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ABSTRACT

In the pursuit of novel drug molecules, the optimization stage for enhanced safety,
efficacy, and pharmacokinetics presents a significant challenge. Deep generative
models, particularly diffusion models, emerge as an effective strategy for this pur-
pose. Our method integrates 3D protein structures with diffusion models, facil-
itating the generation of new ligands that consider both the molecular scaffold
and the specific environment of the target protein’s binding pocket. As a demon-
stration of its effectiveness, we applied this proposed approach to generate new
ligands targeting the colony-stimulating factor 1 receptor. The outcomes highlight
the method’s ability to design potent inhibitors, achieving enhanced inhibitory ef-
ficacy in compared to existing inhibitors, as confirmed by in vitro assays.

1 INTRODUCTION

In the early stage of drug discovery, optimizing molecules is a critical phase. This process involves
on modifying the scaffold of a molecule to improve key properties such as safety, efficacy, and phar-
macokinetics. However, the complex chemical space presents significant challenges in identifying
the optimal modifications, often leading to extensive time and resource consuming. To address
these challenges, recent advancements have introduced deep generative models (DGMs) into the
field of molecule generation, offering a promising approach for overcoming these obstacles Anstine
& Isayev|(2023) Renz et al.|(2019).

Among the various types of DGMs, diffusion models have displayed superior performance, with
sucessful applications in image generation |Ho et al.| (2020), molecule docking (Corso et al|(2022),
and protein engineering [Watson et al.| (2023). These models excel at navigating through complex,
high-dimensional data distributions, which is crucial for exploring the intricate chemical space in-
volved in molecule optimization |Guo et al.| (2023). Building on this foundation, our work aims to
apply diffusion models for molecule optimization process. By integrating 3D structures of target
proteins, our approach generate new ligand fragments that account for both the molecular scaf-
fold and the specific environment of the target protein’s binding pocket. This method is designed
to enable a more precise and efficient exploration of chemical space, potentially accelerating the
optimization process.

To demonstrate the effectiveness of our approach, we focused on optimizing molecules targeting
the colony-stimulating factor 1 receptor (CSF1R), a tyrosine kinase linked to a variety of diseases,
including neurodegeneration |Anstine & Isayev|(2023) and cancers [Wen et al.| (2023). By employ-
ing diffusion models, we sought to generate and refine molecules with enhanced ability to inhibit
CSF1R. The results of this effort were encouraging, showcasing the practical utility and efficiency
of diffusion model-based molecule generation in the context of optimization process.

2 RELATED WORKS

Small molecule Discovery with deep generative models. The use of the Simplified Molecular-
Input Line-Entry System (SMILES) for representing molecules has allowed for the application of
neural language models like Long Short-Term Memory (LSTM) networks in generating molecules.
This method has notably advanced de novo molecule discovery for targets such as receptor in-
teracting protein kinase 1 |Li et al.| (2022) and phosphoinositide 3-kinase gamma |[Moret et al.
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(2023). AstraZeneca’s researchers have utilized SMILES for molecule optimization Arus-Pous et al.
(2020).Moreover, Tan et al. have validated this approach by identifying a highly potent molecule for
the discoidin domain receptor 1, with an IC50 value of 10.6 nM [Tan et al.| (2021]).

Advancements in molecular generation with diffusion models. The application of diffusion mod-
els in molecular generation has seen considerable progress. A key development was the Equivariant
Diffusion Model (EDM) by Emiel Hoogeboom and colleagues for 3D molecular generation Hooge-
boom et al.| (2022)). The field has recently shifted towards generating molecules for specific con-
ditions.Notable advancements include DiffLiker for linker design Igashov et al.| (2022) and SBDD
for structure-based drug design [Schneuing et al.| (2022). Similar diffusiom models for 3D molecule
generation are PMDM [Huang| (2023) and Diftbp [Lin et al.|(2022).

3 METHOD

The proposed method for designing small molecule inhibitors targeting specific biomarkers inte-
grates two primary stages: molecule generation based on the target protein and scaffold structure,
followed by docking to screen molecules.

Conditional Ligand Generation Using Equivariant Diffusion Models. Our approach diverges
from other generative models that generate entire molecules within a protein pocket, focusing instead
on generating molecular fragments only based on the scaffold as depicted in Figure la. Central
to our method is an equivariant diffusion model, specifically designed to create small molecules
conditioned on the protein pocket environment. This involves a two-phase process: a diffusion phase
that incrementally introduces noise, transforming data into Gaussian noise, and a denoising phase
that reverses this process, informed by a learnable function based on a modified E(3)-equivariant
graph neural network (EGNN) [Satorras et al.|(2021)).

