
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

HIERARCHICAL MULTISCALE DIFFUSER FOR
EXTENDABLE LONG-HORIZON PLANNING

Anonymous authors
Paper under double-blind review

ABSTRACT

This paper introduces the Hierarchical Multiscale Diffuser (HM-Diffuser), a novel
approach for efficient long-horizon planning. Building on recent advances in
diffusion-based planning, our method addresses the challenge of planning over
horizons significantly longer than those available in the training data. We de-
compose the problem into two key subproblems. The first phase, Progressive
Trajectory Extension (PTE), involves stitching short trajectories together to cre-
ate datasets with progressively longer trajectories. In the second phase, we train
the HM-Diffuser on these extended datasets, preserving computational efficiency
while enhancing long-horizon planning capabilities. The hierarchical structure of
the HM-Diffuser allows for subgoal generation at multiple temporal resolutions,
enabling a top-down planning approach that aligns high-level, long-term goals
with low-level, short-term actions. Experimental results demonstrate that the com-
bined PTE and HM-Diffuser approach effectively generates long-horizon plans,
extending far beyond the originally provided trajectories.

1 INTRODUCTION

The ability to envision a long future to plan optimal decisions is a fundamental ability of intelligent
agents operating in highly complex and dynamic environments (Hamrick et al., 2020; Mattar &
Lengyel, 2022). This capability allows agents to avoid suboptimal, short-sighted decisions by
exploring future states that align with long-term goals, even when rewards are sparse (Silver et al.,
2016; Hafner et al., 2019; Hansen et al., 2022). However, learning an effective world model (Ha
& Schmidhuber, 2018) necessary for long-horizon planning is challenging due to the difficulty in
modeling intricate and high-dimensional dynamics.

Traditional approaches to planning rely on learning the forward dynamics model that predicts the
next state from the current state and action. Long-horizon planning is then achieved by iteratively
applying one-step predictions in an autoregressive manner. A major limitation of this approach is the
compounding of errors (Lambert et al., 2022), where minor inaccuracies accumulate over time. This
leads to deviations from the intended trajectory and degraded performance as the planning horizon
extends (Bachmann & Nagarajan, 2024). One way to mitigate this is by introducing a multiscale
hierarchy (Sutton et al., 1999; Chung et al., 2017; Kim et al., 2019), where high-level planners
perform planning on jumpy or temporally abstract states to reduce the frequency of planning steps.

The Diffuser approach (Janner et al., 2022; Ajay et al., 2022) extends Diffusion Models (Sohl-
Dickstein et al., 2015; Ho et al., 2020) to planning tasks and has recently emerged as a promising
paradigm in planning. Diffuser addresses the limitations of traditional autoregressive planning by
removing the forward dynamics model. Instead, it generates an entire sequence simultaneously and
holistically, similar to how image diffusion models generate all pixels. This approach eliminates error
compounding and thus leads to accurate planning, particularly for long-horizon scenarios.

While Diffuser is highly effective for long-horizon planning, it faces notable limitations. A primary
issue is that its planning horizon is restricted by the trajectory lengths present in the training data,
making it challenging to model trajectories longer than those encountered during training. However,
in many applications, the ability to plan beyond the sequence length directly experienced is essential.
In contrast, planning with forward models can extend the horizon to previously unseen lengths by
simply rolling out longer sequences, although this introduces compounding of errors over time. One
possible solution is to collect longer training trajectories, but this significantly reduces practicality. For

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

example, for a robot to plan at a week- or month-long horizon based on visual experiences, it would
require collecting videos of that length and training a Diffuser on those extended sequences—an
approach that is highly impractical with the current Diffuser framework. Furthermore, even if such
long trajectories were collected, it is well-established that planning performance degrades on these
extended sequences (Chen et al., 2024b). Moreover, they would cover only a small fraction of the
possible long-horizon planning space.

In this paper, we pose the following question: How can we plan over horizons significantly longer
than those available in the training data without suffering from compounding errors? For example,
can a robot create a week- or month-long plan using training data that contains only hour-long
experiences? This is the challenge we tackle in this paper, a problem we refer to as extendable long-
horizon planning. To address this, we introduce the Hierarchical Multiscale Diffuser (HM-Diffuser)
framework. Our method tackles extendable long-horizon planning by dividing the problem into two
subproblems: (1) extending the short original trajectories into longer ones through a process we
call Progressive Trajectory Extension (PTE), and (2) efficiently training a diffusion planner on these
extended trajectories by incorporating a hierarchical multiscale structure into the Diffuser framework.

PTE is a novel augmentation method that iteratively generates longer trajectories by stitching together
previously extended trajectories over multiple rounds of extension. HM-Diffuser then trains on these
extended trajectories, breaking down planning tasks across multiple temporal scales, enabling efficient
training and execution even for very long horizons. To overcome the complexity of maintaining
multiple separate diffuser models, we further introduce Adaptive Plan Pondering and Recursive
HM-Diffuser, which uses a single diffuser to recursively handle different plan scales. Our results
demonstrate the effectiveness of this approach in various long-horizon planning tasks, showcasing its
potential to significantly advance efficient long-horizon decision-making.

The main contributions of this paper are as follows: (i) We introduce the problem of extendable
long-horizon planning in Diffuser, where the task is to plan for trajectories longer than those seen
during training. (ii) We propose the Hierarchical Multiscale Diffusion framework, which includes
(ii-a) a novel augmentation method called Progressive Trajectory Extension (PTE) and (ii-b) a new
planning diffuser, such as the Recursive Hierarchical Diffuser. (iii) We introduce new benchmarks,
including the Extendable-Large & XXLarge Mazes, Extendable-Gym-MuJoCo, and Extendable-
Kitchen, as previous benchmarks for Diffusers in the context of extendable long-horizon planning
were not available in the community.

2 PRELIMINARIES

Diffusion Models (Sohl-Dickstein et al., 2015; Ho et al., 2020), inspired by the modeling of diffusion
processes in statistical physics, are latent variable models with the following generative process:
pθ(x0) :=

∫
pθ(x0,M)dx1:M =

∫
p(xM)

∏M
m=1 pθ(xm−1 | xm) dx1:M Here, x0 is a datapoint and

x1:M are latent variables of the same dimensionality as x0. A diffusion model consists of two core
processes: the reverse process and the forward process. The reverse process is defined as

pθ(xm−1|xm) := N (xm−1|µθ(xm,m), σmI) . (1)
This process transforms a noise sample xM ∼ p(xM) = N (0, I) into an observation x0 through a
sequence of denoising transitions pθ(xm−1|xm) for m = M, . . . , 1. Conversely, the forward process
defines the approximate posterior q(x1:M |x0) =

∏M−1
m=0 q(xm+1|xm) via the forward transitions:

q(xm+1|xm) := N (xm+1;
√
αmxm, (1− αm)I) . (2)

The forward process iteratively applies this transition from m = 0, ...,M−1 according to a predefined
variance schedule α1, . . . , αM and gradually transforms the observation x0 into noise N (0, I) as
m→M for a sufficiently large M . Unlike the reverse process involving learnable model parameters θ,
the forward process is predefined without learning parameters. Learning the parameter θ of the reverse
process is done by optimizing the variational lower bound on the log likelihood log pθ(x0). Ho et al.
(2020) demonstrated that this can be achieved by minimizing the following simple denoising objective:
L(θ) = Ex0,m,ϵ

[
∥ϵ− ϵθ(xm,m)∥2

]
. Specifically, this is to make ϵθ(xm,m) predict the noise

ϵ ∼ N (0, I) that was used to corrupt x0 into xm =
√
ᾱmx0 +

√
1− ᾱmϵ. Here, ᾱm =

∏m
i=0αi.

