
Under review as a conference paper at ICLR 2024

GRAPH NEURAL MODELING OF NETWORK FLOWS

Anonymous authors
Paper under double-blind review

ABSTRACT

Network flow problems, which involve distributing traffic such that the underly-
ing infrastructure is used effectively, are ubiquitous in transportation and logis-
tics. Among them, the general Multi-Commodity Network Flow (MCNF) prob-
lem concerns the distribution of multiple flows of different sizes between sev-
eral sources and sinks, while achieving effective utilization of the links. Due to
the appeal of data-driven optimization, these problems have increasingly been
approached using graph learning methods. In this paper, we propose a novel
graph learning architecture for network flow problems called Per-Edge Weights
(PEW). This method builds on a Graph Attention Network and uses distinctly
parametrized message functions along each link. We extensively evaluate the
proposed solution through an Internet flow routing case study using 17 Service
Provider topologies and 2 routing schemes. We show that PEW yields substan-
tial gains over architectures whose global message function constrains the routing
unnecessarily. We also find that an MLP is competitive with other standard archi-
tectures. Furthermore, we analyze the relationship between graph structure and
predictive performance for data-driven routing of flows, an aspect that has not
been considered by existing work in the area.

1 INTRODUCTION

Flow routing represents a fundamental problem that captures a variety of optimization scenarios that
arise in real-world networks (Ahuja, 1993, Chapter 17). One classic example is the maximum flow
problem, which seeks to find the best (in terms of maximum capacity) path between a source node
and a sink node. The more general Multi-Commodity Network Flow problem allows for multiple
flows of different sizes between several sources and sinks that share the same distribution network.
It is able to formalize the distribution of packets in a computer network, of goods in a logistics
network, or cars in a rail network (Hu, 1963). We illustrate MCNF problems in Figure 1.

For maximum flow problems, efficient algorithms have been developed (Cormen et al., 2022, Chap-
ter 26), including a recent near-linear time approach (Chen et al., 2022). For the more complex
MCNF problems, Linear Programming solutions can be leveraged in order to compute, in poly-
nomial time, the optimal routes given knowledge of pairwise demands between the nodes in the
graph (Fortz & Thorup, 2000; Tardos, 1986). At the other end of the spectrum, oblivious routing
methods derive routing strategies with partial or no knowledge of traffic demands, optimizing for
“worst-case” performance (Räcke, 2008).

As recognized by existing works, a priori knowledge of the full demand matrix is an unrealistic
assumption, as loads in real systems continuously change (Feldmann et al., 2001). Instead, ML
techniques may enable a middle ground (Valadarsky et al., 2017): learning a model trained on past
loads that can perform well in a variety of traffic scenarios, without requiring a disruptive rede-
ployment of the routing strategy (Fortz & Thorup, 2002). Hence, developing an effective learning
representation is fundamental to the application of ML in flow routing scenarios.

From a more practical point of view, this shift towards data-driven approaches is illustrated by the
concepts of data-driven computer networking (Jiang et al., 2017) and self-driving networks (Feam-
ster & Rexford, 2017). Early works in this area were based on MLP architectures (Valadarsky et al.,
2017; Reis et al., 2019). More recently, models purposely designed to operate on graphs, including
variants of the expressive Message Passing Neural Networks (Rusek et al., 2019; Almasan et al.,
2021) and Graph Nets (Battaglia et al., 2018), have been adopted.

1

Under review as a conference paper at ICLR 2024

?
?

?
?
? ? ? ?

?
??
? ? ?

?
GNN

Model
train predict

Figure 1: Top. An illustration of the Multi-Commodity Network Flow family of problems. The
requirements of the routing problem are defined using a matrix that specifies the total amount of
traffic that has to be routed between each pair of nodes in a graph. We are also given a graph
topology in which links are equipped with capacities. All flows have an entry and exit node and
share the same underlying transportation infrastructure. Under a particular routing scheme, such as
shortest path routing, the links are loaded by the total amount of traffic passing over them. Bottom.
A model is trained using a dataset of the link utilizations for certain demand matrices and graph
topologies, and is then used to predict the Maximum Link Utilization for an unseen demand matrix.

Despite the promise of graph learning, current works nevertheless adopt schemes that aggregate mes-
sages along neighboring edges using the same message functions. In the context of routing flows,
this constrains the model unnecessarily. Instead, we argue that nodes should be able to weight flows
along each link separately, so that each node may independently update its state given incoming and
outgoing traffic, leading to better algorithmic alignment (Xu et al., 2020) between the computational
mechanism of the GNN and the task. We illustrate this in Figure 2.

