
AlphaZero-Like Tree-Search can Guide
Large Language Model Decoding and Training

Ziyu Wan * 1 Xidong Feng * 2

Muning Wen 1 Stephen Marcus McAleer 3 Ying Wen 1 Weinan Zhang 1 Jun Wang 2

Abstract
Recent works like Tree-of-Thought (ToT) and
Reasoning via Planning (RAP) aim to augment
the multi-step reasoning capabilities of LLMs by
using tree-search algorithms. These methods rely
on prompting a pre-trained model to serve as a
value function and focus on problems with low
search depth. As a result, these methods cannot
benefit from in-domain training and only rely on
pretraining process — they will not work in do-
mains where the pre-trained LLM does not have
enough knowledge to serve as an effective value
function or in domains that require long-horizon
planning. To address these limitations, we present
an AlphaZero-like tree-search learning framework
for LLMs (termed TS-LLM), systematically il-
lustrating how tree-search with a learned value
function can guide LLM decoding. TS-LLM dis-
tinguishes itself in two key ways. (1) Leveraging
a learned value function and AlphaZero-like al-
gorithms, our approach can be generally adapt-
able to a wide range of tasks, language models
of any size, and tasks of varying search depths.
(2) Our approach can guide LLMs during both
inference and training, iteratively improving the
LLMs. Empirical results across reasoning, plan-
ning, alignment, and decision-making tasks show
that TS-LLM outperforms existing approaches
and can handle trees with a depth of 64.

1. Introduction
Large language models (LLMs) (OpenAI, 2023; Touvron
et al., 2023a) have demonstrated their potential in a wide

*Equal contribution, order determined by flipping a coin.
1Shanghai Jiao Tong University 2University College London
3Carnegie Mellon University. Correspondence to: Ying Wen
<ying.wen@sjtu.edu.cn>, Jun Wang <jun.wang@ucl.ac.uk>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

range of natural language tasks. A plethora of recent studies
have concentrated on improving LLMs task-solving capabil-
ity, including curation of larger and higher-quality general
or domain-specific data (Touvron et al., 2023a; Zhou et al.,
2023; Gunasekar et al., 2023; Feng et al., 2023; Taylor et al.,
2022), more sophisticated prompt design (Wei et al., 2022;
Zhou et al., 2022; Creswell et al., 2022), or better train-
ing algorithms with Supervised Learning or Reinforcement
Learning (RL) (Dong et al., 2023; Gulcehre et al., 2023;
Rafailov et al., 2023). When training LLMs with RL, LLMs’
generation can be naturally formulated as a Markov Deci-
sion Process (MDP) and optimized with specific objectives.
Following this formulation, ChatGPT (Ouyang et al., 2022)
emerges as a notable success, optimizing LLMs to align
human preference by leveraging Reinforcement Learning
from Human Feedback (RLHF) (Christiano et al., 2017).

LLMs can be further guided with planning algorithms such
as tree search. Preliminary work in this field includes
Tree-of-Thought (ToT) (Yao et al., 2023; Long, 2023) with
depth/breadth-first search and Reasoning-via-Planing (RAP)
(Hao et al., 2023) with MCTS. They successfully demon-
strated a performance boost of searching on trees expanded
by LLM through self-evaluation. Despite these advances,
current methods come with distinct limitations. First, the
value functions in the tree-search algorithms are obtained
by prompting LLMs. As a result, such algorithms lack gen-
eral applicability and heavily rely on both well-designed
prompts and the robust capabilities of advanced LLMs. Be-
yond the model requirements, we will also show in Sec.
4.2.1 that such prompt-based self-evaluation is not always
reliable. Second, ToT and RAP use BFS/DFS and MCTS
for tree search, restricting their capabilities to relatively sim-
ple and shallow tasks. They are capped at a maximum depth
of only 10 or 7, which is significantly less than the depth
achieved by AlphaZero in chess or Go (Silver et al., 2017).
As a result, ToT and RAP might struggle with complex prob-
lems that demand large analytical depths and longer-term
planning horizons, decreasing their scalability.

To address these problems, we introduce tree-search en-
hanced LLM (TS-LLM), an AlphaZero-like framework that
utilizes tree-search to improve LLMs’ performance on gen-

1

AlphaZero-Like Tree-Search can Guide Large Language Model Decoding and Training

Return

Policy improvement

Inference via AlphaZero-Like Tree-Search

Backup

Select

Expand

Seleted node

Eval leaf node

Visited node

Act:

Value Learning Buffer

Wrong AnswerCorrent AnswerCorrent Answers Wrong Answers

Training

Policy Learning Buffer

Return
Estimation

TS-LLM Enhances LLM Inference
Decoding by Tree-Search

TS-LLM Provides Improved Paths
for LLM Training

Policy Evaluation

Policy Distillation
Node Expansion

Figure 1: (a) Left: Two node expansion paradigms on Game24: sentence-level and token-level. We adopt sentence-level
setting in this task. (b) Right: TS-LLM consists of an iterative process over tree-search and training. First, TS-LLM enhances
LLM inference by tree-search to obtain improved trajectories, augmenting the training set. LLM can be further trained to
improve by conducting policy distillation and value function learning (policy evaluation) over the augmented training set.

eral natural language tasks. TS-LLM extends previous work
to AlphaZero-like deep tree-search with a learned LLM-
based value function which can guide the LLM during both
inference and training. Compared with previous work, TS-
LLM has the following two new features:

• TS-LLM offers a generally applicable and scalable
pipeline. It is generally applicable: With a learned value
function, TS-LLM can be applied to various tasks and
LLMs of any size. Our learned value function can be
more reliable than the prompt-based counterpart and does
not require any well-designed prompts or advanced, large-
scale LMs. Our experiments show that TS-LLM can work
for LLMs ranging from 125M to 7B parameters, providing
better evaluation even compared with GPT-3.5. TS-LLM
is also scalable: TS-LLM can conduct deep tree search,
extending tree-search for LLM generation up to a depth
of 64. This is far beyond 10 in ToT and 7 in RAP.

• TS-LLM can potentially serve as a new LLM train-
ing paradigm beyond inference decoding. By treating
the tree-search operation as a policy improvement opera-
tor, we can conduct an iterative processes of improving
the policy via tree search and then improving the policy
through distillation and the value function through the
ground-truth training labels on the tree search trajectories.

Through comprehensive empirical evaluations on reasoning,
planning, alignment, and decision-making tasks, we present
an in-depth analysis of the core design elements in TS-LLM,

delving into the features, advantages, and limitations of
different variations. This showcases TS-LLM’s potential as
a universal framework to guide LLM decoding and training.

2. Related Work
Multistep Reasoning in LLMs Multistep reasoning in lan-
guage models has been widely studied, from improving the
base model (Chung et al., 2022; Fu et al., 2023; Lewkowycz
et al., 2022) to prompting LLMs step by step (Kojima et al.,
2022; Wei et al., 2022; Wang et al., 2022; Zhou et al., 2022).
Besides, a more relevant series of work has focused on en-
hancing reasoning through evaluations, including learned
reward models (Uesato et al., 2022; Lightman et al., 2023)
and self-evaluation (Shinn et al., 2023; Madaan et al., 2023).
In this work, we apply evaluations to multistep reasoning
tasks and token-level RLHF alignment tasks by learning
a value function and reward model under the setting of a
multistep decision-making process.

Search-Guided Reasoning in LLMs While most CoT ap-
proaches have used a linear reasoning structure, recent ef-
forts have been made to investigate non-linear reasoning
structures such as trees (Jung et al., 2022; Zhu et al., 2023;
Chaffin et al., 2021; Lamprier et al., 2022; Scialom et al.,
2021). More recently, various approaches for searching
on trees have been applied to find better reasoning paths,
e.g. beam search in Xie et al. (2023), depth-/breadth-first
search in Yao et al. (2023) and Monte-Carlo Tree Search
in Hao et al. (2023). Compared with these methods, TS-

2

AlphaZero-Like Tree-Search can Guide Large Language Model Decoding and Training

LLM is a tree search guided LLM decoding and training
framework with a learned value function, which is more
generally applicable to both reasoning tasks and other sce-
narios like RLHF alignment tasks. Moreover, we leave a
comprehensive comparison in Appendix A.

Finetuning LLMs with Augmentation Recent efforts have
also been made to improve LLMs with augmented data.
Rejection sampling is a simple and effective approach for
finetuning data augmentation to improve LLMs’ ability on
single/multiple task(s) such as multistep reasoning (Yuan
et al., 2023a; Zelikman et al., 2022) and alignment with hu-
man preference (Dong et al., 2023; Bai et al., 2022). Given
an augmented dataset, reinforcement learning approaches
have also been used to finetune LLMs (Gulcehre et al.,
2023; Luo et al., 2023). Compared to previous works, TS-
LLM leverages tree search as a policy improvement operator
to generate augmented samples to train both the LLMs and
the value function.

3. Enhancing LLMs with Tree Search
In this section, we propose a versatile tree-search framework
TS-LLM for guiding LLMs decoding and training. We
conduct a systematic and comprehensive analysis of its key
components. TS-LLM is summarized in Fig. 1.

3.1. Problem Formulation

We formulate the language generation process as a multi-
step Markov Decision Process (MDP). The particularity
of natural language tasks is that both the action and state
are in language space. LLMs can serve as a policy πθ

that samples sequences of tokens as actions. Assuming
the length of the output sequence and input prompt are T
and L respectively, the probability for an LLM policy to
produce an output sequence y = (y0, y1, . . . , yT−1) condi-
tioned on a prompt (input prefix) x = (x0, x1, . . . , xL−1)

is: πθ(y|x) =
∏T−1

t=0 πθ(yt|x0:L−1,y0:t−1).

For a given natural language task, we can define a reward
function R(yt|x0:L−1,y0:t−1) as the task performance feed-
back for intermediate generation yt at timestep t. Due to
the lack of large-scale and high-quality intermediate reward
labels for general tasks, it is usually a sparse reward setting
where any intermediate reward from the first T − 1 timestep
is zero except the last T -th step. A typical case can be RLHF
alignment task, where LLM can receive the reward signal
after it completes the full generation. Following the same
logic, y can also be viewed as a sequence of sentences.

Given the problem formulation above, we successfully trans-
fer the problem of better generation to optimization for
higher cumulative reward. In this paper, we focus on how
we can optimize it with tree-search algorithms. A spe-
cific natural language task typically predefines the state

space (with language) and reward function (with task objec-
tive/metrics). What remains is the definition of action space,
or in the context of tree-search algorithm, the action node.

Tree search algorithms have validated their effectiveness for
different action spaces in traditional RL research, including
discrete action space (Silver et al., 2017; Schrittwieser et al.,
2020a) and continuous action space (Hubert et al., 2021).
For tree-search on LLMs, we consider the following two
action space designs, as shown in the left side of Fig. 1.

Sentence-level action nodes: For the tasks that have a
step/sentence-level structure(e.g. chain-of-thought reason-
ing), it is natural to treat each thought as a sentence-level
action node. This is also the technique adopted by ToT
(Yao et al., 2023) and RAP (Hao et al., 2023). For each
non-terminal node, the search tree is expanded by sampling
several possible subsequent intermediate steps and dropping
the duplicated generations.

Token-level action nodes: Analogous to tree-search in dis-
crete action space MDP, we can treat each token as a discrete
action for LLM policy and the tree search can be conducted
in token-level. For those tasks in which intermediate steps
are not explicitly defined(e.g. RLHF), splitting an output
sequence into tokens might be a good choice.

We refer to Appendix B.1 for a comparison about advantages
and limitations over the search space of these two action
space designs.

3.2. Guiding LLM Inference Decoding with Tree Search

One of the benefits of tree-search algorithms is that they can
optimize the cumulative reward by mere search, without any
gradient calculation or update. In this section, given a fixed
LLM policy, we present the full pipeline to illustrate how to
guide LLM inference decoding with tree search approaches.

3.2.1. LEARNING AN LLM-BASED VALUE FUNCTION

For tree-search algorithms, how to construct reliable value
function v and reward model r̂ is the main issue. ToT
and RAP obtain these two models by prompting advanced
LLMs, such as GPT-4 or LLaMA-33B. To make the tree
search algorithm generally applicable, our method lever-
ages a learned LLM-based value function vϕ(s) conditioned
on state s and a learned final-step outcome reward model
(ORM) r̂ϕ since most tasks can be formulated as sparse-
reward problems (Uesato et al., 2022). Since we mainly
deal with language-based tasks, we utilize a shared value
network and reward model whose structure is a decoder-
only transformer with an MLP to output a scalar on each
position of the input tokens. And typically, LLM value’s
decoder is adapted from original LLM policy πθ’s decoder,
or the LLM value vϕ and policy πθ can have a shared de-
coder (Silver et al., 2017). For a sentence-level expanded

3

AlphaZero-Like Tree-Search can Guide Large Language Model Decoding and Training

intermediate step st, we use the prediction scalar at the last
token as its value prediction vϕ(st). The final reward can
be obtained at the last token when feeding the full sentences
(x0:L−1,y0:T−1) into the model.

Therefore, we use language model πθ as the policy to sam-
ple generations using the task training dataset. With true
label or a given reward function in training data, a set of
sampled tuple Dtrain = {(xj ,yj , rj)}j of size |Dtrain| can be
obtained, where xj is the input text, yj = sj0:T j−1 is the out-
put text of T j steps and rj = R(yj |xj) is the ground-truth
reward. Similar to the critic training in most RL algorithms,
we construct the value target zjt by TD-λ (Sutton, 1988) or
MC estimate (Sutton & Barto, 2018) on each single step t .
The value network is optimized by mean squared error:

L(ϕ) = ED

T j−1∑
t=0

||vϕ(sj0:t|xj)− zjt ||22

 . (1)

The ORM r̂ϕ(y0:T−1|x0:L−1) is learned with the same ob-
jective. Training an accurate value function and ORM is
quite crucial for the tree-search process as they provide the
main guidance. We will further illustrate how to learn a
reliable value function and ORM in our experiment section.

