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ABSTRACT

Accurate and generalizable metric depth estimation is crucial for various computer
vision applications but remains challenging due to the diverse depth scales en-
countered in indoor and outdoor environments. In this paper, we introduce Metric-
Solver, a novel sliding anchor-based metric depth estimation method that dynam-
ically adapts to varying scene scales. Our approach leverages an anchor-based
representation, where a reference depth serves as an anchor to separate and nor-
malize the scene depth into two components: scaled near-field depth and tapered
far-field depth. The anchor acts as a normalization factor, enabling the near-field
depth to be normalized within a consistent range while mapping far-field depth
smoothly toward zero. Through this approach, any depth from zero to infinity in
the scene can be represented within a unified representation, effectively eliminat-
ing the need to manually account for scene scale variations. More importantly,
for the same scene, the anchor can slide along the depth axis, dynamically adjust-
ing to different depth scales. A smaller anchor provides higher resolution in the
near-field, improving depth precision for closer objects while a larger anchor im-
proves depth estimation in far regions. This adaptability enables the model to han-
dle depth predictions at varying distances and ensure strong generalization across
datasets. Our design enables a unified and adaptive depth representation across
diverse environments. Extensive experiments demonstrate that Metric-Solver out-
performs existing methods in both accuracy and cross-dataset generalization.

1 INTRODUCTION

Monocular depth estimation from a single image Eigen et al. (2014); Fu et al. (2018); Bhat et al.
(2021); Yuan et al. (2022); Guizilini et al. (2023); Bhat et al. (2023); Ning et al. (2023); Shao et al.
(2023); Yang et al. (2024b) , plays a crucial role in a wide range of computer vision applications,
including robotics Wang et al. (2025), augmented reality Kalia et al. (2019), 3D graphics Kerbl et al.
(2023); Mildenhall et al. (2020) and autonomous driving Burnett et al. (2019). Depth estimation
methods can be broadly divided into two types: relative depth estimation Ranftl et al. (2022); Yang
et al. (2024b) and metric depth estimation Yin et al. (2023); Hu et al. (2024a); Guizilini et al. (2023);
Bhat et al. (2023). Relative depth estimation methods predict the depth of objects in a scene relative
to one another, providing spatial relationships between objects. In contrast, metric depth estima-
tion aims to predict the true, real-world scale of the scene, providing accurate measurements of the
distance between objects and the camera. However, metric depth estimation presents significant
challenges, particularly in terms of scale variation across different datasets Bhat et al. (2023; 2021);
Yuan et al. (2022), which cause metric ambiguity due to mixed-data training. Recently, many meth-
ods have been proposed to address the generalization problem in metric depth estimation by using
pre-input camera intrinsics to simplify the issue, including Metric3D Hu et al. (2024a) and Depth
Any Camera Guo et al. (2025), which have achieved significant performance improvements. How-
ever, for the aforementioned methods, in-the-wild images with unknown camera settings remain an
challenging problem.

Another key difficulties in metric depth estimation is handling the varying depth scales across dif-
ferent in-the-wild scenes, such as indoor and outdoor environments. In indoor scenes, the maximum
depth is typically within several meters, while in outdoor scenes, it can extend to several hundred
meters. This disparity makes it challenging to use a unified normalization approach across diverse
scenes, leading to issues in network training and generalization Bhat et al. (2023). Moreover, even
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within the same scene or image, different regions may require different depth sensitivities, much like
how humans naturally shift their focus between nearby objects and distant backgrounds depending
on the task. A single fixed/learned normalization anchor cannot easily accommodate this dynamic
focus, motivating the need for adaptive anchor strategies in a unified manner.

To address these challenges, we propose Metric-Solver, a novel sliding anchor-based metric depth
representation that dynamically adjusts to varying depth scales. To represent depth values rang-
ing from zero to infinity in a unified manner, we introduce a reference depth as an anchor, which
partitions the scene depth into two distinct components: scaled near-field depth and tapered far-
field depth, with the anchor depth acting as the normalization factor. The near-field branch cap-
tures detailed local geometry, while the far-field branch preserves distant depth information instead
of discarding it entirely, helping the model better distinguish far regions such as backgrounds or
sky (see Fig.1). Specifically, we adopt a one-shared-encoder, two-lightweight-decoder architecture,
where a powerful shared encoder extracts latent features, which are then processed by two separate
lightweight decoder branches to predict scaled near depthand tapered far depthrespectively, ensur-
ing both high inference accuracy and computational efficiency. For depth values within the anchor
range, we apply linear normalization to obtain the scaled near-field depth, ensuring depth values
remain within a consistent range. For depth values beyond the anchor, we use an exponential nor-
malization function to smoothly compress far-depth values, where the anchor depth is mapped to 1
and infinity gradually decays to 0. This transformation preserves depth continuity while allowing
the model to handle far-field depth variations effectively. Besides, by dynamically sliding the anchor
along the depth axis, our method allows the model to adaptively adjust depth scale across both inter-
and intra-scene variations. For instance, a smaller anchor enhances near-field depth fidelity, improv-
ing the accuracy of predictions for closer objects, while a larger anchor better captures far-field depth
relationships. This adaptability not only enhances the model’s precision in different depth regions
but also improves its versatility across various scene scales.

We validate our method on various benchmark datasets, including both indoor Silberman et al.
(2012); Koch et al. (2018); Roberts et al. (2021); Song et al. (2015) and outdoor scenes Geiger
et al. (2013); Cabon et al. (2020); Vasiljevic et al. (2019); Ros et al. (2016), to assess its robustness
and generalization capability. Extensive experiments demonstrate the model’s strong performance
across diverse datasets and its ability to handle zero-shot settings. Fig.4 in Appendix A shows a
gallery of our prediction results across various scenes. Our results emphasize the adaptability of the
sliding anchor-based depth estimation approach, which consistently delivers accurate metric depth
predictions across a range of scene scales.