Furthermore, the ways in which prior works encode the demands as node features varies between the
full demand matrix (Valadarsky et al., 2017; Zhang et al., 2020) and a node-wise summation (Hope
& Yoneki, 2021), and it is unclear when either is beneficial. Besides the learning representation
aspects, existing approaches in this area are trained using very few graph topologies (typically 1 or
2) of small sizes (typically below 20 nodes). This makes it difficult to assess the gain that graph
learning solutions bring over vanilla architectures such as the MLP. Additionally, a critical point that
has not been considered is the impact of the underlying graph topology on the effectiveness of the
learning process. To address these shortcomings, we make contributions along the following axes:

• Learning representations for data-driven flow routing. We propose a novel mecha-
nism for aggregating messages along each link with a different parametrization, which
we refer to as Per-Edge Weights (PEW). We propose an instantiation that extends the
GAT (Veličković et al., 2018) via a construction akin to the RGAT (Busbridge et al., 2019).
Despite its simplicity, we show that this mechanism yields substantial predictive gains over
architectures that use the same message function for all neighbors. We also find that PEW
can exploit the complete demand matrix as node features, while the GAT performs better
with the lossy node-wise sum used in prior work.

• Rigorous and systematic evaluation. Whereas existing works test on few, small-scale
topologies, we evaluate the proposed method and 4 baselines on 17 real-world Internet Ser-
vice Provider topologies and 2 routing schemes in the context of a case study in computer
networks, yielding 81600 independent model training runs. Perhaps surprisingly, we find
that a well-tuned MLP is competitive with other GNN architectures when given an equal
hyperparameter and training budget.

• Understanding the impact of topology. The range of experiments we carry out allows us
to establish that a strong link exists between topology and the difficulty of the prediction
task, which is consistent across routing schemes. Generally, the predictive performance
decreases with the size of the graph and increases with heterogeneity in the local node and
edge properties. Moreover, we find that, when graph structure varies through the presence
of different subsets of nodes, the predictive performance of GNNs increases compared to
structure-agnostic methods, such as MLP.

2

Under review as a conference paper at ICLR 2024

Figure 2: Left. An illustration of the MPNN used in previous flow routing works, which uses the
same message function M (l) for aggregating neighbor messages. Right. An illustration of our
proposed Per-Edge Weights (PEW), which uses uniquely parametrized per-edge message functions.

2 RELATED WORK

Neural networks operating on graphs. Much effort has been devoted in recent years to devel-
oping neural network architectures operating on graphs. Several approaches, such as Graph Con-
volutional Networks (GCNs), use convolutional filters based on the graph spectrum, which can be
approximated efficiently (Defferrard et al., 2016; Kipf & Welling, 2017). An alternative line of work
is based on message passing on graphs (Sperduti & Starita, 1997; Scarselli et al., 2009) as a means
of deriving vectorial embeddings. Both Message Passing Neural Networks (MPNNs) (Gilmer et al.,
2017) and Graph Networks (Battaglia et al., 2018) are attempts to unify related methods in this
space, abstracting the commonalities of existing approaches with a set of primitive functions.

Expressivity is another major concern in the design of this class of architectures. Notably, Gated
Graph Neural Networks (GG-NNs) (Li et al., 2017) add gating mechanisms and support for dif-
ferent relation types, as well as removing the need to run the message propagation to convergence.
Graph Attention Networks (GATs) (Veličković et al., 2018) propose the use of attention mechanisms
as a way to perform flexible aggregation of neighbor features. Relational learning models for knowl-
edge graphs, such as the RGCNs (Schlichtkrull et al., 2018) that extends the GCN architecture, use
different parametrizations for edges with different types. The RGATs (Busbridge et al., 2019) follow
the blueprint of RGCNs and extend the GAT approach to the relational setting. Despite the tremen-
dous success of relational models for a variety of tasks, perhaps surprisingly, recent work shows that
randomly trained relation weights may perform similarly well (Degraeve et al., 2022).

ML for routing flows in computer networks. Several works have considered machine learning
approaches to perform supervised learning for routing flows in computer networks. (Geyer & Carle,
2018) proposes a variant of the GG-NN and trains it to predict paths taken by conventional routing
algorithms. (Rusek et al., 2019) proposes a MPNN variant and uses it to predict graph-level metrics
such as delay and jitter. (Reis et al., 2019) uses an MLP representation and supervised learning to
predict the full path that a flow should take through the network. Other works have considered rein-
forcement learning the routing protocol itself in a variety of problem formulations: (Valadarsky et al.,
2017) uses an MLP and considers learning per-edge coefficients that are used with “softmin” rout-
ing. (Xu et al., 2018) proposes an MLP approach for learning traffic split ratios for a set of candidate
paths. (Zhang et al., 2020) uses a CNN to re-route a proportion of important (critical) flows. (Al-
masan et al., 2021) proposes a formulation that routes flows sequentially, which then become part of
the state. It uses a MPNN representation. Most recently, (Hope & Yoneki, 2021) adopts the formu-
lation in (Valadarsky et al., 2017), showing that the use of Graph Networks improves performance
in one graph topology.