3.2.2. TREE SEARCH ALGORITHMS

Given a learned value function, in this section, we present
five types of tree-search algorithms. We leave detailed back-
ground, preliminaries, and comparisons in Appendix B.2.

Breadth-First and Depth-First Search With Value
Function-Based Tree-Pruning (BFS-V/DFS-V): These
two search algorithms were adopted in ToT (Yao et al.,
2023). The core idea is to utilize the value function to prune
the tree for efficient search, while such pruning happens in
tree breadth or depth respectively. BFS-V can be regarded
as a beam-search with cumulative reward as the objective.

MCTS: This approach was adopted in RAP (Hao et al.,
2023), which refers to classic MCTS (Kocsis & Szepesvári,
2006). It back-propagates the value on the terminal nodes,
relying on a Monte-Carlo estimate of value, and it starts
searching from the initial state node.

In addition to these algorithms adopted by ToT and RAP, we
consider two new variants of AlphaZero-like tree-search.

MCTS with Value Function Approximation (named as
MCTS-α): This is the MCTS variants utilized in AlphaZero
(Silver et al., 2017). Starting from the initial state, we
choose the node of state st as the root node and do several
times of search simulations consisting of select, expand and
evaluate and backup, where the leaf node value evaluated
by the learned value function will be backpropagated to all
its ancestor nodes. After the search, we choose an action
proportional to the root node’s exponentiated visit count,

i.e. a ∼ N(st,a)
1/τ∑

b N(st,b)1/τ
, and move to the corresponding next

state. The above iteration will be repeated until finished.
MCTS-α has two main features. Firstly, MCTS-α cannot
trace back to its previous states once it takes an action. So it
cannot restart the search from the initial state unless multiple
searches are conducted which will be discussed in Section
3.2.3. Secondly, in contrast to MCTS, MCTS-α utilizes
a value function so it can conduct the backward operation
during the intermediate steps, without the need to complete
the full generation to obtain a Monte-Carlo estimate.

MCTS-Rollout: Combining the features from MCTS and
MCTS-α, we propose a new variant MCTS-Rollout for tree
search. Similar to MCTS, MCTS-Rollout always starts from
the initial state node. It further does the search simulations
analogous to MCTS-α, and the backup process can happen
in the intermediate step with value function. It repeats the
operations above until the process finds N complete answers
or reaches the computation limit (e.g. maximum number of
tokens.) MCTS-Rollout can be seen as an offline version
of MCTS-α so they may have similar application scope.
The only difference is that MCTS-Rollout can scale up the
token consumption for better performance since it always
reconducts the search from the beginning.

3.2.3. MULTIPLE SEARCH AND SEARCH AGGREGATION

Inspired by Wang et al. (2022) and Uesato et al. (2022)
that LLM can improve its performance on reasoning tasks
by sampling multiple times and aggregating the candidates,
TS-LLM also has the potential to aggregate N complete
answers generated by multiple tree searches or multiple
generations from one search (set BFS beam size > 1).

When conducting multiple tree searches, we usually adopt
intra-tree search setting. Intra-tree search conducts mul-
tiple tree searches on the same tree, thus the state space
is exactly the same. Such a method is computationally
efficient as the search tree can be reused multiple times.
However, the diversity of multiple generations might de-
crease because the former tree search might influence the
latter tree searches. Also, the search space is limited in
sentence-level action space because they will be fixed once
expanded across multiple tree searches.

We refer to Appendix D.7 for an alternative setting called
Inter-tree Search where we allow resampling in the expan-
sion process, and without further specification, all settings
in our paper are under the intra-tree search setting. Our next
step is to aggregate these search results to obtain the final
answer. With a learned ORM, we consider the following
three different aggregation methods:

Majority-Vote. Wang et al. (2022) aggregates answers
using majority vote: f∗ = argmaxf

∑
yj 1final ans(yj)=f ,

where 1 is the indicator function.

4

AlphaZero-Like Tree-Search can Guide Large Language Model Decoding and Training

Table 1: Task setups. The node, tree max with and tree max depth are search space parameters. Refer to Appendix C.2 and
D.5 for how max tree-width and tree-depth are determined.

Search Space Hyperparameters

Task Category Train/test size Node Tree Max width Tree Max depth

GSM8k Mathematical Reasoning 7.5k / 1.3k Sentence 6 8
Game24 Mathematical Planning 1.0k / 0.3k Sentence 20 4

PrOntoQA Logical Reasoning 4.5k / 0.5k Sentence 6 15
RLHF Alignment 30k / 3k Token 50 64

Chess Endgame Decision Making 0.1M/0.6k Sentence 5 50

ORM-Max. Given an outcome reward model, the aggrega-
tion can choose the answer f with maximum final reward,
f∗ = final ans(argmaxyj r̂ϕ(y

j |xj)).
ORM-Vote. Given an outcome reward model, the aggre-
gation can choose the answer f with the sum of rewards,
namely f∗ = argmaxf

∑
yj ;final ans(yj)=f r̂ϕ(y

j |xj).

3.3. Enhancing LLM Training with Tree Search

In section 3.2 we discuss how tree-search can guide LLM’s
decoding process during inference time. Such guidance
leads to a better decoding strategy and improves the perfor-
mance of given tasks. In other words, tree-search guidance
can serve as a policy improvement operator. Based on this,
we propose a new training and finetuning paradigm.

Assume we have an initial LLM policy πθold (trained by
conducting supervised finetuning over the original training
set) and initial LLM value and ORM: vϕold , r̂ϕold (trained by
Equ. 1 from sampling the original training questions), we
can have the following iterative process:

Policy Improvement: We conduct tree-search over training
set based on πθold , vϕold , and r̂ϕold to obtain improved gener-
ations, resulting in the augmented dataset D and also the
filtered positive examples D+.

Policy Distillation: With the tree-search-improved dataset
D+, by imitating the tree-search positive trajectories, LLM
policy can be further improved to πθnew with supervised loss.

L(θ) = E(xj ,yj)∼D+

[
− log πθ(y

j |xj)
]
. (2)

Policy Evaluation: We train value function vϕnew and ORM
r̂ϕnew over the augumented dataset D under loss of Equ 1.

These three processes can be conducted cyclically to iter-
atively refine the LLM. Such iterative process belongs to
generalized policy iteration (Sutton & Barto, 2018), which
is also the procedure used in AlphaZero’s training. In our
case, the training process involves finetuning three networks
on the tree-search augmented dataset: (1) Policy network πθ:
Use cross-entropy loss with trajectories’ tokens as target (2)
Value network vϕ: Mean squared error loss with trajectories’
temporal difference (TD) or Monte-Carlo (MC) based value

estimation as target, and (3) ORM r̂ϕ: Mean squared error
loss with trajectories’ final reward as target.

3.4. Tree Search’s Extra Computation Burdens

Tree-search algorithms will inevitably bring in additional
computation burdens, especially in the node expansion
phase for calculating legal child nodes and their correspond-
ing value. Prior methodologies, such as ToT and RAP, tend
to benchmark their performance against baseline algorithms
using an equivalent number of generation paths (named
Path@N). This approach overlooks the additional compu-
tational demands of the tree-search process. We also refer
readers to Appendix C.3 for discussion about the computa-
tion efficiency and engineering challenges.

A more fair comparison requires monitoring the number
of tokens generated for node expansion. This provides a
reasonable comparison of algorithms’ performance when
operating under comparable token generation conditions.
We address this issue in our experiments (Sec. 4.2.2).

4. Experiments
In this section, we conduct thorough experiments to ad-
dress and analyze each subsection we mention in Section 3.
We refer to (Niu et al., 2024) for implementation of tree-
search algorithms. Our code is open-sourced at https://
github.com/waterhorse1/LLM_Tree_Search.

4.1. Experiment Setups

Task Setups For a given MDP, the nature of the search
space is primarily characterized by two dimensions: depth
and width. To showcase the efficacy of tree-search algo-
rithms across varied search spaces, we evaluate all algo-
rithms on five tasks with different search widths and depths,
including the mathematical reasoning task GSM8k (Cobbe
et al., 2021), mathematical planning task Game24 (Yao et al.,
2023), logical reasoning task PrOntoQA (Saparov & He,
2022), RLHF alignment task using synthetic RLHF data
(Dahoas), and chess endgames (Abdulhai et al., 2023). The
specific task statistics and search space hyperparameters

5

https://github.com/waterhorse1/LLM_Tree_Search
https://github.com/waterhorse1/LLM_Tree_Search

AlphaZero-Like Tree-Search can Guide Large Language Model Decoding and Training

are listed in Table 1. These hyperparameters, especially
max search width and search depth, are determined by our
exploration experiments. They can effectively present the
characteristics of a task and define its search space. Refer
to Appendix D.1 for more details of our evaluation tasks.

Benchmark Algorithms. We compare ToT-GPT3.5 and TS-
LLM in Table 2 to verify the effectiveness of learned value
function. All tree-search algorithms will be benchmarked,
including MCTS-α, MCTS-Rollout, MCTS, BFS-V, and
DFS-V. Note that BFS-V, DFS-V, and MCTS are TS-LLM’s
variants instead of ToT (Yao et al., 2023) or RAP (Hao et al.,
2023) baselines because we adopt a learned value function
rather than prompting LLM. We compare these variants with
direct decoding baselines, including CoT greedy decoding,
and CoT with self-consistency (Wang et al., 2022) (denoted
as CoT-SC). Considering the search space gap between
direct decoding and tree decoding (especially the sentence-
level action node), we include the CoT-SC-Tree baseline
which conducts CoT-SC over the tree’s sentence nodes.

Model and Training Details. For the rollout policy used
in tree-search, we use LLaMA2-7B (Touvron et al., 2023b)
on three reasoning tasks, and GPT-2-small (125M) on the
RLHF task and Chess endgame. All LLMs will be first
supervise-finetuned (SFT) on the training set, enabling their
CoT ability without examples in prompt. For value and
ORM training, the data are generated by sampling the SFT
policy’s rollouts on the training set. Our policy LLM and
value LLM are two separate models but are adapted from
the same base model, and we train different models on each
task. Refer to Appendix C.4 for experiments on shared
models.

4.2. Results and Discussions

4.2.1. LEARNED VALUE FUNCTION (SEC 3.2.1)

We successfully show that the learned value function
can be more reliable than prompt-based GPT-3.5, even
though GPT-3.5 is much stronger than LLaMA2-7B. In
Table 2, we conduct BFS Path@1 comparisons with dif-
ferent combinations of policy and value over Game 24
and GSM8K. The policy choices include few-shot GPT-3.5
and our supervised finetuned LLaMA2-7B. For the value,
we utilize prompt-based GPT-3.5/LLaMA2-7B (TOT) and
our learned value function LLaMA2-V. Even though the
few-shot GPT-3.5 policy is an out-of-distribution policy for
LLaMA2-V’s evaluation, LLaMA2-V still presents domi-
nant performance over prompt-based GPT-3.5/LLaMA2-7B
in all settings. The phenomenon of LLM’s limited self-
evaluation ability by prompting aligns with other papers
(Huang et al., 2023; Stechly et al., 2023). This finding
largely increases the necessity of a learned value function.

Table 2: ToT-BFS Path@1 results with different combina-
tions of policy and value. LLaMA-SFT and LLaMA-V
refer to the trained policy and value, LLaMA and GPT-3.5
(ToT) refer to the prompt-based model for policy or value.
LLaMA-V dominates compared with prompt-based value.

Task Policy Value Accuracy(%)

GSM8K

GPT-3.5 GPT-3.5 (ToT) 72.7
GPT-3.5 LLaMA-V (Ours) 74.0

LLaMA-SFT LLaMA (ToT) 37.4
LLaMA-SFT GPT-3.5 (ToT) 45.8
LLaMA-SFT LLaMA-V (Ours) 52.5

Game24

GPT-3.5 GPT-3.5 (ToT) 15.5
GPT-3.5 LLaMA-V (Ours) 19.1

LLaMA-SFT LLaMA (ToT) 9.2
LLaMA-SFT GPT-3.5 (ToT) 21.0
LLaMA-SFT LLaMA-V (Ours) 64.8

4.2.2. PERFORMANCE ON DIFFERENT ALGORITHMS
(SEC 3.2.2, SEC 3.4)

With a reliable learned value function, we compare the per-
formance of different generation methods. First, in the upper
part of Table 3, we present the Path@1 results of MCTS-α
and MCTS-Rollout compared to BFS-V (BFS-/DFS-V and
MCTS degenerate to greedy value tree-search in path@1
case) and CoT-Greedy. The experiment results show that
AlphaZero-like search algorithms, MCTS-α and MCTS-
Rollout significantly outperforms the baselines in tasks
where long-horizon planning matters (RLHF and Chess
Endgame). When searching on shallow trees, they are robust
enough to maintain comparable accuracy to the baselines.

Despite the superiority of TS-LLM, we argue that the
Path@1/Path@N metric may not be reasonable. We also
include the number of computations used in Path@1 gen-
eration (average number of tokens in sentence-level and
average number of forward computation in token-level of
solving one single problem). We refer readers to the second
row of Fig 2 for Path@N result, with token/forward num-
ber as the x-axis. TS-LLM variants consume much more
computation than CoT, making the comparison unfair.

To enable a fair comparison, in the bottom part of Table 3,
we show the “Equal-Token” results that try to compare re-
sults by controlling a similar scale of computation consump-
tion with Path@1 TS-LLM. First, we provide additional
baselines, CoT-SC with two aggregation methods: majority-
vote (MAJ) and ORM-vote (denoted as ORM, and it utilizes
the learned ORM in TS-LLM). Under this situation, TS-
LLM’s advantages largely decrease when compared with
CoT-SCORM, especially on GSM8K (only BFS greedy value
search is the best). We are surprised to see that such simple
algorithms can also have outstanding performance when

6

AlphaZero-Like Tree-Search can Guide Large Language Model Decoding and Training

Table 3: Path@1 and Equal-token results of all TS-LLM variants and the CoT baseline with #token. For the alignment task
and Chess Endgame, SCORM means the best score of the sampled candidates, and SCMAJ refers to the average. We only
present BFS-V in Path@1 because MCTS/BFS-V/DFS-V degenerates to greedy value search. For the Equal-token setting,
We do not show the results of BFS-/DFS-V/MCTSORM in GSM8K since token consumption is similar in the Path@1 setting.