Planning with Diffusion. Two major approaches to planning via Diffusion are Diffuser (Janner
et al., 2022) and Decision Diffuser (Ajay et al., 2022). Diffuser employs the classifier-guided ap-
proach (Dhariwal & Nichol, 2021). It first trains a diffusion model pθ(τ) on offline trajectory data,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

(a) Source and Targets (b) Sample Bridge (c) Outstretch Score (d) Selected Target (e) Stitched

source trajectory target candidate trajectory filtered out candidate selected target trajectory bridge trajectory

Figure 1: Progressive Trajectory Extension (PTE) (a) Source and target trajectories: PTE starts with a
source trajectory and multiple target candidate trajectories.(b) Sampling a bridge trajectory: A pretrained
stitcher is used to roll out the source trajectory and filter out unreachable candidates. (c) Computing the
outstretch score: For the remaining feasible candidates, an outstretch score is computed. (d) Selecting a target
trajectory: A target trajectory is selected based on the outstretch score. (e) Stitching: The stitcher connects the
source trajectory to the selected target trajectory, resulting in a stitched trajectory.

where each trajectory is a series of state-action pairs τ = (s0, a0, s1, a1, . . . , sT , aT). Subsequently,
it trains a guidance model pϕ(y|τ) ∝ exp(Gϕ(x)), with Gϕ(τ) predicting trajectory returns. This
enables the construction of a modified distribution p̃θ(τ) ∝ pθ(τ) exp(Jϕ(τ)). At test-time, sam-
pling from p̃θ(τ) is achieved by biasing the denoising process towards ∇τm

Jϕ of a high-return
trajectory. To ensure the planned trajectory begins from the current state s, Diffuser enforces s0 = s
in each τm during denoising. Typically, only the first action is executed before replanning from the
resulting state s′, though in simpler environments, the entire planned action sequence may be carried
out. For goal-conditioned scenarios with a goal state sg, both s0 = s and sT = sg are set to ensure
the path terminates at the desired goal. Decision Diffuser (DD) differs from Diffuser in two key
aspects: First, DD trains its diffusion model exclusively on state trajectories τ = (s0, s1, . . . , sT),
then employs an inverse dynamics model at := fϕ(st, st+1) to derive actions from the completed
trajectory τ0. Second, DD implements classifier-free guidance (Ho & Salimans, 2022).

3 PROPOSED METHOD

Our goal is to develop a planner capable of handling planning horizons significantly longer than those
in the initial dataset. Our approach consists of two phases. First, we generate longer trajectories from
shorter ones using a technique called Progressive Trajectory Extension. In the second phase, we train
our hierarchical multiscale planner on these extended trajectories to improve long-horizon planning.

3.1 PROGRESSIVE TRAJECTORY EXTENSION

The PTE process performs multiple extension rounds, progressively generating longer trajectories
with each round. Before initiating a Progressive Trajectory Extension (PTE) round, we need to train
a few key modules first. This includes a diffusion model pstitcher

θ (τ), referred to as the stitcher, which
is trained using the base trajectory data D0. Its training process is similar to that of an unconditional
diffuser (Janner et al., 2022), but adapted to operate on state sequences. We also train an inverse
dynamics model at = fa

θ (st, st+1) to infer actions, and a reward prediction model rt = fr
θ (st, at),

assuming that both can be approximated by deterministic functions.

In the r-th extension round, the two input datasets, Sr for source trajectories and T r for target
trajectories, and the pretrained modules are used to produce an output dataset Dr

out containing
extended trajectories. Although for the first round of extension, we always have S1 = T 1 = D0,
our method offers flexibility in selecting the two input datasets Sr and T r for r > 1. For instance,
Sr can be the output of the previous round, i.e., Sr = Dr−1

out , and T r as the initial dataset D0. For
simplicity, we assume that Sr = Dr−1

out and T r = D0 in the following. Within an extension round,
creating a newly extended trajectory operates as follows:

(i) Sampling source and target candidate trajectories. We first randomly sample a source trajectory
τ src ∈ Sr along with a random batch of candidate target trajectories Tc ⊂ T r. Then, we sample a
state ssrc

t from τ src and a set of states {scand
c,t′′}c from each candidate τ cand

c ∈ Tc.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

(ii) Sampling a bridge trajectory. A bridege trajectory τ brg of predefined horizon length of h
is sampled using the stitcher with ssrc

t designated as the starting state of the bridge trajectory:
τ brg ∼ pstitcher

θ (τ |s0 = ssrc
t). The target trajectory τ tgt is then randomly selected from a batch of

candidates Tc,δ ⊂ Tc, consisting of trajectories whose closest distance to any state in the bridge
trajectory is within a threshold δ. Suppose that the state sbrg

t′ from τ brg has the smallest distance to
stgt
t′′ from τ tgt, then we say the stepwise distance, denoted as k, between ssrc

t and the target trajctory
τ tgt is the number of time steps between ssrc

t and sbrg
t′ . To finalize the bridge trajectory, we refine the

bridge trajectory by resampling the trajectory form the stitcher conditioned on ssrc
t and the goal states

from τ tgt: τ rebrg ∼ pstitcher
θ (τ |s0 = ssrc

t , · · · , sk = stgt
t′′ , · · · , sh = stgt

t′′+h−k).

(iii) Stitching all. This yields a new extended trajectory: τ new = [τ src
1:t−1, τ

rebrg
0,t′ , τ tgt

t′′+1:T]. Here, square
brackets denote concatenation. By adding the extended trajectory τ new toDr

out, we complete a process
of generating a new extended trajectory. This process repeats until Dr

out contains the specified number
of total transitions, and then for a specified number of rounds. Consequently, we obtain progressively
longer trajectories as we apply more rounds.

Existing stitching methods often result in two major limitations. First, these methods frequently
produce short or similarly-lengthened trajectories, with longer trajectories generated only by chance.
Second, even when longer trajectories are generated, the path often loops back to the source or
exhibits significant overlap. To address these issues, we introduce the following two methods.

Tail-to-head stitching uses the intuitive approach that trajectory extension is most effective when
stitching the end of the source trajectory to the beginning of the target trajectory. To implement
this, we divide the trajectory into non-overlapping segments and assign probabilities to each using a
categorical distribution, as outlined in Algorithm A.1. State sampling involves selecting a segment
based on the probabilities and then uniformly sampling a state within that segment. This method
is simple yet flexible. For tail-to-head stitching, we assign higher probabilities to the tail of the
source trajectory when sampling ssrc

t ∈ τ src and to the head of the target trajectory when sampling
scand
c,t′′ ∈ τ cand

c . Setting uniform probabilities replicates standard stitching behavior.

Outstretching is introduced to prevent the extended trajectory from looping back to the source. This
is achieved by selecting a candidate from Tc,δ based on the top-K outstretch score: The outstretch
score is defined as the Euclidean distance between the two endpoints—the initial state of the source
and the final state of the target—divided by the step distance, which approximates the actual number
of steps taken in the result extended trajectory. Consequently, trajectories that loop back will have a
low outstretch score, while those that extend in a straight, outward direction will have a higher score.

Linear and Exponential PTE. As discussed earlier, the PTE method allows for flexible input datasets
for sampling source and target trajectories. This flexibility enables different types of trajectory
extensions based on the dataset used. Here, we introduce two approaches. First, Linear PTE, the base
method, where we set Sr = Dr−1

out and T r = D0. As shown in Figure 3, the length of the extended
trajectories increases linearly with each round. Linear PTE is a simple yet powerful extension
approach that can be applied generally. However, due to its nature, it may require multiple rounds of
stitching for large environments. For this reason, we introduce another PTE variant, Exponential PTE,
where both Sr = T r = ∪r−1

r′=0D
r′

out. As shown in Figure 3 and Table A.4, Exponential PTE effectively
extends the source trajectory, where the maximum trajectory length increases exponentially with each
round. Refer to Appendix A.2 for more details.

