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ABSTRACT

Open-source reinforcement learning (RL) environments have played a crucial role
in driving progress in the development of AI algorithms. In modern RL research,
there is a need for simulated environments that are performant, scalable, and modu-
lar to enable their utilization in a wider range of potential real-world applications.
Therefore, we present Jumanji, a suite of diverse RL environments specifically
designed to be fast, flexible, and scalable. Jumanji provides a suite of environ-
ments focusing on combinatorial problems frequently encountered in industry, as
well as challenging general decision-making tasks. By leveraging the efficiency
of JAX and hardware accelerators like GPUs and TPUs, Jumanji enables rapid
iteration of research ideas and large-scale experimentation, ultimately empowering
more capable agents. Unlike existing RL environment suites, Jumanji is highly
customizable, allowing users to tailor the initial state distribution and problem
complexity to their needs. Furthermore, we provide actor-critic baselines for each
environment, accompanied by preliminary findings on scaling and generalization
scenarios. Jumanji aims to set a new standard for speed, adaptability, and scalability
of RL environments.

1 INTRODUCTION

High-quality datasets and benchmarks are crucial to the development of AI research (Deng et al.,
2009; Krizhevsky et al., 2012; Bellemare et al., 2013). They allow for coordinated research on
problems that serve as a measure of progress toward shared goals. However, most currently open-
sourced reinforcement learning (RL) environment libraries are not closely tied to practical problems.
Furthermore, in industrial settings operating at scale, these libraries do not provide sufficient flexibility
and scalability to facilitate long-term AI research suitably close to real-world applications.

For RL to be useful in the real world, further research progress is needed. This will require benchmarks
that are: (1) fast, i.e. hardware-accelerated to overcome sequential bottlenecks and allow for faster
experiment iteration; (2) flexible, by allowing easy customization to capture realistic problem settings
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BinPack Cleaner Connector CVRP FlatPack Game2048
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Sokoban Sudoku Tetris TSP

Figure 1: All 22 environments implemented in Jumanji (in alphabetic order) are divided into three
categories. Routing problems: Cleaner, Connector CVRP (Capacitated Vehicle Routing Problem),
Maze, MMST (Multiple Minimum Spanning Tree), MultiCVRP (Multiple-vehicle CVRP), PacMan,
RobotWarehouse, Snake, Sokoban, and TSP (Travelling Salesman Problem). Packing problems:
BinPack, FlatPack, JobShop, Knapsack, and Tetris. Logic games: Game2048, GraphColoring,
Minesweeper, RubiksCube, SlidingTilePuzzle, and Sudoku.

of interest (e.g. intrinsic stochasticity and distribution shift); and (3) scalable, to be able to arbitrarily
set the level of difficulty of an environment, ensuring a more faithful representation of the challenges
that arise in real-world problems.

Although many other popular benchmarks exist such as the Arcade Learning Environment
(ALE) (Bellemare et al., 2013), OpenAI Gym (Brockman et al., 2016), and Gymnax (Lange, 2022),
which satisfy a subset of the above criteria, none of them have managed to cover all three. We believe
it is crucial to fill this gap to help push RL research closer to industrial applications.

In this paper, we introduce Jumanji: a diverse suite of fast, flexible, and scalable RL environments.
Jumanji is organized into three problem categories: routing, packing, and logic. At its core is a set of
NP-hard combinatorial optimization problems (COPs) that closely resemble problems encountered
in the real world. The environment dynamics of these problems seamlessly scale with complexity
allowing for long-term research suitable for real-world industrial applications. Jumanji is written in
JAX (Bradbury et al., 2018), to leverage composable transformations with automatic differentiation
and the XLA compiler for highly efficient RL systems that run directly on GPU or TPU accelerators.
Furthermore, Jumanji promotes flexibility by allowing arbitrary initial state distributions via easily
modifiable reset functions and bespoke generators. We empirically demonstrate the capabilities of
Jumanji through a set of initial experiments. Specifically, we present results on training an actor-critic
agent across all environments, establishing a benchmark useful for future comparisons. We show that
Jumanji environments are highly scalable, demonstrating high throughput in both a single-device and
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multi-device setting. Finally, we illustrate the flexibility of environments by customizing initial state
distributions to study generalization in a real-world problem setting.

The main contributions of this paper are as follows:

1. We introduce Jumanji: an open-source and diverse suite of industry-inspired RL environ-
ments, that are fast, flexible, and scalable.

2. We provide baseline actor-critic agents for all environments.

3. We present initial experiments demonstrating that, unlike existing RL benchmarks, Jumanji
environments offer a high degree of scalability and flexibility.

2 RELATED WORK

Benchmark environments have been pivotal in the development and evaluation of RL algorithms.
OpenAI Gym (Brockman et al., 2016), with its diverse task suite and user-friendly API, has become a
benchmarking standard in the field. Other libraries, such as DMLab (Beattie et al., 2016) for complex
3D environments, and Mujoco (Todorov et al., 2012) for high-fidelity physics simulations, have
enabled researchers to push the boundaries of agent capabilities. However, despite the significant
contributions, these libraries have limitations in computational efficiency and scalability.

Hardware-accelerated Environments A common approach to increasing environment throughput
is through parallelization of the environment itself. Prior work such as EnvPool (Weng et al., 2022)
utilizes multiple CPU cores and C++ based threading of multiple instances of an environment in order
to expedite the bottleneck of sequential simulation steps. GPU-accelerated environments like Nvidia’s
CuLE (Dalton et al., 2019; Dalton & frosio, 2020) and Isaac Gym (Makoviychuk et al., 2021) take a
different approach, leveraging the parallel processing capabilities of GPUs. CuLE provides a CUDA
port of ALE (Bellemare et al., 2013), rendering frames directly on GPU, whilst Isaac Gym provides
an accelerated alternative to Mujoco. Although these environments offer significant efficiency gains,
they are strictly limited to GPUs and cannot be readily extended to other hardware accelerators
(e.g. TPUs). JAX (Bradbury et al., 2018) is a numerical computing library that leverages automatic
differentiation, vectorization, parallelization, and an XLA compiler for device-agnostic optimization.
JAX is utilized in RL environments such as Brax (Freeman et al., 2021), a differentiable physics
engine, Pgx (Koyamada et al., 2023), a collection of board game simulators, Gymnax (Lange, 2022),
a library of popular RL environments re-implemented in JAX, JaxMARL (Rutherford et al., 2023), a
collection of commonly used MARL environments, and Craftax-Classic (Matthews et al., 2024) a
re-implementation in JAX of the open-ended environment Crafter. These environments represent a
significant advance in efficiency but are limited in scope and flexibility.

Combinatorial Optimization Problems (COPs) COPs present a significant area of research in
RL, with many real-world and industrial applications. Examples include the Traveling Salesman
Problem, Bin Packing, the Capacitated Vehicle Routing Problem, and the Knapsack Problem (Bengio
et al., 2021). While there have been substantial advances in related software, such as Google OR
Tools (Google, 2023), there is a noticeable gap in support for RL-based COP solutions. Libraries
such as OR RL Benchmarks (Balaji et al., 2019) and OR-Gym (Hubbs et al., 2020) provide COP
environments that adhere to the standard Gym API, however, they are restricted to run on CPU,
making it difficult to parallelize and scale.