Setting Method Performance(%) / # Tokens Reward / # Forward Win Rate / # Tokens

GSM8k Game24 PrOntoQA RLHF(token-level) Chess Endgame

Path@1

CoT-greedy 41.4 98 12.7 76 48.8 92 0.318 57.8 58.14 37.4
BFS-V (Ours) 52.5 485 64.8 369 94.4 126 -1.295 61.8 67.75 402

MCTS-α (Ours) 51.9 561 63.3 412 99.4 190 2.221 186 96.90 797
MCTS-Rollout (Ours) 47.8 3.4k 71.3 670 96.9 210 1.925 809 98.76 615

Equal-Token

CoT-SCMAJ 46.8 500 14.6 684 61.1 273 -0.253 580 9.84 782
CoT-SCORM 52.3 500 50.6 684 83.2 273 1.517 580 73.80 782

BFS-VORM (Ours) - - 70.90 1.6k - - -1.065 613 93.18 854
DFS-VORM (Ours) - - 69.09 962 96.4 195 -0.860 86 71.01 511
MCTSORM (Ours) - - 69.34 649 99.6 182 0.160 592 94.26 706

compared fairly. Despite this, most tree-search algorithms
are still dominant in the rest four tasks given the larger
search space (CoT-SC).

Besides, we also compare the behaviors of BFS-/DFS-V and
MCTS when searching for multiple paths (aggregated by
the ORM model) within a comparable range of computation
consumptions. Comparing these 3 variants, MCTS is al-
most the best w.r.t. both performance and computation cost,
this indicates the importance of value back-propogation.
While comparing with the Path@1 results, MCTS-α and
MCTS-Rollout achieve comparable accuracy in shallow-
search problems (GSM8k, Game24, and ProntoQA), and
dominate in deep-search ones (RLHF and Chess Endgame).
It verifies the necessity of Alphazero-style intermediate
value back-propagation under deep-search problems.

4.2.3. SEARCH AGGREGATION (SEC 3.2.3)

In Fig. 2, we demonstrate the mean/max reward for the
RLHF task and the best of 3 aggregation results for GSM8K,
Game24 and ProntoQA. We measure the performance of
aggregation w.r.t path number and token consumption.

From the figure, we mainly summarize two conclusions:
First, Most TS-LLM variants benefit from aggregation
and can show large strengths compared with other base-
lines. CoT-SC only beats TS-LLM in GSM8k with the same
token size, mainly because of its larger search space. We
refer the readers to Appendix C.2 for additional results on
GSM8K and ProntoQA. Second, tree-search algorithms’
aggregation benefits less than CoT-SC in small-scale
problems. In GSM8K and Game24, TS-LLM struggles to
improve under large aggregation numbers. We believe this is
because of: (1) The search space gap between CoT-SC and
tree-search algorithms. Tree-search algorithms inherently
explore fewer sentences, which is validated by comparing
token consumption between CoT-SC-Tree@50 and CoT-

Table 4: Iterative update results. θ0, ϕ0 are the old param-
eters while θ1, ϕ1 are the new ones. TS-LLM can boost
performance by training LLM policy, value, or both.

Task Method Policy Value Accuracy(%)

GSM8K

Greedy

πθ0 - 41.4
πθ1 - 47.9

RFT-50 - 47.0
RFT-100 - 47.5

MCTS-α

πθ0 vϕ0 , r̂ϕ0 51.9
πθ0 vϕ1 , r̂ϕ1 53.2
πθ1 vϕ0 , r̂ϕ0 54.1
πθ1 vϕ1 , r̂ϕ1 56.5

RLHF

Greedy

πθ0 - 0.39
πθ1 - 1.87

RFT N=5 - 1.16
PPO - 2.53

MCTS-α

πθ0 vϕ0 , r̂ϕ0 2.22
πθ0 vϕ1 , r̂ϕ1 2.48
πθ1 vϕ0 , r̂ϕ0 2.53
πθ1 vϕ1 , r̂ϕ1 2.67

SC@50. (2) Tree-search algorithms already leverage the
value function and ORM, the benefits of aggregation with
the ORM again become less obvious.

In all, the scalability of tree-search aggregation is an open
question that is worth further exploration in future work.

4.2.4. TS-LLM FOR TRAINING LLM (SEC. 3.3)

We conduct initial experiments for one iterative update in
GSM8k and RLHF alignment task. We utilize MCTS-α
with old policy πθ0 , value vϕ0

and ORM r̂ϕ0
, to sample

answers on the training dataset as an augmentation to the
origin one. It will be further used to finetune these models
to (πθ1 , vϕ1 , r̂ϕ1). We include two baselines, RFT (Yuan

7

AlphaZero-Like Tree-Search can Guide Large Language Model Decoding and Training

100 101

sequences

−1

0

1

2

3

R
ew

ar
d

Mean

Best

100 101 102

sequences

40

45

50

55

60

P
er

fo
rm

an
ce

(%
)

best-of-3-aggregations

100 101 102

sequences

10

20

30

40

50

60

70

80

P
er

fo
rm

an
ce

(%
)

best-of-3-aggregations

100 101

sequences

50

60

70

80

90

100

P
er

fo
rm

an
ce

(%
)

best-of-3-aggregations

102 103

Forward

−1

0

1

2

3

R
ew

ar
d

(a) RLHF

Mean

Best

102 103 104

tokens

45.0

47.5

50.0

52.5

55.0

57.5

60.0

62.5

65.0

P
er

fo
rm

an
ce

(%
)

(b) GSM8k

best-of-3-aggregations

103

tokens

40

50

60

70

80

90

P
er

fo
rm

an
ce

(%
)

(c) Game24

best-of-3-aggregations

102 103

tokens

90

92

94

96

98

100

102

P
er

fo
rm

an
ce

(%
)

(d) PrOntoQA

best-of-3-aggregations

CoT CoT-SC CoT-SC-Tree BFS-V DFS-V MCTS MCTS-Rollout MCTS-α MCTS-α intra-trees

Figure 2: Aggregation results for four tasks w.r.t. number of sequences(Path@N) on the 1st row and the number of tokens
on the 2nd row. TS-LLM benefits from aggregation but struggles to scale in small-scale problems.

et al., 2023b), which utilizes rejection sampling to finetune
the policy, with different sampling numbers k or top N ,
and PPO (Schulman et al., 2017) for the RLHF task. Note
that PPO conducts multiple iterative updates. It is not fully
comparable to our method and we only add it for complete-
ness. Refer to Appendix D.8 and D.9 for more experimental
details and Appendix C.1 for an ablation about how to use
the collected data to optimize the the value and ORM.

In Table. 4, we list results of iterative update on the GSM8K
and RLHF, covering greedy decoding and MCTS-α over all
policy and value combinations. Our empirical results vali-
date that TS-LLM can further train LLM policy, value
and ORM, boosting performance with the new policy
πθ1 , new value and ORM {v, r̂}ϕ1

, or both (πθ1 , {v, r̂}ϕ1
)

in CoT greedy decoding and MCTS-α. πθ1 ’s greedy perfor-
mance is even slightly better than RFT which is specifically
designed for GSM8k. We believe by further extending TS-
LLM to multi-update, we can make it more competitive
though currently πθ1 still cannot beat PPO-based policy.

4.2.5. ABLATION STUDIES

How to learn value function We investigate data collection
and training paradigms for value function and ORM in TS-
LLM. In Table 5, we investigate the influence of data amount
and diversity by training with mixed data uniformly sampled
from checkpoints of all SFT epochs (mixed); data purely
sampled from the last checkpoint (pure); and we sample 1/3
data of the (pure) setting and discard the rest to formulate
the (pure, less) setting. The results of CoT-SCORM-vote@10
underscore the diversity of sampled data in learning a better

Table 5: Path@1 results with different training settings.

Search Algorithms Training Setting Accuracy(%)

CoT-SC@10@ORM
Pure, Less 55.5 ± 0.6

Pure 55.3 ± 0.5
Mixed 55.9 ± 0.7

BFS
Pure, Less 50.0 ± 0.3

Pure 52.7 ± 0.8
Mixed 52.5 ± 1.3

MCTS-α
Pure, Less 49.7 ± 1.1

Pure 52.7 ± 0.8
Mixed 51.9 ± 0.6

ORM. The Path@1 results of 3 TS-LLM variants show
that the amount of sampled data is of great importance.
Our analysis suggests that collecting a diverse dataset can
contribute to improvements in the ORM, though the effect
observed in our study was relatively modest. Our final
conclusion is that collecting as much data as possible
is better for value function training. We also leave an
ablation about how to use the collected data to optimize the
value and ORM for iterative update in Appendix C.1.

Search space and search width As discussed in Sec. 3.1,
the search space is limited by maximum tree width. We
demonstrate the influence introduced by different tree con-
structions on Game24 with different node expansion sizes.
Specifically, we set the number of maximal expanded node
sizes as 6, 20, and 50. Table 6 lists the Path@1 performance
and the number of tokens generated comparing TS-LLM’s
variants, CoT-SC and CoT-SC-Tree. The almost doubled

8

AlphaZero-Like Tree-Search can Guide Large Language Model Decoding and Training

Table 6: Game24 Path@1 result with different tree-width.
Larger search space leads to much better performance.

Performance(%) / # tokens

Method width=6 width=20 width=50

MCTS-α 41.6 63.3 74.5
MCTS-Rollout 43.8 71.3 80.7

BFS-V 43.2 64.8 74.6
CoT-SC-Tree@10 38.8 48.3 48.3

CoT-SC@10 - - 52.9

performance boost from 43.8 to 80.7 indicates the impact
of different expansion sizes and tree-width, improving TS-
LLM’s performance upper bound. Refer to Appendix C.2
for additional results on GSM8K and ProntoQA.

5. Conclusion
In this work, we propose TS-LLM, an LLM inference and
training framework guided by Alphazero-like tree search
that is generally versatile for different tasks and scaled to
token-level expanded tree spaces. Empirical results validate
that TS-LLM can enhance LLMs decoding and serve as a
new training paradigm.

5.1. Limitation and Future Work

Currently, our method TS-LLM still cannot scale to really
large-scale scenarios due to the extra computation burdens
introduced by node expansion and value evaluation. Ad-
ditional engineering work such as key value caching is re-
quired to accelerate the tree-search. We add detailed re-
sults in terms of wall-time and engineering challenges in
Appendix C.3. In addition, we do not cover all feasible
action-space designs for tree search and it is flexible to pro-
pose advanced algorithms to automatically construct a tree
mixed with both sentence-level expansion and token-level
expansion, etc. We leave such exploration for future work.
For MCTS aggregation, the current method still struggles to
improve under large aggregation numbers. some new algo-
rithms that can encourage multi-search diversity might be
needed. Currently, we are still actively working on scaling
up our method both during inference and training.

Acknowledgements
The SJTU team is supported by National Key R&D Program
of China (2022ZD0114804), Shanghai Municipal Science
and Technology Major Project (2021SHZDZX0102) and
National Natural Science Foundation of China (62106141,
62322603, 62076161).

Impact Statement
Drawing inspiration from AlphaZero’s remarkable achieve-
ments in the game of Go, our work leverages a similar tree
search approach to guide the decoding and training of large
language models. We believe our method holds promise
for replicating such success, potentially leading to the real-
ization of super-intelligent capabilities in a large range of
natural language abilities, such as reasoning, planning, and
decision-making.

From an ethical perspective, current large language mod-
els can often produce hallucinations of false information.
Our framework aims to instill more step-by-step reason-
ing/planning in these models, leading to more interpretable
and trustworthy language generation.

9

AlphaZero-Like Tree-Search can Guide Large Language Model Decoding and Training

References
Abdulhai, M., White, I., Snell, C., Sun, C., Hong, J., Zhai,

Y., Xu, K., and Levine, S. Lmrl gym: Benchmarks for
multi-turn reinforcement learning with language models,
2023.

Bai, Y., Kadavath, S., Kundu, S., Askell, A., Kernion, J.,
Jones, A., Chen, A., Goldie, A., Mirhoseini, A., McKin-
non, C., et al. Constitutional ai: Harmlessness from ai
feedback. arXiv preprint arXiv:2212.08073, 2022.

Chaffin, A., Claveau, V., and Kijak, E. Ppl-mcts: Con-
strained textual generation through discriminator-guided
mcts decoding. arXiv preprint arXiv:2109.13582, 2021.

Christiano, P. F., Leike, J., Brown, T., Martic, M., Legg,
S., and Amodei, D. Deep reinforcement learning from
human preferences. Advances in neural information pro-
cessing systems, 30, 2017.

Chung, H. W., Hou, L., Longpre, S., Zoph, B., Tay, Y.,
Fedus, W., Li, E., Wang, X., Dehghani, M., Brahma,
S., et al. Scaling instruction-finetuned language models.
arXiv preprint arXiv:2210.11416, 2022.

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H.,
Kaiser, L., Plappert, M., Tworek, J., Hilton, J., Nakano,
R., et al. Training verifiers to solve math word problems.
arXiv preprint arXiv:2110.14168, 2021.

Coulom, R. Efficient selectivity and backup operators in
monte-carlo tree search. In International conference on
computers and games, pp. 72–83. Springer, 2006.

Creswell, A., Shanahan, M., and Higgins, I. Selection-
inference: Exploiting large language models for
interpretable logical reasoning. arXiv preprint
arXiv:2205.09712, 2022.