Algorithmic reasoning. Another relevant area is algorithmic reasoning (Veličković et al., 2018;
Cappart et al., 2021), which trains neural networks to execute the steps taken by classic algo-
rithms (Cormen et al., 2022) with the goal of obtaining strong generalization on larger unseen
inputs. (Georgiev & Liò, 2020) trains a MPNN to mimic the steps taken by the Ford-Fulkerson
maximum flow algorithm (Cormen et al., 2022, Chapter 24). An important difference to this line
of work is that in our case our model does not include any knowledge of the routing scheme, while
the approaches based on algorithmic reasoning use the granular algorithm steps themselves as the
supervision signal.

3

Under review as a conference paper at ICLR 2024

3 METHODS

3.1 ROUTING FORMALIZATION AND LEARNING TASK

Flow routing formalization. We assume the splittable-flow routing formalization proposed by Fortz
& Thorup (2004). We let G = (V,E) be a directed graph, with V representing the set of nodes and E
the set of edges. We use N = |V | and m = |E| as shorthands, as well as vi and ei,j to denote specific
nodes and edges, respectively. Each edge has an associated capacity κ(ei,j) ∈ R+. We also define a
demand matrix D ∈ RN×N where entry Dsrc,dst is the traffic that source node src sends to destina-
tion dst . With each tuple (src, dst , ei,j) ∈ V ×V ×E we associate the quantity f

(src,dst)
ei,j ≥ 0, which

specifies the amount of traffic flow from src to dst that goes over the edge ei,j . The load of edge
ei,j , load(ei,j), is the total traffic flow traversing it, i.e., load(ei,j) =

∑
(src,dst)∈V×V f

(src,dst)
ei,j .

Furthermore, the quantities f (src,dst)
ei,j must obey the following flow conservation constraints:

∑
e∈δ+(vi)

f (src,dst)
e −

∑
e∈δ−(vi)

f (src,dst)
e =

Dsrc,dst if vi = src,

−Dsrc,dst if vi = dst ,

0 otherwise.
(1)

where the sets δ+(vi), δ−(vi) are node vi’s outgoing and incoming edges, respectively. Intuitively,
these constraints capture the fact that traffic sent from src to dst originates at the source (first clause),
must be absorbed at the target (second clause), and ingress equals egress for all other nodes (final
clause).

Routing schemes. A routing scheme R specifies how to distribute the traffic flows. Specifically, we
consider two well-known routing schemes. The first is the Standard Shortest Paths (SSP) scheme
in which, for a given node, the full flow quantity with destination dst is sent to the neighbor on the
shortest path to dst . The widely used ECMP scheme (Hopps, 2000) instead splits outgoing traffic
among all the neighbors on the shortest path to dst if multiple such neighbors exist.

Prediction target. A common way of evaluating a routing strategy R is Maximum Link Utilization
(MLU), i.e., the maximal ratio between link load and capacity. Formally, given a demand matrix
D, we denote it as MLU(D) = maxei,j∈E

load(ei,j)
κ(ei,j)

. This target metric has been extensively stud-
ied in prior work (Kandula et al., 2005) and is often used by ISPs to gauge when the underlying
infrastructure needs to be upgraded (Guichard et al., 2005).

Supervised learning setup. We assume that we are provided with a dataset of traffic matrices
D = ∪k{D(k), MLU(D(k))}. Given that our model produces an approximation M̂LU(D(k))
of the true Maximum Link Utilization, the goal is to minimize the Mean Squared Error∑

k (MLU(D(k))−M̂LU(D(k)))2

|D| .

3.2 PER-EDGE WEIGHTS

We propose a simple mechanism to increase the expressivity of models for data-driven flow routing.
As previously mentioned, several works in recent years have begun adopting various graph learning
methods for flow routing problems such as variants of Message Passing Neural Networks (Geyer &
Carle, 2018; Rusek et al., 2019; Almasan et al., 2021) or Graph Networks (Hope & Yoneki, 2021).
In particular, MPNNs derive hidden features h(l)

vi for node vi in layer l + 1 by computing messages
m(l+1) and applying updates of the form:

m(l+1)
vi =

∑
vj∈N (vi)

M (l)
(
h(l)
vi ,h

(l)
vj ,xei,j

)
h(l+1)
vi = U (l)

(
h(l)
vi ,m

(l+1)
vi

) (2)

where N (vi) is the neighborhood of node vi, xei,j are features for edge ei,j , and M (l) and U (l)

are the differentiable message (sometimes also called edge) and vertex update functions in layer

4

Under review as a conference paper at ICLR 2024

l. Typically, M (l) is some form of MLP that is applied in parallel when computing the update for
each node in the graph. An advantage of applying the same message function M (l) across the entire
graph is that the number of parameters remains fixed in the size of the graph, enabling a form of
combinatorial generalization (Battaglia et al., 2018). However, while this approach has been very
successful in many graph learning tasks such as graph classification, we argue that it is not best
suited for flow routing problems.