To summarize, we present the following key contributions:

• We propose a novel framework, i.e. the sliding anchored method, which effectively models
metric ambiguity in in-the-wild images with unknown camera settings.

• We design a one-shared-encoder, two-lightweight-decoder architecture that effectively
bridges the varying depth scales across indoor and outdoor scenes.

• Our method demonstrates strong generalization ability across various benchmark datasets,
achieving state-of-the-art (SOTA) performance on all benchmarks.

2 RELATED WORKS

2.1 RELATIVE DEPTH ESTIMATION

Relative depth estimation focuses on predicting the depth relationships between objects in a scene
rather than their absolute distances. This approach is widely used to handle the high dynamic range
of depth distributions in indoor and outdoor environments, where depth values can vary significantly
due to differences in scene structure, lighting, and camera intrinsic parameters Yuan et al. (2022).
To address these challenges, many methods Lee & Kim (2019); Ranftl et al. (2022); Birkl et al.
(2023); Ranftl et al. (2021); Mertan et al. (2022) normalize depth values and use them as learning
targets for neural networks. In traditional depth estimation algorithms Saxena et al. (2005); Nagai
et al. (2002); Michels et al. (2005), they typically rely on dense depth regression using hand-crafted
features. However, due to the limited expressiveness of these features, such methods struggle in
complex environments and low-texture regions, resulting in poor depth estimation performance.
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Deep-learning-based depth estimation approaches can be broadly categorized into discriminative
models that employ depth regression decoders Guizilini et al. (2023); Bhat et al. (2023); Ranftl et al.
(2021; 2022); Ning et al. (2023); Patil et al. (2022); Yang et al. (2024b) and generation modelsKe
et al. (2024); Gui et al. (2024); Fu et al. (2024), which leverage diffusion modelsRombach et al.
(2022) for depth prediction. In discriminative models, powerful backbone networks Oquab et al.
(2023) extract multi-scale features from the image, and the decoder decodes the depth information.
Eigen et al Eigen et al. (2014) used scale-invariant loss to train relative depth estimation networks,
allowing the network to focus on predicting the relative order of pixels’ depths rather than being
constrained by the absolute scale of the scene. Some works improve depth estimation accuracy
by introducing additional priors such as segmentation maps Zhang et al. (2018). To address scene
generalization and edge blurring issues, the Depth Anything series Yang et al. (2024c; 2025) use
semi-supervised strategies to complete multi-scene learning on large datasets, significantly enhanc-
ing the network’s ability to refine depth at scene edges by incorporating synthetic datasets Roberts
et al. (2021); Cabon et al. (2020). In generative models, Marigold Ke et al. (2024) encodes RGB
images and depth separately into latent space, uses the latent code of RGB as a condition, and de-
noises the noisy latent code of depth. The depth is then decoded via a pretrained VAE Kingma et al.
(2013), achieving accurate depth estimates. Thanks to the visual priors of pre-trained diffusion mod-
els Rombach et al. (2022), sharper depth edges are obtained. Later works such as Depth Crafter Hu
et al. (2024b) and Depth Any Video Yang et al. (2024a) extend this approach to video depth gen-
eration tasks. However, relative depth estimation still faces significant limitations in downstream
tasks such as environmental perception and 3D reconstruction Kerbl et al. (2023); Mildenhall et al.
(2020); Yao et al. (2020) due to the absence of absolute scale information.

2.2 METRIC DEPTH ESTIMATION

Compared to relative depth estimation, metric depth estimation Patil et al. (2022); Ning et al. (2023);
Ranftl et al. (2021); Bhat et al. (2023); Guizilini et al. (2023); Yin et al. (2023); Hu et al. (2024a)
has greater application value due to the presence of precise scale information. Some approaches Yin
et al. (2023); Hu et al. (2024a); Guo et al. (2025) consider the uncertainty in depth caused by cam-
era intrinsics and introduce camera intrinsic parameters to transform the perspective image into an
intrinsic-independent space for depth estimation, thereby mitigating the uncertainty introduced by
camera intrinsics. However, the requirements on camera intrinsics during training or inference limit
the applicability of such methods on large-scale data, such as images generated by AI or images
with unknown camera intrinsics.

Therefore, some methods explore monocular metric depth estimation from a single image without
requiring camera intrinsics Bhat et al. (2021; 2022; 2023); Yang et al. (2024c); Yuan et al. (2022);
Lee et al. (2019); Piccinelli et al. (2024); Bochkovskii et al. (2025). While these methods achieve
strong in-domain performance by overfitting to specific datasets, they typically require manually
setting the maximum truncation depth for each domain. Due to limited training diversity, they
struggle to generalize across indoor and outdoor scenes and lack zero-shot capability, resulting in
lower accuracy for unseen environments. Additionally, some works Zhu et al. (2024) decouple the
relative depth map prediction from the absolute metric scale prediction, combining them to produce
the final metric depth map. Some studies Bhat et al. (2022; 2021); Shao et al. (2023) argue that
direct depth regression across a large depth range is challenging, and thus, manually set maximum
depths in a single scene, then, the range from 0 to the maximum depth is adaptively divided into
different depth bins. Each pixel’s depth value is classified, and the classification results are weighted
to obtain smooth depth results. However, due to the manual setting of the maximum depth, these
methods often face degraded generalization across datasets or across indoor and outdoor scenes. In
this paper, we propose a sliding anchor-based representation to normalize depth from zero to infinity
in a unified manner, eliminating the need for manually defining the scene’s maximum depth. This
enables our method to scale to larger datasets and achieve improved generalization.