Dahoas. Synthetic-instruct-gptj-pairwise. https:
//huggingface.co/datasets/Dahoas/
synthetic-instruct-gptj-pairwise.

Dong, H., Xiong, W., Goyal, D., Pan, R., Diao, S., Zhang,
J., Shum, K., and Zhang, T. Raft: Reward ranked fine-
tuning for generative foundation model alignment. arXiv
preprint arXiv:2304.06767, 2023.

Feng, X., Luo, Y., Wang, Z., Tang, H., Yang, M., Shao, K.,
Mguni, D., Du, Y., and Wang, J. Chessgpt: Bridging
policy learning and language modeling. arXiv preprint
arXiv:2306.09200, 2023.

Fu, Y., Peng, H., Ou, L., Sabharwal, A., and Khot, T. Spe-
cializing smaller language models towards multi-step rea-
soning. arXiv preprint arXiv:2301.12726, 2023.

Gulcehre, C., Paine, T. L., Srinivasan, S., Konyushkova,
K., Weerts, L., Sharma, A., Siddhant, A., Ahern, A.,
Wang, M., Gu, C., et al. Reinforced self-training (rest)
for language modeling. arXiv preprint arXiv:2308.08998,
2023.

Gunasekar, S., Zhang, Y., Aneja, J., Mendes, C. C. T.,
Del Giorno, A., Gopi, S., Javaheripi, M., Kauffmann,
P., de Rosa, G., Saarikivi, O., et al. Textbooks are all you
need. arXiv preprint arXiv:2306.11644, 2023.

Hao, S., Gu, Y., Ma, H., Hong, J. J., Wang, Z., Wang, D. Z.,
and Hu, Z. Reasoning with language model is planning
with world model. arXiv preprint arXiv:2305.14992,
2023.

Huang, J., Chen, X., Mishra, S., Zheng, H. S., Yu,
A. W., Song, X., and Zhou, D. Large language mod-
els cannot self-correct reasoning yet. arXiv preprint
arXiv:2310.01798, 2023.

Hubert, T., Schrittwieser, J., Antonoglou, I., Barekatain,
M., Schmitt, S., and Silver, D. Learning and planning in
complex action spaces. In International Conference on
Machine Learning, pp. 4476–4486. PMLR, 2021.

Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C.,
Bras, R. L., and Choi, Y. Maieutic prompting: Logically
consistent reasoning with recursive explanations. arXiv
preprint arXiv:2205.11822, 2022.

Kocsis, L. and Szepesvári, C. Bandit based monte-carlo
planning. In European conference on machine learning,
pp. 282–293. Springer, 2006.

Kojima, T., Gu, S. S., Reid, M., Matsuo, Y., and Iwasawa,
Y. Large language models are zero-shot reasoners. Ad-
vances in neural information processing systems, 35:
22199–22213, 2022.

Kwon, W., Li, Z., Zhuang, S., Sheng, Y., Zheng, L., Yu,
C. H., Gonzalez, J., Zhang, H., and Stoica, I. Efficient
memory management for large language model serving
with pagedattention. In Proceedings of the 29th Sym-
posium on Operating Systems Principles, pp. 611–626,
2023.

Lamprier, S., Scialom, T., Chaffin, A., Claveau, V., Kijak,
E., Staiano, J., and Piwowarski, B. Generative coopera-
tive networks for natural language generation. In Inter-
national Conference on Machine Learning, pp. 11891–
11905. PMLR, 2022.

Leblond, R., Alayrac, J.-B., Sifre, L., Pislar, M., Lespiau,
J.-B., Antonoglou, I., Simonyan, K., and Vinyals, O. Ma-
chine translation decoding beyond beam search. arXiv
preprint arXiv:2104.05336, 2021.

10

https://huggingface.co/datasets/Dahoas/synthetic-instruct-gptj-pairwise
https://huggingface.co/datasets/Dahoas/synthetic-instruct-gptj-pairwise
https://huggingface.co/datasets/Dahoas/synthetic-instruct-gptj-pairwise

AlphaZero-Like Tree-Search can Guide Large Language Model Decoding and Training

Leviathan, Y., Kalman, M., and Matias, Y. Fast inference
from transformers via speculative decoding. In Inter-
national Conference on Machine Learning, pp. 19274–
19286. PMLR, 2023.

Lewkowycz, A., Andreassen, A., Dohan, D., Dyer, E.,
Michalewski, H., Ramasesh, V., Slone, A., Anil, C.,
Schlag, I., Gutman-Solo, T., et al. Solving quantitative
reasoning problems with language models. Advances in
Neural Information Processing Systems, 35:3843–3857,
2022.

Lightman, H., Kosaraju, V., Burda, Y., Edwards, H., Baker,
B., Lee, T., Leike, J., Schulman, J., Sutskever, I., and
Cobbe, K. Let’s verify step by step. arXiv preprint
arXiv:2305.20050, 2023.

Liu, J., Cohen, A., Pasunuru, R., Choi, Y., Hajishirzi, H., and
Celikyilmaz, A. Making ppo even better: Value-guided
monte-carlo tree search decoding, 2023.

Long, J. Large language model guided tree-of-thought.
arXiv preprint arXiv:2305.08291, 2023.

Luo, H., Sun, Q., Xu, C., Zhao, P., Lou, J., Tao, C.,
Geng, X., Lin, Q., Chen, S., and Zhang, D. Wizard-
math: Empowering mathematical reasoning for large lan-
guage models via reinforced evol-instruct. arXiv preprint
arXiv:2308.09583, 2023.

Madaan, A., Tandon, N., Gupta, P., Hallinan, S., Gao,
L., Wiegreffe, S., Alon, U., Dziri, N., Prabhumoye, S.,
Yang, Y., et al. Self-refine: Iterative refinement with
self-feedback. arXiv preprint arXiv:2303.17651, 2023.

Matulewicz, N. Inductive program synthesis through using
monte carlo tree search guided by a heuristic-based loss
function. 2022.

Niu, Y., Pu, Y., Yang, Z., Li, X., Zhou, T., Ren, J., Hu, S.,
Li, H., and Liu, Y. Lightzero: A unified benchmark for
monte carlo tree search in general sequential decision
scenarios. Advances in Neural Information Processing
Systems, 36, 2024.

OpenAI. Gpt-4 technical report. ArXiv, abs/2303.08774,
2023.

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C.,
Mishkin, P., Zhang, C., Agarwal, S., Slama, K., Ray, A.,
et al. Training language models to follow instructions
with human feedback. Advances in Neural Information
Processing Systems, 35:27730–27744, 2022.

Rafailov, R., Sharma, A., Mitchell, E., Ermon, S., Manning,
C. D., and Finn, C. Direct preference optimization: Your
language model is secretly a reward model. arXiv preprint
arXiv:2305.18290, 2023.

Rosin, C. D. Multi-armed bandits with episode context.
Annals of Mathematics and Artificial Intelligence, 61(3):
203–230, 2011.

Saparov, A. and He, H. Language models are greedy rea-
soners: A systematic formal analysis of chain-of-thought.
arXiv preprint arXiv:2210.01240, 2022.

Schrittwieser, J., Antonoglou, I., Hubert, T., Simonyan, K.,
Sifre, L., Schmitt, S., Guez, A., Lockhart, E., Hassabis,
D., Graepel, T., et al. Mastering atari, go, chess and shogi
by planning with a learned model. Nature, 588(7839):
604–609, 2020a.

Schrittwieser, J., Antonoglou, I., Hubert, T., Simonyan, K.,
Sifre, L., Schmitt, S., Guez, A., Lockhart, E., Hassabis,
D., Graepel, T., et al. Mastering atari, go, chess and shogi
by planning with a learned model. Nature, 588(7839):
604–609, 2020b.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

Scialom, T., Dray, P.-A., Staiano, J., Lamprier, S., and Pi-
wowarski, B. To beam or not to beam: That is a question
of cooperation for language gans. Advances in neural
information processing systems, 34:26585–26597, 2021.

Segal, R. B. On the scalability of parallel uct. In Interna-
tional Conference on Computers and Games, pp. 36–47.
Springer, 2010.

Shinn, N., Labash, B., and Gopinath, A. Reflexion: an au-
tonomous agent with dynamic memory and self-reflection.
arXiv preprint arXiv:2303.11366, 2023.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou,
I., Huang, A., Guez, A., Hubert, T., Baker, L., Lai, M.,
Bolton, A., et al. Mastering the game of go without
human knowledge. nature, 550(7676):354–359, 2017.

Stechly, K., Marquez, M., and Kambhampati, S. Gpt-
4 doesn’t know it’s wrong: An analysis of iterative
prompting for reasoning problems. arXiv preprint
arXiv:2310.12397, 2023.

Sutton, R. S. Learning to predict by the methods of temporal
differences. Machine learning, 3:9–44, 1988.

Sutton, R. S. and Barto, A. G. Reinforcement learning: An
introduction. MIT press, 2018.

Taylor, R., Kardas, M., Cucurull, G., Scialom, T., Hartshorn,
A., Saravia, E., Poulton, A., Kerkez, V., and Stojnic, R.
Galactica: A large language model for science. arXiv
preprint arXiv:2211.09085, 2022.

11

AlphaZero-Like Tree-Search can Guide Large Language Model Decoding and Training

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M.-A., Lacroix, T., Rozière, B., Goyal, N., Hambro, E.,
Azhar, F., et al. Llama: Open and efficient foundation lan-
guage models. arXiv preprint arXiv:2302.13971, 2023a.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., et al. Llama 2: Open foundation and fine-
tuned chat models. arXiv preprint arXiv:2307.09288,
2023b.

Uesato, J., Kushman, N., Kumar, R., Song, F., Siegel, N.,
Wang, L., Creswell, A., Irving, G., and Higgins, I. Solv-
ing math word problems with process-and outcome-based
feedback. arXiv preprint arXiv:2211.14275, 2022.

Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang,
S., Chowdhery, A., and Zhou, D. Self-consistency im-
proves chain of thought reasoning in language models.
arXiv preprint arXiv:2203.11171, 2022.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F.,
Chi, E., Le, Q. V., Zhou, D., et al. Chain-of-thought
prompting elicits reasoning in large language models.
Advances in Neural Information Processing Systems, 35:
24824–24837, 2022.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue,
C., Moi, A., Cistac, P., Rault, T., Louf, R., Funtowicz,
M., Davison, J., Shleifer, S., von Platen, P., Ma, C., Jer-
nite, Y., Plu, J., Xu, C., Scao, T. L., Gugger, S., Drame,
M., Lhoest, Q., and Rush, A. M. Transformers: State-
of-the-art natural language processing. In Proceedings
of the 2020 Conference on Empirical Methods in Natu-
ral Language Processing: System Demonstrations, pp.
38–45, Online, October 2020. Association for Compu-
tational Linguistics. URL https://www.aclweb.
org/anthology/2020.emnlp-demos.6.

Xie, Y., Kawaguchi, K., Zhao, Y., Zhao, X., Kan, M.-Y.,
He, J., and Xie, Q. Decomposition enhances reason-
ing via self-evaluation guided decoding. arXiv preprint
arXiv:2305.00633, 2023.

Xu, H. No train still gain. unleash mathematical rea-
soning of large language models with monte carlo
tree search guided by energy function. arXiv preprint
arXiv:2309.03224, 2023.

Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T. L., Cao, Y.,
and Narasimhan, K. Tree of thoughts: Deliberate prob-
lem solving with large language models. arXiv preprint
arXiv:2305.10601, 2023.

Yuan, Z., Yuan, H., Li, C., Dong, G., Tan, C., and Zhou,
C. Scaling relationship on learning mathematical rea-
soning with large language models. arXiv preprint
arXiv:2308.01825, 2023a.

Yuan, Z., Yuan, H., Li, C., Dong, G., Tan, C., and Zhou,
C. Scaling relationship on learning mathematical rea-
soning with large language models. arXiv preprint
arXiv:2308.01825, 2023b.

Zelikman, E., Wu, Y., Mu, J., and Goodman, N. Star: Boot-
strapping reasoning with reasoning. Advances in Neural
Information Processing Systems, 35:15476–15488, 2022.

Zhang, S., Chen, Z., Shen, Y., Ding, M., Tenenbaum, J. B.,
and Gan, C. Planning with large language models for code
generation. In The Eleventh International Conference on
Learning Representations, 2022.

Zheng, L., Yin, L., Xie, Z., Huang, J., Sun, C., Yu, C. H.,
Cao, S., Kozyrakis, C., Stoica, I., Gonzalez, J. E., et al.
Efficiently programming large language models using
sglang. arXiv preprint arXiv:2312.07104, 2023.

Zhou, C., Liu, P., Xu, P., Iyer, S., Sun, J., Mao, Y., Ma, X.,
Efrat, A., Yu, P., Yu, L., et al. Lima: Less is more for
alignment. arXiv preprint arXiv:2305.11206, 2023.

Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang,
X., Schuurmans, D., Cui, C., Bousquet, O., Le, Q., et al.
Least-to-most prompting enables complex reasoning in
large language models. arXiv preprint arXiv:2205.10625,
2022.

Zhu, X., Wang, J., Zhang, L., Zhang, Y., Huang, Y.,
Gan, R., Zhang, J., and Yang, Y. Solving math word
problems via cooperative reasoning induced language
models. In Rogers, A., Boyd-Graber, J., and Okazaki,
N. (eds.), Proceedings of the 61st Annual Meeting of
the Association for Computational Linguistics (Volume
1: Long Papers), pp. 4471–4485, Toronto, Canada,
July 2023. Association for Computational Linguistics.
doi: 10.18653/v1/2023.acl-long.245. URL https:
//aclanthology.org/2023.acl-long.245.

12

https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://aclanthology.org/2023.acl-long.245
https://aclanthology.org/2023.acl-long.245

AlphaZero-Like Tree-Search can Guide Large Language Model Decoding and Training

A. More Related Work and Comparisons
Here we discuss the differences between TS-LLM and relevant work mentioned in Sec 2 in detail.