Instead, for this family of problems, the edges do not have uniform semantics. Each of them plays
a different role when the flows are routed over the graph and, as shown in Figure 1, each will take
on varying levels of load. Equivalently, from a node-centric perspective, each node should be able
to decide flexibly how to distribute several flows of traffic over its neighboring edges. This intuition
can be captured by using a different message function M

(l)
i,j when aggregating messages received

along each edge ei,j . We call this mechanism Per-Edge Weights, or PEW. We illustrate the difference
between PEW and a typical MPNN in Figure 2.

Let us formulate the PEW architecture by a similar construction to the additive self-attention, across-
relation variant of RGAT (Busbridge et al., 2019). Let N [vi] and N (vi) denote the closed and open
neighborhoods of node vi. To compute the coefficients for each edge, one first needs to compute
intermediate representations g(l)

vi,ei,j = W
(l)
ei,jhvi by multiplying the node features with the per-edge

weight matrix W
(l)
ei,j . Subsequently, the “query” and “key” representations are defined as below,

where Q
(l)
ei,j and K

(l)
ei,j represent per-edge query and key kernels respectively:

q(l)
vi,ei,j = g(l)

vi,ei,j ·Q(l)
ei,j and k(l)

vi,ei,j = g(l)
vi,ei,j ·K(l)

ei,j . (3)

Then, the attention coefficients ζ(l)ei,j are computed according to:

ζ(l)ei,j =
exp

(
LeakyReLU

(
q
(l)
vi,ei,j + k

(l)
vj ,ei,j +W

(l)
1 xei,j

))
∑

vk∈N [vi]
exp

(
LeakyReLU

(
q
(l)
vi,ei,k + k

(l)
vk,ei,k +W

(l)
1 xei,k

)) , (4)

Finally, the embeddings are computed as:

h(l+1)
vi = ReLU

 ∑
vj∈N (vi)

ζ(l)ei,jg
(l)
vj ,ei,j

 . (5)

4 EVALUATION PROTOCOL

This section describes the experimental setup we use for our evaluation. We focus on a case study on
routing flows in computer networks to demonstrate its effectiveness in real-world scenarios, which
can be considered representative of a variety of settings in which we wish to predict characteristics
of a routing scheme from an underlying network topology and a set of observed demand matrices.

Model architectures. We compare PEW with three widely used graph learning architectures: the
GAT (Veličković et al., 2018), GCN (Kipf & Welling, 2017), and GraphSAGE (Hamilton et al.,
2017). We also compare against a standard MLP architecture made up of fully-connected layers
followed by ReLU activations. The features provided as input to the five methods are the same:
for the GNN methods, the node features are the demands D in accordance with the demand input
representations defined later in this section, while the edge features are the capacities κ, and the
adjacency matrix A governs the message passing. For GCN and GraphSAGE, which do not support
edge features, we include the mean edge capacity as a node feature. For the MLP, we unroll and
concatenate the demand input representation derived from D, the adjacency matrix A, and all edge
capacities κ in the input layer. We note that other non-ML baselines, such as Linear Programming,
are not directly applicable for this task: while they can be used to derive a routing strategy, in this
chapter the goal is to predict a property of an existing routing strategy (SSP or ECMP, as defined in
Section 3.1).

5

Under review as a conference paper at ICLR 2024

Traffic generation. In order to generate synthetic flows of traffic, we use the “gravity” approach
proposed by Roughan (2005). Akin to Newton’s law of universal gravitation, the traffic Di,j be-
tween nodes vi and vj is proportional to the amount of traffic, Din

i , that enters the network via vi
and Dout

j , the amount that exits the network at vj . The values Din
i and Dout

j are random variables
that are identically and independently distributed according to an exponential distribution. Despite
its simplicity in terms of number of parameters, this approach has been shown to synthesize traffic
matrices that correspond closely to those observed in real-world networks (Roughan, 2005; Hartert
et al., 2015). We additionally apply a rescaling of the volume by the MLU (defined in Section 3.1)
under the LP solution of the MCNF formulation, as recommended in the networking literature (Had-
dadi & Bonaventure, 2013; Gvozdiev et al., 2018).