Benchmark Diversity Multiple RL benchmarks have been proposed to facilitate agent general-
ization, such as Procgen (Cobbe et al., 2019), OpenSpiel (Lanctot et al., 2020), BSuite (Osband
et al., 2020), and XLand (Team et al., 2021). Whilst providing challenging scenarios for training,
Procgen and OpenSpiel do not inherently support scaling of the environment dynamics, and unlike
Jumanji, none are designed to utilize hardware accelerators. Lastly, whilst no single benchmark
suite can handle all situations, the ability to extend and create environments is crucial. Unity ML
Agents (Juliani et al., 2020) is extendable and parallelizable via the Unity game engine, but not
optimized for accelerators. Gymnasium aims to standardize Gym (Brockman et al., 2016) but does
not directly provide a base for new environments. Most libraries rely on hard-coded components
that require users to develop new extensions. Jumanji, however, follows a composition-based design,
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allowing for easy modifications of initial state distributions, reset behaviors, level generators, and
rendering.

3 JUMANJI

We introduce Jumanji (v1.0.0), a suite of 22 JAX-based environments, visualized in Figure 1.
These diverse problems rely on a variety of geometries, including grids, graphs, and sets. The
environments are organized into three problem categories: routing, packing, and logic. Many of these
are NP-hard COPs inspired by real-world industry settings. Jumanji leverages JAX to significantly
accelerate and parallelize simulation steps while remaining flexible and allowing for scalable problem
complexity.

This section provides an overview of the library, first introducing the RL setting and then Jumanji’s
application programming interface (API).

3.1 RL PRELIMINARIES

Each Jumanji environment is structured as a Markov decision process (MDP) (Puterman, 1994),
M = (S,A, µ, P,R, γ), where S is the state space, A is the action space, µ is the initial state
distribution, P defines the environment transition dynamics, R is the reward function, and γ is the
discount factor. We can generate trajectories from an MDP by rolling out the environment dynamics.
That is, at time step t, an action at transitions the environment from the current state st to the next
state st+1 as defined by the environment dynamics P , resulting in a reward rt. The objective of an
agent is often to maximize the discounted expected return, given by Eat∼π(·|st)[

∑T
t=0 γ

tr(st, at)],
where γ is the discount factor and π is the agent’s policy.

3.2 API

Jumanji’s interface is lightweight, flexible, and capable of representing a diverse set of RL problems.
It draws inspiration from OpenAI Gym (Brockman et al., 2016), dm_env (Muldal et al., 2019), and
Brax (Freeman et al., 2021). It is flexible in three ways: (1) allowing customization of the initial state
distribution via generators, (2) custom visualization via environment viewers, and (3) custom reward
functions. Below, we introduce the key components of the Jumanji API, including the environment
interface, state, observation, generators, specs, and registry.

Environment Interface The Environment interface defines the blueprint for Jumanji
environments. Each environment must contain the following methods: reset, step,
observation_spec, and action_spec. The API allows for optional render and animate
methods to visualize a state or a sequence of states. For a code snippet demonstrating how to create a
new environment by extending the environment interface, see Appendix A.4. Here, we provide code
to instantiate an environment from the Jumanji registry, reset, step, and (optionally) render it:

1 import jax
2 import jumanji
3

4 # Instantiate a Jumanji environment from the registry
5 env = jumanji.make('Snake-v1')
6

7 # Reset the environment
8 key = jax.random.PRNGKey(0)
9 state, timestep = jax.jit(env.reset)(key)

10

11 # Sample an action and take an environment step
12 action = env.action_spec().generate_value()
13 state, timestep = jax.jit(env.step)(state, action)
14

15 # (Optional) Render the environment state
16 env.render(state)
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State The State is a pytree (e.g. dataclass or namedtuple) that contains all the required information
to transition the environment’s dynamics for a given action. This is a design choice, and as such,
Jumanji environments are stateless i.e. the reset and step methods are functionally pure. This
allows Jumanji to leverage JAX’s transformations (jit, grad, vmap, and pmap) to make the
environments highly scalable. Every state includes a pseudorandom number generator (PRNG) key,
which is used during a potential auto-reset and in the case of stochastic transitions.

TimeStep and Observation The TimeStep contains all the information available to an agent
about the state of the environment at a time step, namely; the step_type (first, mid, or last),
reward, discount, observation, and extras. As such, it is based on the dm_env
TimeStep but with an additional extras field, where environment metrics can be logged that are
neither available to the agent nor part of the state. For Jumanji environments, the Observation is
a JAX pytree, making it amenable to multiple data types.

Generators For a given environment, a generator is used to define the initial state distribution.
Jumanji provides flexibility by allowing the use of custom generators, enabling users to define an
initial state distribution specific to their problem. In most environments, the reset method calls a
generator that returns the initial state. The generator can be specified upon environment instantiation.
The user can choose from a set of pre-existing generators or implement their own generator. If not
specified, a default generator is used.

Specs Inspired by dm_env, Jumanji specifications define the tree structure, shape, data type, and
optionally the bounds of the observations, actions, rewards, and discounts. Jumanji’s Spec class
is more general than its dm_env counterpart, allowing for nested structures. This is achieved by
implementing each spec as a nested JAX pytree composed of a set of primitive specs (Array,
BoundedArray, DiscreteArray, or MultiDiscreteArray) which form the leaves of the
tree while each non-leaf node is itself another nested Spec object. Environments in Jumanji have
their action space described as a spec, which means although current environments have discrete
actions, Jumanji supports both discrete and continuous action spaces.

Registry Jumanji keeps a strict versioning of its environments for the purpose of reproducibility.
This is achieved through a registry of standard environments with their respective configurations. For
each environment, a version suffix is appended, e.g. "Snake-v1". When significant changes are made
to environments, the version number is incremented.

4 JUMANJI BENCHMARK

In this section, we first describe a highly efficient method for training RL agents in Jumanji envi-
ronments. Secondly, we provide details of standard actor-critic baseline agents. Finally, we present
experiments demonstrating the speed and parallelization of Jumanji environments.

4.1 EFFICIENT TRAINING

As described in Section 3.2, Jumanji environments are designed to be stateless, allowing Jumanji to
take full advantage of JAX’s transformations. JAX-based stateless environments provide multiple
benefits. Firstly, we can JIT-compile the full training loop of an agent. This often includes rolling
out the environment to generate trajectories, and then separately updating the parameters of the
agent based on that experience. We provide a throughput ablation in appendix D.2 to demonstrate
the speed-up that arises when removing data transfer between host and device. Secondly, JAX’s
grad allows for efficient computation of gradients using automatic differentiation. Thirdly, JAX’s
vectorization (vmap) can be used to generate rollouts and compute parameter updates in parallel
on a single device. Finally, JAX’s process parallelism (pmap) can be leveraged to parallelize the
computations across multiple devices, where gradients are aggregated across devices using pmean.
Hessel et al. (2021) propose the Anakin architecture for exactly this setting, with an emphasis on
maximizing the utilization of TPU pods, although their approach is general and also applies to
multi-GPU RL training. All the experiments in this paper are implemented using this efficient Anakin
framework.
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Random Actor-Critic Optimal Performance

Figure 2: Learning curves from training an actor-critic agent (A2C) in blue compared to a masked
random policy in red on all 22 Jumanji environments. When possible to determine, the optimal
expected return is shown with a dashed line. Experiments were run with three different seeds, with
the median represented as a blue curve and the min/max as the shaded region.

4.2 ACTOR-CRITIC BASELINE

Jumanji provides an implementation of an A2C (Mnih et al., 2016) agent, built using the DeepMind
JAX ecosystem (Babuschkin et al., 2020). Since Jumanji environments use different geometries (e.g.
images, sets, etc.), the agent relies on environment-specific neural networks, e.g. image inputs may be
fed to a convolution neural network while permutation-equivariant problems may use a transformer
architecture (Vaswani et al., 2017). To promote research using Jumanji, we open-source the algorithm,
the training pipeline, checkpoints, and the aforementioned actor-critic networks which are compatible
with any algorithms relying on a policy or state-value function. Appendix B provides further details
on these environment-specific networks.