3.2 HIERARCHICAL MULTISCALE DIFFUSERS

After R rounds of trajectory stitching, we obtain a series of datasets, where the average trajectory
length increases with each subsequent round. We then merge these into a single dataset D containing
trajectories of various lengths. A straightforward approach would be to train a standard Diffuser (Jan-
ner et al., 2022; Ajay et al., 2022) on this dataset. However, because the dataset now includes very
long trajectories, the output dimensionality D of the Diffuser model must scale to accommodate the
longest trajectories. In real-world AI agent scenarios, this could involve a very long sequence like
week- or month-long video sequences, introducing significant computational challenges. In fact, a
recent study (Chen et al., 2024b) has shown that performance tends to degrade with longer horizons.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Unfold

. . .

. . .

. . .
Level

Level

Level

...
. . .

HM-Diffuser

. . .

. . .

Figure 2: Hierarchical Multiscale Diffuser (HMD) utilizes the same model at each level, allowing for efficient
multiscale planning. Assisted by the level classifier fL

ϕ , HMD determines the appropriate resolution of subgoals.
These subgoals are recursively fed back into the model until the entire trajectory is planned.

To address this issue, we observe that the Hierarchical Diffuser (HD) approach (Chen et al., 2024b) is
well-suited to our setting. Therefore, our first strategy is to apply this approach to our extended dataset
generated by the PTE process. Specifically, our planner consists of a hierarchy of L level-planners,
pθℓ(τ) for ℓ = 1, . . . , L. The ℓ-th planner is defined by its jump length jℓ and jump count kℓ. That is,
planner pθℓ is trained on trajectories of length Hℓ = jℓ × kℓ, randomly selected from D. However,
instead of densely utilizing all the states in the trajectory, it only considers every jℓ-th state over kℓ
iterations. This sparse approximation of a trajectory allows the planner to have low output dimensions
for efficient computation while still mataining an effective receptive horizon of Hℓ. We refer to
these intermediate states as subgoals, gℓ1, . . . , g

ℓ
kℓ

. The jump length at the lowest level j1 is set to
1 to produce a short dense plan. The key idea of hiearchical planning is to use the first subgoal of
level ℓ+ 1 to the last goal of the lower level ℓ for ℓ = L− 1, . . . , 1. That is, given the current state
s0, we have the following plan: s0, gℓ1, g

ℓ
2, . . . , g

ℓ
kℓ−1, g

ℓ+1
1 ∼ pθℓ(τ |gℓ0 = s0, g

ℓ
kℓ

= gℓ+1
1). We can

make this condition satisfied by setting Hℓ = jℓ+1. That is, one jump segment of the above layer is
decomposed into kℓ subgoals in the lower layer.

Adaptive Plan Pondering. While effective in leveraging the hierarchical multiscale structure in
planning, the above approach comes with a couple of limitations. The first is the fact that the planning
always starts from the highest level L and goes down level-by-level to obtain the action to execute
finally. It becomes an issue if the final goal is placed much nearer than the highest plan horizon HL,
because it would generate a long detour trajectory to move to the nearby state. To resolve this, we
introduce Adaptive Plan Pondering (APP) by training a pondering depth predictor ℓ̄ = fL

ϕ (s0, sg).
This is straightforward because we know the associated level of each trajectory in D during training.
At test time, it becomes possible to start the planning directly from a lower level, when necessary,
while skipping higher levels. This prevents planning inaccurate detouring and saves computation.

Recursive HM-Diffuser. The second inefficiency in the hierarchical multiscale diffuser described
above is the need to maintain multiple diffuser models pθℓ , each with separate parameters θ1, . . . , θL.
An interesting question, therefore, arises: can we use a single diffusion model to cover all levels of the
hierarchy? While this may not necessarily improve performance compared to the non-shared version,
which has a larger number of parameters, it would significantly reduce the complexity of managing
multiple models. Therefore, it becomes a desirable approach, as long as comparable performance can
be maintained. To address this, we extend the model to recursive hierarchical multiscale planning,
allowing for a single diffusion model to handle the entire hierarchical structure.

We first replace the level-Diffusers, pθ1 , . . . , pθL , by a single level-conditioned diffusion model
pθ(τ |ℓ). Since this model must support planning across all levels, we set the output dimen-
sion of the diffuser to d̄ = max dℓ, where dℓ is the output dimension of the ℓ-th diffuser (i.e.,
dℓ = (kℓ + 1) × dim(st)). If the required output dimension is smaller than d̄, we mask the extra
dimensions. During training, we randomly sample ℓ ∼ uniform(1, . . . , L) and train the parameter-
shared diffuser. For planning, we predict the starting level using an adaptive plan pondering mecha-
nism and initiate planning from that level. After obtaining a sequence of subgoals, the first subgoal
is fed back into the diffuser by setting it as the final goal while decreasing the level indicator by
one: pθ(τ |ℓ, gℓ0 = s0, g

ℓ
kℓ

= gℓ+1
1). Repeating this process implements a form of recursive planning,

where the plan is refined through cyclic iterations of a single diffuser.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

4 RELATED WORKS

Hierarchical Planning. Hierarchical frameworks are widely used in reinforcement learning (RL) to
tackle long-horizon tasks with sparse rewards. Two main approaches exist: sequential and parallel
planning. Sequential methods use temporal generative models, or world models (Ha & Schmidhuber,
2018; Hafner et al., 2019), to forecast future states based on past data (Li et al., 2022; Hafner et al.,
2022; Hu et al., 2023; Zhu et al., 2023a). Parallel planning, driven by diffusion probabilistic models
(Janner et al., 2022; Ajay et al., 2022), predicts all future states at once, reducing compounding errors.
This has combined with hierarchical structures, creating efficient planners that train subgoal setters
and achievers (Li et al., 2023; Kaiser et al., 2019; Dong et al., 2024; Chen et al., 2024a).

Diffusion-based Planners in Offline RL. Diffusion models are powerful generative models that
frame data generation as an iterative denoising process (Ho et al., 2020; Song et al., 2020). They
were first introduced in reinforcement learning as planners by Janner et al. (2022), utilizing their
sequence modeling capabilities. Subsequent work (Ajay et al., 2022; Liang et al., 2023; Rigter et al.,
2023) has shown promising results in offline-RL tasks. Diffusion models have also been explored
as policy networks to model highly multi-modal behavior policies (Wang et al., 2023; Kang et al.,
2024). Recent advancements have extended these models to hierarchical architectures (Wenhao Li,
2023; Chen et al., 2024b; Dong et al., 2024; Chen et al., 2024a), proving effective for long-horizon
planning. Our method builds on this by not only using diffusion models for extremely long planning
horizons but also exploring the stitching of very short trajectories with diffusion models.

Data Augmentation in RL has been a crucial strategy for improving generalization in offline RL.
Previous work has used dynamic models to stitch nearby states from trajectories (Char et al., 2021),
generate new transitions (Hepburn & Montana, 2022), or create entire trajectories from sampled
initial states (Zhou et al., 2023; Lyu et al., 2022; Wang et al., 2021; Zhang et al., 2023). More recently,
diffusion models have been applied for augmentation (Zhu et al., 2023b). Lu et al. (2023) used
diffusion models to capture the joint distribution of transition tuples, while He et al. (2024) extended
this to multi-task settings. Li et al. (2024) used diffusion to connect trajectories through inpainting.