Network topologies. We consider real-world network topologies that are part of the Repetita and
Internet Topology Zoo repositories (Gay et al., 2017; Knight et al., 2011). In case there are multiple
snapshots of the same network topology, we only use the most recent so as not to bias the results
towards these graphs. We limit the size of the considered topologies to between [20, 100] nodes,
which we note is still substantially larger than topologies used for training in prior work on ML for
routing flows. Furthermore, we only consider heterogeneous topologies with at least two different
link capacities. Given the traffic model above, for some topologies the MLU dependent variable is
nearly always identical regardless of the demand matrix, making it trivial to devise a good predictor.
Out of the 39 resulting topologies, we filter out those for which the minimum MLU is equal to the
90th percentile MLU over 100 demand matrices, leaving 17 unique topologies. The properties of
these topologies are summarized in the Appendix. For the experiments involving topology varia-
tions, they are generated as follows: a number of nodes to be removed from the graph is chosen
uniformly at random in the range [1, N

5], subject to the constraint that the graph does not become
disconnected. Demand matrices are generated starting from this modified topology.

Datasets. The datasets Dtrain, Dvalidate, Dtest of demand matrices are disjoint and contain 103 demand
matrices each. Both the demands and capacities are standardized by dividing them by the maximum
value across the union of the datasets. As shown in the Appendix, the datasets for the smallest
topology contain 1.2 ∗ 106 flows, while the datasets for the largest topology consist of 2 ∗ 107 flows.

Demand input representation. We also consider two different demand input representations that
appear in prior work, which we term raw and sum. In the former, the feature vector xraw

vi ∈ R2N

for node vi is [D1,i, . . . , DN,i, Di,1, . . . , Di,N], which corresponds to the concatenated outgo-
ing and incoming demands, respectively. The latter is an aggregated version xsum

vi ∈ R2 equal to
[
∑

j Di,j ,
∑

i Dj,i], i.e., it contains the summed demands.

Training and evaluation protocol. Training and evaluation are performed separately for each graph
topology and routing scheme. All methods are given an equal grid search budget of 12 hyperparam-
eter configurations whose values are provided in the Appendix. To compute means and confidence
intervals, we repeat training and evaluation across 10 different random seeds. Training is done by
mini-batch SGD using the Adam optimizer (Kingma & Ba, 2015) and proceeds for 3000 epochs
with a batch size of 16. We perform early stopping if the validation performance does not improve
after 1500 epochs, also referred to as “patience” in other graph learning works (Veličković et al.,
2018; Errica et al., 2020). Since the absolute value of the MLUs varies significantly in datapoints
generated for different topologies, we apply a normalization when reporting results such that they
are comparable. Namely, the MSE of the predictors is normalized by the MSE of a simple baseline
that outputs the average MLU for all DMs in the provided dataset. We refer to this as Normalized
MSE (NMSE).

Scale of experiments. Given the range of considered graph learning architectures, hyperparameter
configurations, network topologies and routing models, to the best of our knowledge, our work
represents the most extensive suite of benchmarks on graph learning for the MCNF problem to date.
The primary experiments consist of 20400 independent model training runs, while the entirety of
our experiments comprise 81600 runs. We believe that this systematic experimental procedure and
evaluation represents in itself a significant contribution of our work and, akin to (Errica et al., 2020)
for graph classification, it can serve as a foundation for members of the graph learning community
working on MCNF scenarios to build upon.

6

Under review as a conference paper at ICLR 2024

Aco
ne

t
Agi

s

Arn
es

Cer
ne

t

Ces
ne

t2
01

00
6

G
rn

et Iij

In
te

rn
od

e

Ja
ne

tle
ns

e

K
ar

en

M
ar

ne
t

Niif

Pio
ni

er
L3

Si
ne

t

Sw
itc

hL
3

Ula
kn

et

Uni
ne

tt
20

11
0.0

0.2

0.4

0.6

0.8

N
or

m
al

iz
ed

M
S

E SSP

Aco
ne

t
Agi

s

Arn
es

Cer
ne

t

Ces
ne

t2
01

00
6

G
rn

et Iij

In
te

rn
od

e

Ja
ne

tle
ns

e

K
ar

en

M
ar

ne
t

Niif

Pio
ni

er
L3

Si
ne

t

Sw
itc

hL
3

Ula
kn

et

Uni
ne

tt
20

11
0.0

0.2

0.4

0.6

0.8

N
or

m
al

iz
ed

M
S

E ECMP PEW (ours)

GAT

MLP

GraphSAGE

GCN

Figure 3: Normalized MSE obtained by the predictors on different topologies for the SSP (top)
and ECMP (bottom) routing schemes. Lower values are better. PEW improves over vanilla GAT
substantially and performs best out of all architectures. An MLP is competitive with the other GNNs.