To benchmark Jumanji environments, we provide learning curves of our A2C implementation on
all 22 environments. We compare our algorithm to the optimal performance (where possible to
determine) and a random policy that uniformly samples actions from the set of valid actions. Note,
that the optimal performances for TSP, CVRP, and Knapsack are taken from (Kwon et al., 2020).
The experiments were performed on a TPUv3-8 using the Anakin framework. We refer the reader to
Appendix C.1 for more details on the training. In Figure 2, we show the learning curves of the A2C
agent on each of the registered environments (i.e. the default configurations), along with the random
baseline and optimal performance. The experiments were run three times for each of the 22 registered
environments, with the median represented as a blue curve and the min/max as the shaded region.
Although our standard A2C agent improves upon the random baseline, optimality gaps remain in
most environments (i.e., the differences between the A2C and optimal performance) highlighting
challenges in solving combinatorial problems.

4.3 ENVIRONMENT PARALLELIZATION EXPERIMENTS

We present an initial experiment demonstrating the speed of Jumanji environments as we parallelize
the step function. Figure 3a shows how the throughput of the environment step function increases
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(b) A2C training on Connector

Figure 3: Analysis of environment parallelization. (a): Scaling of the effective environment steps
per second (throughput) for each registered environment as the number of parallel environments
increases, on an 8-core TPU-v4. The legend is ordered by the throughput of the rightmost data
point. The results on GPU and CPU are presented in Appendix C.2. (b): Training of an A2C agent
on the Connector environment on a CPU, GPU (RTX 2080 super), and TPU-v4 with a number of
cores varying from 8 to 128. Each training is run for 255M steps. Full training takes weeks on a
CPU, which is why it is not visible on the bottom plot. Performance denotes the proportion of wires
connected (an optimal policy would reach 1.0). See Appendix C.2 for further details.

with the number of environments run in parallel, on a TPUv4-8. To study parallelization on different
hardware, we run a similar experiment on a GPU (V100) and a CPU in Appendix C.2. We compute
the number of steps per second by averaging 50 consecutive actions each taken on 500 environments
in parallel. The cost of the reset function is environment-dependent and in some cases expensive,
therefore, we focus on the scaling properties of the step function and do not reset the environments.
Refer to Appendix E for a discussion on parallelizing environments.

To quantify the benefits of device parallelization, we train an A2C agent on the combinatorial
Connector environment varying the hardware, specifically, CPU, GPU (RTX 2080 super), and TPU
with 8 to 128 cores. Figure 3b shows the approximately linear scaling of convergence speed when
increasing TPU cores, demonstrating efficient parallelization across devices. For example, we can
reach 92% of the optimal performance on Connector-v2 in roughly 1.5h with a TPU-128, compared
to 11.5h with a TPU-8.

5 FLEXIBILITY AND SCALABILITY IN JUMANJI

Jumanji is designed with flexibility and scalability at its core. In this section, we present initial
experiments demonstrating these two key properties. In Section 5.1, we demonstrate the flexibility
of Jumanji environments, by implementing specific initial state distributions via custom generators.
We first discuss why flexibility is required for building robust RL agents for real-world settings, and
showcase it with an initial experiment using multiple generators. In Section 5.2, we discuss how
problem complexity is scalable in Jumanji and present experiments demonstrating its impacts on
agent performance.

5.1 FLEXIBILITY IN JUMANJI

Discussion of Jumanji Generators Training agents on a wide range of data distributions has
been demonstrated to enhance their robustness towards real-world scenarios (Bossek et al., 2019;
Cobbe et al., 2019; Taiga et al., 2023). The flexibility to define the initial state distribution provided
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by generators offers two significant advantages. Firstly, it enables users to train agents on desired
data distributions, by creating one or multiple custom generators to sample from. This is especially
useful for combinatorial problems where there is no canonical instance distribution. Secondly, the
environment dynamics are agnostic to the generator, this allows us to maintain consistent dynamics
while having the flexibility to alter the initial state distribution. This facilitates experimentation and
analysis on different initial state configurations, enhancing our ability to understand a given agent’s
behavior across various scenarios.

Cluster Linear Compression Explosion

(a) TSP generators

Cluster Linear Compression Explosion

(b) Connector generators

Figure 4: Samples from three custom generators: cluster (left), linear compression (middle), and
explosion (right), for TSP and Connector environments. In TSP, gray dots represent cities. In
Connector, the node pairs to be connected are depicted in the same color, and the large and small
blocks indicate the starting and ending nodes, respectively.

Example Generators Here, we provide illustrative examples of possible generators for two envi-
ronments. Specifically, we showcase three different generators for the Traveling Salesman Problem
(TSP) and Connector environments in Figure 4. In both environments, an instance consists of 2D
node coordinates, with the objective being to form a brief cycle (TSP) or connect all same-type node
pairs without overlap (Connector). Problem instances are created using the different generators:
cluster, linear compression, and explosion. The cluster generator allocates points within a specified
radius and center point, the linear compression generator randomly aligns the points along a 2D line
within the space, and the explosion generator pushes the points away from a given reference point in
the space.
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Figure 5: Learning curves of two agents train-
ing on TSP, sampling from a single uniform
generator versus sampling from four gener-
ators (uniform, cluster, explosion, and com-
pression). Lower tour length is better.

Experiments using Multiple Generators We train
two A2C agents on different initial state distributions
for a TSP environment comprised of 50 cities and
evaluate the generalization capabilities of the result-
ing agents. Specifically, one agent is trained using
random uniform instances, while the second agent
samples from a combination of the uniform genera-
tor and the three previously introduced TSP genera-
tors. To evaluate our agents, we create two datasets
from the VLSI TSP Benchmark Dataset (Rohe) 1

that contain real-world problem instances. During
training, we use 102 problem instances to evaluate
the agent’s performance whilst at test time, we use a
larger dataset of 1 020 instances.

Figure 5 shows the learning curves of the two A2C
agents (smaller tour length is better). At test time, on
the larger set of problem instances, the agent trained
on a single uniform generator achieved a mean tour
length of 6.090 (±0.029), whereas the agent trained
on the four generators attained a better average tour
length of 5.815 (±0.025). These results demonstrate that the model trained on a broader data
distribution, facilitated by the inclusion of multiple generators, outperforms the model trained with a
single generator on an unseen, real-world test set and thus, shows better generalization capabilities.
For further experimental details, please refer to Appendix C.3.

1https://www.math.uwaterloo.ca/tsp/vlsi/index.html
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(c) RubiksCube

Figure 6: The learning curves of the A2C agent on varying difficulty levels in three different Jumanji
environments. In Connector, the size of the grid (G) and the number of node pairs to be connected
(N ) are varied. In BinPack, the number of items (N ) is varied. In RubiksCube, the size of the cube
(C) and the number of scrambles made from a solved Rubiks Cube (N ) are varied.

5.2 SCALABILITY IN JUMANJI

Jumanji environments are scalable: each environment is equipped with one or more adjustable
variables (such as the number of cities for TSP or the number of node pairs and grid size for Connector)
that allow for arbitrary complexity. This flexibility is a key attribute of Jumanji environments, as it
enables users to control the problem complexity and examine its impact on the agent’s performance.

