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Abstract

Affective brain-computer interfaces (aBCIs) play a crucial role in personalized
human—computer interaction and neurofeedback modulation. To develop practical
and effective aBCI paradigms and to investigate the spatial-temporal dynamics of
brain activity under emotional inducement, portable electroencephalography (EEG)
signals have been widely adopted. To further enhance spatial-temporal perception,
functional near-infrared spectroscopy (fNIRS) has attracted increasing interest in
the aBClI field and has been explored in combination with EEG. However, existing
datasets typically provide only static fixation labels, overlooking the dynamic
changes in subjects’ emotions. Notably, some studies have attempted to collect
continuously annotated emotional data, but they have recorded only peripheral
physiological signals without directly observing brain activity, limiting insight into
underlying neural states under different emotions. To address these challenges, we
present the Real-time labeled EEG-fNIRS Dataset (REFED). To the best of our
knowledge, this is the first EEG-fNIRS dataset with real-time dynamic emotional
annotations. REFED simultaneously records brain signals from both EEG and
fNIRS modalities while providing continuous, real-time annotations of valence and
arousal. The results of the data analysis demonstrate the effectiveness of emotion
inducement and the reliability of real-time annotation. This dataset offers the
possibility for studying the neurovascular coupling mechanism under emotional
evolution and for developing dynamic, robust affective BClIs.

1 Introduction

Emotion is not only an important internal mechanism that modulates cognition, behavior, and decision-
making, but also plays a pivotal role in brain—computer interface (BCI) systems by bridging internal
user states and external interactions [1} 12]. With advances in brain signal modeling and artificial
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intelligence, affective BCIs (aBClIs) have emerged as a prominent research focus. The goal of aBCls
is to perceive users’ emotional states in real-time and adapt interaction strategies, neurofeedback
mechanisms, or personalized interventions accordingly. These capabilities hold great promise across
a range of applications, including intelligent human—computer interaction, mental health care, and
immersive user experiences [3} 4]

To develop effective and practical affective BCIs and to investigate the spatial-temporal dynamics
of brain states under various emotions and emotional transitions, researchers have widely adopted
emotion-inducement paradigms. These typically involve using emotional stimuli such as video
clips to evoke affective responses while synchronously recording physiological signals [} 16} [7} I8]].
However, a significant gap remains: To the best of our knowledge, no affective BCI dataset
simultaneously records multimodal brain signals and provides real-time dynamic emotion
annotation.

On one hand, to directly observe brain activity, early studies focus on using electroencephalography
(EEG) to capture neural electrical responses. Researchers decode subjects’ emotional states by
analyzing the spatial-temporal patterns of EEG signals [9} 10,11} [12]]. Many widely used datasets,
such as DEAP [5], MAHNOB-HCI [13], SEED [14,[15], and DREAMER [6]], are all affective BCI
datasets that are dominated by EEG signals. However, due to the limited spatial resolution of EEG
caused by volume conduction effects [[L6]], recent studies explore the use of functional near-infrared
spectroscopy (fNIRS) as a complementary modality for emotion recognition [[17]]. In addition, a few
efforts have attempted to simultaneously record EEG and fNIRS to investigate the activity patterns of
multimodal brain signals under different emotions [18]]. Nevertheless, all these brain-signal-based
affective BCI datasets lack real-time, dynamic emotional annotations, limiting their applicability to
dynamic affective decoding tasks in the real world.

On the other hand, to provide emotion annotations, most emotion-inducing materials are designed to
target specific emotional states. Some datasets directly use the targeted emotion of the stimulus as
the annotation [19]], while other datasets record the combined emotions produced by each subject
under each piece of evoked material as the annotation through a form of subject self-assessment [20].
Both approaches assign a single, fixed emotional label to each stimulus clip. However, emotional
experiences are inherently dynamic, especially during the viewing of affective videos [21]]. Using a
static label as the ground truth in training emotion recognition models introduces many errors and
can negatively impact the effectiveness of model training and usage. Recently, a few datasets, such
as CASE [22] and CEAP-360VR [21]] have attempted to record real-time emotional changes during
stimulus presentation. However, these datasets only captured peripheral physiological signals (e.g.,
ECG, EDA, skin temperature), without directly observing brain activity. In other words, existing
real-time dynamic annotated emotion datasets lack direct measurements of the brain.

To address the above research gaps, we present the REFED, a Real-time labeled EEG-fNIRS Emotion
Dataset. To the best of our knowledge, this is the first subject real-time dynamic labeled EEG-fNIRS
synchronized recorded emotion dataset for affective brain-computer interfaces, aiming to more
dynamically and comprehensively capture the individual’s neural response during emotional stimuli.
We collected multimodal brain signals from 32 healthy participants across 15 emotion-eliciting video
clips. By combining EEG and fNIRS, we recorded brain activity from both electrophysiological and
hemodynamic perspectives, enabling emotion modeling with high temporal and spatial resolution.
Unlike existing affective BCI datasets, our dataset uniquely provides time-aligned dynamic emotion
annotations based on participants’ subjective experiences. During video watching, participants
continuously rated their emotional states using a visual feedback tool, producing real-time dynamic
emotion annotations. This provides an unprecedented foundation for studying the neural and vascular
dynamic mechanisms underlying emotional evolution. Further details and access to the dataset can
be found at https://refed-dataset.github.io/,

2 Related Work

To develop efficient and reliable affective brain-computer interfaces and explore the emotional secrets
of the human brain, many researchers employ physiological signals elicited by emotional stimuli to
reveal the neural and cognitive patterns associated with different emotional states [9} 123} 24].

On the one hand, to comprehensively capture the spatial-temporal dynamics and neurophysiological
patterns of the brain in response to different emotions, most early affective BCI datasets primarily
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adopt EEG as the main data modality. The DEAP [5] and MAHNOB-HCI [[13] datasets are among
the earliest to explore neural electrical activity under audiovisual emotional elicitation of different
emotions. The SEED series datasets [14, [15] provide EEG, EOG, and other electrophysiological
signals from Chinese participants elicited by emotional movie clips. These datasets lay the technical
foundation for standardized emotional data collection. As interest grows in emotion recognition
algorithms under cross-session and cross-subject conditions, subsequent datasets such as DREAMER
[6], AMIGOS [7], MPED [25]], and FACED [26] datasets further diversify participant populations
and experimental content. In recent years, to investigate brain activity with higher spatial resolution,
fNIRS has gradually attracted attention in the affective BCI field. fNIRS directly measures cortical
blood flow, offering a different perspective on brain activity. Recently, the TVED-fNIRS dataset [17]]
records fNIRS data from participants exposed to different emotional video stimuli. Studies by Si
et al. [18] and the FEAD dataset [§] also combine EEG and fNIRS to uncover the spatial-temporal
dynamic features of the brain during emotional processing. However, these datasets only provide
traditional static annotations, without capturing the dynamic emotional changes of the participants,
limiting the exploration of the brain’s dynamic emotional processes.

On the other hand, to provide emotion annotations, current datasets generally adopt two main labeling
strategies. The first is discrete emotion categories, such as happiness, sadness, anger, relaxation,
and fear. These labels may be self-reported by participants or derived directly from the targeted
emotion of the stimuli. Datasets like SEED [14} [15] and THU-EP [27] follow this approach. The
second strategy is based on Russell’s circumplex model [28]] of emotion, using valence-arousal values,
where valence indicates the positivity or negativity of an emotion, and arousal indicates the emotional
energy intensity. This approach typically involves participants reporting their feelings using the
self-assessment scale. It is widely used in datasets such as DEAP [5], MAHNOB-HCI [13], and
DREAMER [6]]. However, both labeling strategies are static, assigning a fixed emotion label to each
stimulus segment. In reality, participants’ emotional states often change dynamically during the
presentation of stimuli. Different episodes trigger continuous emotion changes, and static labels limit
the performance of emotion recognition models and hinder the study of fine-grained emotional neural
mechanisms. Recently, datasets such as CASE [22] and CEAP-360VR [21] have adopted real-time
joystick-based annotation to record dynamic emotional responses, but they only collect peripheral
physiological signals without recording brain signals, lacking direct observation of brain activity.

In summary, current affective BCI research still faces gaps in both recording brain modalities
and emotion annotation strategies. There is no publicly available emotion dataset with dynamic
annotations based on multimodal brain signals. The dataset proposed in this paper combines the above
two features and presents the dynamically annotated EEG-fNIRS multimodal brain signal dataset
for emotion analysis. This offers the possibility to explore the spatial-temporal features of the brain
in dynamic emotional changes and to design more practical and reliable affective brain-computer
interfaces.