5 EXPERIMENTS

We aim to answer these questions: (1) Can HMD generate plausible trajectories significantly longer
than those in the training dataset using progressive trajectory extension (PTE)? (2) Can it create
feasible plans for tasks requiring much longer planning horizons than those seen in training? (3) Is our
framework still beneficial when long planning horizon is unnecessary? (4) Does it remain effective in
high-dimensional manipulation tasks? To facilitate our analysis, we introduce the Plan Extendable
Trajectory Suite (PETS), featuring tasks from Maze2D, Gym-MuJoCo, and FrankaKitchen.

5.1 ANALYSIS ON THE PROGRESSIVE TRAJECTORY EXTENSION

To address our first question, we conduct illustrative experiments in the Maze2D environment. We
tested the effectiveness of our proposed Progressive Trajectory Extension (PTE) process for long-
horizon stitching in larger mazes. Specifically, we used the Large Maze from D4RL and designed a
new XXLarge Maze (Figure A.6), which we refer to as the Extendable Maze2D benchmark.

Datasets. Since the existing benchmarks do not suit our problem setting, which assumes the target
task cannot be solved using only the short base training data, we created base short trajectories for our
maze benchmark. We began by dividing the maze into subregions of roughly equal size and defining
start and goal locations for each subregion. For data collection, we randomly selected a start-goal
pair within the same region and used a PD controller to collect data, navigating from start state to
the goal state. Following D4RL (Fu et al., 2020), we collected 1 million transitions for each Maze
setting, as depicted in Figure A.6.

Linear PTE and Exponential PTE. As discussed earlier, being a flexible trajectory extension
mechanism, depeding on the input dataset, we can extend the trajectory either linearly or exponentially.
We applied both extention strategies on the collected short base trajectories. The linear PTE method,
as shown in Figure 3, gradually increases trajectory lengths, making it suitable for more stable
trajectory extension. However, it may be less efficient in scenarios requiring long-horizon planning,
such as in the Large and XXLarge mazes. Conversely, the Exponential PTE rapidly extends trajectory

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Tr

aj
ec

to
rie

s

(b) trajectory length across Exponential PTE rounds(a) trajectory length across Linear PTE rounds

Figure 3: Trajectory Length Distribution After PTE Rounds on XXLarge Maze. For each round of
extension, the total number of transitions is restricted to 1M steps. Left: Linear PTE extends trajectory length
at a consistent pace, with the maximum length increasing linearly across rounds. Right: Exponential PTE
rapidly increases trajectory length, generating significantly longer trajectories by Round 4.

(a) Base dataset (b) After Round 1 (c) After Round 2 (d) After Round 3 (e) After Round 4

Figure 4: The Exponential PTE method significantly enhances trajectory length. This figure visualizes
trajectories that pass through the top-left corner of the maze. By the third round of Exponential PTE, the dataset
has extended to cover nearly the entire maze, demonstrating the efficacy of our approach in extending
trajectories.

lengths, as seen in both Figure 3 and Table A.4, offering an effective solution for managing longer
trajectories. Figure 4 provides a progressive view from each round of the Exponential PTE. We can
see that, starting from the top-left corner of the maze, the extended trajectories nearly spans the entire
XXLarge maze more rapidly only after third rounds of extension.

5.2 LONG-HORIZON PLANNING

We now address our second question: Can our hierarchical multiscale planner develop long-horizon
planning capabilities from these extended trajectories?

5.2.1 HM-DIFFUSER ON EXTENDABLE MAZE2D

Datasets. As the exponential PTE show efficient extension ability for long-horizon planning setting,
to collect long-horion extended dataset, we applied 3 round of exponential PTE on the Large Maze
base dataset and 4 round of exponential PTE on the XXLarge Maze base dataset. Subsequently, both
our proposed hierarchical multiscale diffuser (HM-Diffuser) and the baseline models were trained
using these datasets. Following Diffuser, we evaluated performance in two settings: (1) a single-task
setting (Maze2D), where the goal was fixed and the start was randomized, and (2) a multi-task setting
(Multi2D), where both the start and goal were randomized.

Baselines. We evaluate HM-Diffuser in comparison with Decision Diffuser (DD) and Hierarchical
Diffuser (HD) across multiple planning horizons (H = 300, 500, 1000). The planning horizon the
chosen according to number of steps required for an optimal plan to navigate between two most
distant states. For instance, navigating the two farthest points in the Large Maze takes about 500
steps, and in the XXLarge Maze, it takes 1000 steps. Following the evaluation protocal in Diffuser,
the PD controller is used during evaluation. However, to make our result more dependent on the plan
instead of the PD policy, we restricted the use of the PD controller once the agent failed to reach the
goal state within a specified threshold σ after H steps.

As indicated in Table 1, HM-Diffuser consistently outperformed both DD and HD across all tasks. On
the single-task, Large Maze setting, this advantage was particularly noticeable at H=500, where HM-
Diffuser scored 94.1, significantly ahead of DD and HD, which scored 14.3 and 28.2, respectively.
HM-Diffuser maintained robust performance even as the planning horizon increased. In the XXLarge
Maze2D environment at H=500, it scored 47.2, surpassing DD and HD, which scored 25.4 and 23.2

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Maze2D Performance. We compared the performance of DD, HD, and HMD across multiple
horizon lengths. In every case, HMD demonstrated superior performance. Furthermore, HMD maintained
consistent performance across different horizon lengths, highlighting its robustness. In contrast, both DD and
HD experienced significant declines in performance as the horizon lengths increased.

Environment

w/o PTE w/ PTE

H=100 H=300 H=500 H=1000

DD DD HD HMD DD HD HMD DD HD HMD

Maze2D-Large 40.1± 7.5 20.7± 4.5 42.8± 6.1 104.1 ± 8.9 14.3± 2.3 28.2± 3.8 94.1 ± 9.0 N/A N/A N/A
Maze2D-XXLarge 27.9± 9.2 N/A N/A N/A 25.4± 6.8 23.2± 7.0 47.2 ± 10.5 0.4± 0.5 3.8± 1.8 57.8 ± 11.6

Multi2D-Large 31.1± 7.1 18.2± 4.4 26.6± 5.2 35.5 ± 6.7 9.1± 2.4 14.2± 3.1 33.2 ± 6.5 N/A N/A N/A
Multi2D-XXLarge 16.3± 7.6 N/A N/A N/A 10.1± 4.3 21.1± 6.5 38.3 ± 9.2 3.9± 1.7 1.1± 1.3 31.7 ± 8.9

respectively. At H=1000, HM-Diffuser continued to excel with a score of 57.8, while DD and HD
nearly failed. These results confirm that our proposed PTE framework and Hiearchical Multiscale
Diffusers can effectively plan over substantially longer horizons than those seen during training.

5.3 OFFLINE REINFORCEMENT LEARNING

Having demonstrated efficiency and effectiveness on the Extendable-Maze2D tasks, it would be
desirable for our proposed framework to also be beneficial in tasks where long-horizon planning is
not necessary. Consider a scenario where we have only trajectory snippets, from which solving the
target task is nearly impossible. To answer this, we will evaluate the performance of the HMD on the
Extendable-Gym-MuJoCo tasks and Extendable-Kitchen tasks in this subsection.

5.3.1 HM-DIFFUSER ON EXTENDABLE GYM-MUJOCO

Datasets. Since the original D4RL (Fu et al., 2020) dataset does not align with our problem setting,
we introduce a new task called Extendable-Gym-MuJoCo. This benchmark provides only the short
base trajectories, which are obtained from the original D4RL offline dataset. Specifically, the original
D4RL Gym-MuJoCo offline dataset was split into fixed-length segments. Considering the short-
horizon nature of this task, we choose a length of 50. The combined short and extended trajectories
form the training dataset for our hierarchical multiscale diffuser and baseline models.