Experiments varying Problem Complexity To showcase scalability, we investigate the scaling
properties of an A2C agent on three Jumanji environments: 1) Connector, where we vary the grid
size and the number of node pair that need connecting; 2) BinPack, we vary the number of items to
pack; 3) RubiksCube, we vary the size of the cube and the minimal number of actions required for a
solution. Appendix C.4 provides additional details on these experiments.

We present learning curves of the three environments with varying difficulty settings in Figure 6. We
observe a strong degradation in performance across all environments as we increase the problem
complexity. For example, in RubiksCube, the hardest problem setting we experiment with leads the
A2C agent to a complete failure to learn.

This experiment provides a proof of concept into scaling the complexity of Jumanji environments. It
highlights how Jumanji can be used to study scaling properties of agents.

6 CONCLUSION

For RL research to be useful in real-world applications, challenging new benchmark environments
are required. To this end, we introduce Jumanji, an open-source and diverse suite of industry-inspired
RL environments that are fast, flexible, and scalable. Written in JAX, Jumanji environments can be
parallelized and seamlessly scale with hardware (see Section 4.3). Flexibility is provided by allowing
users to define custom initial-state distributions via generators (see Section 3.2 and 5.1). At the heart
of Jumanji is a set of NP-hard COPs with scalable environment dynamics that facilitate industry-scale
research. While Jumanji provides industry-inspired environments, capturing the full complexity of
industry situations within a single benchmark remains a challenging task. Nor can a single benchmark
cover the full range of possible industry situations.

Jumanji is open-source, lightweight, and easy to extend. We welcome contributions from the
community. Current environments all have discrete actions, yet Jumanji supports both discrete and
continuous actions. Similarly, Jumanji supports multi-agent environments but only contains single-
agent implementations. Future work will expand the library to include multi-agent implementations,
environments with continuous actions, and more environments representative of real-world problems,
such as in the life sciences, agriculture, logistics, and beyond. By providing a diverse suite of tasks,
Jumanji aims to inspire future research toward RL agents that can learn to solve a wide range of
important problems.
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A THE JUMANJI LIBRARY

The Jumanji library contains 22 diverse RL environments designed to be fast, flexible, and scalable.
These environments are organized into three categories: logic, packing, and routing, and Table
1 shows the environments in each category. The following subsections provide a more detailed
description of each environment and are sorted by the different environment categories.

Table 1: Jumanji Environments.

Logic Packing Routing
Game2048

GraphColoring
Minesweeper
RubiksCube

SlidingTilePuzzle
Sudoku

BinPack
FlatPack
JobShop
Knapsack

Tetris

Cleaner
Connector

CVRP
Maze

MMST
MultiCVRP

PacMan
RobotWarehouse

Snake
Sokoban

TSP

A.1 LOGIC ENVIRONMENTS

GAME2048

Component Description
Objective Reach a high-valued tile, aiming to surpass 2048.
Observation Board, action mask, and step count.
Action Up (0), right (1), down (2), or left (3).
Reset 4x4 grid with a single cell being either 2 or 4.
Reward Sum of merged cells upon taking an action.
Versions Game2048-v1

GRAPHCOLORING

Component Description
Objective Color graph vertices without adjacent vertices sharing the

same color.
Observation Graph, colors of the vertices, action mask, and current node.
Action Integer to represent a unique color.
Reset Graph with 20 nodes and a 0.8 edge probability.
Reward Negative of the number of unique colors used for all vertices.
Versions GraphColoring-v0

MINESWEEPER

Component Description
Objective Clear the board without detonating any mines.
Observation Board, action mask, number of mines, and step count.
Action Coordinates of the square to explore.
Reset Uniformly samples 10 mines in a 10x10 grid.
Reward 1 reward for a square without a mine, and 0 otherwise.
Versions Minesweeper-v0
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RUBIKSCUBE

Component Description
Objective Match all stickers on each face to a single color.
Observation View of the current cube state and the step count.
Action Tuple representing: face, depth, and direction of the turn.
Reset Applies a number of scrambles to a 3x3 solved cube.
Reward Reward of 1 for solving the cube and otherwise 0.
Optimal Return Solved ratio equal to 1.0.
Versions RubiksCube-v0, RubiksCube-partly-scrambled-v0

SLIDINGTILEPUZZLE

Component Description
Objective Move tiles to the adjacent empty slot until the puzzle is sorted.
Observation Puzzle, position of the empty tile, and step count.
Action Up (0), right (1), down (2), or left (3).
Reset Applies a number of random swaps to a 5x5 solved puzzle.
Reward Reward of 1 for newly correct tiles and -1 for newly wrong ones.
Optimal Return prop_correctly_placed ratio equal to 1.0.
Versions SlidingTilePuzzle-v0

SUDOKU

Component Description
Objective Fill N ×N grid with digits 1 to N in each column, row,

and subgrid.
Observation Board, and the action mask.
Action Tuple representing the square coordinates and the digit.
Reset Uniformly samples a puzzle database.
Reward Reward is 1 if the board is correctly solved, and 0 otherwise.
Optimal Return Solved ratio equal to 1.0.
Versions Sudoku-v0, Sudoku-very-easy-v0

A.2 PACKING ENVIRONMENTS

BINPACK

Component Description
Objective Pack boxes into a container to minimize empty space.
Observation Available space, set of unpacked items, and action mask.
Action Tuple representing the EMS (space) ID and the item ID.
Reset Randomly splits a container into different items.
Reward Volume utilization of the container (between 0.0 and 1.0).
Optimal Return Volume utilization equal to 1.0.
Versions BinPack-v2

15
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FLATPACK

Component Description
Objective 2D version of BinPack, place all the available blocks on a grid.
Observation Current grid, available blocks.
Action Block to place, rotation to make, coordinates on the grid.
Reset Random instances guaranteed to be solvable.
Reward Dense, fraction of the grid covered by the block.
Versions FlatPack-v0

JOBSHOP

Component Description
Objective Minimize the time needed to process all the jobs.
Observation Machines, operation details for each job, and action mask.
Action Array containing a job ID for each machine.
Reset Instances with a number of jobs, machines, operations, and

max. duration.
Reward Reward of -1 at each time step if not terminating.
Versions JobShop-v0

KNAPSACK (KOOL ET AL., 2018)

Component Description
Objective Maximize value by packing items within weight constraint.
Observation Weights, value, and packed status of the items.
Action Integer to represent the next item to pack.
Reset Uniformly samples item weights & values from a unit square.
Reward Sum of the values of the items packed in the bag.
Versions Knapsack-v1

TETRIS

Component Description
Objective Score maximum points by clearing lines in Tetris.
Observation Grid, Tetromino, and action mask.
Action Tuple denoting the x-position and rotation of the block.
Reset Randomly samples Tetrominos from a predefined list.
Reward Proportional to the number of lines cleared.
Versions Tetris-v0
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A.3 ROUTING ENVIRONMENTS

CLEANER

Component Description
Objective Clean as many tiles as possible in a given time budget.
Observation Grid, agent location, action mask, and step count.
Action Array denoting an action (left, right, up, down) per agent.
Reset Randomly generates the structure of the grid.
Reward The number of tiles cleaned at each timestep.
Versions Cleaner-v0

CONNECTOR

Component Description
Objective Connect each start and end position and minimize steps.
Observation Grid, action mask, and step count.
Action Array with an action (left, right, up, down, no-op) per agent.
Reset Uniform randomly places start and end positions on the grid.
Reward 1 for connecting agents, −0.03 for non-connected agents.
Optimal Return Ratio of connections equal to 1.0.
Versions Connector-v2

CVRP (KOOL ET AL., 2018)