3 Recording Details

3.1 Opverall Recording Protocol

The complete experimental protocol of our dataset collection is shown in Figure[I] All processes
lasted about 1.5 hours per subject, and the specific experimental flow is as follows:
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Figure 1: Experimental protocol.



1) Obtain informed consent. Prior to the study, informed consent was obtained from all subjects.
Participants were thoroughly briefed on the experimental procedures, equipment, and any potential
risks or discomforts associated with the study. We also collected basic demographic and individual
difference information, including gender, age, etc. To assess participants’ recent emotional states
at the time of data collection, we administered the Positive and Negative Affect Schedule (PANAS)
questionnaire [29]. PANAS evaluates emotional state at the time of data collection by asking
participants to rate the intensity of 10 positive and 10 negative emotions they have experienced over a
recent period.

2) Device setup and system familiarization. Subsequently, participants were fitted with an EEG cap.
Conductive gel was applied to ensure that the impedance of all EEG channels was reduced below 50
k2. NIRS optodes were then inserted and adjusted according to a predefined channel layout, and the
light intensity was automatically calibrated to optimize signal quality. Next, participants received a
detailed explanation of the theoretical basis of emotion assessment and were familiarized with the
entire data acquisition procedure. The emotion assessment framework included key concepts such
as arousal, valence, and dominance, as well as guidance on how to identify one’s own emotional
state. We introduced the full experimental procedure, which consisted of meditation, video viewing,
real-time emotion annotation, and questionnaire completion. A brief demonstration program was
used to help participants practice the full workflow, including providing continuous feedback on their
emotional state using a joystick in the valence—arousal space. We confirmed that the subjects had
fully understood and could operate proficiently based on their real-time annotations of sample videos
of different affective tendencies in the demonstration system.

3) Meditation break. Participants were instructed to perform a 3-minute meditation, during which
they closed their eyes, focused on their breath, and avoided any physical movement. This step helps
participants relax and enter a calm, focused state, thereby enhancing the effectiveness of subsequent
emotion elicitation.

4) Video watching and recording. In this step, we began the formal record. Participants watched a
total of 15 video clips, each selected to induce different emotional states. The videos were categorized
into five targeted emotion types: 1) high valence—high arousal (HVHA): high-energy positive emotions
(e.g., excitement, happiness), 2) high valence—low arousal (HVLA): low-energy positive emotions
(e.g., relaxation, serenity), 3) low valence—high arousal (LVHA): high-energy negative emotions
(e.g., anger, fear), 4)low valence—low arousal (LVLA): low-energy negative emotions (e.g., sadness,
boredom), 5) medium valence—medium arousal (MVMA): emotions with no apparent emotional
tendency. Each video segment was preceded by a 5-second countdown to help participants prepare.
Immediately afterward, 5 seconds of baseline data were recorded while participants were asked to sit
still and fixate on a white cross on the screen. The video then played automatically, during which
time participants were emotionally stimulated by the video. Meanwhile, participants were asked to
use a joystick to continuously control a cursor on a 2D valence—arousal coordinate plane, reflecting
their real-time emotional state (e.g., laughter moments, tear moments). After each clip, participants
completed the Self-Assessment Manikin (SAM) scale [20] to provide an overall subjective evaluation
of their emotional response to the video. The SAM self-assessment scale reflects the average emotion
of watching the video clip, including valence, arousal, and dominance, which are recorded on a scale
of 1 to 9, respectively. In addition, we also collect a separate familiarity rating for each clip.

5) Feedback and organization. At last, we communicate with the participant about the experimental
process and feedback, and synthesize the SAM scale to understand the subjects’ emotional evocations.
Additionally, we examined the real-time emotional trajectories to ensure that the emotional responses
were properly induced and annotated, thereby confirming the authenticity and reliability of the
collected data.

3.2 Recording Device Settings

To simultaneously record EEG and fNIRS signals, we employed an ESI Neuroscan 64-channel
EEG system and a Shimadzu LABNIRS fNIRS system. An EEG-fNIRS joint cap and a signal
synchronization module developed by FiStar were also used to achieve joint acquisition and precise
temporal alignment of the two modalities. The layout of the EEG and fNIRS channels used in
the combined recording is illustrated in Figure |2| Meanwhile, to support real-time annotation of
participants’ emotional states and to automate the experimental workflow, we developed a custom
real-time annotation and control system, as shown in Figure
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Figure 3: Experimental recording environment and the real-time labeling and control system.

The EEG data were recorded using a 64-channel wet-electrode system, with electrodes positioned
according to the international 10-10 EEG system. The default reference electrode was placed at AFz,
and the signals were sampled at 1000 Hz. During the recording, conductive gel (Greentek GTS5) was
applied to rapidly reduce electrode impedance. The fNIRS data were acquired using the Shimadzu
LABNIRS system, which employs three near-infrared wavelengths (780, 805, and 830 nm) to detect
blood flow changes in the cerebral cortex. LABNIRS calculates the change in concentration of
oxy-hemoglobin (HbO) and deoxy-hemoglobin (HbR) based on the difference in absorption spectra
of these two hemoglobins. In our recordings, the fNIRS optodes were arranged to cover three major
cortical regions: the prefrontal lobes, the left temporal lobes, and the right temporal lobes. There are
a total of 18 emitters and 18 detectors positioned with a source—detector distance of 30 mm, forming
51 measurement channels. The sampling rate of the fNIRS system was 47.62 Hz (i.e., sampling every
21 ms). The prefrontal lobes are strongly associated with emotion generation and regulation, playing
a central role in cognitive-affective processes [30]. The temporal lobes are primarily involved in
language comprehension, emotional processing, and memory encoding [31]]. These regions are the
most critical areas of the cerebral cortex responsible for emotions.

The annotation and control system was developed using HTML and JavaScript to ensure broad
compatibility across different computers. We ran the system on a separate computer to control the
progress of the experiment, to prompt subjects for relevant information, and to automate video play-
back and automatic emotion annotation. Meanwhile, the computer is connected to an Xbox controller
to allow participants to continuously annotate their emotional states during the video presentation.
The emotion annotations were recorded in real-time and transmitted via serial communication to the
acquisition system, enabling precise temporal alignment between the brain signals and the subjective
emotional labels. During video play, the screen entered full-screen mode, with the video occupying
the main area and a 2D coordinate system displayed in the top-right corner. The axes of the coordinate
system represented valence and arousal, respectively. To reduce the cognitive load of annotation, we
displayed examples of typical emotions in each quadrant of the coordinate plane as visual references.
With this system, in a smooth situation, subjects only need to manipulate the right joystick of the
controller to complete the real-time labeling, and all the experimental processes are carried out
automatically.



3.3 Emotion Inducing Materials

We adopted Russell’s circumplex model [28]] of affect to assess emotional states. Under this model,
emotions are characterized along two orthogonal dimensions: valence and arousal. Valence represents
the degree of pleasantness, ranging from negative (low valence) to positive (high valence) emotions.
Arousal reflects the level of physiological activation, ranging from low energy (low arousal) to high
energy (high arousal). The two dimensions form four quadrants, i.e., high valence-high arousal
(HVHA), high valence-low arousal (HVLA), low valence-high arousal (LVHA), and low valence-
low arousal (LVLA), and each has its typical sentiment. In addition to these four quadrants, we
also considered emotional states without a clear valence or arousal tendency, defined as medium
valence—-medium arousal (MVMA). This resulted in a total of five targeted emotion categories in
our design. For each emotion category, we selected three videos, totaling 15 emotional video clips.
Detailed information about these videos is provided in Appendix All participants watched the
videos in the same order. Most of the video clips were sourced from publicly available and validated
affective video libraries (including standard Chinese emotional film clips dataset [32, 33], Chinese
positive emotion database (CPED) [34]], and positive emotion database (PED) [35]]), which ensured
the basic effect of video induction. Due to the relatively heavy EEG cap worn during the experiment,
we carefully controlled the average length of each video to approximately 100 seconds to avoid
participant discomfort. Hence, the entire video-watching phase lasted about 40 minutes.

3.4 Recording Participants

We recruited 32 healthy participants (22 males, 10 females), aged between 18 to 34 years (M =
21.3, SD = 2.7), primarily consisting of undergraduate and graduate students. Individuals with a
history of cardiovascular or cerebrovascular diseases, visual or auditory impairments, or cognitive
or psychological disorders were excluded from the study. All participants were native Chinese
speakers to eliminate the potential influence of language and cultural background on emotional
elicitation. Before the recording session, participants were instructed to avoid caffeine and other
neurostimulants within 12 hours, wash their hair in advance, and ensure adequate sleep the night
before. All experiments were conducted during daytime hours in a quiet laboratory environment.
To minimize interference with the quality of signal acquisition, fluorescent lighting was turned off
during the sessions.