3 METHOD

In this section, we describe our sliding anchor-based approach for monocular metric depth estima-
tion. We first introduce the key idea behind the anchor-based depth representation (Sec. 3.1) . Then,
we present the design of sliding anchor to enable accurate and scalable depth estimation across di-
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Concatenation

Re-projection and Fusion

RGB image I

ei

anchor mask msn

near-field depth dsn

far-field depth dtf

fusion depth dw

danchor

(a) Image encoding (b) Anchor pool (c) Two-branch decoding (d) Depth fusion

Figure 1: Method Overview. Starting with an input image, (a) we use DINOv2 (Oquab et al. (2023))
to extract latent features. (b) These features are combined with a randonly sampled anchor depth
from an anchor pool during training and passed into a two-branch decoder. The anchor separates
near and far regions at the pixel level via an anchor mask msn. (c) The decoder predicts the near
depth dsn, anchor mask msn, and far depth dtf . (d) The final depth is obtained by fusing the two
depth maps using the mask.

verse scenes (Sec. 3.2). Finally, we outline the training loss functions used to optimize the model
(Sec. 3.3). An overview of our method is shown in Fig. 1.

3.1 ANCHOR-BASED DEPTH REPRESENTATION

Given an input image I , the first step of our method is to utilize a large image encoder, to extract
latent features from the input image. These features serve as a high-level representation of the
image, capturing important information about the scene. Then, the encoded latent features, along
with sampled anchor embedding, are processed by two decoding branches: (1) scaled near depth
and (2) tapered far depth, which can formulate a complete depth prediction for the input image.
Furthermore, the anchor depth dynamically adjusts along the depth axis, allowing the model to
adapt to different scene scales, ensuring more flexible and accurate depth estimation and better
generalization across diverse environments. Next, we will introduce each components one by one.

Scaled Near Depth The first branch generates the normalized near-field depth dsn(x, y) ∈ [0, 1],
where x, y represent the pixel coordinates in the image. For ground truth (GT) depth d(x, y) ∈
[0,∞] at pixel (x, y) lies within the anchor depth danchor, we define the normalized near-field depth
dsn ∈ [0, 1] as:

dsn(x, y) =
d(x, y)

danchor
, 0 ≤ d(x, y) ≤ danchor (1)

During training, we directly supervise the predicted near-field depth dsn(x, y) using the GT depth
dsn(x, y) in the corresponding near-field regions. However, beyond the reference anchor depth,
ground truth supervision is absent, making predictions in these areas unreliable and unstable. This
lack of supervision leads to ambiguities in distinguishing valid regions of the scaled near-depth rep-
resentation during inference, reducing the model’s robustness in generalization. Thus, we introduce
an additional mask prediction head in this branch, as shown in Fig. 1 (c). Specifically, at the final
layer of this branch, before the final depth prediction, we add a linear projection layer that maps the
feature into a probability map between 0 and 1 as msn(x, y), and computes the binary cross-entropy
loss against the GT valid mask msn(x, y). During inference, we apply a threshold of 0.5 to obtain
the binary mask. This binary mask indicates the valid areas of the scaled depth prediction: the valid
areas are assigned a value of 1 (true), and the invalid areas are assigned a value of 0 (false). By
incorporating this mask prediction, the model can effectively differentiate between valid and invalid
depth regions, leading to more stable and reliable depth estimation. Formally, we define the GT
valid mask msn(x, y) for the scaled near-depth branch as:
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msn(x, y) = I(d(x, y) ≤ danchor) (2)

where I(·) is the indicator function.
By incorporating this mask prediction mechanism, we ensure that both branches focus on the most
reliable parts of the scene, resulting in more accurate and robust depth predictions.

Tapered Far Depth The second branch generates the tapered far-field depth dtf(x, y) ∈ [0, 1] ,
which captures depth information beyond the anchor depth danchor. The corresponding depth range
is [danchor,∞]. In previous methods (e.g., ZoeDepthBhat et al. (2023)), depth values exceeding the
maximum normalization threshold are often discarded during training, resulting in a loss of valuable
geometric information at test time. For example, this can cause the model to misinterpret distant
regions, such as failing to distinguish between actual far-field structures and background sky.

To normalize these far-field GT depths d(x, y) into a consistent range, we apply an exponential nor-
malization function with a negative exponent, ensuring that the anchor depth is mapped to 1, while
far depths gradually decay to 0 in a smooth and continuous manner. The normalization function is
defined as:

dtf(x, y) = e−k(d(x,y)−danchor), d(x, y) ≥ danchor (3)
where k is a hyperparameter that controls the rate of depth attenuation beyond the reference anchor
depth. In our implementation, we set k = 0.025 to achieve a smooth and stable depth transition.

Depth Re-projection and Fusion After the two branches generate normalized depth representa-
tions, they are reprojected into real-world depth values and fused to obtain a complete depth predic-
tion in real-world scale, denoted as dw(x, y) ∈ [0,∞]. First, we compute the inverse transformations
of dsn and dtf to get dwsn and dwtf in real-world scale using the reference anchor danchor as the scaling
factor.

dwsn(x, y) = dsn(x, y) · danchor (4)

dwtf (x, y) =
− ln dtf (x, y)

k
+ danchor (5)

Then, these two depth components are fused using the mask msn(x, y):

dw(x, y) = msn(x, y) · dwsn(x, y) + (1−msn(x, y)) · dwtf (6)

3.2 SLIDING ANCHOR

The core idea of our representation is to use a reference depth as an anchor to normalize depth from
zero to infinity in a unified manner. To achieve robust generalization across varying scene scales, we
construct an anchor pool that spans from near to far, consisting of a set of learnable embeddings:

Eanchor = {e1, e2, ..., eN} (7)

where ei represents the embedding corresponding to a specific anchor depth danchor,i, and N is the
total number of anchor depths in the pool.