Recent efforts have been made to investigate non-linear reasoning structures such as trees (Jung et al., 2022; Zhu et al., 2023;
Xu, 2023; Xie et al., 2023; Yao et al., 2023; Hao et al., 2023). Approaches for searching on trees with LLM’s self-evaluation
have been applied to find better reasoning paths, e.g. beam search in Xie et al. (2023), depth-/breadth-first search in Yao
et al. (2023) and Monte-Carlo Tree Search in Hao et al. (2023). Compared with these methods, TS-LLM is a tree search
guided LLM decoding framework with a learned value function, which is more generally applicable to reasoning tasks and
other scenarios like RLHF alignment. TS-LLM includes comparisons between different tree search approaches, analysis
of computation cost, and shows the possibility of improving both the language model and value function iteratively. The
most relevant work, CoRe (Zhu et al., 2023), proposes to finetune both the reasoning step generator and learned verifier for
solving math word problems using MCTS for reasoning decoding which is the most relevant work to ours. Compared with
CoRe, in this work TS-LLM distinguishes itself by:
1. TS-LLM is generally applicable to a wide range of reasoning tasks and text generation tasks under general reward settings,
from sentence-level trees to token-level trees. But CoRe is proposed for Math Word Problems and only assumes a binary
verifier (reward model).
2. In this work, we conduct comprehensive comparisons between popular tree search approaches on reasoning, planning, and
RLHF alignment tasks. We fairly compare linear decoding approaches like CoT and CoT-SC with tree search approaches
w.r.t. computation efficiency.
3. TS-LLM demonstrates potentials to improve LLMs’ performance of direct decoding as well as tree search guided
decoding, while in CoRe the latter cannot be improved when combining the updated generator (language model policy) with
the updated verifier (value function) together.

Other related topic:
Search guided decoding in LLMs Heuristic search and planning like beam search or MCTS have also been used in NLP
tasks including machine translation (Leblond et al., 2021) and code generation (Zhang et al., 2022; Matulewicz, 2022).
During our preparation for the appendix, we find a concurrent work (Liu et al., 2023) which is proposed to guide LLM’s
decoding by reusing the critic model during PPO optimization to improve language models in alignment tasks. Compared
with this work, TS-LLM focuses on optimizing the policy and value model through tree search guided inference and
demonstrates the potential of continuously improving the policy and value models. And TS-LLM is generally applicable to
both alignment tasks and reasoning tasks by conducting search on token-level actions and sentence-level actions.

B. Backgrounds and details of each tree-search algorithms in TS-LLM
B.1. Pros and Cons of token-level and action-level node expansion

Typically, the search space is determined by two algorithm-agnostic parameters, the tree max width w and tree max depth
d. In LLM generation, both action space designs have their advantages and limitations over the search space. By splitting the
generation into sentences, sentence-level action nodes provide a relatively shallow tree (low tree max-depth), simplifying
the tree-search process. However, the large sample space of sentence-level generation makes full enumeration of all possible
sentences infeasible. We have to set a maximum tree width w to subsample w nodes during the expansion, similar to the
idea of Sampled MuZero (Hubert et al., 2021) (The node will be fixed once it is expanded). Such subsampling results in the
gap, determined by w, between the tree-search space and the LLM generation space. For token-level action nodes, though
it can get rid of the search space discrepancy and extra computational burdens, it greatly increases the depth of the tree,
making tree-search more challenging.

B.2. Preliminaries of Monte Carlo Tree-search Algorihtms

Once we build the tree, we can use various search algorithms to find a high-reward trace. However, it’s not easy to balance
between exploration and exploitation during the search process, especially when the tree is sufficiently deep. Therefore we
adopt Monte Carlo Tree Search(MCTS) variants as choices for strategic and principled search. Instead of the four operations
in traditional MCTS (Kocsis & Szepesvári, 2006; Coulom, 2006), we refer to the search process in AlphaZero (Silver et al.,
2017) and introduce 3 basic operations of a standard search simulation in it as follows, when searching actions from current
state node s0:

Select It begins at the root node of the search tree, of the current state, s0, and finishes when reaching a leaf node

13

AlphaZero-Like Tree-Search can Guide Large Language Model Decoding and Training

sL at timestep L. At each of these L timesteps(internal nodes), an action(child node) is selected according to at =
argmax

a
(Q(st, a) + U(st, a)) where U(st, a) is calculated by a variant of PUCT algorithm (Rosin, 2011):

U(s, a) = cpuct · πθ(s, a)

√∑
b N(s, b)

1 +N(s, a)
(3)

where N(s, a) is the visit count of selecting action a at node s, and cpuct = log((
∑

b N(s, b) + cbase + 1)/cbase) + cinit is
controlled by visit count and two constants. This search control strategy initially prefers actions with high prior probability
and low visit count, but asymptotically prefers actions with high action-value.

Expand and evaluate After encountering a leaf node sL by select, if sL is not a terminal node, it will be expanded by the
language model policy. The state of the leaf node is evaluated by the value network, noted as v(sL). If sL is a terminal node,
if there is an oracle reward function R, then v(sL) = R(sL), otherwise, in this paper, we use an ORM r̂ as an approximation
of it.

Backup After expand and evaluate on a leaf node, backward the statistics through the path sL, sL−1, . . . , s0, for each
node, increase the visit count by N(st, at) = N(st, at) + 1, and the total action-value are updated as W (st, at) =
W (st, at) + v(sL), the mean action-value are updated as Q(st, at) = W (st, at)/N(st, at).

B.3. Comparison of tree-search algorithms in TS-LLM

In this paper, we introduce three variants of MCTS based on the above basic operations. Among the 3 variants, MCTS-α is
closer to AlphaZero(Silver et al., 2017) and MCTS is closer to traditional Monte-Carlo Tree Search(Kocsis & Szepesvári,
2006). While MCTS-Rollout is closer to best-first search or A*-like tree search. We show the pseudocode of MCTS-α and
MCTS-Rollout in Algorithm 3 and Algorithm 2 respecitvely.

Algorithm 1 Simplied MCTS Simulation

1: Input: current tree node with state st
2: Use PUCT to select a path from current node untill find a leaf node with state sL.
3: Evaluate value of the leaf with state sL by vϕ or r̂ϕ
4: if the leaf with state sL is not a terminal node then
5: Expand the leaf node with state sL by πθ(·|sL)
6: end if
7: Backup values and other information like W (si, ai), N(si, ai) from the leaf node to all

its ancestors denoted as si.

Algorithm 2 MCTS-Rollout

1: Input: an MCTS tree T
2: repeat
3: Simplied MCTS Simulation(T.root)
4: until Stoppiong criterion like reaching maximal number of simulations/generated tokens
5: Extract Answer(s) ans from the tree T
6: Return ans

14

AlphaZero-Like Tree-Search can Guide Large Language Model Decoding and Training

Algorithm 3 MCTS-α

1: Input: an MCTS tree T, number of simulations nsimulation
2: Initialize node of current state s = T.root
3: repeat
4: for i = 0 to nsimulation − 1 do
5: Simplied MCTS Simulation(node with current state s)
6: end for
7: Select an action a ∼ N(st,a)

1/τ∑
b N(st,b)1/τ

8: Update current node to be the child node with state s of executing the selected action a
9: until Current state s is a terminal state.

10: Extract Answer ans from the tree T
11: Return ans

The major difference between the first three MCTS variants and BFS-V/DFS-V adopted from the ToT paper(Yao et al.,
2023) is that the first three MCTS variants will propagate (i.e. the backup operation) the value and visit history information
through the search process. MCTS-α and MCTS-Rollout bacpropagate after the expand operation or visiting a terminal
node. MCTS backpropagates the information only after visiting a terminal node. For DFS-V, the children of a non-leaf node
is traversed in a non-decreasing order by value. For efficient exploration, we tried 2 heuristics to prune the subtrees, (1) drop
the children nodes with low value by prune ratio. (2) drop the children nodes lower than a prune value.

C. Extra Experiments and Discussions
C.1. Different Value Training of iterative update

Table 7: Different value training for iterative update on GSM8k

Method Policy Value Performance(%)

MCTS-α
πθ0 {v, r̂}ϕ0 51.9 ± 0.6
πθ0 {v, r̂}RL

ϕ1
52.0 ± 0.5

πθ0 {v, r̂}ϕ1 53.2 ± 0.3

MCTS-α πθ1 {v, r̂}ϕ0 54.1 ± 0.9
MCTS-α πθ1 {v, r̂}RL

ϕ1
55.2 ± 1.2

MCTS-α πθ1 {v, r̂}ϕ1 56.5 ± 0.6

To figure out the best way of training the value function during iterative update. We also compare MCTS-α in Table 7. We
train value and ORM in two paradigms, one ({v, r̂}ϕ1

) is optimized from the initial weights and mixture of old and new
tree-search data; another({v, r̂}RL

ϕ1
) is optimized from {v, r̂}ϕ0 with only new tree-search data. This is called RL because

training critic model in RL utilizes a similar process of continual training. The results show that {v, r̂}ϕ1 outperforms
{v, r̂}RL

ϕ1
on both old and new policy when conducting tree search, contrary to the normal situation in traditional iterative RL

training.

C.2. Results of different node expansion on tasks

Table 8, Table 9 and Table 10 show the path@1 results of MCTS-α, MCTS-Rollout, BFS-V under different numbers
of tree-max-width w on GSM8k, Game24 and ProntoQA. And we also show the results of CoT-SC-TreeORM@10 and
CoT-SCORM@10, which are aggregated by ORM-vote. The results are conducted under 3 seeds and we show the average
value and standard deviation.

Let us first clarify how we choose the specific tree max width. For tree-max-width w in GSM8k, Game24, and ProntoQA,
we first start with an initial value w = 6. Then by increasing it (10 in GSM8K, 20 in Game 24, and 10 in ProntoQA), we can
see the trends in performance and computation consumption. In ProntoQA/GSM8K, the performance gain is quite limited
while the performance gain is quite large in Game24. So at last, we in turn try smaller tree-max-width in GSM8K/ProntoQA
(3) and also try even larger tree-max-width (50) in Game24. Our final choice of w (in Table 1) is based on the trade-off
between the performance and the computation consumption. Currently, our selection is mainly based on empirical trials and

15

AlphaZero-Like Tree-Search can Guide Large Language Model Decoding and Training

it might be inefficient to determine the appropriate tree-max-width w. We think this procedure can be more efficient and
automatic by comparing it with the results of CoT-SC on multiple samples to balance the tradeoff between performance and
computation consumption. Because CoT-SC examples can already provide us with information about the model generation
variation and diversity. We can also leverage task-specific features, e.g. in Game24, the correctness of early steps is very
important, so a large w can help to select more correct paths from the first layers on the search trees.

For the analysis of the results in Table 8, Table 9 and Table 10. We can mainly draw two conclusions aligned with that in
Q1/Q2 in the main paper.

First, the overall trend that larger search space represents better tree-search performance still holds. For most tree-search
settings, larger tree-max-width w and search space bring in performance gain. The only exception happens at MCTS-Rollout
on GSM8k decreases when the tree-max-width w = 10, this is due to the limitation of computation(limitation on the number
of generated tokens which is 51200 per problem) is not enough in wider trees which results in more null answers. Despite
the gain, the number of generated tokens also increases as the tree-max-width w becomes larger.

Secondly, the conclusions in the main paper about comparing different search algorithms still hold. BFS performs pretty
well in shallow search problems like (GSM8K/Game24). Though we can still see MCTS-α and MCTS-Rollout improve by
searching in large tree-max-width (such as Game24 expanded by 50), the performance gain is mainly attributed to the extra
token consumption and is quite limited. For deeper search problems like ProntoQA (15) and RLHF (64), the performance
gap is obvious and more clear among all expansion widths. This aligns with our conclusion in Q1’s analysis.

Table 8: Path@1 metric on GSM8k with different node size.

Method Performance(%) / # tokens

expand by 3 expand by 6 expand by 10

MCTS-α 49.2 ± 0.04 460 51.9 ± 0.6 561 51.7 ± 0.5 824
MCTS-Rollout 47.2 ± 0.8 856 47.8 ± 0.8 3.4k 45.9 ± 0.9 7.1k

BFS-V 49.1 ± 0.8 260 52.5 ± 1.3 485 52.2 ± 0.9 778
CoT-SC-TreeORM@10 52.4 ± 1.2 604 54.6 ± 0.7 780 54.5 ± 1.1 857

CoT-SCORM@10 - - - - 56.4 ± 0.6 1.0k

Table 9: Path@1 metric on Game24 with different node size.

Method Performance(%) / # tokens

expand by 6 expand by 20 expand by 50

MCTS-α 41.6 ± 0.8 243 63.3 ± 1.9 412 74.5 ± 0.7 573
MCTS-Rollout 43.8 ± 5.3 401 71.3 ± 2.5 670 80.7 ± 1.5 833

BFS-V 43.2 ± 2.0 206 64.8 ± 2.9 370 74.6 ± 0.5 528
CoT-SC-TreeORM@10 38.8 ± 2.0 508 48.3 ± 3.0 656 48.3 ± 4.2 707

CoT-SCORM@10 - - - - 52.9 ± 2.1 0.8k

Table 10: Path@1 metric on ProntoQA with different node size.