As illustrated in Figure 1b, we start by selecting a ligand scaffold randomly in training stage.
The protein pocket and this scaffold form the constant context through the diffusion and denois-
ing phases. Our model was trained using the MOAD databaseHu et al.| (2005) and comprises six
layers of Equivariant Graph Convolutional Layers (EGCL) with 10.6 million parameters. Diffusion
step set to 500.
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Figure 1: Schematic of Diffusion model based optimization process. Panel a illustrates the protein
pocket-conditional generation using a diffusion model, where a fixed scaffold and a variable frag-
ment undergo a forward diffusion process followed by a denoising process to generate the optimized
molecule. Panel b outlines the molecule optimization workflow for the CSF1R target. The workflow
starts with the identification of a suitable scaffold, followed by the generation of novel compounds,
and concludes with the screening of these compounds, highlighting the final high-affinity molecular
structure enhanced with a benzene ring fragment for optimal binding within the CSF1R back pocket.
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For ligand generation, we prioritize scaffold selection to ensure compatibility with the protein pocket
environment. The resulting ligand fragments, ranging from 4 to 13 atoms (excluding hydrogen), are
subjected to structural feasibility checks before being converted into molecular structures.

Docking. We evaluated our model’s ability to produce ligands with strong binding affinities us-
ing docking simulations, a widely adopt approach for molecule generationCieplinski et al.| (2023).
Docking scores, which are inversely related to binding affinity, provide a quantitative measure of a
ligand’s potential effectiveness in binding to the target protein. A lower docking score indicates a
higher predicted affinity, marking the ligand as a potential therapeutic agent. We conducted docking
with Glide from Schrédinger, Inc., using the CSFIR PDB code 6WXJ.

4 RESULTS

In our pursuit of identifying novel inhibitors targeting CSF1R through molecule optimization, we
selected compound 1 (depicted in Figure 1b) from a recent patent Hsieh et al.| (2020) as our lead
compound, noted for its potent effects and therapeutic promise. Compound 1 interacts with CSFIR
through hydrogen bonds between its quinazoline moiety and Cys666 in the hinge region, and the
urea moiety’s interactions with Asp796 and Glu633, alongside m— stacking with Phe797’s benzene
ring. To enhance the inhibitory efficacy of compound 1 against CSFIR, our analysis led us to
select scaffold 1 for for a targeted exploration of the back pocket. This decision was based on the
hypothesis that the back pocket is a relatively undiscovered area, and that focusing on this area could
greatly increase affinity and potentially enhance selectivity [Lee et al.[(2021).

To this end, we generated a diverse virtual library comprising 200 molecules for each specified atom
number range from 8 to 13. This extensive collection underwent a meticulous assessment based on
their physicochemical properties, followed by a filtration process utilizing docking simulations to
identify the most promising candidates. From this process, six novel molecules were synthesized,
culminating in the discovery of potent inhibitors.

4.1 MODEL PERFORMANCE AND PROPERTIES DISTRIBUATION

The efficacy of our model in the field of small molecule generation was rigorously evaluated through
a set of established metrics: validity, uniqueness, and diversity, complemented by an in-depth anal-
ysis of attributes critical for therapeutic effectivenessBrown et al.[(2019). Validity, which quantifies
the model’s compliance with structural and chemical benchmarks, was notably high, with Scaffold
1 achieving a 94.6% score. This underscores the model’s adeptness at accurately replicating molec-
ular configurations. Uniqueness, a measure critical to the discovery of novel therapeutic agents,
was particularly impressive for scaffold 1, recorded at 80.0%. Moreover, the measure of diversity,
reflecting the structural variance among the generated molecules, stood at 58.0% for scaffold 1,
thereby ensuring a comprehensive exploration of the chemical space.
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Figure 2: Properties distribution of generated molecules. Panels a and b depict the probability distri-
butions for the Quantitative Estimate of Drug-likeness (QED) score and the octanol-water partition
coefficient (LogP), respectively, illustrating the physicochemical profile of generated compounds.
All properties was calculated by RDKitLandrum et al.[|(2013)

Additionally, the model’s capacity to distribute key properties, such as the quantitative estimation
of drug-likeness (QED score), LogP, and topological polar surface area (TPSA), was meticulously
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examined (Figure 2a, Figure 2b). The generated molecules based on scaffold 1, displayed a broad
and heterogeneous distribution of these properties, underscoring the model’s ability to accommodate
various drug-likeness criteria, including lipophilicity and polarity.