During training, we randomly sample an anchor depth danchor for each input image and use its corre-
sponding embedding eanchor to modulate the depth normalization process. We expand eanchor to match
the spatial size of the DINO feature map and concatenate it channel-wise with the feature, which
then serves as the inputs of the near and far decoders (See Fig. 1 (b)). This approach allows the
model to learn how to adjust depth predictions based on varying scene scales, significantly improv-
ing generalization across diverse environments. At inference time, the choice of anchor embedding
allows us to control the network’s focus on different depth ranges. Specifically: (1) Near-field em-
bedding: If a smaller anchor depth is selected, the network prioritizes closer objects, yielding higher
resolution depth estimates for the near-field. This is because a smaller danchor increases the effective
resolution within the [0,1] normalized range. (2) Far-field embedding: If a larger anchor depth is
used, the model extends its focus to distant objects, better capturing depth variations in far regions.

By leveraging anchor embeddings, our approach enables the model to adaptively adjust depth esti-
mation across inter- and intra- scenes with different depth scales, improving accuracy and flexibility
in real-world applications. For further discussion on the use of sliding anchors from the perspective
of network capacity, please refer to Appendix D.
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3.3 TRAINING

During training, we optimize the model using three distinct loss components derived from both
branches, including a depth loss for each branch and a mask loss to distinguish valid regions.

Scaled Near Depth Loss The scaled near depth loss, denoted as Lsn, measures the difference
between the predicted scaled near depth dsn(x, y) and the ground truth dsn(x, y). We use the L2

loss to compute this difference:

Lsn =
∑
x,y

(
dsn(x, y)− dsn(x, y)

)2 ·msn(x, y) (8)

Tapered Far Depth Loss Similarly, the tapered far depth loss, denoted as Ltf , measures the
difference between the predicted depth dtf (x, y) and the ground truth depth dtf (x, y):

Ltf =
∑
x,y

(
dtf (x, y)− dtf (x, y)

)2 · (1−msn(x, y)) (9)

Scaled Near Depth Mask Loss The mask loss for the scaled depth branch, denoted as Lmask,
is computed using binary cross-entropy (BCE) loss between the predicted mask msn(x, y) and the
ground truth msn(x, y). The BCE loss can be expressed as:

Lmask =
∑
x,y

BCE(msn(x, y),msn(x, y)) (10)

Total Loss The total loss for the model is the sum of the three losses from both branches:

Ltotal = λsn ∗ Lsn + λtf ∗ Ltf + λm ∗ Lmask (11)

where λsn, λtf , and λm are set to 1.0, 1.0, and 0.05, respectively, to balance the contributions of the
three corresponding loss components, respectively.

This comprehensive loss function allows the model to jointly optimize for accurate depth predictions
and reliable mask predictions, ensuring that the model focuses on valid regions of the depth map
while making robust predictions across varying scene scales.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Our model architecture consists of an image encoder and two decoding branches. The first branch
predicts normalized real depth, while the second branch predicts normalized reversed depth. Both
branches are adapted from the Dense Prediction Transformer (DPT) Ranftl et al. (2021) head to align
with our sliding anchor-based approach. For the image encoder, we use DINOv2 Oquab et al. (2023),
same as DepthAnythingV2 large Yang et al. (2025). The DPT heads are randomly initialized to learn
depth predictions tailored to our method. The training is conducted using the AdamW Loshchilov
& Hutter (2017) optimizer with a learning rate of 5× 10−6, running on 8 NVIDIA H100 GPUs for
a total of 205K steps. And the model is pretrained on a combination of diverse datasets covering a
wide range of scene scales. Please refer to Appendix C for more details.

4.2 COMPARISONS

Zero-shot Generalization To test the generalization performance of different models in zero-
shot indoor and outdoor scenarios, we conducted performance comparisons in 4 datasets: 2 indoor
datasets (iBims Koch et al. (2018) and DIODE Vasiljevic et al. (2019) Indoor) and 2 outdoor datasets
(DIODO Vasiljevic et al. (2019) Outdoor and SYNTHIA Ros et al. (2016)). As shown in Table 1, our
model achieves the best generalization performance across all datasets. This further demonstrates
the effectiveness of our design.
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iBims DIODE Indoor DIODE Outdoor SYNTHIA
Method δ1 ↑ REL ↓ RMSE ↓ δ1 ↑ REL ↓ RMSE ↓ δ1 ↑ REL ↓ RMSE ↓ δ1 ↑ REL ↓ RMSE ↓
AdaBins 0.555 0.212 0.901 0.174 0.443 1.963 0.161 0.863 10.35 0.832 0.350 6.271
BTS 0.538 0.231 0.919 0.210 0.418 1.905 0.171 0.837 10.48 0.863 0.785 4.920
LocalBins 0.558 0.211 0.880 0.229 0.412 1.853 0.170 0.821 10.27 0.901 0.720 5.707
NeWCRFs 0.548 0.206 0.861 0.187 0.404 1.867 0.176 0.854 9.228 0.923 0.468 5.934
ZoeDepth 0.612 0.185 0.732 0.247 0.371 1.842 0.269 0.852 6.898 0.912 0.413 4.762
DAV2 0.512 0.243 0.848 0.311 1.511 6.774 0.192 1.435 10.14 0.936 0.325 4.934

ZoeDepth-NK 0.588 0.192 0.830 0.386 0.331 1.598 0.208 0.757 7.569 0.902 0.824 4.274
Unidepth 0.541 0.193 0.752 0.278 0.479 1.741 0.235 0.781 7.421 0.893 0.475 5.329
DepthPro 0.762 0.181 0.527 0.401 0.363 1.462 0.391 0.613 4.712 0.931 0.341 4.515
ours 0.910 0.111 0.409 0.446 0.279 1.180 0.383 0.656 4.836 0.966 0.153 3.842

Table 1: Zero-shot generalization on indoor and outdoor datasets. Note that methods in the top
block employ separate models for indoor and outdoor scenes, while methods in the bottom block
use a single unified model for inference across all datasets. Our unified model achieves the best or
near-best performance across all datasets, demonstrating the generalization capability.

RGB GT AdaBins Zoedepth Depth Anything UniDepth DepthPro Ours

Figure 2: Qualitative comparisons on the indoor dataset. When dealing with large-scale and
long-distance indoor scenes, our framework achieves better absolute depth recovery.