Component Description
Objective Find shortest route visiting each city once and covering the

demands.
Observation Coordinates, demands, current position, and vehicle capacity.
Action Integer representing the next city or depot to visit.
Reset Uniformly samples coordinates and demands.
Reward Negative tour length of the route.
Versions CVRP-v1

MAZE

Component Description
Objective Reach the single target cell.
Observation Maze, agent and target position, action mask, and step count.
Action Up (0), right (1), down (2), or left (3).
Reset Randomly generates the structure of the maze.
Reward 1 for reaching target, 0 otherwise.
Versions Maze-v0
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MMST

Component Description
Objective Connect all same-type nodes without using the same utility

nodes.
Observation Node types, adjacency matrix, action mask, and current

agent position.
Action Integer array to represent the next node per agent.
Reset Randomly splits the graph into multiple sub-graphs.
Reward 10 for valid connection, −1 for no connection, −1 for invalid

action.
Versions MMST-v0

MULTICVRP

Component Description
Objective Route multiple agents to satisfy the demands of all cities.
Observation Coordinates, demands, time windows, penalties agent

locations, local times, and capacities.
Action Integer array to represent the next city for each agent.
Reset Uniformly samples coordinates and demands.
Reward The negative tour length of all agents combined.
Versions MultiCVRP-v0

PACMAN

Component Description
Objective Collect all the pellets and avoid the ghosts.
Observation Grid, agent location, ghost location, pellet location,

power-pellet locations, and time left for scatter state.
Action Up (0), right (1), down (2), left (3), or no-op (4).
Reset Deterministic generator to start state of the game.
Reward +10 for each pellet, +20 for a power pellet, +200 for a ghost.
Versions PacMan-v0

ROBOTWAREHOUSE (PAPOUDAKIS ET AL., 2021)

Component Description
Objective Deliver as many requested shelves in a given time budget.
Observation View of other agents & shelves, action mask, and step count.
Action No-op (0), forward (1), left (2), right (3), or toggle load (4)

per agent.
Reset Randomly places agents on the grid and uniformly selects

shelves.
Reward Number of shelves delivered during the timestep.
Versions RobotWarehouse-v0
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SNAKE

Component Description
Objective Collect as many fruits without colliding with its own body.
Observation Grid, action mask, and step count.
Action Up (0), right (1), down (2), or left (3).
Reset Randomly places snake’s head position and fruit on the grid.
Reward Reward is +1 upon collection of a fruit and 0 otherwise.
Optimal Return Equal to 143.
Versions Snake-v1

SOKOBAN (WEBER ET AL., 2018; GUEZ ET AL., 2019; SCHRADER, 2018)

Component Description
Objective Box-pushing environment where the goal is to place all boxes on their targets.
Observation Grid, and step count.
Action Up (0), right (1), down (2), or left (3).
Reset Sample from a dataset (Guez et al., 2019).
Reward -0.1 for each step, +1/-1 for each correct/incorrect box, +10 if success.
Versions Sokoban-v0

TSP (KOOL ET AL., 2018)

Component Description
Objective Find shortest route, visit each city once, and return to starting

city.
Observation Coordinates, current position, trajectory, and action mask.
Action Integer representing the next city to visit.
Reset Uniformly samples coordinates from a unit square.
Reward Negative tour length.
Versions TSP-v1

A.4 EXTENDING THE LIBRARY

Below is a template of how to extend Jumanji’s Environment interface to create a new environ-
ment:

1 from typing import Tuple, NamedTuple
2

3 import chex
4 from chex import dataclass
5 import jax
6

7 from jumanji import specs
8 from jumanji.env import Environment
9 from jumanji.types import TimeStep, restart, termination, transition

10

11

12 @dataclass
13 class State:
14 ...
15 key: chex.PRNGKey
16

17

19
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18 class Observation(NamedTuple):
19 ...
20

21

22 class MyEnv(Environment[State]):
23 def __init__(self):
24 ...
25

26 def reset(
27 self, key: chex.PRNGKey
28 ) -> Tuple[State, TimeStep[Observation]]:
29 observation = Observation(...)
30 state = State(key=key, ...)
31 timestep = restart(observation)
32 return state, timestep
33

34 def step(
35 self, state: State, action: chex.Array
36 ) -> Tuple[State, TimeStep[Observation]]:
37 next_state = State(key=state.key, ...)
38 done = ...
39 reward = ...
40 next_observation = Observation(...)
41

42 next_timestep = jax.lax.cond(
43 done,
44 termination,
45 transition,
46 reward,
47 next_observation,
48 )
49

50 return next_state, next_timestep
51

52 def observation_spec(self) -> specs.Spec[Observation]:
53 obs_spec = ...
54 return obs_spec
55

56 def action_spec(self) -> specs.Spec:
57 action_spec = ...
58 return action_spec

After implementing a new environment, one may optionally add it to the registry using
jumanji.register. This allows users to then instantiate the newly implemented environment
with jumanji.make.

1 from jumanji.registration import register
2

3 register(id="MyEnv-v0", entry_point="...:MyEnv", kwargs=...)
4

5 env = jumanji.make("MyEnv-v0")

Wrappers Jumanji has several wrappers that one can use to convert a Jumanji environment to the
API of one’s choice. For instance, one can use JumanjiToDMEnvWrapper to make a dm_env
environment, or JumanjiToGymWrapper to convert it to the gym API.

20
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A.5 MULTI-AGENT RL WITH JUMANJI

Jumanji includes several environments whose action space is multi-dimensional, such as Robot
Warehouse, an existing multi-agent environment (Papoudakis et al., 2021), as well as Connector,
MultiCVRP, MMST and Cleaner. These can be seen as homogeneous multi-agent environments
where each agent is responsible for a scalar action. For instance, Connector has N heads that need to
connect to their target. One can see it as a single-agent environment with an action of shape (N, )
(one value per head), or a multi-agent environment where each head is its own agent and outputs
a scalar action. This is called a homogeneous multi-agent environment because each agent has
the same observation and action shapes. However, Jumanji does lack a true multi-agent training
algorithm, as the intention is only to provide reasonable benchmarks. Instead, when training an agent
on a multi-agent environment, Jumanji trains in the style of centralized training with centralized
execution (Lowe et al., 2017) and treats the environment as a single-agent one.

B NETWORKS

We provide an implementation of an advantage actor-critic (A2C) agent running on each environment
in Jumanji. To do so, the algorithm is made agnostic to the environment and only assumes an
environment-specific actor-critic network that, given an observation, outputs a policy over actions
and a value of the current state. This means these networks can be used for any actor-critic algorithm
that uses state-value functions (e.g. A2C, PPO, TRPO, etc).

Each environment comes with its own set of symmetries such as invariance to index permutations and
is represented using a specific geometry, e.g. grids/images, sets, etc. Some symmetry groups are very
large, e.g. TSP is invariant to permutation of the node indices; such permutations form a group of
size n! where n is the number of cities. It is inconceivable to hope to statistically learn a good policy
for each of these permutations. Instead, we include geometrical biases in the network architectures
to get these symmetries for free. For instance, we make the TSP policy network equivariant to city
permutations and the critic network invariant to those permutations.

We open-source actor-critic networks for each environment in jumanji/training/networks
along with their configs in jumanji/training/configs/env. We list below some of the
symmetries existing in each environment and describe what network is implemented as a consequence.

BinPack The observation is composed of two sets: the spaces (EMS) and the items to pack in
the container. Therefore, we use an independent self-attention layer for each set and then use cross-
attention between each set based on whether an item fits in the corresponding space EMS). Then,
embeddings of both sets are joined using an outer product to ensure permutation equivariance (or
invariance for the critic) within both items and spaces.