Method Performance(%) / # tokens

expand by 3 expand by 6 expand by 10

MCTS-α 94.1 ± 0.1 151 99.4 ± 0.2 190 99.8 ± 0.2 225
MCTS-Rollout 85.9 ± 0.8 151 96.9 ± 0.6 210 99.3 ± 0.4 264

BFS-V 83.7 ± 1.0 105 94.4 ± 0.3 126 97.6 ± 0.3 145
CoT-SC-TreeORM@10 91.9 ± 0.8 290 98.2 ± 0.4 417 99.1 ± 0.1 494

CoT-SCORM@10 - - - - 98.0 ± 0.7 0.9k

16

AlphaZero-Like Tree-Search can Guide Large Language Model Decoding and Training

C.3. Wall-time and Engineering challenges

Table 11, Table 12 and Table 13 show the wall-time of running different tree search algorithms implemented in TS-LLM,
searching for one answer per problem (i.e. path@1). We also show the wall-time of CoT greedy decoding and CoT-SC@10
with ORM aggregation as comparisons. We record the wall-time of inferencing over the total test dataset of each task. We
show the overall wall-time and average wall-time per problem. The average wall-time was an estimated value since we ran
the evaluation with 8 GPUs in parallel, Tavg ≃ Toverall ÷Nproblem ×Nprocess.)

The experiments were conducted on the same machine with 8 NVIDIA A800 GPUs, the CPU information is Intel(R)
Xeon(R) Platinum 8336C CPU @ 2.30GHz.

We can find that the comparisons of wall-time within all the implemented tree-search algorithms in TS-LLM are consistent
with those of the number of generated tokens. However, compared to CoT greedy decoding, the wall-time results of
most tree search algorithms in TS-LLM are between two and three times of CoT greedy decoding’s wall-time, excepting
MCTS-Rollout runs for a very long time on GSM8k. And when comparing the wall-time and number of generated tokens
between the tree-search methods and CoT-SCORM@10, TS-LLM is not as computationally efficient as CoT-SC decoding due
to the complicated search procedures and extra computation introduced by calling value functions in the intermediate states.

There are two more things we want to clarify. Firstly, as we mentioned in Appendix 5.1, our current implementation
only provides an algorithm prototype without specific engineering optimization. We find a lot of repeated computations
are performed in our implementation when evaluating the child node’s value. Overall, there still exists great potential to
accelerate the tree-search process, which will be discussed in the next paragraph. We are continuously working on this (we
will discuss the engineering challenges in the next paragraph). Secondly, this wall-time is just Path@1 result so they have
different token consumptions, and DFS-V, BFS-V, and MCTS will degenerate into greedy value search as we mentioned
before. We are also working on monitoring the time consumption for Path@N results so we can compare them when given
the same scale of token consumption.

Engineering challenges and potentials. Here we present several engineering challenges and potentials to increase the
tree-search efficiency.

• Policy and Value LLM with the shared decoder. Our current implementation utilizes separate policy and value decoders
but a shared one might be a better choice for efficiency. If so, most extra computation brought by value evaluation can be
reduced to simple MLP computation (from the additional value head) by reusing computation from LLM’s policy rollout.
It can largely increase the efficiency. We only need to care about the LLM’s rollout computations under this setting.

• KV cache and computation reuse. KV cache is used in most LLM’s inference processes such as the Huggingface
transformer’s (Wolf et al., 2020) generation function. It saves compute resources by caching and reusing previously
calculated key-value pairs in self-attention. In the tree search problem, when expanding or evaluating a node, all preceding
calculations for its ancestor nodes can be KV-cached and reused. However, because of the large state space of tree nodes,
we cannot cache all node calculations since the GPU memory is limited and the communication between GPU/CPU is
also inefficient (if we choose to store such cache in CPU). More engineering work is needed to handle the memory and
time tradeoff. For instance, recent advancements like PagedAttention in vLLM (Kwon et al., 2023) and RadixAttention in
SGLang (Zheng et al., 2023) offer potentials to solve this issue.

• Large-batch vectorization. Currently, our node expansion and node evaluation are only vectorized and batched given
one parent node. We may conduct batch inference over multiple parent nodes for large-batch vectorization when given
enough computing resources.

• Parallel tree-search over multi-GPUs. Our implementation handles each tree over a single GPU. AlphaZero (Silver
et al., 2017) leverages parallel search over the tree (Segal, 2010), using multi-thread search to increase efficiency. In LLM
generation setting, the main bottleneck comes from the LLM inference time on GPU. Thus more engineering work is
needed for conducting parallel tree-search over multi-GPUs.

• Tree-Search with speculative decoding Speculative decoding (Leviathan et al., 2023) is a pivotal technique to accelerate
LLM inference by employing a smaller draft model to predict the target model’s outputs. During the speculative decoding,
the small LLM gives a generation proposal while the large LLM is used to evaluate and determine whether to accept
or reject the proposal. This is similar to the tree-search process with value function pruning the sub-tree. There exists

17

AlphaZero-Like Tree-Search can Guide Large Language Model Decoding and Training

potential that by leveraging small LLMs as the rollout policy while large LLMs as the value function, we can also have
efficient tree-search implementations.

Table 11: Wall-time results on GSM8k

Method Overall Time(sec) Average Time(sec) #Average Token

CoT-Greedy 216.93 1.32 98
CoT-SCORM@10 479.03 2.91 1k

BFS-V 383.08 2.32 485
MCTS-α 527.31 3.20 561

MCTS-Rollout 2945.94 17.87 3.4k

Table 12: Wall-time results on Game24

Method Overall Time(sec) Average Time(sec) #Average Token

CoT-Greedy 44.88 0.99 76
CoT-SCORM@10 86.53 1.91 0.8k

BFS-V 79.48 1.76 369
MCTS-α 134.19 2.97 412

MCTS-Rollout 193.18 4.27 670

Table 13: Wall-time results on ProntoQA

Method Overall Time(sec) Average Time(sec) #Average Token

CoT-Greedy 74.09 1.19 77
CoT-SCORM@10 218.12 3.49 0.8k

BFS-V 130.35 2.09 126
MCTS-α 236.26 3.78 190

MCTS-Rollout 238.62 3.82 210

C.4. Discussion about Shared LLM decoder for both policy and critic.

As we mentioned in Appendix C.3, using a shared decoder for the policy and value LLM might further improve the
computation efficiency for the tree-search process. Therefore, we conducted an ablation to compare the model under the
settings of a shared decoder and the setting of separated decoders on Game24.

We first describe the training setting of both types of models we compared. For the setting of separated decoder, we refer
to Appendix D.2 for details about dataset and training hyperparameters. For the setting of shared decoder, we train the
shared policy and value LLM with the same data used in the setting of separated decoder. During training, a batch from the
supervised finetuning (SFT) dataset and a batch from the value training dataset are sampled, the total loss of the shared
policy and value LLM is computed by Ltotal = LSFT + 0.5 · LValue, where LSFT is the cross entropy loss of predicting the
next token in the groundtruth answer and LValue is the Mean Square Error loss as we described in Equation 1. The training is
conducted on 8 NVIDIA A800 GPUs, using a cosine scheduler decaying from lr=2e-5 to 0.0 with a warmup ratio of 0.03, a
batch size of 128 for the supervised finetuning dataset and a batch size of 128 for the value training dataset. And we trained
the shared decoder model for 3 epochs. This training setting is the same as used in the separated decoder setting.

We will compare these two types of model in the perspective of performance and computation efficiency. All tree-search
algorithms are conducted under the same hyperparameters as those in Table 3 on Game24 in which the tree-max-width w is
set to 20.

Table 14 shows the comparisons of the two types of model on performance. Though the performance of CoT (CoT greedy
decoding) of shared decoder model increases from 12.7 to 16.3, the number of tokens generated per problem also increases
greatly from 76 to 166. By checking the models’ outputs, we find the shared decoder model doesn’t always obey the rules

18

AlphaZero-Like Tree-Search can Guide Large Language Model Decoding and Training

of Game24(There are only 4 steps of calculations and each number must be used exactly once). It usually outputs multiple
steps, more than the four steps required in Game24. This might be regarded as hallucination problem which happens
more frequently than in the separated decoder model. For the results of CoT-SC-TreeORM@10 (search by LLM’s prior on
trees and aggregated by ORM-vote), we observe close results of CoT-SCORM@10 Meanwhile, for the results of MCTS-α,
MCTS-Rollut, BFS-V and CoT-SC-TreeORM@10, there is only a small difference between the performance of the two
models. We also observe an increase in the number of token generated per problem. This is because the shared decoder
model is prone to output more invalid answers than the separated decoder model. Therefore, there are more distinct actions
proposed in the last layers of the trees.

Next, we show some preliminary comparisons in Table 15 on the computation efficiency of the separated decoder model
and the shared decoder model, from the results of expanding a tree node and evaluating its children. Specifically, Table 15
presents the node expansion time and value calculation time with/without KV Cache under token-level and sentence-level
situations. For the token-level node, we set w = 50 while for the sentence-level node, we set w = 20. The results
successfully present that a shared decoder can largely increase the computational efficiency for value estimation (20x in the
token-level setting and 9x in the sentence-level setting).

In all, in this section, we initially conduct explorations on leveraging shared policy and value LLM decoder. The result
proves the potential of computational efficiency for the shared structure. However, more work is needed to help the stability
of policy/value performance.

Table 14: Comparisions of separated/shared LLM decoder policy and critic models on Game24

Method Performance(%) / # tokens

Separated Decoder Shared Decoder

CoT 12.7 76 16.3 166
CoT-SCORM@10 52.9 ± 2.1 0.8k 52.8 ± 2.4 1.9k

MCTS-α 63.3 ± 1.9 412 64.1 ± 1.3 561
MCTS-Rollout 71.3 ± 2.5 670 70.6 ± 0.4 855

BFS-V 64.8 ± 2.9 370 63.0 ± 1.0 495
CoT-SC-TreeORM@10 48.3 ± 3.0 656 45.5 ± 2.0 745

Table 15: Time (seconds) on policy expansion and value evaluation for a single tree node. When using a shared LLM
decoder for policy and value LLM, we can use KV Cache for value calculation. It is much more efficient than a separate
value decoder without KV cache.

Node Type Policy Expansion Value with Cache Value without Cache

Token-Level 0.067 0.074 2.02

Sentence-Level 0.165 0.122 1.03

D. Experiment Details
D.1. Task setups

GSM8k GSM8k (Cobbe et al., 2021) is a commonly used numerical reasoning dataset, Given a context description and a
question, it takes steps of mathematical reasoning and computation to arrive at a final answer. There are about 7.5k problems
in the training dataset and 1.3k problems in the test dataset.
Game24 We also test our methods on Game24 (Yao et al., 2023) which has been proven to be hard even for state-of-the-art
LLMs like GPT-4. Each problem in Game24 consists of 4 integers between 1 and 13. And LLMs are required to use each
number exactly once by (+−×÷) to get a result equal to 24. We follow Yao et al. (2023) by using a set of 1362 problems
sorted from easy to hard according to human solving time. We split the first 1k problems as the training dataset and the last
362 hard problems as the test dataset. For each problem in the training dataset, we collect data for SFT by enumerating all
possible correct answers.
PrOntoQA PrOntoQA (Saparov & He, 2022) is a typical logical reasoning task in which a language model is required

19

AlphaZero-Like Tree-Search can Guide Large Language Model Decoding and Training

to verify whether a hypothesis is true or false given a set of facts and logical rules. There are 4k problems in the training
dataset and 500 problems in the test dataset.
RLHF We choose a synthetic RLHF dataset (Dahoas)1 serving as the query data. We split the dataset to 30000/3000 as
training and test set respectively. For the reward model, we choose reward-model-deberta-v3-large-v22 from OpenAssistant,
which is trained from several RLHF datasets.
Chess Endgame Chess Endgame is introduced by Abdulhai et al. (2023). Chess endgames provide a simpler and more
goaldirected variation of the chess task. A classic theoretical endgame position consists of a position where the only pieces
on the board are the two kings and the queen. Although the board position appears simple, a sequence of carefully calculated
moves is required to win. We followed the setting of Abdulhai et al. (2023) use an opponent of StockFish whose Elo is 1200.
We modified the environment dynamics so that the agent fails if it makes an illegal move.

D.2. SFT and value training details

SFT in GSM8k, Game24 and PrOntoQA: For GSM8k, Game24 and PrOntoQA, we first train LLaMA2-7b on the training
dataset The training is conducted on 8 NVIDIA A800 GPUs, using a cosine scheduler decaying from lr=2e-5 to 0.0 with a
warmup ratio of 0.03, batch size 128 for 3 epochs. For GSM8k and Game24 we use the checkpoint at the last epoch as
the direct policy in experiments, while for PrOntoQA we use the checkpoint at the 1st epoch since the others overfit. In
PrOntoQA, since we found that the language model policy can easily achieve 100% accuracy when supervised finetuning on
all the 4000 training examples, we only train the LLaMA2-7b model on a subset of 1000 problems.

Value training in GSM8k, Game24 and PrOntoQA: Then we train the value function on the data rollout by the SFT
policy. In GSM8k and Game24, For each model checkpoints of 3 epochs during SFT, we first collect 100 outputs per
problem in the training dataset, then duplicate the overlapped answers, labeled each answer with our training set outcome
reward ocracle. For data sampled by ech model checkpoint, we subsample 17 answers per problem, which is in total at most
51 answers per problem after deduplication. In PrOntoQA, we only sample 50 answers per problem with the first epoch
model checkpoint and then do deduplication. We show the wall-time and total number of generated tokens of sampling
rollout data for one policy of these three benchmarks on Table 16.

Table 16: Cost of sampling rollout data of one policy model in GSM8k, Game24 and ProntoQA

Task #Problems #Rollout Samples Wall-time(minute) #Total Tokens

GSM8k 7.4k 50 84.9 36.7M
Game24 1.0k 50 6.6 3.9M

ProntoQA 1.0k 50 10.5 4.5M

The value functions are trained in the same setting as supervised finetuning. We set the reward to be 1 when the output
answer is correct and -1 otherwise. Then we use MC with γ = 1 to compute the returns. We do model selection on a
validation dataset sampled from the direct policy model. For GSM8k, we train the value function and ORM for one epoch,
while for Game24 and PrOntoQA we train the value function and ORM for 3 epochs.

SFT in RLHF alignment: We utilize GPT2-open-instruct3, a GPT2-Small model supervised-finetuned over several
instruction-tuning dataset.