5 EVALUATION RESULTS

Benefits of PEW for flow routing. The primary results are shown in Figure 3, in which we compare
the normalized MSE obtained by the 5 architectures on the 17 topologies. The two rows correspond
to the SSP and ECMP schemes respectively. Learning curves for the best-performing hyperpa-
rameter configurations are presented in the Appendix. We find that PEW improves the predictive
performance over a vanilla GAT in nearly all (88%) of the settings tested, and that it performs the
best out of all predictors in 64.7% of cases. Hence, this highlights the importance of parametrizing
links differently, suggesting that it is an effective inductive bias for this family of problems. Inter-
estingly, the MLP performs better than GAT in 80% of the considered cases, and is competitive with
GCN and GraphSAGE. This echoes findings in other graph learning works (Errica et al., 2020), i.e.,
the fact that a well-tuned MLP can be competitive against GNN architectures and even outperform
them. Furthermore, both the relative differences between predictors and their absolute normalized
MSEs are fairly consistent across the different topologies.

Varying graph structure. Next, we investigate the impact of variations in topology on predictive
performance. In this experiment, the sole difference wrt. the setup described above is that the
datasets contain 103 demand matrices that are instead distributed on 25 variations in topology of the
original graph (i.e., we have 40 DMs per variation making up each dataset). To evaluate the methods,
we use two ranking metrics: the Win Rate (WR) is the percentage of topologies for which the method
obtains the lowest NMSE, and the Mean Reciprocal Rank (MRR) is the arithmetic average of the
complements of the ranks of the three predictors. For both metrics, higher values are better. Results
are shown in Table 1. PEW remains the best architecture and manifests a decrease in MRR for SSP
and a gain for ECMP. We also find that the relative performance of the GCN increases while that
of the MLP decreases when varying subsets of the nodes in the original graph are present. This
suggests that GNN-based approaches are more resilient to changes in graph structure (e.g., nodes
joining and leaving the network), a commonly observed phenomenon in practice.

Best demand input representation. To compare the two demand input representations, we addi-
tionally train the model architectures on subsets of 5%, 10%, 25% and 50% of the datasets. Recall
that the raw representation contains the full demand matrix while the sum representation is a lossy
aggregation of the same information. The latter may nevertheless help to avoid overfitting. Further-
more, given that the distribution of the demands is exponential, the largest flows will dominate the
values of the features. Results are shown in Figure 4. The x-axis indicates the number of demand
matrices used for training and evaluation, while the y-axis displays the difference in normalized
MSE between the raw and sum representations, averaged across all topologies. As marked in the
figure, y > 0 means that the raw representation performs better, while the reverse is true for y < 0.

7

Under review as a conference paper at ICLR 2024

Table 1: Mean Reciprocal Rank and Win Rates for the different predictors. PEW maintains the
overall best performance. The relative performance of the MLP decreases when the graph structure
varies by means of different subsets of nodes being present and generating demands.

PEW (ours) GAT MLP GraphSAGE GCN
R Metric Original G Variations Original G Variations Original G Variations Original G Variations Original G Variations

SSP MRR ↑ 0.798 0.747 0.252 0.240 0.419 0.396 0.367 0.349 0.448 0.551
WR ↑ 70.588 58.824 0.000 0.000 17.647 11.765 0.000 5.882 11.765 23.529

ECMP MRR ↑ 0.734 0.755 0.250 0.254 0.462 0.413 0.381 0.338 0.456 0.524
WR ↑ 58.824 58.824 0.000 0.000 23.529 11.765 5.882 5.882 11.765 23.529

250 500 750 1000
of training DMs

−0.2

−0.1

0.0

0.1

0.2

ra
w

N
M

S
E
−

su
m

N
M

S
E

ra
w

d
em

an
d

s
b

et
te

r

su
m

d
em

an
d

s
b

et
te

r

SSP

250 500 750 1000
of training DMs

ra
w

d
em

an
d

s
b

et
te

r

su
m

d
em

an
d

s
b

et
te

r

ECMP

PEW (ours) GAT

Figure 4: Difference in normalized
MSE between the raw and sum
demand input representations as a
function of the number of training
datapoints for PEW and GAT for
the SSP (left) and ECMP routing
schemes (right). As the dataset size
increases, PEW is able to exploit
the granular demand information,
while GAT performs better with a
lossy aggregation of the demand
information.