3.5 Dataset Annotations and Details

EEG-fNIRS data. The dataset contains physiological recordings from 32 participants during 15
emotion-inducing video clips, totaling 480 trials, approximately 820 minutes of data. For each trial, 5
seconds of baseline physiological data recorded before video onset are also included for calibration
purposes. Each data segment is identified using a combination of subject_ID and video_ID. The
original EEG and fNIRS signals are sampled at 1000 Hz and 47.62 Hz, respectively. For more details
regarding data organization and usages, please refer to Appendix [A]

Emotion annotations. For each participant’s data segment, we recorded 1 Hz dynamic emotion labels
(valence and arousal) as well as self-reported ratings using the SAM scale (Self-Assessment Manikin),
which includes valence, arousal, dominance, and familiarity. The dynamic emotion annotations are
represented as integers within the range of 1 to 255. Each video segment begins at the center of the
two-dimensional coordinate system (coordinates: (128, 128)) and changes dynamically in response
to the participant’s emotional shifts. The SAM scale ratings are provided by the participants after
each video and are in the range of 1 to 9.

Available supervised learning paradigms. When using this dataset for supervised learning, EEG-
fNIRS data can be segmented into 1-second or longer intervals, where each segment serves as an
input sample. As for the labels, a novel suggestion is to directly use the dynamic emotion label
values (valence or arousal ranging from 1-255) as labels for regression tasks. This approach is
more accurate than traditional classification tasks with hard boundaries. In the regression task, the
model will be able to capture the subtle changes in emotion labels, offering greater potential for
exploring the relationship between brain signals and emotional variations. Of course, more common
valence-arousal classification tasks can also be performed. Since all labels begin from the neutral
point (128,128), the proportion of neutral emotion data is relatively high. Here, we recommend three-
class classification (low-middle-high) experiments for valence or arousal. We do not recommend



conducting binary classification (low-high valence/arousal) experiments, as the neutral label point
cannot be reasonably divided. Additionally, partitioning the 2D valence-arousal plane into 5 regions
(i.e., 4 quadrants and the central region) based on the quadrants and central area is also a reasonable
labeling scheme.

4 Experiments and Analysis

To validate the quality of the collected EEG-fNIRS data and real-time dynamic annotations, and
to explore the patterns of neural and vascular activity of the brain under different emotions, we
analyze the annotations, visualize the brain signal data, and evaluate the performance of the dataset in
supervised learning.

4.1 Label Analysis

To verify the validity of the collected emotional annotations, we compute the average of all partici-
pants’ real-time annotation trajectories and compare them with the results of the SAM scale.

Figure[]shows the average valence-arousal trajectories of 32 participants while watching 15 emotional
video clips. Overall, the videos elicit emotional responses effectively. Each video induces noticeable
changes in the trajectories, and the real-time annotations are well consistent with the expected
emotions. The trajectories of videos intended to elicit HVHA (i.e., happiness/pleasure), LVHA (i.e.,
fear/anger), and LVLA (i.e., sadness/boredom) emotions align best with expectations. The trajectories
of MVMA (i.e., neutral) and HVLA (i.e., relaxed/calm) videos are relatively more ambiguous but
still within an acceptable range. This ambiguity may be partially due to the choice of video materials
for MVMA and HVLA, as participants show the greatest individual variation in their subjective
perception of neutral and relaxed emotions. Some participants particularly enjoy food or scenery,
which may lead to high arousal when watching such videos. Others may find neutral videos boring,
resulting in lower arousal levels.
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Figure 4: Average valence-arousal trajectories for participants watching 15 videos.
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Figure 5: Valence/arousal distributions for participants watching 15 videos.

In addition, to evaluate the consistency between real-time annotations and participants’ self-reported
SAM scores, Figure [5 respectively shows violin plots of the average real-time annotations and
SAM scores for each video. The SAM scores generally exhibit larger standard deviations, but



both annotation methods reflect consistent emotional elicitation effects and align with the targeted
emotions. To further demonstrate the reliability of the real-time annotations, we provide a joint
distribution plot of all coordinate points collected during the annotation process in Appendix [D]

4.2 Supervised Learning

To evaluate the effectiveness of our collected data, we conduct classification and regression ex-
periments using the collected EEG and fNIRS signals as input and the dynamically annotated
valence-arousal values as labels. Thanks to the dynamic and continuous valence-arousal annotations,
we are able to implement regression tasks directly in emotion recognition models to predict arousal
or valence levels. We deploy support vector machines with temporal and spectral domain features
for supervised learning. For better optimization, we normalize the labels from the original [1, 255]
range to the [0, 1] range. We apply 3-fold cross-validation for each participant, dividing each par-
ticipant’s 15 video segments into three groups, each containing one segment for each of the five
target emotions. We report the average MAE and MSE across all 32 participants. We also perform
three-class classification experiments, where the normalized labels are categorized into low (0 to 0.4),
medium (0.4 to 0.6), and high (0.6 to 1.0) levels for valence and arousal. All other experimental
settings are consistent with those of the regression task. Detailed experimental settings and complete
experimental results are provided in Appendix [E]

The experimental results of the supervised learning model TSMMF [36] are shown in Table [T}
In our regression tasks, the models achieve valence prediction errors around 0.17 and arousal
prediction errors of below 0.15. Figure [f] presents regression cases of predicted emotional trajectories,
whose predicted values could follow the trends of the ground truth, demonstrating good fitting
performance. In classification tasks, our dataset could achieve over 67% accuracy in arousal three-
class classification performance and 62% valence three-class classification performance. Moreover,
training with combined EEG and fNIRS modalities outperforms single-modality input, further
validating the effectiveness of using multimodal brain signals. These also confirm the existence of the
neurovascular coupling mechanism in emotional activities [|37, 38]], where EEG captures electrical
brain activity and fNIRS reflects hemodynamic responses. These two modalities offer non-redundant
insights, justifying their integration in our dataset.

Table 1: Performance of the REFED dataset under a supervised learning model (TSMMF [36])).

Valence - Classification Arousal - Classification Valence - Regression Arousal - Regression
Accuracy T Fl-score 1T  Accuracy T  Fl-score MAE | MSE | MAE | MSE |

EEG 0.5961+0.1020 0.3965+0.0848 0.6527+0.1175 0.372040.0750 0.1822+0.0432 0.0588+0.0247 0.1542+0.0404 0.0402-+0.0181
fNIRS 0.6199-+0.1016 0.4485+0.1088 0.6645+0.1217 0.3956+0.0801 0.1716+0.0413 0.0542+0.0248 0.1453+0.0411 0.0376+0.0194
EEG+{NIRS 0.6269-+0.1005 0.4611+0.1071 0.6701+0.1171 0.4060+0.0892 0.1705+0.0409 0.0531+0.0236 0.1445+0.0401 0.0369-+0.0182

Modality

Valence regression case 1 Valence regression case 2 Arousal regression case 1 Arousal regression case 2
1.00 1.00 1.00 1.00
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Figure 6: Some cases of valence/arousal regression tasks.

4.3 Visualization

To investigate neural and vascular patterns under different emotional states, we perform averaging
analysis on the collected EEG and fNIRS data by differential entropy (DE) features. Figure[7] presents
the average spatial activation of EEG and fNIRS (HbT) signals across different emotion categories.

As shown in Figure [/} EEG and fNIRS exhibit clear differences across the five emotional conditions.
Overall, the HVHA (happiness/pleasure) emotion shows the highest overall activation levels and the
richest brain activity, aligning with many neuroscience studies [39,/40]. Regarding the prefrontal lobes,
LV (low-valence) emotions, particularly LVLA (sadness/boredom), show strong activation, while HV
(high-valence) emotions reduce prefrontal activity, which aligns with Pessoa’s cognitive—emotional
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Figure 7: Average activation of EEG and fNIRS (HbT) under different emotions

interaction theory [41]. Specifically, MVMA (neutral) emotion elicits uniform activation in parietal
and prefrontal regions, reflecting the brain’s baseline state without strong emotional modulation.
In contrast, HVHA (happiness/pleasure) emotion shows markedly distinct activation in temporal
and occipital regions, potentially linked to the audiovisual impact of the video contents. LVLA
(sadness/boredom) emotion exhibits the most salient prefrontal activation, along with some activity
in the posterior parietal and occipital regions. This activation pattern may relate to subjects actively
suppressing or reappraising negative emotions [42]. Finally, HVLA (relaxed/calm) emotion presents
activation in the parietal and temporal regions, likely reflecting increased anterior cingulate activity
during relaxation states [43]. Additionally, some discrepancies between electrophysiological and
hemodynamic activity are also observed. For instance, with HVHA emotion, the parietal and temporal
regions exhibit strong activation in both modalities, while the fNIRS additionally shows strong
prefrontal activation. HVLA emotion also presents broader prefrontal activation in the fNIRS view.
LVHA emotion reveals greater frontal and temporal activation in blood flow activity. Meanwhile, for
LVLA emotions, frontal blood flow activity is much weaker than electrical activity. These findings
demonstrate the objective existence of neurovascular coupling mechanisms, and two modalities offer
non-redundant insights.

