±0.00 0.17±0.00 0.13±0.00 0.16±0.00 0.17±0.00 0.32±nan
ECE 0.03±0.00 0.11±0.00 0.10±0.00 0.13±0.00 0.04±0.00 0.12±0.01 0.11±0.00 0.03±nan
brier score 0.24±0.00 0.27±0.00 0.25±0.00 0.29±0.00 0.19±0.00 0.27±0.01 0.29±0.00 0.44±nan

Table 17: CIFAR10 – level 2 corruption.
OURS OURS (RAND) DROPOUT DIAG-LAP ENSEMBLE MAP SWAG VOGN

LL −0.73±0.01 −1.29±0.06 −1.20±0.02 −1.50±0.12 −0.80±0.01 −1.40±0.03 −1.21±0.00 −1.31±nan
error 0.23±0.00 0.22±0.01 0.22±0.00 0.23±0.01 0.19±0.00 0.22±0.00 0.22±0.00 0.40±nan
ECE 0.06±0.00 0.16±0.01 0.14±0.00 0.17±0.01 0.07±0.00 0.16±0.00 0.15±0.00 0.10±nan
brier score 0.33±0.00 0.37±0.01 0.35±0.01 0.40±0.02 0.28±0.00 0.37±0.01 0.37±0.00 0.56±nan

Table 18: CIFAR10 – level 3 corruption.
OURS OURS (RAND) DROPOUT DIAG-LAP ENSEMBLE MAP SWAG VOGN

LL −1.06±0.02 −2.06±0.12 −1.85±0.07 −2.13±0.17 −1.28±0.03 −2.18±0.08 −1.63±0.03 −1.83±nan
error 0.32±0.01 0.31±0.01 0.31±0.01 0.31±0.01 0.28±0.00 0.31±0.01 0.28±0.00 0.51±nan
ECE 0.11±0.01 0.24±0.01 0.21±0.01 0.24±0.01 0.12±0.00 0.24±0.01 0.20±0.00 0.19±nan
brier score 0.46±0.01 0.54±0.02 0.50±0.02 0.54±0.03 0.42±0.00 0.54±0.02 0.47±0.01 0.72±nan

Table 19: CIFAR10 – level 4 corruption.
OURS OURS (RAND) DROPOUT DIAG-LAP ENSEMBLE MAP SWAG VOGN

LL −1.25±0.03 −2.43±0.18 −2.28±0.10 −2.54±0.18 −1.56±0.05 −2.57±0.15 −1.95±0.04 −1.99±nan
error 0.36±0.01 0.35±0.01 0.35±0.01 0.35±0.01 0.32±0.01 0.35±0.01 0.32±0.00 0.54±nan
ECE 0.13±0.01 0.27±0.01 0.24±0.01 0.27±0.01 0.14±0.01 0.27±0.02 0.23±0.00 0.22±nan
brier score 0.51±0.02 0.60±0.03 0.57±0.01 0.61±0.02 0.47±0.01 0.60±0.03 0.53±0.00 0.76±nan

Table 20: CIFAR10 – level 5 corruption.
OURS OURS (RAND) DROPOUT DIAG-LAP ENSEMBLE MAP SWAG VOGN

LL −1.47±0.03 −2.82±0.11 −2.71±0.13 −3.20±0.13 −1.88±0.05 −3.03±0.10 −2.31±0.09 −2.00±nan
error 0.41±0.00 0.40±0.01 0.40±0.01 0.41±0.01 0.37±0.01 0.40±0.00 0.36±0.01 0.54±nan
ECE 0.16±0.01 0.31±0.01 0.28±0.01 0.33±0.02 0.17±0.01 0.31±0.01 0.27±0.01 0.19±nan
brier score 0.58±0.00 0.69±0.01 0.65±0.01 0.72±0.03 0.55±0.01 0.69±0.01 0.61±0.01 0.75±nan

19

Under review as a conference paper at ICLR 2021

C EXPERIMENTAL SETUP

C.1 TOY EXPERIMENTS

We train a single, 2 hidden layer network, with 50 hidden ReLU units per layer using MAP inference
until convergence. Specifically, we use SGD with a learning rate of 1× 10−3, momentum of 0.9 and
weight decay of 1× 10−4. We use a batch size of 512. The objective we optimise is the Gaussian
log-likelihood of our data, where the mean is outputted by the network and the the variance is a
hyperparameter learnt jointly with NN parameters by SGD. This variance parameters is shared among
all datapoints. Once the network is trained, we perform post-hoc inference on it using different
approaches. Since all of these involve the linearized approximation, the mean prediction is the same
for all methods. Only their uncertainty estimates vary.

Note that while for this toy example, we could in principle use the full covariance matrix for
the purpose of subnetwork selection, we still just use its diagonal (as described in Section 4) for
consistency. We use GGN Laplace inference over network weights (not biases) in combination with
the linearized predictive distribution in Eq. (8). Thus, all approaches considered share their predictive
mean, allowing us to better compare their uncertainty estimates.