With very few datapoints, the two input representations yield
similar errors for both PEW and GAT. Beyond this, two inter-
esting trends emerge: as the number of datapoints increases,
PEW performs better with the raw demands, while the vanilla
GAT performs better with the lossy representation. This sug-
gests that, while the PEW model is able to exploit the granular
information contained in the raw demands, they instead cause
the standard GAT to overfit and obtain worse generalization
performance.

Impact of topology. Our final set of experiments examines the
relationship between the topological characteristics of graphs
and the relative performance of our proposed model architec-
ture. The six properties that we examine are defined as follows,
noting that the first three are global properties while the final
three measure the variance in local node and edge properties:

• Number of nodes: the cardinality N of the node set V ;

• Diameter: max. length among pairwise shortest paths;

• Edge density: the ratio of links to nodes m
N ;

• Capacity variance: the variance in the normalized capaci-
ties κ(ei,j);

• Degree variance: the variance in deg(vi)
N ;

• Weighted betweenness variance: the variance in a
weighted version of betweenness centrality (Brandes, 2001)
measuring the fraction of all-pairs shortest paths passing
through each node.

The results of this analysis are shown in Figure 5. As previously, the normalized MSE of the PEW
model is shown on the y-axis, while the x-axis measures properties of the graphs. Each datapoint
represents one of the 17 topologies. We find that topological characteristics do not fully determine
model performance but, nevertheless, it is possible to make a series of observations related to them.
Generally, the performance of the method decreases as the size of the graph grows in number of
nodes, diameter, and edge density (metrics that are themselves correlated). This result can be ex-
plained by the fact that our experimental protocol relies on a fixed number of demand matrices,
which represent a smaller sample of the distribution of demand matrices as the graph increases in
size. Hence, this can lead to a model with worse generalization from the training to the test phase,
despite the larger parameter count. On the other hand, the performance of the method typically
improves with increasing heterogeneity in node and link-level properties (namely, variance in the
capacities and degree / weighted betweenness centralities). The relationship between the NMSE
and some properties (e.g., weighted betweenness) may be non-linear. Additional results that re-
late topological characteristics to the percentage changes in NMSE from the other architectures to
PEW are presented in the Appendix. These analyses further corroborate the findings concerning the
relationship between the predictive performance of PEW and graph structure.

8

Under review as a conference paper at ICLR 2024

25 50 75

0.00

0.25

0.50

0.75

1.00

S
S

P
P

E
W

N
M

S
E

5 10 2 3 0.0 0.1 0.0 0.1 0.2 0.02 0.04

25 50 75
number of
nodes N

0.00

0.25

0.50

0.75

1.00

E
C

M
P

P
E

W
N

M
S

E

5 10
diameter

2 3
edge

density m
N

0.0 0.1
capacity
variance

0.0 0.1 0.2
degree

variance

0.02 0.04
weighted betweenness

variance

Aconet

Agis

Arnes

Cernet

Cesnet201006

Grnet

Iij

Internode

Janetlense

Karen

Marnet

Niif

PionierL3

Sinet

SwitchL3

Ulaknet

Uninett2011

Figure 5: Impact of topological characteristics on the predictive performance of PEW. Performance
degrades as the graph size increases (first 3 columns), but improves with higher levels of hetero-
geneity of the graph structure (last 3 columns).

6 CONCLUSION, LIMITATIONS, AND FUTURE WORK

Summary. In this work, we have addressed the problem of data-driven routing of flows across
a graph, which has several applications of practical relevance in areas as diverse as logistics and
computer networking. We have proposed Per-Edge Weights (PEW), an effective model architecture
for predicting link loads in a network based on historical observations, given a demand matrix and a
routing strategy. The novelty of our approach resides in the use of weight parametrizations for aggre-
gating messages that are unique for each edge of the graph. In a rigorous and systematic evaluation
comprising 81600 training runs, we have demonstrated that PEW improves predictive performance
over standard graph learning and MLP approaches. Furthermore, we have shown that PEW is able
to exploit the full demand matrix, unlike the standard GAT, for which a lossy aggregation of features
is preferable. Our findings also highlight the importance of topology for data-driven routing. Given
the same number of historical observations, performance typically decreases when the graph grows
in size, but increases with higher levels of heterogeneity of local properties.