5 Ethical Considerations and Dataset Accessibility

The study for our dataset collection has been approved by the local Institutional Review Board. The
subjects recruited for this experiment were healthy adults, and the experimental equipment involved
was non-invasive, posing no negative physical or psychological risks. All participants provided
informed consent for the recording of their physiological signals and scale data, and agreed that the
data would be used solely for non-commercial scientific research purposes. To protect participant
privacy, all personally identifiable information has been anonymized in the released dataset. The
dataset poses no potential negative impact on society. Further details and access to the dataset are
available at our website (https://refed-dataset.github.io/) following the CC BY-NC-SA
license, and users can use it for research for non-commercial purposes.

6 Limitations

We propose the EEG-fNIRS emotion dataset with real-time dynamic annotations, offering new
possibilities for developing novel affective BCIs. However, the dataset still has some limitations.

First, real-time annotation inevitably demands some cognitive effort from participants. During
annotation, participants may become distracted from the video content, potentially affecting emotional
induction and annotation quality. In fact, we evaluate multiple dynamic annotation strategies. One
alternative is to have participants watch the video twice—first with full attention, and then again
while recalling their emotional experience. However, our pilot study finds that participants struggle
to recall emotional fluctuations. Another potential approach is to estimate emotions using facial
expression recognition during the first viewing and correct annotations afterward. However, many
participants display subtle facial expressions, and this method is both technically complex and prone
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to inaccuracies. Compared with retrospective labeling or facial-expression-based inference, real-
time annotation more directly captures participants’ subjective experiences and ensures temporal
continuity, a strategy also adopted by prior continuous datasets such as CASE and CEAP-360VR.
To mitigate potential burden, we implemented standardized training sessions, ensured participants
were familiar with the annotation procedure, and controlled video duration with sufficient breaks to
reduce fatigue. While hybrid annotation strategies may theoretically enhance reliability, they also
introduce longer experimental sessions and additional participant demands. Overall, our chosen
real-time paradigm reflects a balance between annotation accuracy and participant workload. How to
perform dynamic emotion labeling more accurately and portably remains a direction worth exploring.

Furthermore, the unfamiliar laboratory environment, EEG-fNIRS equipment, and individual differ-
ences in culture and education level may also influence participants’ emotional responses. To mitigate
these effects, we implemented several measures such as turning off ambient lighting, maintaining
stable temperature and humidity, and minimizing the duration of recording sessions. In the future,
how to utilize more portable wearable devices to achieve affective brain-computer interfaces in more
natural, daily environments remains a highly intriguing research topic.

7 Conclusion

In this study, we propose the REFED dataset, an affective brain-computer interface dataset integrating
multimodal brain signals and real-time dynamic emotion annotations. It fills a gap in the study of
neural mechanisms of emotion’s dynamic evolution and the development of high-reliability aBCI
models. By synchronizing the acquisition of EEG and fNIRS signals, REFED realizes the joint
observation of neuroelectrical activity and hemodynamic response under emotional evocation, which
provides unique data support for exploring emotion-related neurovascular coupling mechanisms.
Meanwhile, the real-time valence and arousal annotation based on subjects’ subjective reports realizes
temporal alignment of brain signals with emotional state changes, which significantly improves the
temporal modeling capability of the emotion recognition model. Experimental validation shows that
the dataset meets the standard in terms of emotion evoked validity and labeling reliability, and the
multimodal signal features show significant correlation with the dynamic labeling. The open sharing
of REFED will promote the cross-modal neural representation parsing for the dynamic encoding
of emotions in the following research directions, and lay an important foundation for the field of
affective computation and brain-computer interfaces to move towards dynamic interaction paradigms
with higher ecological validity.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The contributions and scopes of the paper which are mainly shown in Section
3, and 4 are same with the abstract and introduction.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Section 5 discuss the limitations of the proposed work.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: Section 4.2 and 4.3 use experiments and visualizations proof the quality of the
EEG-{NIRS data and dynamic annotations.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Section 4.2 and Appendix provide the information to reproduce the main
experimental results.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We host the dataset on the Hugging Face platform and provide a website to
guide users in downloading the dataset and example codes.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All the data splits, hyperparameters, how they were chosen, type of optimizer,
etc. are provided in Section 4.2 and the Appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Experiment in Section 4.2 include the standard error during 3-fold cross
validation.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: The detail of computer resources are provided in the Appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: The research strictly adheres to the NeurIPS Code of Ethics, including consid-
erations for data usage, human impact, and scientific integrity.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

o If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The potential positive societal impacts is discuss in Conclusion part. The paper
does not have negative societal impacts which lead by intentional or unintentional misuse of
the proposed technology.

Guidelines:
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» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: All data have been anonymized to remove any personally identifiable infor-
mation (PII), and no facial or voice data were collected; Participants provided informed
consent for the collection and use of their data for research purposes; The data collection
protocol was approved by the ethics committee; The dataset is distributed under a controlled
license that requires users to agree to a Data Use Agreement, which prohibits misuse such
as identification attempts or unethical profiling; A detailed data documentation is provided
in the Appendix to ensure transparency and responsible reuse.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The models used in the paper are all open source, and the citations of the
sources are provided in Section 4.2.

Guidelines:

* The answer NA means that the paper does not use existing assets.
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13.

14.

15.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The collected dataset is equipped with a detailed documentation of the descrip-
tion, which is provided in the Appendix.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [Yes]

Justification: The full text of instructions given to participants, as well as details about
compensation are provided in section 6 and the appendix.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [Yes]

19


paperswithcode.com/datasets

Justification: The paper describes potential risks incurred by study participants and discloses
these risks to subjects, as well as obtaining local institutional review board (IRB) approval.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: This research does not involve LLMs as any important, original, or non-
standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

A REFED Overview

The REFED (Real-time Labeled EEG-fNIRS Emotion Dataset) is an effective Brain-Computer
Interface (aBCI) dataset integrating multimodal brain signals and real-time dynamic emotion anno-
tation. REFED dataset fills a critical gap in the study of neural mechanisms of emotional dynamic
evolution and the development of high-reliability aBCI models. By synchronizing the acquisition
of EEG and fNIRS signals, REFED realizes the joint observation of neuroelectrical activity and
hemodynamic response under emotional evocation, which provides unique data support for exploring
emotion-related neurovascular coupling mechanisms. Meanwhile, the dynamic valence and arousal
annotation based on participants’ subjective reports realizes the temporal alignment of brain signals
with emotional state changes, which significantly improves the temporal modeling capability of the
emotion recognition model. Experimental validation shows that the dataset meets the standard in
terms of emotion evoked validity and labeling reliability, and the multimodal signal features show
significant correlation with the dynamic labeling. The open sharing of REFED will promote the cross-
modal neural representation parsing for the dynamic encoding of emotions in the following research
directions, and lay an important foundation for the field of affective computation and brain-computer
interfaces to move towards dynamic interaction paradigms with higher ecological validity.

REFED Dataset Summary

Motivation

Summary: An affective BCI dataset integrating multimodal brain signals
(EEG-fNIRS) and real-time emotion annotation (valence-arousal).
Example Use Case: Emotion recognition, Valence/Arousal classification,
Valence/Arousal regression

Original Authors:  X. Ning, J. Wang, Z. Feng, T. Xin, S. Zhang, S. Zhang,
Z. Lian, Y. Ding, Y. Lin, Z. Jia

Al

Metadata

Hosting Platform Hugging Face (https://huggingface.co/)
Keywords Affective BCI, EEG, fNIRS, Real-time label, EEG-fNIRS
Format .mat, .csv
Ethical Review Approval IRB-CASIA
License CC BY-NC-SA
Sensors

EEG ESI Neuroscan, 64 channels, 200Hz
fNIRS Shimadzu LABNIRS, 51 channels, 47.6Hz

Annotations

Dynamic Emotion
Self-Assessments
Other Data

Valence and arousal
Valence, arousal, dominance, and familiarity
PANAS scales

Participants

Count 32
Gender 22 male, 10 female
Age 18~34 (M=21.3,SD=2.7)
Criteria Healthy adults

Dataset Size

Record Duration

Total Size

about 820 minutes (Emotion Inducing)
40 minutes (Baselines Total)
about 30 GB (Raw Data)

Motivation

Figure 8: Summary of the REFED dataset.