Comparison in NYU and KITTI Since most metric depth estimation methods are fine-tuned
separately on NYU-V2 Silberman et al. (2012) and KITTI Geiger et al. (2013), these datasets serve
as the primary benchmarks for evaluating indoor and outdoor performance. We finetune the pre-
trained model on these two datasets for 70 epochs and compare our method against state-of-the-art
(SOTA) monocular depth estimation models on NYU-V2 (indoor) and KITTI (outdoor). Because
other methods impose a maximum depth threshold, we limit our evaluation depth range to 10m for
NYU-V2 and 80m for KITTI to ensure a fair comparison.

As shown in Table 2, our single model outperforms the baselines on both indoor and outdoor datasets
(i.e., the second block in each sub-table), even when some baselines are fine-tuned on each dataset
individually (i.e., the first block in each sub-table). This improvement is attributed to our joint
training across multiple datasets, which enhances our model’s generalization ability across diverse
depth distributions. The qualitative visualization experiments can be seen in Fig. 2 and 8 (in
Appendix F) for indoor scenes and outdoor street scenes, respectively. It can be observed that our
approach not only captures details more accurately and achieves the lowest overall error but also
demonstrates the farthest prediction range on the KITTI dataset. Additionally, it effectively handles
complex scenarios such as the sky. See Appendix F for more visual results on additional datasets.

4.3 ANALYSIS

Ablation To ablate the significance of our design choices, we conduct experiments using training
data from vkitti Cabon et al. (2020) and HyperSim Roberts et al. (2021), respectively. We test three
different settings to assess the impact of each component: (1) One head: The architecture employs
a single decoder head, following the same design as DepthAnything, and the output depth is limited
to a specific range (i.e., 80 meters to accommodate both indoor and outdoor environments). (2)
Without mask head: In this setup, we use the reference anchor depth to truncate the predictions and
fuse the predictions naively, without the additional mask prediction head. (3) Two decoder head with
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Method Higher is better ↑ Lower is better ↓

δ1 δ2 δ3 AbsRel RMSE log10

AdaBins-N 0.903 0.984 0.997 0.103 0.364 0.044
NeWCRFs-N 0.954 0.981 0.997 0.113 0.394 0.083
P3Depth 0.898 0.981 0.996 0.104 0.356 0.043
SwinV2 0.949 0.994 0.999 0.083 0.287 0.035
IEBins 0.936 0.992 0.998 0.087 0.314 0.038
ZoeDepth-N 0.955 0.995 0.999 0.075 0.269 0.032
DAV1-N 0.984 0.998 1.000 0.056 0.205 0.024

ZoeDepth-NK 0.952 0.995 0.999 0.077 0.280 0.033
Ours 0.986 0.998 0.999 0.049 0.183 0.021

(a) Comparison on NYU-D dataset

Method Higher is better ↑ Lower is better ↓

δ1 δ2 δ3 AbsRel RMSE log10

AdaBins-K 0.944 0.991 0.998 0.071 3.039 0.031
NeWCRFs-K 0.974 0.997 0.999 0.052 2.129 0.079
P3Depth 0.953 0.993 0.998 0.071 2.842 0.103
SwinV2 0.977 0.998 1.000 0.050 1.966 0.075
IEBins 0.976 0.997 0.999 0.048 2.044 0.076
NDDepth 0.978 0.998 0.999 0.050 2.025 0.075
DAV1-K 0.982 0.998 1.000 0.046 1.896 0.024

ZoeDepth-NK 0.971 0.996 0.999 0.054 2.281 0.082
Ours 0.976 0.998 1.000 0.052 2.281 0.031

(b) Comparison on KITTI dataset

Table 2: Quantitative in-domain metric depth estimation. All compared methods use the encoder size close
to ViT-L. Each sub-table consists of two blocks: the first block shows results from methods fine-tuned on a
specific domain (indoor or outdoor), while the second block presents results from methods fine-tuned jointly
on both domains. The model names suffixed with “N” indicate models specifically optimized for NYU, while
those with “K” denote models optimized for KITTI.

(a) image (b) GT (c) one head (d) w/o mask (e) fix anchor (f) ours

Figure 3: Qualitative comparisons of different ablation settings. Compared with the baseline
settings (c), our full setting (f) allows for effective observing further distances (e.g., sky in the
second row). And the anchor mask-based fusion strategy ensures seamless stitching of near and far
depths (d) and higher depth fidelity in near-range indoor scenes (e) in indoor scenes.

fixed anchor: We adopt only one anchor to validate the significance of the sliding anchor design.
(4) Our full setting: This is the full configuration, including both branches with mask prediction and
anchor depth injection.

Fig. 3 illustrates the qualitative performance. As shown in Fig. 3 (c) (second row), the One-head
model fails to predict depths beyond the predefined maximum depth, leading to information loss.
Removing the mask head cannot produce accurate fusion of the two depth branches (Fig.3 (d)),
while using a fixed anchor results in the loss of fine-grained details (Fig.3 (e)). Table.3a further
presents the quantitative results. Our full setting achieves the best performance across all metrics.
These results demonstrate the effectiveness of the sliding anchor-based depth representation and the
importance of the mask prediction mechanism.

Model setting δ1 ↑ δ2 ↑ REL ↓ RMSE ↓ log10 ↓
one head 0.471 0.698 0.363 3.525 0.176
w/o mask head 0.341 0.813 0.563 10.324 0.321
fix-anchor 0.701 0.917 0.200 2.744 0.085
Ours (full) 0.734 0.935 0.189 2.616 0.071

(a)

20m 80m 120m
Anchor δ1 ↑ REL ↓ δ1 ↑ REL ↓ δ1 ↑ REL ↓

Anchor-1(20m) 0.963 0.066 0.871 0.128 0.771 0.154
Anchor-2(40m) 0.960 0.068 0.917 0.092 0.804 0.147
Anchor-3(80m) 0.953 0.071 0.929 0.096 0.851 0.155

Anchor-4(120m) 0.936 0.086 0.916 0.108 0.908 0.121

(b)
Table 3: Analysis. (a) Ablation studies of model design. (b) Evaluation of different anchor in vkitti.