Value training in RLHF alignment: Based on the SFT model, we collect 50 rollouts by the SFT policy for each question in
the training set and label their final reward with the reward model. Then we train the value function and ORM for 2 epochs.

Note that here we start training the value function and ORM from the data sampled by the SFT policy model through direct
decoding just as an initialization of the value function and ORM. After that TS-LLM can optimize the policy model, value
function, and ORM simultaneously by adding new data sampled from tree search into the training buffer.

SFT in Chess Endgame: Currently we use the opensourced behavior-cloning model in Abdulhai et al. (2023) as the SFT
model4. Given a Forsyth-Edwards Notation (FEN) state description, the language model policy autoregressively outputs

1https://huggingface.co/datasets/Dahoas/synthetic-instruct-gptj-pairwise
2https://huggingface.co/OpenAssistant/reward-model-deberta-v3-large-v2
3https://huggingface.co/vicgalle/gpt2-open-instruct-v1
4https://github.com/abdulhaim/LMRL-Gym

20

AlphaZero-Like Tree-Search can Guide Large Language Model Decoding and Training

SAN(Standard Algebraic Notation)-format actions.

Value training in Chess Endgame Currently we use the opensourced critic value function model trained by Proximal
Policy Optimization (PPO) in Abdulhai et al. (2023). The language model value function receives a FEN state description
and outputs a scalar as the value estimation.

D.3. Details of comparing prompting-based value function and learned value function

For the prompting-based value function presented in Table 2, we use GPT-3.5-0613 for GPT3.5 model and design few-shot
prompts for GPT3.5-policy/value and also LLaMA2-7B. We sample 1 time from GPT3.5 and 3 times from LLaMA2-7B to
form the value evaluation.

D.4. Details of value dataset ablation

Here we introduce the details of building mixed, pure and pure,less datasets on GSM8k for value training in Table 5. For
each model checkpoints of 3 epochs during SFT, we first collect 100 outputs per problem in GSM8k training dataset, and
then duplicate the overlapped answers, labeled each answer with our training set outcome reward ocracle. we sample
multiple output sequences with temperature=0.7, top p=1.0 and top k=100.
mixed dataset: For each deduplicated dataset sampled by models of 3 epochs, we subsample 17 answers per problem.
pure dataset: we subsample 50 answers per problem from deduplicated dataset sampled by the last epoch policy model.
pure,less dataset: we subsample 17 answers per problem from deduplicated dataset sampled by the last epoch policy model.

For the results in Table 7, the details of training {v, r̂}ϕ1 can be find in Sec D.9. We use MC with γ = 1 to compute
the returns. Here we describe the details of training {v, r̂}RL

ϕ1
, we use the collected 78.7k samples in Sec D.8 to optimize

{v, r̂}ϕ0
. The training uses a cosine scheduler decaying from lr=2e-5 to 0.0 with a warmup ratio of 0.03, batch size 128 for

3 epochs.

D.5. Hyperparameter Selection Protocols

Here we present the selection protocols of hyperparameters.

Tree search general hyperparameters: the tree-max-depth d limits the search depth of tree and tree-max-width w controls
the max number of child nodes during node expansion. For the tree-max-width w, we refer the reader to Appendix C.2 for
more discussions. We choose tree-max-depth d according to the statistics of the distribution of the number of steps from the
dataset sampled by the LLM policy on the training set. Specifically, we statistically analyzed the number distribution of
sentences in the training set, and in our experiments, these sentences are split by ‘\n’. For GSM8K, we set the tree-max-
depth d at around the 99th percentile of the entire number distribution, to cover most query input and drop the outliers.
Game24 has a fixed search depth of 4. For ProntoQA, we set the tree-max-depth d at the upper bound of the entire number
distribution. For Chess Endgame, since endgame usually ends in a small number of moves, so we set the tree-max-depth to
be a maximal value of 50. For RLHF, this is not a reasoning task with CoT steps, so the depth can be flexible. We set it
as the default value. In most cases, the depth of tree-max-depth d will not be reached. Because the node expansion will
be terminated when we detect our pre-defined stop words in the generation (such as ‘The answer is’ or the ‘<EOS>’
token).

Specific hyperparameters for Monte Carlo Tree Search variants: Basically we adopted the default values from
Schrittwieser et al. (2020b) and Silver et al. (2017) for most of the hyperparameters, such as cbase = 19652 in Equation 4,
τ = 1.0 for MCTS-alpha stochastic search. And for the Dirichlet noise of MCTS-α stochastic search as mentioned in
Appendix D.7, we adopted the default value in Silver et al. (2017) as 0.3, which is specified for chess. We do find that in
MCTS-α, MCTS-Rollout and MCTS, cinit can affect the balance between exploration and exploitation, and we chose it by
running several trials from two possible values: {0.3, 3.0}. Moreover, for MCTS-α, the hyperparameter num of simulation,
nsimulation is chosen as 5 for shallow trees (tree max-depths less than of equal to 15 over GSM8k, Game24 and ProntoQA)
and 10 in deep trees(a tree max-depth of 64 in RLHF), controlling the search complexity at each step.

Specific hyperparameters for BFS-/DFS-V: BFS-V does not have hyperparameters for single search. For DFS-V, the
children of a non-leaf node is traversed in a non-decreasing order by its value. For the sake of efficient exploration, we
tried 2 heuristics to prune the subtrees, (1) drop the children nodes with lower values by prune ratio. (2) drop the children
nodes lower than a prune value. The latter is adopted from Yao et al. (2023). In our experiments, we tried possible

21

AlphaZero-Like Tree-Search can Guide Large Language Model Decoding and Training

prune values from {0.5, 0.0,−0.5} or None, we found that setting a high prune value like 0.5 or 0.0 may introduce
significant performance drop, however, setting a higher prune value may introduce very closer answers. Therefore, we
finally use prune ratio for efficient exploration during searching on the tree with DFS-V. We set prune ratio to be 0.7
(selected from {0.3, 0.5, 0.7}) for GSM8k, Game24 and PrOntoQA (tree-max-widths of 6, 6, 20), and 0.95 (selected from
{0.5, 0.7, 0.9, 0.9}) for RLHF alignment task since its much wider(a tree-max-width of 50).

D.6. Details of applying each tree search approach

We present the implementation details and hyperparameters of all tree search approaches here.

Firstly, we refer to Table 1 for basic settings of each task. We set temperature=1.0, top p=1.0, top k=100 when using LLM
to generate tree actions. To compute logprobs when expand actions in RLHF alignment task trees, we also use a temperature
of 1.0.

For MCTS variants including MCTS-α, MCTS-Rollout and MCTS, we need to define the hyperparamter in PUCT algorithm:

cpuct = log((
∑
b

N(s, b) + cbase + 1)/cbase) + cinit (4)

In this paper, we fixed cbase with 19652 and set cinit = 3 for GSM8k, Game24 and RLHF alignment tasks, set cinit = 0.3 for
PrOntoQA tasks. For Chess Endgame, we manually set cpuct = 0. Specifically, in MCTS-α, we set the number of simulations
before making an action to 5 for GSM8k, Game24 and PrOntoQA, 10 for RLHF alignment and Chess Endgame. During
evaluation, we deterministically sampled actions with the largest visit count. In MCTS-Rollout, we set an computation
upperbound as number of generated tokens or number of model forwards, which is 51200 in GSM8k and Game24, 1800 in
PrOntoQA and 5000 in RLHF alignment, 10000 in Chess Endgame.

For DFS-V, the children of a non-leaf node is traversed in a non-decreasing order by value. For efficient exploration, we
tried 2 heuristics to prune the subtrees, (1) drop the children nodes with low value by prune ratio. (2) drop the children
nodes lower than a prune value. We set prune ratio to be 0.7 for GSM8k, Game24 and PrOntoQA, and 0.95 for RLHF
alignment task, 0.6 for Chess Endgame.

All Path@1 results for each tree search approach is conducted with 3 seeds and show the mean and standard deviation.
Note that for Path@1 results of tree search approaches with sentence-level nodes, the randomness comes from the node
expansion process where we use an LLM to sample candidate actions. While for CoT-SC results, the randomness comes
from sampling during direct decoding.

D.7. Details of aggregation experiments

Another alternative setting for conducting multiple searches in Inter-tree Search. Inter-tree Search builds a new tree for
each new search, which increases the diversity of the search space, with extra computation burdens proportional to the
search times. Thus, the intra-setting will have a larger state space compared with intra-tree setting. Our experiment results
shown in Fig 2 (comparing MCTS-α intra-tree and inter-tree settings) also verify the performance gain brought by the larger
search space.

We also present the details of how we sample multiple answers with tree search approaches and aggregate them into a final
answer.

For the results of CoT-SC-Tree on Table 3 and Table 6, they can be viewed as intra-tree searches. For the results in Figure 2,
only MCTS-α inter-trees were conducted with inter-tree searches, other tree-search algorithms (MCTS, MCTS-Rollout,
BFS-V, DFS-V) were all conducted with intra-tree searches

Note that for all tree search algorithms except BFS-V, multiple searches are conducted in a sequential manner, while for
BFS-V which can actually be regarded as Beam-Search, the number of searches means the number of beam size.

When sampling multiple intra-tree answers with MCTS-α, we use a stochastic sampling setting. To ensure MCTS-α to
explore sufficently, when selecting action of the current node, before doing several times of simulation, we add Dirichlet
noise into the language model’s prior probability of the current root node s0, i.e. π′

θ(s0, a) = (1− ϵ)πθ(s0, a) + ϵη, where

η ∼ Dir(0.3), and we set ϵ = 0.25 for both tasks. Actions are sample based on visit count, i.e. a ∼ N(st,a)
1/τ∑

b N(st,b)1/τ
, where we

set τ = 1. After returning with a complete path, we clear the node statistics (Q(st, at) and N(st, at)) on the tree to eliminate

22

AlphaZero-Like Tree-Search can Guide Large Language Model Decoding and Training

the influence of previous searches, while the tree structure is maintained. This setting is denoted as clear-tree when presented
in the table. In summary, when we only measure path@1 performance, we adopt MCTS-α (no sampling). But when
we measure the aggregation performance, we use MCTS-α-intra tree or MCTS-α-inter tree. In MCTS-α-intra tree
we will activate the clear-tree and stochastic sampling setting.

When sampling multiple answers with other tree-search methods, we only utilize the intra-tree aggregation variant, without
stochastic sampling and clear-tree setting. This is because only MCTS-α and MCTS-rollout can conduct the above sampling
and clear-tree operation. And we temporarily only apply such setting on MCTS-α.

In ORM-vote, since we train the ORM with the reward signal -1 and 1, given a list of N answers to be aggregated, we first
normalize its values {r̂(yj)}j with min-max normalization to make them in [0, 1].

D.8. sampling details of iterative update

We verify the idea of iteratively enhancing language model policy and value function model on the GSM8k and RLHF
datasets.

Sampling in GSM8k: When sampling from the 7.5k problems in the GSM8k training dataset, we sample 12 sequences
per problem in one sentence-level expanded tree, after deduplication, this results in 78.7k distinct answers, and 73.2% are
correct answers. The sample parameters are listed in Table 17.

Sampling in RLHF alignment: We collect 10 answers for each training set problem sampled by MCTS-α. We list the
specific hyperparameters in Table 18.

To collect data for the rejection sampling baseline, we first sample 10 sequences per problem and then use the top 5 sequences
for supervised fine-tuning.

Table 17: Hyperparameters of sampling in GSM8k for LLM decoding(left), tree construction setting(middle), and MCTS-α
setting(right).

Hyperparameter value

temperature 1.0
top p 1.0
top k 100

Hyperparameter value

Tree Max width 6
Tree Max depth 8

Node Sentence

Hyperparameter value

num simulation 5
clear tree True

stochastic sampling True
cbase 19652
cinit 3
τ 1.0

Table 18: Hyperparameters of sampling in RLHF alignment for LLM decoding(left), tree construction setting(middle), and
MCTS-α setting(right).

Hyperparameter value

temperature 1.0
top p 1.0
top k 50

Hyperparameter value

Tree Max width 50
Tree Max depth 64

Node Token

Hyperparameter value

num simulation 5
clear tree True

stochastic sampling True
cbase 19652
cinit 3
τ 1.0

D.9. Training details of iterative update

Policy training in GSM8k: We construct the dataset for supervised finetuning by combining data in the training dataset
with 57.6k correct answers sampled in Sec D.8 which results in 64.1k distinct correct answers. And we train the new policy
model πθ1 from the starting base model LLaMA2-7b for 3 epochs, following Yuan et al. (2023a). The training setting is the
same as described in Sec D.2.

Value training in GSM8k: We construct the dataset for value and ORM training by combining the data used to train
{v, r̂}ϕ0 with 78.7k answers sampled by MCTS-α in Sec D.8. To fairly compare {v, r̂}ϕ1 with {v, r̂}ϕ0 , we drop samples
in the former dataset to keep at most 51− 12 = 39 answers per problem resulting in 359k distinct answers. And we train

23

AlphaZero-Like Tree-Search can Guide Large Language Model Decoding and Training

the new value function {v, r̂}ϕ1
from the value model with its initial weight(before being updated on any data) for 3 epochs.

The training setting is the same as described in Sec D.2.

Policy training in RLHF alignment: For the MCTS-α’s training, we subsample the top 5 answers from the full 10
candidates (mentioned in Appendix D.8) to serve as the SFT dataset. For the RFT n=5 baseline, we subsample the top 5
answers from 50 direct decodings as the SFT dataset. For the training of the PPO algorithm, we adopt the implementation
from trlx5. We sample 20 answers for each question in total, which maintains the same level of token consumption during
the PPO rollouts as that of MCTS-α.