All approaches share a single prior precision of λ = 3. We chose to select the prior precision such
that the full covariance approach (optimistic baseline) presents reasonable results. We use the same
value for all other methods. We first tried a precision of 1 and found the full covariance approach to
produce excessively large errorbars (covering the whole plot). A value of 3 produces more reasonable
results.

Final layer inference is performed by computing the full Laplace covariance matrix and discarding
all entries except those corresponding to the final layer of the NN. Results for random sub-network
selection are obtained with a single sample from a scaled uniform distribution over weight choice.

C.2 UCI EXPERIMENTS

In this experiment, our fully connected NNs have numbers of hidden layers hd={1, 2} and hidden
layer widths wd={50, 100}. For a dataset with input dimension id, the number of weights is given
by D=(id+1)wd+(hd−1)w2

d. Our 2 hidden layer, 100 hidden unit models have a weight count of
the order 104. The non-linearity used is ReLU.

We first obtain a MAP estimate of each model’s weights. Specifically, we use SGD with a learning
rate of 1× 10−3, momentum of 0.9 and weight decay of 1× 10−4. We use a batch size of 512. The
objective we optimise is the Gaussian log-likelihood of our data, where the mean is outputted by the
network and the the variance is a hyperparameter learnt jointly with NN parameters by SGD.

For each dataset split, we set aside 15% of the train data as a validation set. We use these for early
stopping training. Training runs for a maximum of 2000 epochs but early stops with a patience of
500 if validation performance does not increase. For the larger Protein dataset, these values are 500
and 125. The weight settings which provide best validation performance are kept.

We then perform full network GGN Laplace inference for each model. We also use our proposed
Wassertein rule together with the diagonal Hessian assumption to prune every network’s weight
variances such that the number of variances that remain matches the size of every smaller network
under consideration. The prior precision used for these steps is chosen such that the resulting
predictor’s logliklihood performance on the validation set is maximised. Specifically, we employ
a grid search over the values: λ : [0.0001, 0.001, 0.1, 0.5, 1, 2, 5, 10, 100, 1000]. In all cases, we
employ the linearized predictive in Eq. (7). Consequently, networks with the same number of weights
make the same mean predictions. Increasing the number of weight variances considered will thus
only increase predictive uncertainty.

C.3 IMAGE EXPERIMENTS

The results shown in Section 5.3 and Appendix B are obtained by training ResNet-18 (and ResNet-50)
models using SGD with momentum. For each experiment repetition, we train 7 different models:
The first is for: ‘MAP’, ‘Ours’, ‘Ours (Rand)’, ‘SWAG’, ‘Diag-Laplace’ and as the first element of

20

Under review as a conference paper at ICLR 2021

‘Ensemble’. We train 4 additional ‘Ensemble’ elements, 1 network with ‘Dropout’, and, finally 1
network for ‘VOGN’. The methods ‘Ours’, ‘Ours (Rand)’, ‘SWAG’, and ‘Diag-Laplace’ are applied
post training.

For all methods except ‘VOGN’ we use the following training procedure. The (initial) learning rate,
momentum, and weight decay are 0.1, 0.9, and 1× 10−4, respectively. For ‘MAP’ we use 4 Nvidia
P100 GPUs with a total batch size of 2048. For the calculation of the Jacobian in the subnetwork
selection phase we use a single P100 GPU with a batch size of 4. For the calculation of the hessian
we use a single P100 GPU with a batch size of 2. We train on 1 Nvidia P100 GPU with a batch
size of 256 for all other methods. Each dataset is trained for a different number of epochs, shown in
Table 21. We decay the learning rate by a factor of 10 at scheduled epochs, also shown in Table 21.
Otherwise, all methods and datasets share hyperparameters. These hyperparameter settings are the
defaults provided by PyTorch for training on ImageNet. We found them to perform well across the
board. We report results obtained at the final training epoch. We do not use a separate validation set
to determine the best epoch as we found ResNet-18 and ResNet-50 to not overfit with the chosen
schedules.

Table 21: Per-dataset training configuration for image experiments.
DATASET NO. EPOCHS LR SCHEDULE

MNIST 90 40, 70
CIFAR10 300 150, 225

For ‘Dropout’, we add dropout to the standard ResNet-50 model (He et al., 2016) in between the 2
and 3 convolutions in the bottleneck blocks. This approach follows Zagoruyko & Komodakis (2016)
and Ashukha et al. (2020b) who add dropout in-between the two convolutions of a WideResNet-50’s
basic block. Following Antorán et al. (2020), we choose a dropout probability of 0.1, as they found
it to perform better than the value of 0.3 suggested by Ashukha et al. (2020b). We use 16 MC
samples for predictions. ‘Ensemble’ uses 5 elements for prediction. Ensemble elements differ
from each other in their initialisation, which is sampled from the He initialisation distribution
(He et al., 2015). We do not use adversarial training as, inline with Ashukha et al. (2020b), we
do not find it to improve results. For ‘VOGN’ we use the same procedure and hyper-parameters
as used by Osawa et al. (2019) in their CIFAR10 experiments, with the exception that we use
a learning rate of 1 × 10−3 as we we found a value of 1 × 10−4 not to result in convergence.
We train on a single Nvidia P100 GPU with a batch size of 256. See the authors’ GitHub for
more details: github.com/team-approx-bayes/dl-with-bayes/blob/master/
distributed/classification/configs/cifar10/resnet18_vogn_bs256_
8gpu.json.