Cleaner The grid is first copied n times where n is the number of agents. Each agent sees a version
of the grid where it is colored differently from the other agents. Then, a CNN is vmap-ed over the
different grids and outputs n feature vectors that are all passed through an MLP to output logits for
each agent. The network is equivariant to permutations of agent locations.

Connector The network is similar to Cleaner’s in processing the agent grids independently via a
CNN first. Then, as opposed to Cleaner, the n feature vectors are passed to a transformer so that each
agent can attend to one another in a permutation-equivariant way.

CVRP The network is adapted from Kool et al. (2018) to have a transformer encoder part that
encodes all non-visited nodes and a decoder that includes the current position to determine the next
action. The important symmetry to respect here is equivariance to permutations of nodes.

FlatPack The observation is permutation invariant with respect to the order of blocks. Therefore,
we use a sequence model (transformer) to process all the blocks and obtain a permutation-equivariant
policy. The grid is processed using a small U-net.

Game2048 The observation being an image, we use a CNN with valid padding to prevent modeling
the board edge the same way as empty cells.

21



Published as a conference paper at ICLR 2024

GraphColoring The observation contains nodes and colors. They are represented as two sequences
and the graph-coloring problem is invariant to permutations of both nodes and colors. Consequently,
the provided network uses transformer blocks alternating between self-attention on each sequence
and cross-attention between these sequences. Alternatively, a GNN could be implemented instead
given the graph structure of the problem.

JobShop The observation contains two sequences with respect to which the problem is invariant
to permutations of indices: jobs and machines. Each job is itself a sequence of operations that
have to run on a specific machine. The problem is also invariant to renaming these indices by
permuting machines. To leverage these symmetries, we build a network that does cross-attention
between the operations and the machines they have to run on for each job (parallel across jobs). Then,
these operations sequences are reduced (averaged) to provide a single job embedding for each job.
Cross-attention between jobs and machines leads to the action distribution (resp. value estimation) in
a permutation-equivariant (resp. invariant) way.

Knapsack The problem is invariant to permutations of the items. The implemented network is
a transformer that is also adapted from Kool et al. (2018) and uses self-attention on the remaining
items.

Maze The observation is a grid/image, so we implement a CNN to process the grid before passing
it through an MLP to obtain the action logits or value estimate.

Minesweeper Same as the Maze, Minesweeper has a grid observation processed by a CNN.

MMST The observation contains information about two sequences: the different agents and the
nodes on the graph. The problem is invariant to permutations of agent IDs and node indices. Hence,
we implement a transformer network that alternates between self-attention layers on each sequence
and cross-attention between the agents and their nodes.

MultiCVRP The vehicles and the customers are first encoded. Then a series of self-attention and
cross-attention is used on both sequences.

PacMan We use a CNN to process the grid image. We then concatenate the grid embedding with
diverse observation features like the agent’s position and the ghosts’. A final MLP head projects these
embeddings to a value (critic) or logits (actor).

RobotWarehouse The observation contains a feature vector for each agent. They are processed as
a sequence by a transformer to be equivariant with respect to permutations of agents.

RubiksCube The cube is just flattened and then passed through an MLP. The network would
probably benefit from a more symmetry-preserving architecture for this environment. Yet, it is not
obvious how to do so.

SlidingTilePuzzle We use a CNN to process the grid and then an MLP to project to value and
logits.

Snake The observation is an image with 5 feature maps. Therefore, we process it with a CNN
before using an MLP to output logits or a value estimate.

Sokoban A CNN processes the grid, and a final MLP head projects the grid embedding and the
step count to a value or logits.

Sudoku The environment has many symmetries, including permutations of digits (e.g. 3 and 6
are swapped), permutations of columns within a 3-column group, etc. We design a network that is
equivariant to the first symmetry. We flatten the grid and use this as a feature vector for each digit. We
then do self-attention in the digit sequence to respect the permutation equivariance and then transpose
back to the grid dimension.
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Tetris The observation is composed of the grid and the tetromino. We process the former with a
CNN to which we concatenate the flattened tetromino processed by an MLP. Last, an MLP head
outputs action logits or a value estimate.

TSP The network is almost equivalent to CVRP but does not include a depot node. The symmetry
that is respected is the permutation to node indices.

C EXPERIMENTS

C.1 ACTOR-CRITIC BASELINE

Name Version Wall-clock time
BinPack "BinPack-v2" 30h
Cleaner "Cleaner-v0" 11h

Connector "Connector-v2" 35h
CVRP "CVRP-v1" 3h

FlatPack "FlatPack-v0" 48h
Game2048 "Game2048-v1" 3h

GraphColoring "GraphColoring-v0" 7.5h
JobShop "JobShop-v0" 20 min
Knapsack "Knapsack-v1" 10 min

Maze "Maze-v0" 30 min
Minesweeper "Minesweeper-v0" 3h

MMST "MMST-v0" 6h
MultiCVRP "MultiCVRP-v0" 1.5h

PacMan "PacMan-v0" 4.5h
RobotWharehouse "RobotWarehouse-v0" 6.5h

RubiksCube "RubiksCube-partly-scrambled-v0" 3h
SlidingTilePuzzle "SlidingTilePuzzle-v0" 40 min

Snake "Snake-v1" 1h
Sokoban "Sokoban-v0" 3.5h
Sudoku "Sudoku-very-easy-v0" 3.5h
Tetris "Tetris-v0" 3.5h
TSP "TSP-v1" 2.5h

Table 2: Correspondance between the name reported in figure 3a legend and the environment version.

We train an actor-critic agent on each environment on 3 different seeds in figure 2. For this, we use
the registered versions displayed in table 2, the open-sourced networks described in section B, and
the configs available on GitHub as well.

We use the train.py script from https://github.com/instadeepai/jumanji/
blob/main/jumanji/training/train.py that alternates between evaluating the agent
and training it. Each training epoch consists of a number of num_learner_steps_per_epoch
of collecting n_steps on total_batch_size environments in parallel. If multiple devices
are available, the batch of environments is split between the accelerators, on which trajectories are
collected directly using a local copy of the model. After collecting trajectories, we compute an A2C
loss and update the parameters.

The A2C loss is a weighted mixing of three terms: a policy gradient term −A(τ) log πθ(τ), a critic
term A(τ)2 and an entropy bonus −H(πθ(τ))

We release checkpoints for all the agents on Hugging Face Hub.

C.2 ENVIRONMENT PARALLELIZATION EXPERIMENTS

This section provides more details on the parallelization experiments described in section 4.3. The
first experiment aims to demonstrate how the environment dynamics can be parallelized to increase
the steps throughput, and the second experiment shows how a full training pipeline can benefit from
parallelization by reducing the time to optimality.
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Environment Parallelization This experiment shows how the raw environments’ speed increases
with the number of environments that are run in parallel. The number of environments, gradually
increasing from 128 to 8192, is equally divided among 8 TPUv4 cores. To evaluate the raw speed of
the environment dynamics, only the duration of the actual step function has been considered. Starting
from a generated initial state, the same action is applied 50 times in all the parallel environments. This
procedure is run 500 times to form an epoch. The total number of steps ran in an epoch (50 multiplied
by 500 multiplied by the number of parallel environments) is divided by the epoch duration to obtain
the average number of steps per second. The throughput which is reported in figure 3a is the average
over the second epoch run, the first epoch being longer as biased by the JIT compilation time which
is only run once and thus is not representative of the final environment dynamics performance. The
same experiment is executed on GPU (V100) and CPU as well, and the results are shown in Figure 7.
Table 2 contains the version of each environment in which speed was measured in this experiment.