Baselines. We conducted two experimental settings to evaluate our approach on the D4RL Gym-
MuJoCo benchmark as shown in Table 2. Initially, we trained the Decision Diffuser (DD) and
Hierarchical Diffuser (HD) on short trajectories without progressive trajectory extension (w/o PTE)
to establish baseline performances. The HD model benefits from a larger receptive field provided by
hierarchical planning, whereas the DD model is limited to a flat planning structure. In our second
experimental setting, to test our progressive trajectory extension (w/ PTE) process, we trained DD
and HM-Diffuser (HMD) without recursion on an extended dataset. Additionally, to evaluate the
effectiveness of our proposed recursive HMD, we also conducted experiments on HMD with recursion
on the same extended dataset. For HMD without recursion, separate diffusion planners were trained
for each level, whereas the recursive HMD variant employed a single-level conditioned diffusion
model for hierarchical multiscale planning. Planning horizons were set at H=50 for short segments,
and extended to H=100 for longer trajectories in the w/ PTE setting to capture a wider receptive field.

HM-Diffuser achieves the best overall performance compared to Decision Diffuser in the w/ PTE
setting, as shown in Table 2. This improvement can be attributed to the hierarchical structure of HM-
Diffuser, which provides a larger receptive field, facilitating more effective planning. Additionally, the
recursive HMD achieves our goal by providing comparable performance to the more parameter-rich
HMD-without-recursion model while it uses a single small-and-shared parameter model, reducing
the burden on memory and managing multiple models. Furthermore, we observed that models trained
in the w/ PTE setting generally surpass those from the w/o PTE setting, indicating the effectivness
of the progressive trajectory extension machanism. As demonstrated in Figure 5, the PTE process
effectively transforms trajectories with low returns into those with higher returns. We provide more
investigation on PTE in the subsequent section on a high-dimensional manipulation task.

5.3.2 HM-DIFFUSER ON EXTEDABLE KITCHEN

High-dimensional manipulation tasks present a distinct challenge for offline reinforcement learning,
where the long-horizon planning is not a necessarity. To investigate how our proposed framework
performs in this domain, we conduct experiments on the Extendable Kitchen task.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 2: Performance on Offline Reinforcement Learning: Gym-MuJoCo. HM-Diffuser achieves the best
overall performance compared to Decision Diffuser. The results are averaged over 15 random planning seeds.
Following Kostrikov et al. (2022), we emphasize in bold scores within 5% of the maximum per task.

Dataset Environment w/o PTE w/ PTE

DD HD DD HMD w/o Recursion Recursive HMD

Medium-Expert Halfcheetah 68.4± 1.5 75.7± 6.1 64.0± 8.2 82.3± 4.2 73.3± 6.2
Medium-Expert Hopper 38.4± 0.4 81.9± 8.2 83.3± 8.2 94.2± 6.7 94.2± 6.4
Medium-Expert Walker2d 74.7± 1.9 86.2± 5.5 62.5± 1.3 83.0 ± 1.8 71.6± 2.5

Medium-Expert Average 60.5 81.3 69.9 86.5 79.6

Medium Halfcheetah 38.2± 1.6 45.7± 0.5 44.9± 0.2 45.2± 0.4 44.8± 0.4
Medium Hopper 40.0± 6.0 52.9± 2.3 61.8± 4.6 87.1± 1.4 82.5± 0.5
Medium Walker2d 70.8± 0.4 68.5± 5.1 58.3± 6.6 74.1± 4.9 73.3± 2.8

Medium Average 49.7 55.7 55.0 68.8 66.9

Medium-Replay Halfcheetah 31.3± 1.6 44.0± 0.2 37.4± 0.6 39.8± 0.4 40.1± 0.3
Medium-Replay Hopper 30.8± 1.8 48.0± 4.2 73.6± 6.5 64.2± 4.1 70.5 ± 5.7
Medium-Replay Walker2d 16.0± 0.4 57.7± 5.1 51.4± 5.6 64.8 ± 5.0 63.7± 3.6

Medium-Replay Average 26.0 49.9 54.1 56.3 58.1

Overall Average 45.4 62.3 59.7 70.5 68.2

Dataset. Similar to the Gym-MuJoCo task, to obtain our extendable kitchen benchmark, the original
D4RL FrankaKitchen offline dataset was split into segments of fixed-length. Considering each
subtask can be completed within a shorter horizon, we used a segment length of 20. As Table 3
illustrates, solving a subtask within this limit is very difficult (e.g., DD with No PTE). To increase
observation of subtask completions, we applied three rounds of progressive trajectory extension (PTE)
to the base short trajectories. We hypothesized that performance would improve with additional PTE
rounds, until noise from the generated data potentially degrades performance. The final PTE round
extends trajectory lengths beyond 80.

Baselines. We focus on assessing the efficacy of PTE and our recursive HM-Diffuser (HMD). We
thus compare the performance of Decision Diffuser (DD) and HMD on each PTE round dataset. For
a fair comparison, we set the planning horizon to 40 for both models on the dataset with PTE process.

To start with, DD was applied to trajectories without PTE, confirming our assumption that solving
subtasks within these short trajectories is very difficult, as shown in Table 3. Following one round
of PTE, DD’s performance on the kitchen-partial-v0 dataset improved, averaging 2.13 subtask
completions per episode. HMD showed similar results but outperformed DD on the kitchen-mix-v0
dataset, scoring 2.06 compared to DD’s 0.65. After a second round of PTE, both models saw further
improvements: HMD reached 2.67, surpassing DD’s 2.53 on the kitchen-partial-v0 dataset and 2.53
vs. 2.50 on the kitchen-mixed-v0 dataset. HMD’s superior performance is likely due to its hierarchical
structure, which provides a larger receptive field. Following the third PTE round, HMD’s score
on the kitchen-partial-v0 task increased further to 2.73, while DD’s score dropped to 2.33. On the
kitchen-mix-v0 dataset, the performance of both models declined from the previous round, possibly
due to some inefficiency accumulated over the PTE rounds—a topic we leave for future investigation.

Table 3: Kitchen Task. HM-Diffuser achieves the best overall performance among compared with Decision
Diffuser. The results are averaged over 30 random planning seeds. We emphaisze the highest scores in bold.

Task No PTE Round-1 PTE Round-2 PTE Round-3 PTE

DD DD HMD DD HMD DD HMD

Partial-v0 0.57± 0.11 2.13 ± 0.27 2.13 ± 0.20 2.53± 0.13 2.67 ± 0.15 2.33± 0.27 2.73 ± 0.11
Mixed-v0 0.27± 0.05 0.65± 0.17 2.06 ± 0.14 2.50± 0.13 2.53 ± 0.14 1.50± 0.17 2.37 ± 0.08

5.3.3 MORE ANALYSIS

To explore the improvements from each round of progressive trajectory extension (PTE), we analyzed
the dataset obtained after each stitching round. For the Kitchen tasks with sparse reward, we focused
on measuring the number of completed subtasks. To accurately count these subtask completions
without duplications, we feed each state from the stitched trajectories into the true environment,
which signals the completion of a valid subtask. We recoreded the number of subtasks completed

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

0 1 2 3
0.00

0.25

0.50

0.75

C
ou

nt
P

er
ce

nt
ag

e

Kitchen-Partial-v0

0 1 2 3
0.00

0.25

0.50

0.75

Kitchen-Mixed-v0
Base

Round1

Round2

Round3

0 10
Return Per Step

0.0

0.1

0.2

0.3
Halfcheetah-Medium-Expert-v2

Base

Round1

Completion of Subtasks Per Trajectory

Figure 5: Analysis of progressive trajectory extension process. With additional PTE rounds, the subtasks
completion rate increases, allowing the planner to observe more successful examples of subtasks. In the Gym-
MuJoCo task, we observed a noticeable shift towards high values in the distribution of returns per step after one
PTE round, indicating that trajectories initially yielding low returns evolved into trajectories with higher returns.

per trajectory. As illustrated in Figure 5, on both of the kitchen-partial-v0 and the kitchen-mixed-v0
tasks, the number of trajectories with at least one subtask completion increased with each subsequent
round of stitching. Similar trends were noted for trajectories completing two and three subtasks.