Value training in RLHF alignment: We construct the value and ORM dataset by mixing data from SFT-policy direct
decoding and from MCTS-α. To make the comparison fair, the new value function’s training utilizes the same amount of
data as the old one by subsampling 40 answers (from 50 shown in Appendix D.2) from direct decoding data and all 10
answers (shown in Appendix D.8) generated by MCTS-α. We train our value function with learning rate 2e-5 and cosine
scheduler from the initial model (instead of continuing training from the old value function) for 2 epochs.

E. Qualitative Results
Here we present some qualitative results of generation for different methods in Table 19 (for Game24), Table 20 (for
GSM8k), Table 21 (for ProntoQA) and 22 (for the RLHF alignment task).

Problem: 4 8 9 13

Methods Response Correctness

CoT 8 + 13 = 21 (left: 4 9 21)
4 - 9 = -5 (left: -5 21)
21 - -5 = 26 (left: 26)
The answer is (8 + 13) - (4 - 9) = 26

No

BFS-V 9 + 3 = 12 (left: 4 8 12)
12 / 4 = 3 (left: 3 8)
3 * 8 = 24 (left: 24)
The answer is (9 + 3) / 4 * 8 = 24

No

MCTS-α 13 - 9 = 4 (left: 4 4 8)
4 * 4 = 16 (left: 8 16)
16 + 8 = 24 (left: 24)
The answer is 4 * (13 - 9) + 8 = 24

Yes

MCTS-Rollout 13 - 9 = 4 (left: 4 4 8)
4 * 4 = 16 (left: 8 16)
16 + 8 = 24 (left: 24)
The answer is (13 - 9) * 4 + 8 = 24

Yes

Table 19: Qualitative examples of Game24 outputs

F. Detailed Experiment Results
F.1. Results per task per aggregation

We show detailed results of GSM8k on Table 23, results of Game24 on Table 24, Table 25 for PrOnToQA and Table 26 for
RLHF alignment. Due to the limit of computation resources, we show the results under 1 seed except for the path@1 results.

5https://github.com/CarperAI/trlx

24

AlphaZero-Like Tree-Search can Guide Large Language Model Decoding and Training

Question: A new program had 60 downloads in the first month. The number of downloads in the second month was three
times as many as the downloads in the first month, but then reduced by 30% in the third month. How many downloads
did the program have total over the three months?

Methods Response Correct

CoT The number of downloads in the second month was 3*60 = 180
The number of downloads in the third month was 180*0.30 = 54
The total number of downloads for the three months was
60+180+54 = 294
The answer is 294

No

BFS-V In the second month, the program had 60*3=180 downloads
In the third month, the program had 180*30/100=54 downloads
which was 30% less than the previous month
Total downloads for the program in the three months was
60+180+54=294
The answer is 294

No

MCTS-α The program had 60 x 3 = 180 downloads in the second month.
The downloads in the third month was 180 x 0.30 = 54 downloads
lesser than the previous month.
So, the program had 180 - 54 = 126 downloads in the third month.
Therefore, the program had 60 + 180 + 126 = 366 downloads
over the three months.
The answer is 366

Yes

MCTS-Rollout The number of downloads in the second month was 3 times
as many as the downloads in the first month, which means the
program had 3*60 = 180 downloads in the second month.
The total number of downloads for the two months was 180+60 =
240 In the third month, the program had 180-30/100*180 = 120
downloads, 30% of the number of downloads it had in the second
month.
The total number of downloads for the three months was 240+120
= 360
The answer is 360

No

Table 20: Qualitative examples of GSM8k outputs

25

AlphaZero-Like Tree-Search can Guide Large Language Model Decoding and Training

Question: Butterflies are lepidopterans. Every arthropod is small. Whales are not small.
Invertebrates are animals. Every insect is an arthropod. Lepidopterans are insects. Every
insect is six-legged. Every arthropod is an invertebrate. Animals are multicellular. Polly is a
lepidopteran. Is the statement ”Polly is not small” true or false?

Methods Response Correct

CoT Polly is a lepidopteran.
Lepidopterans are insects.
Polly is an insect.
Every insect is an arthropod.
Polly is an arthropod.
Every arthropod is small.
Polly is small.
The answer is true.

No

BFS-V Polly is a lepidopteran.
Lepidopterans are insects.
Polly is an insect.
Every insect is an arthropod.
Polly is an arthropod.
Every arthropod is small.
Polly is small.
Polly is small.
The answer is false.

Yes

MCTS-α Polly is a lepidopteran.
Lepidopterans are insects.
Polly is an insect.
Every insect is an arthropod.
Polly is an arthropod.
Every arthropod is small.
Polly is small.
The answer is false.

Yes

MCTS-Rollout Polly is a lepidopteran.
Lepidopterans are insects.
Polly is an insect.
Every insect is an arthropod.
Polly is an arthropod.
Every arthropod is small.
Polly is small.
The answer is false.

Yes

Table 21: Qualitative examples of ProntoQA outputs

26

AlphaZero-Like Tree-Search can Guide Large Language Model Decoding and Training

Prompt: What careers am I good at.

Methods Response Reward

CoT You can be a great career at any career
you choose. Depending on your inter-
ests and skills, you may be able to find
a variety of jobs that align with your in-
terests and skills.

-2.625

BFS-V Some careers great careers to do pro-
fessionally are entrepreneur in health-
care policy policy advocacy consulting
public diplomacy leadership policy in-
novation in global issues managing in-
formation theory. Some great careers
to achieve excellence in healthcare man-
agement include doctor psychologist

-2.03

MCTS-α You may be good at a variety of careers,
depending on your interests and skills.
Some of the most popular careers in-
clude software engineer, data scientist.
You may also be good at a variety of
fields such as finance, marketing, and
business administration.

-1.67

Table 22: Qualitative examples of RLHF outputs

27

AlphaZero-Like Tree-Search can Guide Large Language Model Decoding and Training

Table 23: Detailed Results in GSM8k

Method N Majority-vote ORM-vote ORM-max #Token

CoT - 41.4 41.4 41.4 0.1k

CoT-SC 1 38.21 38.21 38.21 0.1k
CoT-SC 10 51.93 57.47 53.83 1k
CoT-SC 20 54.44 59.44 54.74 2k
CoT-SC 50 56.79 61.03 54.44 5k
CoT-SC 100 58.15 62.70 53.68 10k

CoT-SC-Tree 1 37.91 37.91 37.91 0.1k
CoT-SC-Tree 10 50.19 53.15 50.95 0.8k
CoT-SC-Tree 20 52.69 55.12 52.84 1.3k
CoT-SC-Tree 50 54.51 57.16 53.45 2.7k

BFS-V 1 52.5 52.5 52.5 0.5k
BFS-V 10 58.98 56.25 54.97 3.1k
BFS-V 20 58.91 56.79 52.39 5.3k
BFS-V 50 59.29 59.36 53.22 10.1k

DFS-V 1 51.8 51.8 51.8 0.5k
DFS-V 10 57.09 56.18 54.89 1.2k
DFS-V 20 58.23 58.38 55.19 1.6k
DFS-V 50 58.98 58.98 55.35 2.1k

MCTS-α (no sampling) 1 51.9 51.9 51.9 0.5k

MCTS-α-intra tree 1 46.78 46.78 46.78 0.7k
MCTS-α-intra tree 10 57.85 56.86 54.36 3.4k
MCTS-α-intra tree 20 58.83 58.23 55.19 5.3k

MCTS-α-inter trees 1 51.9 51.9 51.9 0.5k
MCTS-α-inter trees 10 57.92 58.53 55.34 5.5k
MCTS-α-inter trees 20 58.83 59.06 54.97 11.1k
MCTS-α-inter trees 50 58.76 61.26 53.98 27.8k

MCTS 1 52.2 52.2 52.2 0.5k
MCTS 10 57.92 55.72 53.75 2.4k
MCTS 20 58.61 56.79 54.74 4.0k
MCTS 50 59.36 58.23 53.75 7.5k

MCTS-Rollout 1 47.8 47.8 47.8 3.4k
MCTS-Rollout 10 51.10 50.49 49.81, 5.4k
MCTS-Rollout 20 51.86 51.25 50.19 6.1k
MCTS-Rollout 50 52.69 52.24 50.49 7.2k

28

AlphaZero-Like Tree-Search can Guide Large Language Model Decoding and Training

Table 24: Detailed Results in Game24

Method N Majority-vote ORM-vote ORM-max #Token

CoT - 12.7 12.7 12.7 0.1k

CoT-SC 1 9.94 9.94 9.94 0.1k
CoT-SC 10 13.54 50.83 50.83 0.8k
CoT-SC 20 14.36 65.75 65.47 1.6k
CoT-SC 50 16.30 78.45 78.45 4.0k
CoT-SC 100 18.23 84.25 84.53 7.9k

CoT-SC-Tree 1 9.67 9.67 9.67 0.1k
CoT-SC-Tree 10 11.33 48.34 48.34 0.7k
CoT-SC-Tree 20 13.26 61.60 62.15 1.1k
CoT-SC-Tree 50 16.57 69.61 69.89 2.0k

BFS-V 1 64.8 64.8 64.8 0.4k
BFS-V 10 47.79 70.72 70.99 1.6k
BFS-V 20 27.62 69.34 69.34 2.3k
BFS-V 50 7.18 70.17 70.72 3.7k

DFS-V 1 66.3 66.3 66.3 0.4k
DFS-V 10 55.25 69.06 69.34 0.9k
DFS-V 20 54.14 69.34 69.61 1.0k

MCTS-α (no sampling) 1 63.3 63.3 63.3 0.4k

MCTS-α-intra tree 1 64.36 64.36 64.36 0.4k
MCTS-α-intra tree 10 66.85 67.68 63.90 0.9k
MCTS-α-intra tree 20 67.13 69.34 68.78 1.1k
MCTS-α-intra tree 50 67.96 69.89 69.34 1.4k

MCTS-α-inter trees 1 63.3 63.3 63.3 0.4k
MCTS-α-inter trees 10 72.65 82.87 82.32 4.1k
MCTS-α-inter trees 20 72.93 84.25 83.15 8.3k

MCTS 1 64.0 64.0 64.0 0.4k
MCTS 10 70.44 70.72 70.17 0.8k
MCTS 20 72.10 72.10 71.27 1.1k
MCTS 50 72.38 72.38 71.55 1.6k

MCTS-Rollout 1 71.3 71.3 71.3 0.7k
MCTS-Rollout 10 73.48 73.20 72.65 0.9k
MCTS-Rollout 20 73.48 73.48 72.38 1.0k
MCTS-Rollout 50 73.48 73.48 72.38 1.1k

29

AlphaZero-Like Tree-Search can Guide Large Language Model Decoding and Training

Table 25: Detailed Results in PrOntoQA

Method N Majority-vote ORM-vote ORM-max #Token

CoT - 48.8 48.8 48.8 92

CoT-SC 1 54.40 54.40 54.40 91.25
CoT-SC 3 63.60 82.40 82.40 273.75
CoT-SC 10 58.40 97.80 97.80 912.55
CoT-SC 20 57.00 99.80 99.80 1.8k

CoT-SC-Tree 1 50.20 50.20 50.20 82.02
CoT-SC-Tree 10 62.40 98.40 98.40 413.58
CoT-SC-Tree 20 61.00 99.40 99.40 632.91

BFS-V 1 94.40 94.40 94.40 125.52
BFS-V 10 99.00 100.00 100.00 837.78
BFS-V 20 98.60 99.80 99.80 1.5k

DFS-V 1 93.30 93.30 93.30 124.46
DFS-V 10 95.60 96.40 96.40 187.59
DFS-V 20 95.60 96.40 96.40 193.91

MCTS-α (no sampling) 1 99.40 99.40 99.40 183.66

MCTS-α-intra tree 1 97.20 97.20 97.20 208.68
MCTS-α-intra tree 10 99.80 99.80 99.80 364.96
MCTS-α-intra tree 20 99.80 99.80 99.80 441.31

MCTS-α-inter trees 1 99.40 99.40 99.40 183.66
MCTS-α-inter trees 10 100.00 100.00 100.00 1.9k
MCTS-α-inter trees 20 100.00 100.00 100.00 3.8k

MCTS 1 94.20 94.20 94.20 126.65
MCTS 10 99.60 99.60 99.60 182.88
MCTS 20 100.00 100.00 100.00 240.16

MCTS-Rollout 1 96.90 96.90 96.90 210.41
MCTS-Rollout 10 99.20 99.20 99.20 220.16
MCTS-Rollout 20 99.20 99.20 99.20 224.16

30

AlphaZero-Like Tree-Search can Guide Large Language Model Decoding and Training

Table 26: Detailed Results in RLHF alignment

Method N Mean Best #Forward

CoT 1 0.387 0.387 57.8

CoT-SC 1 -0.164 -0.164 58
CoT-SC 10 -0.182 1.592 0.6k
CoT-SC 20 -0.175 1.972 1.2k
CoT-SC 50 -0.176 2.411 2.9k

BFS-V 1 -1.295 -1.295 61.8
BFS-V 10 -1.523 -1.065 0.6k
BFS-V 20 -1.520 -0.948 1.2k
BFS-V 50 -1.474 -0.813 3.1k

DFS-V 1 -1.295 -1.295 61.8
DFS-V 10 -1.498 -1.067 67.8
DFS-V 20 -1.507 -0.985 71.8
DFS-V 50 -1.503 -0.86 85.8

MCTS-α (no sampling) 1 2.221 2.221 186

MCTS-α-intra tree 1 1.538 1.538 198.50
MCTS-α-intra tree 10 1.527 3.052 1.6k
MCTS-α-intra tree 20 1.533 3.311 3.1k

MCTS 1 -1.295 -1.295 61.8
MCTS 10 -1.146 0.160 0.6k
MCTS 20 -1.08 0.528 1.2k
MCTS 50 -0.961 0.981 2.8k

MCTS-Rollout 1 1.925 1.925 0.8k
MCTS-Rollout 10 2.278 2.540 1.1k
MCTS-Rollout 20 2.376 2.643 1.2k
MCTS-Rollout 50 2.491 2.746 1.3k

31