28 210 212 214 216

Number of Parallel Environments

10
4

10
5

10
6

10
7

10
8

10
9

S
te

ps
 p

er
 S

ec
on

d

Maze
RubiksCube
TSP
Cleaner
Knapsack
Sokoban
Sliding Tile Puzzle
CVRP
Minesweeper
MultiCVRP
GraphColoring
Connector
JobShop
Game2048
Snake
Tetris
Pacman
Sudoku
MMST
RobotWharehouse
BinPack
FlatPack

(a) GPU

28 210 212 214 216

Number of Parallel Environments
10

3

10
4

10
5

10
6

10
7

S
te

ps
 p

er
 S

ec
on

d

Maze
Knapsack
TSP
CVRP
Cleaner
MultiCVRP
RubiksCube
Sokoban
Minesweeper
Sliding Tile Puzzle
JobShop
Game2048
Pacman
GraphColoring
Tetris
Connector
Snake
MMST
Sudoku
RobotWharehouse
BinPack
FlatPack

(b) CPU

Figure 7: Scaling of the effective environment steps per second (throughput) for each registered
environment as the number of parallel environments increases on (a) GPU (Tesla V100) and (b) CPU
(2 cores).

Hardware scaling of A2C training This experiment shows the impact of increasing the training
resources of the Jumanji A2C agent on the Connector-v2 environment. The training was done on
different hardware: 1 CPU with 8 cores, 1 GPU (RTX 2080 super) and a TPU-v4 with a varying
number of cores, i.e. 8, 16, 32, 64, and 128 cores. The training is run for 1000 epochs of 100 learning
steps in which 256 trajectories of length 10 are sampled. The sampling of the trajectories is split
across the available devices, but the number of environment steps sampled per epoch is the same for
all the training settings. The A2C agent is run without normalizing advantages, with a discount factor
of 1, a bootstrapping factor of 0.95, and a learning rate of 2× 10−4. We demonstrate almost linear
scaling in hardware in table 3 by plotting training convergence speed as a function of the number of
TPU cores.

TPU cores 8 16 32 64 128
Convergence time (h) 12.8 4.2 3.2 2.0 1.4

Table 3: Time to reach 92% performance as a function of the TPU cores. This table completes the
experiment presented in figure 3b.

C.3 FLEXIBILITY EXPERIMENTS

This section provides additional details on the experiments conducted using multiple generators for
the TSP problem (5.1).
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Network The networks of the two A2C agents in this experiment are identical, and additionally,
it is the same network used in the baseline experiment for the TSP environment (section 4.2). Full
details of the network used in this experiment can be found in Appendix B.

Training Procedure The A2C agent trained on the single uniform generator was trained in an
identical manner as the A2C agent for the TSP baselines experiment, this includes the same training
hyper-parameters (e.g, the sequence length, batch size, and so forth). The only notable difference
between the training process of the two agents is that the baseline TSP agent is trained on 50
cities whereas the agent for this experiment is trained on 20 cities. The A2C agent trained on the
combination of the uniform generator and the three custom generators (cluster, linear compression,
and explosion). The custom generators were implemented by inheriting the abstract generator class
from their environment and then modifying the call method to return instances with the desired
initial state distribution. This A2C agent is trained in a similar manner with the following difference.
The batch of data used to update the single generator agent contains the agent’s trajectories on only
uniform instances, whereas, the four generators agent’s batch of data consists of its trajectories on
uniform, cluster, linear compression, and explosion instances. In the former, the agent interacts solely
in the environment with the uniform generator, whereas in the latter, the agent sequentially interacts
with four environments each with a specific (uniform or custom) generator. Lastly, both of the agents
were trained for 300 million environment steps.

Evaluation Dataset The dataset was created using the VLSI TSP Benchmark Dataset. There are
102 TSP instances in the VLSI dataset with instance size (i.e., number of cities) ranging from 131
to 744710. Since we conduct this experiment with a TSP environment with 50 cities, we randomly
sample 50 cities from each of the 102 instances to obtain an unseen, real-world validation dataset of
102 instances each with 50 cities. This dataset is used to evaluate the A2C agents during training.
Additionally, we create a larger dataset with 1020 instances by randomly sampling 50 cities from
each of the 102 instances 10 times. This larger dataset is used to create a lower-variance estimate of
the performance of both agents at test time.
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Figure 8: Learning curves of two agents train-
ing on TSP and evaluated on instances sam-
pled from a uniform generator. One agent
(blue) samples from a single uniform gener-
ator versus the other agent (orange) samples
from four generators (uniform, cluster, explo-
sion, and compression). Lower tour length is
better.

Results Section 5.1 presents the results of the two
A2C agents on the unseen, real-world instances, both
during training and at test time, and it can be seen
that the agent trained on a broader initial state dis-
tribution (i.e., four generators agent) outperformed
the agent trained solely on uniform instances. To fur-
ther analyze the two agents, they were also evaluated
on a random set of uniform instances during train-
ing, and Figure 8 depicts the learning curves of the
agents. The aim of this evaluation was to determine
the impact of training on a broader data distribution
when evaluating on in-training distribution instances.
Even though it does appear that the learning curve
of the four generators agent is lower/better than the
single generator agent’s curve, this difference in per-
formance is not significant. Therefore, these results
suggest that training on a wider data distribution does
not lead to any significant improvement or degrada-
tion of performance when evaluating on instances
seen during training.

C.4 SCALABILITY EXPERIMENTS

This section provides additional details on the experiments conducted with varying degrees of problem
complexity for the Connector, BinPack, and RubiksCube environments (5.2).

Networks The agents in the scalability experiments are actor-critic networks which are fully defined
in Appendix B. Therefore, the agents for each environment have identical networks with the sole
difference being the complexity level of the environment they are trained on.
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Training The training process is identical to the baselines experiments, we use the same training
hyper-parameters and use the jumanji/training/train.py script in the same manner as
described in Appendix C.1. The only difference is that for the purpose of the scalability experiments,
we instantiate the Connector, BinPack and RubiksCube environments with different configurations
(whereas for the baselines experiment, the default environment parameters configuration is used).
The code snippets below show the instantiation of the different environments for the three problems.

Connector setup

1 from jumanji.environments import Connector
2 from jumanji.environments.routing.connector.generator import RandomWalkGenerator
3

4 env_1 = Connector(generator=RandomWalkGenerator(grid_size=10, num_agents=2))
5 env_2 = Connector(generator=RandomWalkGenerator(grid_size=10, num_agents=10))
6 env_3 = Connector(generator=RandomWalkGenerator(grid_size=12, num_agents=12))
7 env_4 = Connector(generator=RandomWalkGenerator(grid_size=14, num_agents=14))

BinPack setup

1 from jumanji.environments import BinPack
2 from jumanji.environments.packing.bin_pack.generator import RandomGenerator
3

4 env_1 = BinPack(
5 generator=RandomGenerator(
6 max_num_items=10, max_num_ems=15, split_num_same_items=2,
7 ),
8 obs_num_ems=15,
9 )

10 env_2 = BinPack(
11 generator=RandomGenerator(
12 max_num_items=20, max_num_ems=40, split_num_same_items=2,
13 ),
14 obs_num_ems=40,
15 )
16 env_3 = BinPack(
17 generator=RandomGenerator(
18 max_num_items=30, max_num_ems=60, split_num_same_items=2,
19 ),
20 obs_num_ems=50,
21 )

RubiksCube setup

1 from jumanji.environments import RubiksCube
2 from jumanji.environments.logic.rubiks_cube.generator import ScramblingGenerator
3

4 env_1 = RubiksCube(
5 generator=ScramblingGenerator(cube_size=3, num_scrambles_on_reset=3),
6 )
7 env_1 = RubiksCube(
8 generator=ScramblingGenerator(cube_size=4, num_scrambles_on_reset=3),
9 )

10 env_1 = RubiksCube(
11 generator=ScramblingGenerator(cube_size=3, num_scrambles_on_reset=5),
12 )
13 env_1 = RubiksCube(
14 generator=ScramblingGenerator(cube_size=3, num_scrambles_on_reset=7),
15 )
16 env_1 = RubiksCube(
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17 generator=ScramblingGenerator(cube_size=3, num_scrambles_on_reset=9),
18 )
19 env_1 = RubiksCube(
20 generator=ScramblingGenerator(cube_size=4, num_scrambles_on_reset=5),
21 )

Table 4: Results of the scalability experiments.