Our dataset aims to realize the following two innovations simultaneously:

1) Multimodal brain signals for aBCI datasets. While existing affective BCI (aBCI) datasets
primarily rely on EEG, they are constrained by EEG’s limited spatial resolution due to
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volume conduction effects. By integrating EEG and fNIRS, our dataset captures both the fast-
changing electrophysiological activity and the slower hemodynamic responses associated
with emotional processing. This multimodal approach provides a more comprehensive
and complementary view of brain activity, enhancing the interpretability and robustness of
emotion decoding models. The spatial coverage of fNIRS, particularly over emotion-related
brain regions such as the prefrontal and temporal cortices, enables deeper insights into the
spatial patterns of affective neural responses.

2) Real-time dynamic emotion annotations. Traditional datasets typically assign static
emotion labels to each stimulus, either based on the intended affective category of the video
or post-hoc self-report summaries. However, emotional experiences during video viewing
are inherently dynamic and continuously evolving. To better reflect the temporal progression
of emotional states, we introduced a real-time continuous annotation protocol, allowing
participants to report their emotional experiences on a moment-to-moment basis using a
visual feedback interface and Xbox controller. This enables the training and evaluation
of dynamic affective decoding models, which are more aligned with real-world human-
computer interaction needs.

In summary, our dataset fills a critical gap in affective BCI research by jointly providing
multimodal brain signals and real-time dynamic emotion annotations. This resource lays a
solid foundation for advancing the understanding of emotion-related brain dynamics and developing
practical aBCI systems capable of real-time emotional adaptation.

A.2 Comparison with Other Related Datasets

The REFED dataset introduces significant advancements in both the modality of brain signal acqui-
sition and the granularity of data annotation for emotion-related datasets. By integrating EEG and
fNIRS, REFED captures neural activity from both electrophysiological and hemodynamic perspec-
tives, offering a more comprehensive and multimodal representation of emotional brain responses.
In addition, unlike most existing datasets that rely on static, post-hoc labels, REFED incorporates
real-time, dynamic emotion annotations collected continuously during stimulus presentation. These
two innovations mark a notable step forward in the development of affective computing resources. As
summarized in Table|2| we provide a comparative overview of representative affective BCI datasets,
highlighting differences in their brain signal modalities and the type of emotional labels they offer,
thereby underscoring the unique contributions of REFED.

Table 2: Comparison with other related datasets. Our REFED dataset provides brain signals in both
EEG and fNIRS modalities, as well as dynamic emotion labeling and static emotion labeling.

Dataset Brain Signals Static Label Dynamic Label #Subjects #Videos

DEAP [5] EEG SAM (Valence, Arousal, Dominance), x 32 40
Liking, Familiarity

MAHNOB-HCI [13] EEG SAM (Valence, Arousal, Dominance), x 27 20
Emotion, Predictability

SEED [14]15] EEG Emotion (Targeted emotion) X 15 15

DREAMER [6] EEG SAM (Valence, Arousal, Dominance) X 23 18

AMIGOS [7] EEG PANAS, SAM (Valence, Arousal, x 40 16

Dominance), Liking, Familiarity, Per-
sonality, Emotion

MPED [25] EEG PANAS, SAM (Valence, Arousal), x 23 28
DES

THU-EP [27] EEG Emotion profiles X 80 28

FACED [26] EEG SAM (Valence, Arousal), Emotion, X 123 28
Familiarity, Liking

TVED-fNIRS [17] {NIRS SAM (Valence, Arousal) X 30 24

FEAD [8] EEG+fNIRS PANAS, SAM (Valence, Arousal, x 37 24
Dominance), Emotion, Familiarity

CASE [22] x (only PPG) x Valence, Arousal 30 8

CEAP-360VR [21] x (only PPG) X Valence, Arousal 32 8

REFED (Ours) EEG+HNIRS PANAS, SAM (Valence, Arousal, Valence, Arousal 32 15

Dominance), Familiarity
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A.3 Dataset Organization

The REFED dataset mainly consists of EEG signals, fNIRS signals, real-time emotion annotations,
and other related datasheets. The EEG signals, fNIRS signals, and emotion annotations are provided
in MATLAB .mat format, and the other datasheets are provided in . csv format.

[ REFED Dataset ]

M Metadata.csv

M SAM.csv

M PANAS.csv

M fNIRS_reservations.csv
—

fNIRS_coordinate.csv

EEG_baselines.mat

EEG_videos.mat

1/
fNIRS_baselines.mat
— data/ fNIRS_videos.mat
2/ —..
.../ (up to 32/)

1_label.mat
\— annotations/ {Z_Iabel.mat
... (up to 32_label.mat)

Figure 9: File organization of the REFED dataset.

./Metadata.csv
Subject demographic information (ID, gender, age, etc.).

./SAM.csv
Post-trial emotion scores based on the Self-Assessment Manikin (SAM) scale (valence and arousal).

./PANAS.csv
Positive and negative affect scores before and after the experiment (Positive and Negative Affect
Schedule).

./fNIRS_reservations.csv
fNIRS acquisition logs including bad channel markers.

./fNIRS_coordinate.csv
3D coordinates of fNIRS channels for alignment and spatial analysis.

./data/
Each subject (1 to 32) has a corresponding subfolder under . /data/, containing raw brain signals:

* EEG_baselines.mat: Resting EEG signal (baseline phase).

* EEG_videos.mat: Emotionally evoked phase EEG signaling (video stimulation).

» fNIRS_baselines.mat: Resting-state fNIRS signal (baseline phase).

» fNIRS_videos.mat: Emotionally evoked phase fNIRS signaling (video stimulation).

* EEG sampling rate: 1000 Hz; {NIRS sampling rate: 47.62 Hz.

» fNIRS signals type include: HbO, HbR, HbT, Abs 780 nm, Abs 805 nm, Abs 8§30 nm.

* Each .mat file stores multi-trial time series data (15 videos in total).
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* EEG data shape: channels x sampling_point;
fNIRS data shape: signal_type x channels x sampling_point.

./annotations/
Dynamic emotion annotations (valence and arousal) for each subject during video viewing:

» Each *_label.mat contains time-aligned joystick-based valence and arousal annotations.

* Annotations shape: 2 x time (valence and arousal over time).

A.4 Dataset Usages

The REFED dataset provides 64-channel EEG data, 51-channel fNIRS data, static emotion anno-
tations, and dynamic real-time emotion annotations under 15 different emotional video clips. It
supports a wide range of research tasks, including emotion recognition, valence/arousal classification
and regression, the discovery of patterns in EEG or fNIRS during emotional transitions, and the
investigation of electrophysiological and hemodynamic mechanisms underlying emotional dynamics.

1) Emotion Recognition Tasks: Researchers can use the dataset to train models that classify discrete
emotional states based on EEG, fNIRS, or their fusion. With well-defined emotion categories and
multimodal brain signals, REFED enables both unimodal and multimodal emotion recognition
approaches under different conditions of emotional valence and arousal.

2) Valence / Arousal Classification Tasks: The dataset allows for binary or multi-class classification
tasks focused on emotional valence (positive vs. negative) and arousal (high vs. low). By leveraging
both the static labels assigned to each video and the continuous annotations over time, researchers
can build models that differentiate between different levels of affective intensity and polarity.

3) Valence / Arousal Regression Tasks: Using the real-time dynamic annotations, models can be
trained to perform fine-grained regression of valence and arousal values on a continuous scale. This
supports more nuanced modeling of emotional experience and is especially relevant for real-time
affective decoding in applications like affective brain-computer interfaces (aBCIs) and neuroadaptive
systems.

4) Pattern Discovery in EEG or fNIRS During Emotional Shifts: With synchronized EEG and
fNIRS recordings, REFED enables the analysis of how electrical and hemodynamic brain signals
change during transitions between different emotional states. Researchers can explore spatial-
temporal patterns, connectivity dynamics, and cross-modal signal correlations during emotional
fluctuations.

5) Mechanistic Study of Electrophysiological and Hemodynamic Responses to Emotion: The
dataset provides a foundation for investigating the distinct and complementary roles of electrophysi-
ological activity (captured by EEG) and hemodynamic responses (captured by fNIRS) in emotion
processing. This includes analyzing temporal response profiles, regional activations, and how different
neural substrates contribute to emotional regulation and perception.

By offering a rich, multimodal, and dynamically annotated dataset, REFED dataset serves as a
valuable resource for advancing both practical applications in affective computing and theoretical
understanding of the neural underpinnings of human emotion.