For the Gym-MuJoCo tasks, where returns cumulatively increase with trajectory length, we measured
the average return per step. There can be observed that a shift in the return per step distribution
toward higher values, indicating that trajectories with low returns transformed into higher-return
during the PTE process. For the analyses of other Gym-MuJoCo tasks, please refer to Appendix B.

6 CONCLUSION AND LIMITATIONS

In this work, we introduce the hierarchical multiscale diffuser framework for extendable long-horizon
planning via Diffusion. Starting from a set of short trajectories that are insufficient for solving the
target task, our method first extends these trajectories using Progressive Trajectory Extension (PTE).
We then train a Hierarchical Multiscale Diffuser planner on this augmented dataset. In experiments,
we demontrate promising results on the long-horizon Maze2D task, as well as the dense-reward
Gym-MuJoCo and high-dimension manipulation Kitchen tasks.

Despite this success, our method has several areas for improvement. First, using a generative model
as a stitcher limits the quality of stitched trajectories to the offline dataset used for training. Similarly,
as an offline method, the effectiveness of our planner depends on the quality of the stitched dataset.
Extending the approach to online fine-tuning is an important future direction. Second, the recursive
version of HMD slightly underperforms compared to the non-shared HMD, likely due to differences
in the number of parameters. Finding ways to enhance the shared version would be a valuable avenue
for exploration. Third, our plan pondering currently predicts discrete plan levels; allowing it to regress
continuous levels could improve model flexibility. Fourth, while outstretching is beneficial, it does
not completely eliminate noisy trajectories. Finally, extending the model to handle high-dimensional
visual observations would be an intriguing direction for future work.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

7 ETHICS STATEMENT

Our research introduces a novel problem setting in offline reinforcement learning and hierarchical
planning, where we extend insufficient training datasets to solve complex tasks. This involves
creating longer trajectories, enabling the training of planners on these enhanced datasets. However,
this advancement raises crucial ethical considerations, including biases in decision-making, data
privacy concerns, and job displacement risks due to automation. It is vital to pursue this technology
responsibly, ensuring it benefits all and addresses social inequalities. Collaboration among researchers,
policymakers, and industry stakeholders is essential to align these developments with societal values
and promote inclusivity.

8 REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our experimental results, all necessary resources will be made publicly
available upon acceptance. The implementation details and pseudocode for replicating key findings
are presented in Appendix A.

ACKNOWLEDGEMENT

REFERENCES

Anurag Ajay, Yilun Du, Abhi Gupta, Joshua Tenenbaum, Tommi Jaakkola, and Pulkit Agrawal. Is con-
ditional generative modeling all you need for decision-making? arXiv preprint arXiv:2211.15657,
2022.

Gregor Bachmann and Vaishnavh Nagarajan. The pitfalls of next-token prediction. arXiv preprint
arXiv:2403.06963, 2024.

Ian Char, Viraj Mehta, Adam Villaflor, John M. Dolan, and Jeff Schneider. Bats: Best action trajectory
stitching, December 2021.

Chang Chen, Junyeob Baek, Fei Deng, Kenji Kawaguchi, Caglar Gulcehre, and Sungjin Ahn. PlanDQ:
Hierarchical plan orchestration via d-conductor and q-performer. In Forty-first International
Conference on Machine Learning, 2024a. URL https://openreview.net/forum?id=17ZwoHl65h.

Chang Chen, Fei Deng, Kenji Kawaguchi, Caglar Gulcehre, and Sungjin Ahn. Simple hierarchical
planning with diffusion. arXiv preprint arXiv:2401.02644, 2024b.

Junyoung Chung, Sungjin Ahn, and Yoshua Bengio. Hierarchical multiscale recurrent neural networks.
International Conference on Learning Representations, 2017.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances
in neural information processing systems, 34:8780–8794, 2021.

Zibin Dong, Jianye Hao, Yifu Yuan, Fei Ni, Yitian Wang, Pengyi Li, and Yan Zheng. Diffuserlite:
Towards real-time diffusion planning. arXiv preprint arXiv:2401.15443, 2024.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4RL: Datasets for deep
data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

David Ha and Jürgen Schmidhuber. World models. arXiv preprint arXiv:1803.10122, 2018.

Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and James
Davidson. Learning latent dynamics for planning from pixels. In International conference on
machine learning, pp. 2555–2565. PMLR, 2019.

Danijar Hafner, Kuang-Huei Lee, Ian Fischer, and Pieter Abbeel. Deep hierarchical planning from
pixels. arXiv preprint arXiv:2206.04114, 2022.

Jessica B Hamrick, Abram L Friesen, Feryal Behbahani, Arthur Guez, Fabio Viola, Sims Witherspoon,
Thomas Anthony, Lars Buesing, Petar Veličković, and Théophane Weber. On the role of planning
in model-based deep reinforcement learning. arXiv preprint arXiv:2011.04021, 2020.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Nicklas Hansen, Xiaolong Wang, and Hao Su. Temporal difference learning for model predictive
control. 2022.

Haoran He, Chenjia Bai, Kang Xu, Zhuoran Yang, Weinan Zhang, Dong Wang, Bin Zhao, and Xue-
long Li. Diffusion model is an effective planner and data synthesizer for multi-task reinforcement
learning. Advances in neural information processing systems, 36, 2024.

Charles Alexander Hepburn and Giovanni Montana. Model-based trajectory stitching for improved
offline reinforcement learning. In 3rd Offline RL Workshop: Offline RL as a ”Launchpad”, 2022.
URL https://openreview.net/forum?id=XsQLS6Ls5-.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint arXiv:2207.12598,
2022.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
Neural Information Processing Systems, 33:6840–6851, 2020.

Edward S. Hu, Richard Chang, Oleh Rybkin, and Dinesh Jayaraman. Planning goals for explo-
ration. In The Eleventh International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=6qeBuZSo7Pr.

Michael Janner, Yilun Du, Joshua Tenenbaum, and Sergey Levine. Planning with diffusion for
flexible behavior synthesis. In International Conference on Machine Learning, 2022.

Lukasz Kaiser, Mohammad Babaeizadeh, Piotr Milos, Blazej Osinski, Roy H Campbell, Konrad
Czechowski, Dumitru Erhan, Chelsea Finn, Piotr Kozakowski, Sergey Levine, et al. Model-based
reinforcement learning for atari. arXiv preprint arXiv:1903.00374, 2019.

Bingyi Kang, Xiao Ma, Chao Du, Tianyu Pang, and Shuicheng Yan. Efficient diffusion policies for
offline reinforcement learning. Advances in Neural Information Processing Systems, 36, 2024.

Taesup Kim, Sungjin Ahn, and Yoshua Bengio. Variational temporal abstraction. ICML Workshop on
Generative Modeling and Model-Based Reasoning for Robotics and AI, 2019.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with im-
plicit Q-learning. In International Conference on Learning Representations, 2022. URL
https://openreview.net/forum?id=68n2s9ZJWF8.

Nathan Lambert, Kristofer Pister, and Roberto Calandra. Investigating compounding prediction errors
in learned dynamics models. arXiv preprint arXiv:2203.09637, 2022.

Guanghe Li, Yixiang Shan, Zhengbang Zhu, Ting Long, and Weinan Zhang. Diffstitch: Boost-
ing offline reinforcement learning with diffusion-based trajectory stitching. arXiv preprint
arXiv:2402.02439, 2024.