Anchor Embeddings To evaluate the impact of anchor embeddings, we conduct experiments on
the vkitti Cabon et al. (2020) dataset, using consistent input data while varying anchor embeddings as
depth prediction conditions. Performance is evaluated across different maximum truncation depths.
As shown in Table 3b and Fig. 7 in Appendix B, the model achieves the best results when the
truncation depth matches the anchor depth, indicating that it effectively adapts to different anchor
embeddings and produces optimal predictions when evaluated within the corresponding depth range.
Notably, the model achieves the highest accuracy with the smallest anchor embedding, demonstrat-

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

ing that a smaller anchor improves depth precision for closer objects. Fig. 6 in Appendix B presents
a visualization of the impact of different anchor embeddings, illustrating that as the anchor depth
increases, the valid prediction region (i.e., the fusion mask) of the scaled depth branch expands
accordingly. For more analysis on mask-based depth fusion and mask accuracy under different
anchors, please refer to Appendix B.

Memory Consumption and Efficiency We evaluate the efficiency of our method against
DepthAnything using the same DINOv2 backbone on 512×512 input images with an H100 GPU
(see Table 4). Our dual-decoder design adds only one additional DPT head with 58M parameters,
while sharing the same backbone features that dominate inference time. As a result, the runtime
increase is minimal (approximately 4ms), thanks to the lightweight nature of the DPT head. Over-
all, our dual-decoder method introduces just 8ms time cost, enabling a real-time sliding anchor
mechanism and supporting inference speeds up to 125 FPS (= 1sec/8ms),

Methods Paras Time Memory
DepthAnything(L) 335.3M 28.0ms 1, 820 MB

Ours 393.0M 32.2ms 2, 151 MB

Table 4: Model efficiency and resource consumption.

Anchor Selection Strategy During Inference Our method supports flexible anchor selection at
inference time, enabling dynamic adaptation to various tasks, scenes, and application needs. (1)
For evaluation comparisons, we match the anchor value to the baseline truncation values to ensure
fairness, using small anchor (10m) and large anchor (80m) to evaluate indoor and outdoor scenes,
respectively; (2) For downstream applications, our method supports the selection of any anchor to
generate accurate metric depth values ranging from 0 to infinity according to the task requirements.
Benefitting from the efficiency of our light-weight decoder design (See Table 3b), our method sup-
ports three anchor selection strategies: (1) task-specific selection (e.g., small anchors for indoor
precision, large ones for outdoor range), (2) multi-anchor fusion to improve depth accuracy with
low latency, and (3) dynamic adjustment based on semantic cues from vision-language models.
Further detailed discussions are provided in Appendix E.

An alternative approach is to predict the anchor scale directly from global image features. However,
this typically produces a single global anchor and lacks the flexibility to adapt to varying depth
distributions within the same scene. In contrast, our method introduces a sliding anchor mechanism
that provides a sliding ”anchor bar” and allows users or downstream tasks to flexibly shift attention
from near to far regions based on task/focus demands. Moreover, this interactive process can run in
real time at 125 FPS. This flexibility enables more adaptable inference across diverse settings.

5 CONCLUSION AND LIMITATIONS

In this paper, we proposed a sliding anchor-based metric depth estimation method to address the
challenges of scale variation across diverse environments. Our dynamic sliding anchor allows the
model to adapt to varying depth scales, ensuring precise predictions in both near and far fields. Our
framework leverages a pretrained DINOv2 encoder and two modified DPT heads for depth predic-
tion while incorporating learnable anchor embeddings to seamlessly encode depth reference infor-
mation. Additionally, we introduced a mask prediction mechanism to enhance the robust fusion of
depth predictions from two branches, improving model stability and generalization across datasets.
Extensive experiments demonstrate that our method outperforms existing approaches on both indoor
and outdoor benchmarks, achieving strong generalization without relying on scene-specific assump-
tions such as fixed maximum depths or prior knowledge of the scene type. Our findings suggest that
the proposed sliding anchor-based representation offers a scalable and effective solution for metric
depth estimation across a wide range of real-world applications.

Limitations Metric-Solver is currently designed for single-image input. Extending it to monocular
video metric depth estimation is a meaningful direction for enabling broader and more diverse ap-
plications. Another limitation lies in handling challenging regions such as textureless surfaces and
transparent areas, where depth cues are inherently ambiguous or unreliable. We leave these issues
as important directions for future work.
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A RESULT GALLERY

Figure 4: A gallery of our predictions across various scenarios. The Metric-Solver model ef-
fectively addresses different in-the-wild scenes with unknown camera settings. This model delivers
precise metric depth predictions across a variety of scenarios, including but not limited to indoor and
outdoor scenes, autonomous driving scenarios, and various datasets which are captured by different
cameras. The side bar along each depth map indicates the predicted depth range in meters.

Figure 4 presents a gallery of depth estimation results of our method under different working con-
ditions. Our method can well handle absolute depth estimation and detail preservation in various
scenarios. In the supplementary document, we mainly provide the following contents: (1) the ac-
curacy evaluation of mask prediction, as well as the mask prediction accuracy and depth accuracy
under different anchors; (2) relevant training data; (3) the theoretical analysis on the effectiveness of
sliding anchors; (4) more visualized comparisons on indoor and outdoor test datasets.