B Data Record Protocol

B.1 Dynamic Annotation and Control System

To streamline and standardize the data collection process for EEG-fNIRS during emotion elicitation
experiments, we developed a real-time emotion annotation and control system based on HTML and
JavaScript. This system automates key aspects of the experimental workflow, including procedu-
ral guidance, stimulus presentation, and the recording and transmission of emotional annotations.
Designed to run on a main experimental computer, the system interfaces with an Xbox controller
to enable participants to continuously report their emotional states in real time. By incorporating
this system into the experiment, we ensure high consistency across sessions, minimize manual
intervention, and significantly reduce the workload of the experimenter.
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As illustrated in Figure[I0} the experimental procedure begins with a brief meditation period, followed
by the sequential presentation of 15 emotion-eliciting video clips. Each segment is preceded by an
on-screen countdown to help participants prepare mentally and physically. In addition, prior to the
formal experiment, the system can be switched into a training mode via a simple configuration file.
In this mode, three sample video clips are presented, allowing participants to become familiar with
the system interface and practice real-time emotion annotation, thereby improving the reliability and
usability of the collected data.

5s 180s 2100s

Real-time Emotion Labeling System

Please prepare to meditate. Please close your eyes and BN
focus on your breath without . Video
moving your body.

s you have watched all

E Watching
& «
Start page Meditation countdown Meditation Finish page
Play countdown Baseline record Video play & label Self-assessment & Rest x15

m o0 o
”

Video 'Emotion-1.mpd' is about to play.

11

5s 5s ~100s 30s

Time

Figure 10: Control system running flow

Beyond the main experimental computer, a synchronization module developed by FiStar enables
precise time alignment by transmitting dynamic emotion annotations to both the Neuroscan EEG
and LABNIRS fNIRS systems. These systems concurrently acquire neural signals from a shared
EEG-{NIRS cap, which integrates electrodes and optodes over emotion-relevant brain regions. The
EEG and fNIRS data are recorded and processed on separate, dedicated PCs—referred to as the EEG
recording PC and the fNIRS control PC, respectively. The overall hardware configuration, including
device connections and the flow of data and annotation triggers across systems, is depicted in Figure
[IT] This tightly integrated setup ensures synchronized multimodal data acquisition, laying a robust
foundation for subsequent analysis of emotion-related brain dynamics.

Label Flow
Data Flow Synchronization COM
module

EEG-fNIRS Cap

Video Play

NIl

/ Vi v

°
o] : o — 2w
)

o

Neuroscan = =i
{ (with Record PC) — VS (HvLA)
‘ | usB Emotion Label
EEG Record otion Labe
LABNIRS
(Integrated Record PC) g -
Fibre-optical
fNIRS Record Controller

Figure 11: Device connection diagram

B.2 fNIRS Coordinates
Our fNIRS channel layout is carefully designed to balance spatial coverage and signal quality,

comprising a total of 51 channels distributed across three functionally significant brain regions. These
channels are configured using 18 light sources (emitters) and 18 detectors provided by the LABNIRS
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system. The selected regions—the prefrontal cortex, the left temporal lobe, and the right temporal
lobe—are well-established in the literature as key areas involved in emotional perception, generation,
and regulation. This configuration enables the system to capture hemodynamic changes in these
emotion-relevant brain areas with both spatial specificity and functional relevance. The LABNIRS
system operates at a sampling rate of 47.62 Hz, which is sufficient for monitoring the slow fluctuations
in oxygenated and deoxygenated hemoglobin that reflect cortical activation patterns. Table [3|provides
the three-dimensional (3D) coordinates of all 51 channels as defined by source detector positions.

Table 3: The coordinates of 51-channel fNIRS.

3D Coordinates

Channel Source Detector Brain Region
X y z
CH_01 T7 R7 =77 36 64 Right temporal lobe
CH_02 T8 R7 -70 36 98 Right temporal lobe
CH_03 T7 R8 -81 22 43 Right temporal lobe
CH_04 T9 R7 -80 19 80 Right temporal lobe
CH_05 T8 R9 -67 18 116 Right temporal lobe
CH_06 T9 RS -84 5 60 Right temporal lobe
CH_07 T9 R9 =77 2 98 Right temporal lobe
CH_08 T10 R8 -83 -8 38 Right temporal lobe
CH_09 T9 R10 -82 -13 76 Right temporal lobe
CH_10 T11 R9 -69 -18 112 Right temporal lobe
CH_11 T10 R10 -81 -25 54 Right temporal lobe
CH_12 T11 R10 -74 -32 90 Right temporal lobe
CH_13 T10 R11 -78 -36 35 Right temporal lobe
CH_14 T12 R10 -76 -44 68 Right temporal lobe
CH_15 T11 R12 -64 -52 100 Right temporal lobe
CH_16 T12 R11 -73 -55 48 Right temporal lobe
CH_17 T12 R12 -65 -64 78 Right temporal lobe
CH_18 T13 R13 70 38 100 Left temporal lobe
CH_19 T14 R13 78 37 64 Left temporal lobe
CH_20 T13 R14 67 20 119 Left temporal lobe
CH_21 T15 R13 80 21 81 Left temporal lobe
CH_22 T14 R15 82 22 43 Left temporal lobe
CH_23 T15 R14 77 3 100 Left temporal lobe
CH_24 T15 R15 84 6 60 Left temporal lobe
CH_25 T16 R14 69 -17 114 Left temporal lobe
CH_26 T15 R16 82 -12 76 Left temporal lobe
CH_27 T17 R15 83 -7 38 Left temporal lobe
CH_28 T16 R16 74 -32 91 Left temporal lobe
CH_29 T17 R16 81 -25 55 Left temporal lobe
CH_30 T16 R17 62 -51 101 Left temporal lobe
CH_31 T18 R16 76 -44 69 Left temporal lobe
CH_32 T17 R18 78 -36 35 Left temporal lobe
CH_33 T18 R17 64 -63 79 Left temporal lobe
CH_34 T18 R18 73 -55 49 Left temporal lobe
CH_35 T1 R1 -17 -76 121 Frontal lobe
CH_36 T2 R1 16 -75 121 Frontal lobe
CH_37 T1 R2 -34 -86 100 Frontal lobe
CH_38 T3 R1 0 -88 106 Frontal lobe
CH_39 T2 R3 32 -85 100 Frontal lobe
CH_40 T3 R2 -17 -98 85 Frontal lobe
CH_41 T3 R3 16 -98 85 Frontal lobe
CH_42 T4 R2 -33 -102 65 Frontal lobe
CH_43 T3 R4 -1 -104 69 Frontal lobe
CH_44 TS R3 32 -101 65 Frontal lobe
CH_45 T4 R4 -17 -107 49 Frontal lobe
CH_46 TS R4 16 -107 49 Frontal lobe
CH_47 T4 RS -29 -108 33 Frontal lobe
CH_48 T6 R4 0 -112 38 Frontal lobe
CH_49 TS5 R6 29 -107 33 Frontal lobe
CH_50 T6 R5 -13 -112 22 Frontal lobe
CH_51 T6 R6 14 -112 22 Frontal lobe
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B.3 Emotion Inducting Videos

We selected a total of 15 emotional video clips to elicit participants’ affective responses. These
clips were carefully chosen, with the vast majority sourced from publicly available and previously
validated emotion-eliciting video databases. The 15 videos were organized into three blocks, each
containing five clips that correspond to five distinct target emotion categories. These categories were
defined based on the widely used valence—arousal model and include:

1) High Valence-High Arousal (HVHA): High-energy positive emotions such as excitement and happiness;
2) High Valence-Low Arousal (HVLA): Low-energy positive emotions such as relaxation and serenity;

3) Low Valence—High Arousal (LVHA): High-energy negative emotions such as anger and fear;

4) Low Valence-Low Arousal (LVLA): Low-energy negative emotions such as sadness and boredom;

5) Medium Valence-Medium Arousal (MVMA): Neutral states or those without a clear affective polarity.

To ensure consistent emotion elicitation across participants, all subjects viewed the video clips in
the same fixed sequence. Additionally, to help participants become familiar with the experimental
interface and the real-time emotion annotation procedure, we selected three additional practice
clips—each representing a different target emotion category—for use during the training session
before the formal experiment.

Table [] provides detailed information on the source of each emotional video clip as well as the
duration of the edited segments used in the experiment. The majority of the videos were sourced
from the publicly available video libraries PED (positive emotion database), CPED (Chinese positive
emotion database), and SCEFD (standard Chinese emotional film clips dataset). These carefully
curated stimuli form the core of our emotion-elicitation paradigm and provide a balanced and diverse
set of emotional experiences for data collection.