Jinning Li, Chen Tang, Masayoshi Tomizuka, and Wei Zhan. Hierarchical planning through goal-
conditioned offline reinforcement learning. IEEE Robotics and Automation Letters, 7(4):10216–
10223, 2022.

Wenhao Li, Xiangfeng Wang, Bo Jin, and Hongyuan Zha. Hierarchical diffusion for offline decision
making. In International Conference on Machine Learning, 2023.

Zhixuan Liang, Yao Mu, Mingyu Ding, Fei Ni, Masayoshi Tomizuka, and Ping Luo. Adaptdiffuser:
Diffusion models as adaptive self-evolving planners. arXiv preprint arXiv:2302.01877, 2023.

Cong Lu, Philip J. Ball, Yee Whye Teh, and Jack Parker-Holder. Synthetic experience re-
play. In Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL
https://openreview.net/forum?id=6jNQ1AY1Uf.

Jiafei Lyu, Xiu Li, and Zongqing Lu. Double check your state before trusting it: Confidence-aware
bidirectional offline model-based imagination. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave,
and Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022. URL
https://openreview.net/forum?id=3e3IQMLDSLP.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Marcelo G Mattar and Máté Lengyel. Planning in the brain. Neuron, 110(6):914–934, 2022.

Marc Rigter, Jun Yamada, and Ingmar Posner. World models via policy-guided trajectory diffusion.
arXiv preprint arXiv:2312.08533, 2023.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484–489, 2016.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International Conference on Machine Learning,
pp. 2256–2265. PMLR, 2015.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020.

Richard S Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A framework
for temporal abstraction in reinforcement learning. Artificial intelligence, 112(1-2):181–211, 1999.

Jianhao Wang, Wenzhe Li, Haozhe Jiang, Guangxiang Zhu, Siyuan Li, and Chongjie Zhang. Offline
reinforcement learning with reverse model-based imagination. Advances in Neural Information
Processing Systems, 34:29420–29432, 2021.

Zhendong Wang, Jonathan J Hunt, and Mingyuan Zhou. Diffusion policies as an expressive policy
class for offline reinforcement learning. In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=AHvFDPi-FA.

Bo Jin Hongyuan Zha Wenhao Li, Xiangfeng Wang. Hierarchical diffusion for offline decision
making. Proceedings of the 40th International Conference on machine learning, 2023.

Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Y Zou, Sergey Levine, Chelsea Finn,
and Tengyu Ma. Mopo: Model-based offline policy optimization. Advances in Neural Information
Processing Systems, 33:14129–14142, 2020.

Junjie Zhang, Jiafei Lyu, Xiaoteng Ma, Jiangpeng Yan, Jun Yang, Le Wan, and Xiu Li. Uncertainty-
driven trajectory truncation for data augmentation in offline reinforcement learning. In ECAI 2023,
pp. 3018–3025. IOS Press, 2023.

Zhaoyi Zhou, Chuning Zhu, Runlong Zhou, Qiwen Cui, Abhishek Gupta, and Simon Shaolei Du. Free
from bellman completeness: Trajectory stitching via model-based return-conditioned supervised
learning. arXiv preprint arXiv:2310.19308, 2023.

Jinhua Zhu, Yue Wang, Lijun Wu, Tao Qin, Wengang Zhou, Tie-Yan Liu, and Houqiang Li. Making
better decision by directly planning in continuous control. In The Eleventh International Conference
on Learning Representations, 2023a. URL https://openreview.net/forum?id=r8Mu7idxyF.

Zhengbang Zhu, Hanye Zhao, Haoran He, Yichao Zhong, Shenyu Zhang, Yong Yu, and Weinan
Zhang. Diffusion models for reinforcement learning: A survey. arXiv preprint arXiv:2311.01223,
2023b.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

APPENDIX

A IMPLEMENTATION DETAILS

In this section, we describe the architecture and the hyperparameters used for our experiments.

• We build our code on the Decision Diffuser Ajay et al. (2022). We use a similar architecture
for the temporal U-Net.

• We represent the level embeddings with a 2-layered MLP with a one-hot level encoding input.
We condition the diffuser on the level embedding to generate multiscale trajectories. For
training, we sample different levels and the level determines the resolution of the sampled
trajectories.

• Following Diffstitch Li et al. (2024), we use MOPO Yu et al. (2020) for the inverse dynamic
and reward models.

• For the stitcher model, we trained a decision diffuser with a short horizon H
(Maze2D-Large: 80, Maze2D-XXLarge: 80, Gym-MuJoCo: 50, Kitchen: 20)

• We represent the level classifier fL
ϕ (l|s1, s2) with a 3-layered MLP with 256 hidden units

and ReLU activations. The classifier trained with samples from multiscale trajectories to
predict the corresponding level.

A.1 MAZE2D DATASET

Figure A.6 shows a visualization of the Maze2D-Large and Maze-XXLarge layouts visualizing short
trajectories with different colors indicating the region used to collect those trajectories.

(a) Large Maze (b) XXLarge Maze

Figure A.6: Maze2d Maps with visualized short trajectories. (a) Large Maze: The PointMaze2D large maze
environment, where the optimal trajectory from the top-left corner to the bottom-right corner takes approximately
500 steps. (b) XXLarge Maze: A newly introduced maze that is twice as long in both dimensions, resulting in
a maze that is four times larger than the Large Maze. Consequently, navigating between the two most distant
states requires approximately 1000 steps for the PD controller.

A.2 PROGRESSIVE TRAJECTORY EXTENSION (PTE)

In this section, we first provide the pseudocode of our Progressive Trajectory Extension (PTE) process
in algorithm A.2. As discussed earlier, our PTE method allows flexible input datasets, thus enabling
different stitchin strategies. In algorithm A.3, we highlighted the process of linear PTE, and the
exponetial PTE is depicted in algorithm A.4. Table A.4 shows a comparison between exponential
PTE and Linear PTE in terms of trajectory length.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Algorithm A.1 Segmenting and sampling for stitching

1: Input: Trajectory τ = {st, at, rt}Tt=1
2: Output: specific state si

3: Partition τ into K non-overlapping sgments and assign probabilities for the segments

4: Sample a segment bj = {st, at, rt}
Tbj+1

−1

t=Tbj

5: Uniformly sample a position i from {Tbj , Tbj + 1, . . . , Tbj+1 − 1}

6: Return: si

Algorithm A.2 Progressive Trajectory Extension

1: Input: Trained pstitcher
θ , Inverse Dynamic Model fa

θ , Reward Model fr
θ , Reachability Threshold

δ, Source Dataset Sr, Target Dataset T r, Number of iterations N
2: Output: Stitched Dataset Dr

3: Initialize Dr ← ∅
4: for i = 1 to N do
5: Sample a source trajectory τ src ∼ Sr and a batch of candidates Tc ⊂ T r

6: Obtain ssrc
t from τ src and {scand

c,t′′}c from each candidate τ cand
c ∈ Tc using Algorithm A.1

7: Sample a bridge trajectory τ brg ∼ pstitcher
θ (τ |s0 = ssrc

t)
8: Filter out candidate τ cand

c and get Tc,δ ⊂ Tc based on:

min
t′
∥sbrg

t′ − scand
c,t′′∥2 > δ

9: Sort Tc,δ based on outstretch score:

σoutstretch(τ
src, τ brg

c , τ cand
c) :=

∥ssrc
0 − scand

c,T ∥2

t+ T − t′′
. (3)

10: Randomly sample target trajectory τ tgt
c from top K candidates

11: Re-sample the bridge τ rebrg ∼ pstitcher
θ (τ |s0 = ssrc

t , · · · , sk = stgt
t′′ , · · · , sh = stgt

t′′+h−k)