4.2 DOCKING ANALYSIS

Figure 3a’s kernel density estimates (KDE) for docking scores substantiate the effectiveness of our
generative model. Notably, a significant number of ligands associated with scaffold 1 demonstrated
lower docking scores, indicative of enhanced binding affinity. This phenomenon manifests as a
left-skewed distribution in the KDE, suggesting a tendency towards more robust ligand-target in-
teractions. Furthermore, the relationship depicted in Figure 3b between docking scores and molec-
ular size, including the number of atoms generated, exhibits a discernible trend. Within this con-
text, larger molecular sizes correlate with lower docking scores, underscoring the spatial limitations
within the back pocket of CSFIR.

To summarize, our generative model has demonstrated superior performance across all critical met-
rics and physicochemical properties. Concurrently, the docking scores have been satisfactory. This
foundation build confidence for next experimental endeavors.
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Figure 3: Distribution of Docking Score. Panel a shows the distribution of docking scores, reflecting
the binding affinity of compounds to the CSF1R protein target. Panel b presents a box plot of the
docking scores across different generation sizes of molecules.

4.3 EXPERIMENT VALIDATION

Upon utilizing guidance from our generative diffusion models and subsequent docking analyses,
we performed docking for compound 1 and used its docking score as a benchmark for screening.
Based on their likelihood of synthetic success, compound 2-7 were selected for synthesis. All six
compounds were then synthesized and evaluated for their CSFIR inhibitory activity. Detailed de-
scriptions of the synthetic and enzyme inhibition assay methodologies are provided in the Appendix.

As indicated in Figure 4, the results showed that all the six compounds exhibited excellent CSFIR
inhibitory activity with IC5q values less than 50 nM, which is higher than the known CSFIR com-
pounds, PL.X647 Zhang et al.|(2013) and GW2580 (Conway et al.|(2005). This represents a remark-
able enhancement in inhibitory efficacy, with the most effective compound achieving more than a
five-fold improvement. Our assay experiment results demonstrate that our methodology successfully
achieved the initial goal of molecular optimization, significantly enhancing inhibitory efficacy.

5 CONCLUSION

Our research introduces generative machine learning as a novel method for molecular optimization
in drug development. We began by constructing our diffusion models for molecule generation,
followed by a validation process using CSFIR as a biological target. We have successfully identified
a suite of novel inhibitors, which showed considerable improvements in potency compared to the
lead compounds.
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Figure 4: Comparative Analysis of Inhibitory Potency. The table in this figure presents novel in-
hibitors (compounds 2-7) with their molecular structures and corresponding inhibitory concentra-
tion (IC50) curves, reflecting the binding efficacy to CSF1R. These novel compounds demonstrate
a range of IC50 values, indicating potent inhibitory activities. This table also displays known in-
hibitors including compound 1, PLX647, and GW2580 for comparison. The IC5( values and activity
profiles highlight the advancements achieved with the novel inhibitors in terms of increased binding
affinity.

Our study provides a valuable tool that can speed up the molecule optimization process, reduce
on resource use, and possibly shorten the time needed for drug development. We are convinced
that applying generative machine learning approaches in the early stages of drug discovery will
significantly benefit the development of new therapeutics.
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A APPENDIX

A.1 THE SYNTHESIS OF COMPOUND 2-7

Scheme 1. The synthesis of compound of 17. Reaction agents and condition: (a) dimethylamine,
EGME, 140 °C, 30 hours; (b) POCI3, toluene, reflux, overnight; (c) 4-aminophenol, K2CO3, Cul,
1,10-phenanthroline, DMF, 90 °C, 3 hours; (d) 5-10, DPPA, Et3N, dioxane, 1000C, 3 hours.
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Figure 5: Scheme 1.

A.2 INHIBITORY ASSAY TEST

The recombinant protein CSF1R (residues L539-C972, CSR-H5543, Acro, China) containing kinase
domain was diluted in kinase buffer (40 mM Tris-HCI, pH 7.4, 20 mM MgCl2, 0.1 mg/mL BSA,
50 uM DTT). The test compound and control were gradient diluted in DMSO. 600 ng CSFIR was
incubated for 40 minutes at room temperature with 25 uM ATP, 2.5 mM MnCl2, 200 pg/mL poly
(4: 1 Glu, Tyr) peptide (P2075, Merck, German), kinase buffer and inhibitors (10 4M-0.1 nM) in
a final volume of 50 pL with 1 % DMSO. Following incubation, 50 uL of kinase activity assay
reagent (SO0155S, Beyotime, China) was added, and the mixture was incubated for 10minutes at
25 °C. The mixture was added in black Opaque 96-well Microplate (3915, Corning, USA) and the
luminescence was measured on SorftMax Pro 7.1.2. Dose-reaction curve was fitted by Prism 9.0
(GraphPad Software Inc, USA).
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