Table 4: Summary of fifteen emotional induction video clips and three practice video clips.

id Source Description Clip Length Targeted emotion
pl Bilibili* Full understanding of how computers work 0:01:50 MVMA (Neutral)
p2 movie Train to Busan 0:02:29 LVLA (Sad)
p3 PED? My Neighbor Totoro 0:00:36 HVHA (Happy)
Total 0:04:55
Average 0:01:38
1 Bilibili® How Computer Chips Work 0:02:16 MVMA (Neutral)
2 SCEFD* Changjiang Qihao 0:02:19 LVLA (Sad)
3 SCEFD* Inner Senses 0:01:32 LVHA (Fear)
4 CPED’ King of Destruction 0:01:21 HVHA (Happy)
5 CPED® 7 Strangest Places in the World 0:02:17 HVLA (Relax)
6 PED? Gangs of New York 0:01:35 LVLA (Sad)
7 CPED® Iron Fist of Shame 0:02:04 HVHA (Happy)
8 CPED® Food those tantalizing moments 0:01:49 HVLA (Relax)
9 PED? The Pianist 0:01:12 LVHA (Fear)
10 SCEFD* Raise the Red Lantern 0:01:02 MVMA (Neutral)
11 SCEFD* The Chrysalis 0:01:03 LVHA (Fear)
12 SCEFD* Black Coal Thin Ice 0:01:05 MVMA (Neutral)
13 SCEFD* Bodyguards and Assassins 0:01:53 LVLA (Sad)
14 CPED’ Epic Landscape Clips 0:01:45 HVLA (Relax)
15 CPED® The Chinatown Detective 0:02:52 HVHA (Happy)
Total 0:26:05
Average 0:01:44

!https://www.bilibili.com/video/BV1tM4y1B7qP

2 PED: positive emotion database [35]]
3https://www.bilibili.com/video/BVigM411e74r

4 SCEFD: standard Chinese emotional film clips dataset [32} 33]
5 CPED: Chinese positive emotion database [34]
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B.4 Emotion Scales

Throughout the study, we utilized both the Positive and Negative Affect Schedule (PANAS) and
SAM emotion scales. The PANAS scale was completed before the collection to assess the subject’s
recent basic mood state. The SAM scale was completed after the completion of each video during
the collection process to assess the subject’s effectiveness in responding to the mood evoked by that
video.

B.4.1 PANAS Scale

The Positive and Negative Affect Schedule (PANAS) is a widely used self-report questionnaire
designed to assess an individual’s experiences of positive and negative emotions over a specific
period. It consists of two subscales: Positive Affect (PA) and Negative Affect (NA), each comprising
10 adjective items. Participants rate the extent to which they have felt each emotion on a 5-point
Likert scale. PANAS has demonstrated strong reliability and validity, making it a popular tool in
psychological, neuroscientific, and clinical research.

Please mark "/" in the corresponding position.

Positive | Feworno  Alittle  Moderately Quite a bit Extremely Negative | Feworno Alitle Moderately Quite a bit Extremely
Interested O O O O O Distressed O O O O O

Figure 12: PANAS Scale.

B.4.2 SAM Scale

The Self-Assessment Manikin (SAM) is a non-verbal, pictorial tool used to measure individuals’
subjective emotional responses to stimuli. It assesses three core dimensions of affective experience:
valence, arousal, and dominance, each represented by a series of human-like figures illustrating
gradations of emotional states. Participants intuitively select the figure that best matches their feelings.
Owing to its language-free design, SAM is particularly suitable for cross-cultural studies, children,
and populations with limited verbal abilities, and is widely used in affective neuroscience and emotion
induction research. Similar to most previous studies, we also collect familiarity as an additional
variable along with the SAM Scale.

Please mark "/" in the corresponding position.

 Videox| 1 2 3 4 5 6 7 8 9

Valence O O O O O O O O O
 Aowsal O O O O O O O O O
Domnance, O O O O O O O O O
CFamileiy) O O O O O O O O O

Figure 13: SAM scale for a video clip.
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C Ethical Considerations and Participant Selection

The local Institutional Review Board approved the ethical conduct of this study. All procedures
involving human participants adhered strictly to established ethical standards, with an emphasis on
participant safety, privacy, and informed consent.

We recruited healthy adult volunteers with no history of neurological or psychiatric disorders to
ensure data reliability and minimize confounding factors. Prior to participation, all subjects were
thoroughly informed of the study’s purpose, procedures, and data usage policies. Informed consent
was obtained for the collection of physiological signals (EEG and fNIRS) and subjective emotional
annotations. The experiment employed entirely non-invasive methods and posed no known physical
or psychological risks. Emotional video stimuli were carefully selected to avoid causing distress, and
participants were free to withdraw at any time without penalty.

All personally identifiable information was removed or anonymized before dataset release. Only
essential demographic details (e.g., age range and gender) are retained for scientific analysis. The
dataset is fully anonymized and privacy-compliant and publicly released on Hugging Face under the
CC BY-NC-SA license, permitting non-commercial scientific research with required attribution and
share-alike terms. While we recognize the theoretical risk of misuse, such as unauthorized commercial
use or re-identification, we have implemented multiple safeguards. In addition to anonymization, the
dataset is distributed through reputable academic platforms with clearly stated usage terms. Users
must agree to these terms prior to accessing. We will also monitor dataset usage and encourage
the research community to report any suspected violations. If misuse is detected, we reserve the
right to restrict access or take further action as necessary. By combining ethical licensing, thorough
anonymization, and responsible data sharing practices, we strive to ensure that the REFED dataset
remains a safe, valuable, and ethically used resource for advancing research in affective computing
and brain—computer interfaces.

D Distribution of Annotations

Figure [I4]exhibits the detailed distribution of the valence-arousal dynamic labeling. All valence and
arousal degrees are normalized to 0-1. All videos start playing with both valence and arousal from
the center point. The blue color depth of each subplot shows the distribution density of the labels, the
blue histogram on the top shows the distribution of the valence, and the green histogram on the right
shows the distribution of arousal.

First, we observed that the annotations for nearly all videos were clustered within their intended target
quadrants in the valence—arousal space. Importantly, participants were not given any prior indication
of the emotional tendency of each video, yet their actual ratings aligned well with the expected
emotion categories. This consistency supports the effectiveness of the emotion elicitation protocol
employed in our experiment. However, there were a few deviations. Specifically, Video 8 and Video
14, both categorized as high valence—low arousal (HVLA), showed slightly elevated arousal levels in
the actual annotations compared to their target quadrant. These two clips featured content such as
scenic landscapes and gourmet food, which, while generally calming, may evoke heightened interest
or excitement in certain individuals depending on personal preferences. This variability highlights the
importance of collecting subjective self-assessments rather than relying solely on predefined labels.
Even when exposed to the same emotional stimulus, individuals may experience diverse emotional
responses. Such inter-subject variability reinforces the value of real-time self-reported emotion
annotations in achieving a more accurate and individualized understanding of affective states.

E Supervised Learning Experiments

To evaluate the learnability of EEG—fNIRS signals and the valence—arousal annotations in the REFED
dataset, we conducted supervised training experiments. Specifically, we assessed model performance
on both regression and three-class classification tasks along the valence and arousal dimensions.

Emotion Labels. For regression tasks, all valence and arousal labels were normalized to the [0,
1] range, and mean absolute error (MAE) and mean squared error (MSE) were used as evaluation
metrics. For classification tasks, the normalized values were categorized as follows: values within
[0.0, 0.4) were labeled as low, [0.4, 0.6] as medium, and (0.6, 1.0] as high. Accuracy and weighted
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Figure 14: Distribution of detailed dynamic emotion labels (valence and arousal) of 15 videos.

F1 score were used as evaluation metrics for classification. All tasks are divided into samples of 1
second for data segmentation.

Baselines. We evaluated three representative models: Support Vector Machine (SVM), Multi-Layer
Perceptron (MLP), M2NN [44], MDNet [45]], FERPO [46], and TSMMF [36]. SVM served as
a baseline traditional machine learning method. For SVM, the temporal and frequency features
from both modalities were flattened and concatenated before input. The MLP is the most basic
deep learning model. We also used temporal and frequency features as input to the MLP. The
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M2NN [44] is a Multimodal Multitask Neural Network, originally developed for joint EEG—fNIRS
classification, directly consumes raw EEG and fNIRS data as input. MDNet [45] proposes a Multi-
level Disentangling Network to address emotion recognition based on multimodal physiological
signals. FERPO [46] is also a deep learning emotion recognition method that integrates multimodal
representations. TSMMEF [36] proposes a Temporal-Spatial Multimodal Fusion model, which
leverages the bidirectional Cross-Modal Transformer to fuse EEG and fNIRS multimodal brain signals.
We tuned the parameters of these deep learning methods to align with the sampling frequencies of
our dataset.