B FUSION MASK ANALYSIS

B.1 ACCURACY OF FUSION MASK

The table 5 presents the pixel accuracy of mask predictions using different depth anchor embeddings
across two datasets. The purpose of this table is to validate the effectiveness of the mask fusion
strategy. Specifically, it demonstrates how varying depth anchor embeddings impact the accuracy of
mask predictions, thus evaluating the performance of the fusion strategy in different depth scenarios.
The pixel accuracy is computed by comparing the predicted mask with the ground truth (GT) mask
at the pixel level. The formula for pixel accuracy is as follows:

Pixel Accuracy =
Number of Correctly Predicted Pixels

Total Number of Pixels

Here, the ”correctly predicted pixels” refer to the pixels in the predicted mask that match the corre-
sponding pixels in the GT mask.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Evaluation Metric Pixel Accuracy for Different Depth Anchor Embeddings
Setting H2m H4m H6m H10m H20m V10m V20m V40m V80m V120m

Accuracy 0.9473 0.8935 0.8970 0.9297 0.9594 0.9704 0.9670 0.9714 0.9847 0.9868

Table 5: Mask Prediction Accuracy Results of Different Depth Anchor Embeddings on Two
Datasets. Note: H stands for the Hypersim dataset, V stands for the VKITTI dataset; the num-
bers after H/V represent depth values in meters. For example, H5m means the 5-meter depth anchor
embedding of the Hypersim dataset

Hypersim

Hypersim

Web image

(No gt)
image depth(pred) mask(pred) mask(gt)

Figure 5: Mask prediction visualization. By learning on large scale data, our mask prediction head
performs robustly across various scenes.

Meanwhile, to verify the accuracy and robustness of the fusion mask prediction, the correspond-
ing anchor masks and actual masks were tested under various working conditions. The visualized
comparison is shown in Figure 5, and our mask mechanism can accurately handle various scenarios.

B.2 ACCURACY OF DIFFERENT ANCHOR

To verify the performance gain under different anchors, we not only completed the verification on
the outdoor dataset (as shown in Table 3b) but also conducted tests on the indoor dataset, which is
presented in Table 6. The basic conclusion is consistent with that of the outdoor scenario: when
greater emphasis is placed on the depth accuracy of nearby regions, a closer anchor can be used.
Meanwhile, as illustrated in Figure 6, we show the output of the near-field head and the correspond-
ing fusion mask when different anchors are used in the outdoor scenario.

The advantage of flexibly setting the focus range by sliding anchors and improving absolute depth
is demonstrated in Fig. 7. Our model can achieve robust predictions across various anchors. Mean-
while, when we only focus on the absolute depth within the range of approximately 20 meters, using
a 20-meter anchor can significantly enhance the depth accuracy within this range.

2m 4m 10m
Anchor δ1 ↑ REL ↓ δ1 ↑ REL ↓ δ1 ↑ REL ↓

Anchor-1(2m) 0.771 0.176 0.760 0.173 0.708 0.204
Anchor-2(4m) 0.762 0.182 0.763 0.176 0.712 0.201
Anchor-3(6m) 0.759 0.193 0.734 0.182 0.716 0.198

Anchor-4(10m) 0.761 0.189 0.731 0.201 0.735 0.184

Table 6: Evaluation of different anchor in HyperSim dataset.
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Reference GT (Lidar)

Near depth output Fusion mask

Anchor
10m

20m

40m

80m

Figure 6: Qualitative comparisons of different reference anchor depth.It can be observed that
anchors at different distances allow the near head to precisely focus on depths within different ranges
and provide accurate anchor depth masks.

RGB GT depth in 20m

Anchor 20m Anchor 40m

Anchor 80m Anchor 120m

Figure 7: Absolute Error Map of Depth Estimation for Near-Field Scenes Under Different
Anchors.

C DATASETS

We train our model on a diverse set of both real and synthetic datasets that span a variety of ranges
and scenes, as listed in Table 7. By leveraging this extensive training data, our model is able to
effectively capture the complexities of different environments. As a result, we achieve depth map
estimations that not only have a high dynamic range but also exhibit sharp, well-defined edges. This
allows for more accurate and reliable depth perception across various contexts, enhancing the overall
quality of 3D reconstruction and scene understanding.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Datasets Scenes Depth From Pair Size
ETH3D outdoor real 454
DSEC outdoor real 63931
vkitti outdoor synthetic 20000

MVS-Synth outdoor synthetic 12000
hypersim indoor synthetic 142350

DIML out/indoor real 70030
cityscapes outdoor real 174998

Table 7: Datasets for training. We train our model on real and synthetic datasets across different
ranges and scenes, achieving high dynamic range and sharp-edged depth map estimation.

D NETWORK-CAPACITY VIEW OF SLIDING-ANCHOR NORMALIZATION

Many depth-estimation networks constrain the final output to a fixed numeric range (e.g., [0, 1]).
Under finite representational capacity—effectively K distinguishable output levels due to numerical
precision, gradients, and calibration of the network—the metric resolution depends on how depth
is mapped into this range. A global linear mapping over a large span [0, Zmax] allocates a uniform
step size of roughly Zmax/K meters per level. A sliding-anchor mapping can adjust capacity by
concentrating resolution within an adaptive anchor a range. Intuitively, this mimics human focus
shift, placing fine detail where the task needs it.

Formulation (Near-Field Linear Normalization) Let z > 0 be metric depth and a > 0 an
anchor. Focusing on the near field, we normalize depth linearly:

y(z; a) =
z

a
, z ≤ a, y ∈ [0, 1].

The inverse mapping used at inference/evaluation time is

z(y; a) = a y.

Effective Metric Resolution If the network effectively provides K distinguishable output levels
(granularity ∆y ≈ 1/K), then the metric resolution at depth z is

∆z(z) ≈ ∆y
dy
dz

.

For the near-field linear mapping, dy
dz = 1

a , hence

∆z ≈ a

K
.

Comparison to Fixed Global Linear Normalization Methods that rely on either a fixed maxi-
mum normalization depth for different datasets, or a learnable normalization depth trained across
datasets, ultimately produce a single global normalization depth. This means that during inference,
a test image is normalized using a fixed global depth range, regardless of image-specific depth vari-
ations or task-specific requirements.