Environment Configuration Complexity Level Final
Performance

Connector

G = 10, N = 2 Easy 0.983
G = 10, N = 10 Medium 0.885
G = 12, N = 12 Medium 0.855
G = 14, N = 14 Difficult 0.785

BinPack
N = 10 Easy 0.993
N = 20 Medium 0.934
N = 30 Difficult 0.870

RubiksCube

C = 3, N = 3 Easy 0.987
C = 4, N = 3 Medium 0.829
C = 3, N = 5 Medium 0.838
C = 3, N = 7 Difficult 0.213
C = 3, N = 9 Difficult 0.000
C = 4, N = 5 Difficult 0.000

Results We further describe the results obtained from the scalability experiments in Table 4. This
table shows the different configurations for each environment along with its qualitative definition of
the complexity level and shows the final performance obtained by the A2C agent for each environment
and configuration. It can be seen that with the increasing complexity of the environment, the agent
performance worsens.

D ROLL OUT THE ENVIRONMENT

D.1 ANIMATE AN EPISODE

Below is a code example of how to take random actions in the BinPack environment and an-
imate an episode. This code can run in a notebook or e.g. on Google Colab. Please see
the load_checkpoints.ipynb notebook on https://github.com/instadeepai/
jumanji/blob/main/examples/load_checkpoints.ipynb to load pre-trained agents
or roll out a random policy.

1 %pip install --quiet jumanji[train]
2

3 %matplotlib notebook
4 import jax
5 import jumanji
6 from jumanji.training import networks
7

8 env = jumanji.make("BinPack-v2")
9 reset_fn = jax.jit(env.reset)

10 step_fn = jax.jit(env.step)
11 random_policy = networks.make_random_policy_bin_pack(env.unwrapped)
12

13 @jax.jit
14 def select_random_action(observation, key):
15 """Call `random_policy` which expects a batch of observations."""
16 batched_observation = jax.tree_util.tree_map(
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17 lambda x: x[None], observation,
18 )
19 return random_policy(batched_observation, key).squeeze(axis=0)
20

21 key = jax.random.PRNGKey(0)
22 state, timestep = reset_fn(key)
23 states = [state]
24

25 # Loop until the episode is done.
26 while not timestep.last():
27 # Select an action.
28 action_key, key = jax.random.split(key)
29 action = select_random_action(timestep.observation, action_key)
30 # Step in the environment.
31 state, timestep = step_fn(state, action)
32 states.append(state)
33

34 env.animate(states, interval=100)

D.2 PLACEMENT OF THE ENVIRONMENT ON DEVICE
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Figure 9: Throughput ablation of the full Anakin GPU setup. The experiment uses the Connector
environment and is run on a V100 GPU with a batch size of 2048. The pipeline alternates between
phases of acting (policy inference and environment step) and learning (back-propagation). CPU: The
whole Jumanji pipeline is run on the CPU. GPU (L): The inference and environment step remain on
the CPU but the data is sent to the GPU for the learning step (L). GPU (L + I): Only the environment
step is done on CPU. The inference (I) and the learning step are done on the GPU. GPU (L + I + E):
The Anakin implementation. The whole training pipeline is performed on GPU, now including the
environment step (E).

Implementing environments in Jax achieves its fullest potential when using the Anakin (Hessel et al.,
2021) architecture for fully optimizing device accelerators. The pipeline consists of a synchronous
execution of actor inference (action selection), environment step, and learner step (back-propagation)
all on the device (e.g. GPU, TPU). High throughput is achieved by removing any host-device
communication (e.g. CPU to GPU) during the process. We run an ablation study in figure 9 to study
the speed-up that comes with implementing the environment in Jax and running it on the device.
We use the Connector environment with a batch size of 2048. We observe that most of the speed
gain arises from running the environment on GPU and not transferring data between the host and the
device.
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E DISCUSSION ON PARALLELIZATION

E.1 PARALLELIZING THE DYNAMICS

Although the Environment framework within Jumanji is agnostic to using discrete or continuous
actions, all of the implemented environments use a discrete action space. Having discrete actions
often leads to the impossibility of fully parallelizing the dynamics, i.e. the environment step function.
For instance, in Sudoku, there are 18 possible actions (6 faces and 3 different rotations). Each action
leads to doing a different operation on the cube (3D array). When the step function is vmap-ed, the
discrete choice of selecting the rotation to perform as a function of the action is not parallelizable
within the SIMD (single instruction, multiple data) paradigm. Therefore, vmap-ing the dynamics
leads to transforming the conditional branching to a select XLA statement. This means each of the 18
actions is performed for the whole batch and then the correct rotation is selected based on the action.

When executed, the code below shows how JAX’s jax.lax.cond is transformed into a select
when the function is vmap-ed.

1 import jax
2 import jax.numpy as jnp
3

4 def f(x, bool_):
5 return jax.lax.cond(bool_, lambda a: a+100, lambda a: a, x)
6

7 args = jnp.array(0, float), jnp.array(False)
8 print(jax.xla_computation(f)(*args).as_hlo_text())
9 print("---")

10 print(
11 jax.xla_computation(jax.vmap(f))(
12 jnp.array([0], float), jnp.array([False]),
13 ).as_hlo_text()
14 )

Because the vmap-ed dynamics have to generate all possible actions for the whole batch, it may
explain why some environments end up being slower than expected on a hardware accelerator. Yet,
the use of hardware-accelerated environments really shines when training a neural network as the
policy since we avoid transferring data between the CPU and the accelerator.

E.2 PARALLELIZING AUTO-RESET DURING TRAINING

During training, we roll out a few steps on a batch of parallel environments with an automatic reset
behavior. This means any of the environments that reaches a terminal state is automatically reset to
an initial state (with a discount of 0).

In Jumanji, we implement an environment wrapper called AutoResetWrapper to do this auto-
reset automatically. This wrapper first calls the environment step function, then checks if it reaches
a terminal state and if so, it resets the environment. Similar to explained above, this conditional
statement is not parallelizable when used with vmap. As a consequence, if the wrapper is vmap-ed (for
instance by wrapping it into Jumanji’s VmapWrapper), both branches (resetting and not resetting)
will be executed on all environments across the batch, at every timestep. This may be very slow if the
environment reset is a slow function, which is the case for Rubikscube where the reset function is
literally 100 times as computationally heavy as the step function.

An alternative to calling the reset function at every step is to use Jumanji’s
VmapAutoResetWrapper that is equivalent to vmap-ing the auto-reset behavior but ac-
tually only vmaps the step function and then loop over the environments to reset the ones that reach a
terminal state. This way, if none of the states in the batch has terminated, the wrapper will not call
reset once, compared to the previous wrapper which would still call reset on the whole batch.
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F LICENSE

Jumanji is released under an Apache License 2.0.
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