Feature Extraction. We extracted temporal and frequency domain features from both EEG and
fNIRS modalities for SVM and MLP models. For EEG, we derived differential entropy (DE) features
[14}[15] across all channels in five standard frequency bands: delta (1-4 Hz), theta (4—8 Hz), alpha
(8-14 Hz), beta (14-31 Hz), and gamma (31-50 Hz), which form the feature matrix Hgpg € R64%5,
Assuming EEG signals z follow a Gaussian distribution N(p1, 02), the DE feature is calculated as:

1 (z —p)? 1 (x —p)? 1 2
DE = — 1 = —1In(2 1
[m \/%exp 5o2 o \/%exp 52 dx 5 n(2mec?) (1

For fNIRS, we used the total hemoglobin (HbT) signal and extracted 5 time-domain features: mean,
maximum, minimum, standard deviation, and slope. Additionally, we computed DE features in the
0.01-0.7 Hz frequency range to provide frequency-domain features. Hence, these fNIRS features
form the feature matrix Hpgrs € R51*6.

Environments. All experiments were conducted on a workstation equipped with an Intel Core
i5-13600K CPU, NVIDIA GeForce RTX 4070 Ti Super 16GB GPU, and 64 GB RAM. The software
environment includes Python 3.13.2, Scikit-learn 1.6.1, scipy 1.15.2, mne 1.9.0, PyTorch 2.7.0, and
CUDA 12.8.

Model parameters. SVM hyperparameter search over kernel types (linear, rbf, and poly) and C
values (0.001 to 100). For deep learning methods, we used the Adam optimizer with grid search over
batch size (16 to 512) and learning rate (le-6 to le-2).

Results. Table[5]and Tables [6] summarize the performance of the REFED dataset on valence—arousal
regression and three-class classification tasks using six representative models. Overall, all models
achieved promising results, with best classification accuracies exceeding 0.6 and mean absolute
errors (MAEs) around 0.17 for valence and 0.14 for arousal in regression tasks. In general, the
combination of EEG and fNIRS consistently yielded the best performance across nearly all settings,

Table 5: Regression performance of the REFED dataset under supervised learning models.

Model Modality Valence Arousal
MAE | MSE | MAE | MSE |

EEG 0.193340.0415  0.060340.0241 0.1673+0.0486  0.0497+0.0316
SVM fNIRS 0.1867+0.0410  0.0595+0.0257  0.1598+0.0484  0.043640.0259
EEG+fNIRS  0.187140.0411 0.058640.0248  0.160140.0477  0.043540.0230
EEG 0.1911+0.0431  0.060140.0245  0.16434+0.0445  0.043240.0204
MLP fNIRS 0.1908+0.0485  0.06184+0.0279  0.157040.0452  0.040640.0205
EEG+fNIRS  0.1909+0.0501  0.061640.0282  0.157140.0444  0.0407+0.0200
EEG 0.1899+40.0442  0.061040.0255  0.158140.0440  0.041040.0188
M2NN [44] fNIRS 0.193440.0439  0.060140.0240  0.162440.0444  0.042440.0196
EEG+fNIRS  0.189340.0429  0.059040.0235  0.158540.0446  0.0407+0.0191
EEG 0.1876+0.0437  0.06074+0.0248  0.154740.0430  0.0404+0.0181
MDNet [45]] fNIRS 0.1793+0.0433  0.0592+0.0270  0.1479+0.0391 0.0391+0.0184
EEG+{NIRS  0.1768+0.0429  0.0579+0.0265  0.1469-+0.0381 0.0389+0.0178
EEG 0.1929+40.0440  0.060040.0249  0.16184+0.0440  0.042240.0205
FERPO [46] fNIRS 0.173040.0452  0.054640.0264  0.148740.0419  0.038640.0195
EEG+fNIRS  0.1738+0.0434  0.054040.0245  0.146540.0419  0.038440.0193
EEG 0.182240.0432  0.058840.0247  0.154240.0404  0.040240.0181
TSMMEF [36] fNIRS 0.1716+0.0413  0.05424+0.0248  0.14534+0.0411  0.037640.0194
EEG+fNIRS  0.170540.0409  0.053140.0236  0.144540.0401 0.0369+0.0182
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Table 6: Classification performance of the REFED dataset under supervised learning models.

Model Modality Valence Arousal
Accuracy T Fl-score 1 Accuracy 1 Fl-score 1

EEG 0.5240+0.1354  0.402340.1408  0.62104+0.1503  0.502940.1666
SVM fNIRS 0.5730+0.1128  0.4798+0.1233  0.6428+0.1271 0.5466+0.1350
EEG+fNIRS  0.5738+0.1147  0.482740.1231  0.640540.1301  0.542640.1392
EEG 0.5066+0.0836  0.422540.0693  0.479440.0966  0.423940.0799
MLP fNIRS 0.5478+0.0952  0.492940.0983  0.545640.0926  0.498740.0978
EEG+fNIRS  0.548840.0934  0.492240.0963  0.5506+0.0889  0.5057+0.0934
EEG 0.4874+0.1049  0.4050+0.0866  0.452140.0886  0.396140.0627
M2NN [44] fNIRS 0.493940.0980  0.429440.0832  0.484040.0937  0.429040.0853
EEG+fNIRS  0.5200+0.0896  0.446440.0850  0.516240.0966  0.454640.0981
EEG 0.559340.1034  0.311540.0618  0.636240.1214  0.307240.0566
MDNet [45]] fNIRS 0.6053+0.1050  0.445640.1047  0.6647+0.1176  0.423940.0657
EEG+fNIRS  0.604940.1011  0.440140.1010 0.6629+0.1164  0.3969+0.0650
EEG 0.5440+0.1236  0.263140.0644  0.626440.1376  0.278940.0593
FERPO [46]] fNIRS 0.6299+0.0088  0.4539+4+0.1134  0.6765+0.1086  0.4231+0.0849
EEG+{NIRS  0.6273+0.0989  0.4555+0.1115  0.6682+0.1111  0.4074+0.0798
EEG 0.5961+0.1020  0.396540.0848  0.65274+0.1175  0.372040.0750
TSMMEF [36] fNIRS 0.619940.1016  0.448540.1088  0.66454+0.1217  0.395640.0801
EEG+fNIRS  0.6269+0.1005  0.461140.1071  0.670140.1171  0.406040.0892

highlighting the advantage of multimodal brain signals in enhancing emotion recognition accuracy.
Interestingly, the fNIRS modality alone often outperformed EEG alone, suggesting that fNIRS is a
valuable and potentially underutilized signal source for affective computing. Overall, the TSMMF
model achieved the best overall performance, while SVM and MLP performed the worst under certain
settings. Although M2NN was originally designed for joint EEG—NIRS decoding, its architecture
was primarily tailored for motor imagery tasks, which may limit its adaptability to affective decoding
scenarios. In contrast, MDNet and FERPO are designed for multimodal emotion recognition, but they
may lack sufficient modeling capability for fNIRS signals. The TSMMF model, being specifically
designed for EEG-fNIRS multimodal emotion recognition, can better capture the spatial-temporal
features of brain activity.

F Brain Topography Visualization

Figure[I5]presents average EEG—fNIRS topographic maps across all participants for the five target
emotional categories. For each emotion, we display four complementary views: EEG, HbT, HbO,
and HbR, enabling a multimodal visualization of neural and hemodynamic responses under distinct
emotional states. Different emotional states elicit distinct patterns of brain activation. The HVHA
emotion shows the most strongest brain activity, with both EEG and fNIRS views showing the
highest levels of activation. The prefrontal cortex presents distinct patterns across emotional states.
In the EEG view, prefrontal activity markedly decreases during high-valence emotions and increases
during low-valence emotions. In contrast, the fNIRS view reveals stronger prefrontal hemodynamic
responses under high-valence emotions. The similarities and differences between these two modalities
jointly reflect the brain’s neurovascular coupling mechanism and demonstrate their complementary
roles in understanding emotional processing.

Figure [16] illustrates the average EEG—fNIRS topographic maps grouped by gender, providing
comparative insights into potential sex-related differences in neural and hemodynamic activity
patterns during emotion elicitation. From the EEG perspective, male participants exhibit significantly
greater brain activity under HVLA emotion, while female participants show stronger both occipital
and frontal activation under LVLA emotion. From the fNIRS perspective, female participants present
more notable activation in the prefrontal cortex and bilateral temporal lobes under LVHA emotion,
while exhibiting reduced blood flow activity under LVLA emotion. Overall, male and female
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participants exhibit both commonalities and differences in emotion-induced responses, reflecting
potential neurophysiological mechanism differences in emotion processing across genders.

Figure 15: Average activation of EEG and fNIRS under different targeted emotions.

(a) Male

Figure 16: Average activation of EEG and fNIRS in different emotions by gender.
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