With a fixed global range [0, Zmax], y = z/Zmax so dy
dz = 1

Zmax
and

∆z ≈ Zmax

K
.

In contrast, using a near-field anchor a yields ∆z ≈ a/K, enabling finer resolution when a < Zmax.
For example, if finer resolution is required in the near field during inference, a smaller anchor can be
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adopted. Conversely, a larger anchor can be used when a more balanced prediction across the depth
range is desired, as demonstrated in Table 1 in the main paper. This demonstrates the flexibility and
adaptability of our method in accommodating different resolution requirements across depth ranges.

Summary Sliding-anchor normalization provides a principled, zoom-like mechanism to reallocate
network capacity along the depth axis. It enables high near-field precision and far-field stability
within a unified representation, and—by sliding the anchor—adapts to diverse scenes and camera
settings without changing the model’s output range.

E ANCHOR SELECTION STRATEGY

In the evaluation experiments, we adopt anchor depths that match the maximum normalization
depths used by baseline methods to ensure fair comparisons. However, for downstream applica-
tions, a dedicated inference strategy is required to fully leverage the flexibility of our approach.
Below, we outline three representative anchor selection strategies with detailed discussions:

(1) Task-specific selection: the anchor can be chosen based on the specific resolution requirements of
the task. For example, a smaller anchor enables finer resolution in the near field, which is beneficial
for indoor navigation, while a larger anchor provides more balanced coverage, suitable for outdoor
scene understanding. Benefiting from our unified model and shared representations, such anchor
adaptation can be seamlessly applied without retraining or architecture changes.

(2) Multi-anchor fusion: predictions from multiple anchors can be fused to improve robustness
across the entire depth range. As discussed in the efficiency analysis (see Table 4), our lightweight
decoder design allows each inference to run in only 8ms. This enables efficient multi-anchor in-
ference: for example, using four anchors sequentially takes just 32ms, or only 8ms if processed
in parallel. Such fusion not only preserves efficiency but also significantly enhances the quality of
reconstruction results by leveraging complementary depth cues from different anchors.

(3) Agent-based selection: when integrated with a vision-language model (VLM), the system can
dynamically adjust the anchor based on semantic cues, focusing on either near or far regions de-
pending on the context of the same scene. For example, in a robotic manipulation task, the agent
may initially adopt a larger anchor to obtain a global overview of the scene, and later switch to a
smaller anchor to focus on the near field when executing fine-grained actions.

F MORE VISUALIZATION RESULTS

We further present visual comparisons on both indoor and outdoor datasets in Fig.8, Fig.9, and Fig.
10. Our method not only maintains high depth accuracy but also preserves fine structural details, re-
sulting in high-quality scene predictions. Moreover, it generalizes well across diverse environments
using a single model, demonstrating strong adaptability and robustness. This combination of depth
fidelity, detail preservation, and cross-scene generalization distinguishes our approach in terms of
both efficiency and effectiveness.

G EVALUATION METRICS

We evaluate depth prediction in metric depth space d using several standard metrics. Specifically,
we compute:

Absolute Relative Error (REL):

REL =
1

M

M∑
i=1

|di − d̂i|
di

Root Mean Squared Error (RMSE):

RMSE =

[
1

M

M∑
i=1

|di − d̂i|2
] 1

2
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Image

Ours

Zoedepth

Adabins

Depth any thing

Figure 8: Qualitative comparisons of depth predictions on the outdoor dataset KITTI. It can be
observed that our method performs better in predicting details both in the near range and far distance.
To improve visualization clarity, we cropped the part beyond 80 meters, but we still achieve good
predictions for that portion.

RGB GT AdaBins Zoedepth Depth anything UniDepth DepthPro Ours

Figure 9: Qualitative comparisons of depth predictions on the indoor dataset iBims. It can be
observed that our method performs better in predicting details in the near range (e.g., the first row).
Moreover, our predictions for long distances in indoor scenes are more accurate (e.g., the second
row).

Average log10 Error:

log10 =
1

M

M∑
i=1

∣∣∣log10 di − log10 d̂i

∣∣∣
Threshold Accuracy (δn): The percentage of pixels such that

max

(
di

d̂i

,
d̂i

di

)
< 1.25n for n = 1, 2, 3

Here, di and d̂i denote the ground-truth and predicted depths at pixel i, respectively, and M is the
total number of valid pixels in the image.

We cap the evaluation depth at 10 meters for indoor datasets and 80 meters for outdoor datasets.
Final predictions are obtained by averaging the depth map of the original image with that of its hor-
izontally flipped counterpart, and evaluations are performed at the original ground-truth resolution.
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RGB GT AdaBins Zoedepth Depth anything UniDepth DepthPro Ours

Figure 10: Qualitative comparisons on diode. Our test results on the DIODE dataset, which is a
real-world dataset containing both indoor and outdoor scenes, demonstrate that our method achieves
high accuracy in mixed scenes.

Figure 11: 3D Reconstruction based on Depth Estimation We obtain the metric depth of different
scenes through depth estimation and acquire the point cloud information of the scene via back-
projection. This allows us not only to obtain an accurate scale of the scene but also to achieve
absolute depth estimation across different scenes.

H APPLICATION - MONOCULAR RECONSTRUCTION

In monocular surface reconstruction, we use our predicted metric depth maps to directly reproject
the 2D depth information into 3D space. By utilizing the camera intrinsics, we can convert the depth
values to real-world coordinates. This allows us to construct a 3D point cloud of the scene from a
single image. Our approach’s ability to provide accurate and unified depth predictions across varying
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scene scales makes it useful for reconstructing detailed 3D structures from monocular images, even
in scenes with significant depth variations, such as indoor and outdoor environments. Please refer to
Fig. 11 in the supplemental for more details.
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