12: Get τ new = Concat(τ src
1:t−1, τ

rebrg
0,t′ , τ tgt

t′′+1:T)
13: Update Dr ← Dr ∪ τnew
14: end for
15: Return: Extended Dataset Dr

Algorithm A.3 Linear PTE

1: Input: Trained pstitcher
θ , Inverse Dynamic Model fa

θ , Reward Model fr
θ , Reachability Threshold

δ, Source Dataset Sr = Dr−1
out , Target Dataset T r = D0, Number of iterations N

2: Output: Stitched Dataset Dr

Use AlgorithmA.2 with Sr = Dr−1
out , T r = D0

3: Return: Extended Dataset Dr

Algorithm A.4 Exponential PTE

1: Input: Trained pstitcher
θ , Inverse Dynamic Model fa

θ , Reward Model fr
θ , Reachability Threshold

δ, Source Dataset Sr = ∪r−1
r′=0D

r′

out, Target Dataset T r = ∪r−1
r′=0D

r′

out, Number of iterations N
2: Output: Stitched Dataset Dr

Use AlgorithmA.2 with Sr = ∪r−1
r′=0D

r′

out, T r = ∪r−1
r′=0D

r′

out
3: Return: Extended Dataset Dr

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table A.4: Comparison of Trajectory Length Statistics Across PTE Rounds in Maze2D-XXLarge. Expo-
nential PTE shows a more rapid increase in trajectory length, with earlier rounds producing longer maximum
trajectories compared to Linear PTE. Linear PTE, on the other hand, demonstrates a steadier, more gradual
extension across rounds.

PTE Metric Trajectory Length
Base Round 1 Round 2 Round 3 Round 4 Round 5 Round 6

Linear
Mean 172 354 493 608 729 849 967

Min 103 219 330 450 563 675 779

Max 343 574 698 838 1012 1129 1321

Exponential
Mean 172 355 526 700 981 N/A N/A

Min 103 225 222 264 316 N/A N/A

Max 343 569 839 1346 1778 N/A N/A

A.3 PLANNING WITH RECURSIVE HM-DIFFUSER

We present the planning pseudocoe with our proposed recursive HM-Diffuser in algorithm A.5 .

Algorithm A.5 Planning with Recursive HM-Diffuser - Replanning

1: Input: HM-Diffuser pθ, Evaluation Environment env, Inverse Dynamic fa
θ , Number of Levels L,

Jump Count K = {kℓ}L

2: s0 = env.init()
▷ Reset the environment.

3: done = False
4: while not done do
5: for ℓ in L, . . . , 1 do
6: if ℓ == L then
7: τ ℓg = {gℓ0, . . . , gℓkℓ

} ← pθ(τ |ℓ, gℓ0 = s0)
▷ Sample a subgoal plan given start.

8: else
9: τ ℓg = {gℓ0, . . . , glkℓ

} ← pθ(τ |ℓ, gℓ0 = s0, g
ℓ
kℓ

= gℓ+1
1)

▷ Refine plans given subgoals from one layer above.
10: end if
11: end for
12: Extract the first two states, s0, s1 = g10 , from the first layer plan τ1g
13: Obtain action a = fa

θ (s0, s1)
14: Execute action in the envirionment s, done = env.step(a)
15: end while

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Algorithm A.6 Goal-Conditioned Planning with Recursive HM-Diffuser (w/o Replanning)

1: Input: HM-Diffuser pθ, Evaluation Environment env, Inverse Dynamic fa
θ , Number of Levels L,

Jump Count K = {kℓ}L, Level Classifier f l
θ, Maximum number of planning rounds NP

2: s0, sgoal = env.init()
▷ Reset the environment.

3: done = False
4: done_plan = False
5: τ= {}
6: tp = 0
7: while not done_plan do
8: Obtain level ℓ = f l

θ(s0, sgoal)
9: τ ℓ

g = {gℓ0, . . . , glkℓ
} ← pθ(τ |ℓ, gℓ0 = s0, g

ℓ
kℓ

= sgoal)
▷ Sample a plan given subgoals from previous layer.

10: Obtain a set of starting states for the next layer s0 = {gℓ0, . . . , glkℓ−1}
11: Obtain a set of goal states for the next layer sgoal = {gℓ1, . . . , glkℓ

}
12: if ℓ == 1 or tp ≥ NP then
13: done_plan = True
14: end if
15: τ ← τ ∪ τ ℓ

g
16: tp = tp + 1
17: end while
18: t = 0
19: while not done do
20: Obtain action at = fa

θ (st, τ [min(t, len(τ)])
21: Execute action in the envirionment st, done = env.step(at)
22: t = t+ 1
23: end while

Algorithm A.7 Recursive HM-Diffuser Training

1: Input: Recursive HM-Diffuser pθ, Inverse Dynamic fa
θ , number of levels L, Reward Model fr

θ ,
Jumpy Step Schedule J = {j0, . . . , jL}, Training Dataset D

2: while not done do
3: Sample a batch of trajectory from dataset τ = {st, at, rt}t+h ∼ D
4: Sample a level ℓ ∼ Unifrom[0, . . . , L]
5: Obtain the sparse trajectory for level ℓ: τ ℓ = (gℓ0, . . . , g

ℓ
kℓ
)

6: Train HM-Diffuser with Equation 4
7: Train inverse dynamics fa

θ
8: Train reward model fr

θ
9: end while

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

B MORE PTE ANALYSIS ON GYM-MUJOCO

In this section, we present additional plots analyzing the averaged return per step from the Gym-
MuJoCo dataset after one round of progressive trajectory extension (PTE). As depicted in Figure B.7,
there is a noticeable shift from low-value to high-value returns across nearly all datasets following the
implementation of one PTE round, except for hopper-medium-replay-v2 and hopper-medium-v2.

0 5
0.0

0.1

0.2

0.3

0.4

0.5

0.6

C
ou

n
t

P
er

ce
n
ta

ge

walker2d-medium-replay-v2

0 5
0.0

0.1

0.2

0.3

0.4

0.5

0.6

walker2d-medium-v2

0 5
0.0

0.1

0.2

0.3

0.4

0.5

0.6

walker2d-medium-expert-v2

Base

Round1

0.0 2.5 5.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

C
ou

n
t

P
er

ce
n
ta

ge

hopper-medium-replay-v2

2 4 6
0.0

0.2

0.4

0.6

hopper-medium-v2

0 5
0.0

0.1

0.2

0.3

0.4

0.5

0.6

hopper-medium-expert-v2

0 5
0.0

0.1

0.2

0.3

0.4

0.5

0.6

C
ou

n
t

P
er

ce
n
ta

ge

halfcheetah-medium-replay-v2

0 5
0.0

0.1

0.2

0.3

0.4

0.5

0.6

halfcheetah-medium-v2

0 5 10
0.00

0.05

0.10

0.15

0.20

0.25

0.30

halfcheetah-medium-expert-v2

Return Per Step

Figure B.7: Analysis of the progressive trajectory extension process. In the Gym-MuJoCo task, we observed
a noticeable shift towards high values in the distribution of returns per step after one PTE round, suggesting that
the stitched trajectories have evolved into trajectories with higher returns.

18

	Introduction
	Preliminaries
	Proposed Method
	Progressive Trajectory Extension
	Hierarchical Multiscale Diffusers

	Related Works
	Experiments
	Analysis on the Progressive Trajectory Extension
	Long-Horizon Planning
	HM-Diffuser on Extendable Maze2D

	Offline Reinforcement Learning
	HM-Diffuser on Extendable Gym-MuJoCo
	HM-Diffuser on Extedable Kitchen
	More Analysis

	Conclusion and Limitations
	Ethics Statement
	Reproducibility Statement
	Implementation Details
	Maze2D Dataset
	Progressive Trajectory Extension (PTE)
	Planning with Recursive HM-Diffuser

	More PTE Analysis On Gym-MuJoCo