We modify the standard ResNet-50 and ResNet-18 architectures such that the first 7× 7 convolution
is replaced with a 3× 3 convolution. Additionally, we remove the first max-pooling layer. Following
Goyal et al. (2017), we zero-initialise the last batch normalisation layer in residual blocks so that they
act as identity functions at the start of training.

At test time, we tune the prior precision used for ‘Ours’, ‘Diag-Laplace’ and ‘SWAG’ approximation
on a validation set for each approach individually, as in Ritter et al. (2018); Kristiadi et al. (2020).
We use a grid search from 1× 10−4 to 1× 104 in logarithmic steps, and then a second, finer-grained
grid search between the two best performing values (again with logarithmic steps).

C.4 DATASETS

The 1d toy dataset used in Section 5.1 was taken from Antorán et al. (2020). We obtained it from the
authors’ github repo: https://github.com/cambridge-mlg/DUN. Table 22 summarises
the datasets used in Section 5.2. Wine and Protein are available from the UCI dataset repository Dua
& Graff (2017). Kin8nm is available from https://www.openml.org/d/189 Foong et al.
(2019b). For the standard splits (Hernández-Lobato & Adams, 2015) 90% of the data is used for
training and 10% for validation. For the gap splits (Foong et al., 2019b) a split is obtained per input
dimension by ordering points by their values across that dimension and removing the middle 33% of

21

https://github.com/team-approx-bayes/dl-with-bayes/blob/master/distributed/classification/configs/cifar10/resnet18_vogn_bs256_8gpu.json
github.com/team-approx-bayes/dl-with-bayes/blob/master/distributed/classification/configs/cifar10/resnet18_vogn_bs256_8gpu.json
https://github.com/team-approx-bayes/dl-with-bayes/blob/master/distributed/classification/configs/cifar10/resnet18_vogn_bs256_8gpu.json
github.com/team-approx-bayes/dl-with-bayes/blob/master/distributed/classification/configs/cifar10/resnet18_vogn_bs256_8gpu.json
https://github.com/team-approx-bayes/dl-with-bayes/blob/master/distributed/classification/configs/cifar10/resnet18_vogn_bs256_8gpu.json
github.com/team-approx-bayes/dl-with-bayes/blob/master/distributed/classification/configs/cifar10/resnet18_vogn_bs256_8gpu.json
https://github.com/cambridge-mlg/DUN
https://www.openml.org/d/189

Under review as a conference paper at ICLR 2021

Table 22: Datasets from tabular regression used in Section 5.2
Dataset N Train N Val (15% train) N Test Splits Output Dim Output Type Input Dim Input Type

Wine 1223 216 160 20 1 Continous 11 Continous
Wine Gap 906 161 532 11 1 Continous 11 Continous
Kin8nm 6267 1106 819 20 1 Continous 8 Continous

Kin8nm Gap 4642 820 2730 8 1 Continous 8 Continous
Protein 34983 6174 4573 5 1 Continous 9 Continous

Protein Gap 25913 4573 15244 9 1 Continous 9 Continous

the points. These are used for validation. The datasets used for our image experiments are outlined in
Table 23.

Table 23: Summary of image datasets. The test and train set sizes are shown in brackets, e.g. (test &
train).

NAME SIZE INPUT DIM. NO. CLASSES NO. SPLITS

MNIST (LeCun et al., 1998) 70,000 (60,000 & 10,000) 784 (28 × 28) 10 2
Fashion-MNIST (Xiao et al., 2017) 70,000 (60,000 & 10,000) 784 (28 × 28) 10 2
CIFAR10 (Krizhevsky & Hinton, 2009) 60,000 (50,000 & 10,000) 3072 (32 × 32 × 3) 10 2
SVHN (Netzer et al., 2011) 99,289 (73,257 & 26,032) 3072 (32 × 32 × 3) 10 2

22

	Introduction
	Subnetwork Posterior Approximation
	Subnetwork Inference via Laplace Approximation
	Principled Subnetwork Selection for Linear(ized) Models
	Empirical Analysis
	How does subnetwork inference retain posterior predictive uncertainty?
	Subnetwork inference in large models vs full inference over small models
	Scaling to Image Classification with Distribution Shift

	Related Work
	Conclusion
	Proofs for the Theoretical Results
	Proof of th:posteriorgap
	Proof of th:variancepruning

	Additional Image Classification Results
	Experimental Setup
	Toy Experiments
	UCI Experiments
	Image Experiments
	Datasets