Limitations. A possible disadvantage of PEW is that the number of parameters grows linearly with
the edge count. However, since the same amount of computations are performed, there is no increase
in runtime compared to the GAT. Additionally, given the relatively small scale of ISP backbone net-
works (several hundreds of nodes), in practice, the impact on memory usage has not been significant
in our experiments. The largest PEW model, used for the Uninett2011 graph, has approximately
8 ∗ 105 parameters. If required, approaches for reducing the parameter count, such as the basis and
block-diagonal decompositions proposed by Schlichtkrull et al. (2018), have already been validated
for significantly larger-scale relational graphs. Other routing-specific options that may be investi-
gated in future work could be the “clustering” of the edges depending on the structural roles that
they play (such as peripheral or core links) or the use of differently parametrized neighborhoods for
the regions of the graph, which may perform well if a significant proportion of the traffic is local.
Furthermore, a key assumption behind PEW is that node identities are known, so that when topolo-
gies vary, the mapping to a particular weight parametrization is kept consistent. This is a suitable
assumption for a variety of real-world networks, such as the considered ISP backbone networks,
which are characterized by infrequent upgrades. However, performance may degrade in highly dy-
namic networks, where the timescale of the structural changes is substantially lower than the time
needed in order for systems making use of such a predictive model to adapt.

Future work. While this paper has focused on learning the properties of existing routing protocols,
in future work we aim to investigate learning new routing protocols given the proposed learning
representation and broader insights in this problem space that we have obtained.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Ravindra K. Ahuja. Network Flows: Theory, Algorithms, and Applications. Prentice Hall, Engle-
wood Cliffs, NJ, 1993.

Paul Almasan, José Suárez-Varela, Bo Wu, Shihan Xiao, Pere Barlet-Ros, and Albert Cabello. To-
wards real-time routing optimization with deep reinforcement learning: Open challenges. In
HPSR, 2021.

Peter W. Battaglia, Jessica B. Hamrick, Victor Bapst, Álvaro Sánchez-González, Vinicius Zambaldi,
Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner, Caglar
Gulcehre, Francis Song, Andrew Ballard, Justin Gilmer, George Dahl, Ashish Vaswani, Kelsey
Allen, Charles Nash, Victoria Langston, Chris Dyer, Nicolas Heess, Daan Wierstra, Pushmeet
Kohli, Matt Botvinick, Oriol Vinyals, Yujia Li, and Razvan Pascanu. Relational inductive biases,
deep learning, and graph networks. arXiv preprint arXiv:1806.01261, 2018.

Ulrik Brandes. A faster algorithm for betweenness centrality. Journal of Mathematical Sociology,
25(2):163–177, 2001.

Dan Busbridge, Dane Sherburn, Pietro Cavallo, and Nils Y. Hammerla. Relational graph attention
networks. arXiv preprint arXiv:1904.05811, 2019.

Quentin Cappart, Didier Chételat, Elias Khalil, Andrea Lodi, Christopher Morris, and Petar
Veličković. Combinatorial optimization and reasoning with graph neural networks. In IJCAI,
2021.

Deli Chen, Yankai Lin, Wei Li, Peng Li, Jie Zhou, and Xu Sun. Measuring and relieving the over-
smoothing problem for graph neural networks from the topological view. In AAAI, 2020.

Li Chen, Rasmus Kyng, Yang P. Liu, Richard Peng, Maximilian Probst Gutenberg, and Sushant
Sachdeva. Maximum flow and minimum-cost flow in almost-linear time. In FOCS, 2022.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to
Algorithms. MIT Press, Fourth edition, 2022.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional Neural Networks on
Graphs with Fast Localized Spectral Filtering. In NeurIPS, 2016.

Vic Degraeve, Gilles Vandewiele, Femke Ongenae, and Sofie Van Hoecke. R-GCN: The R could
stand for random. arXiv preprint arXiv:2203.02424, 2022.

Federico Errica, Marco Podda, Davide Bacciu, and Alessio Micheli. A fair comparison of graph
neural networks for graph classification. In ICLR, 2020.

Nick Feamster and Jennifer Rexford. Why (and how) networks should run themselves. arXiv
preprint arXiv:1710.11583, 2017.

Anja Feldmann, Albert Greenberg, Carsten Lund, Nick Reingold, Jennifer Rexford, and Fred True.
Deriving traffic demands for operational IP networks: Methodology and experience. IEEE/ACM
Transactions On Networking, 9(3):265–279, 2001.

Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with PyTorch Geometric. In
ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.

Bernard Fortz and Mikkel Thorup. Internet Traffic Engineering by Optimizing OSPF Weights. In
IEEE INFOCOM, 2000.

Bernard Fortz and Mikkel Thorup. Optimizing OSPF/IS-IS Weights in a Changing World. IEEE
Journal on Selected Areas in Communications, 20(4):756–767, 2002.

Bernard Fortz and Mikkel Thorup. Increasing internet capacity using local search. Computational
Optimization and Applications, 29(1):13–48, 2004.

Steven Gay, Pierre Schaus, and Stefano Vissicchio. Repetita: Repeatable experiments for perfor-
mance evaluation of traffic-engineering algorithms. arXiv preprint arXiv:1710.08665, 2017.

10

Under review as a conference paper at ICLR 2024

Dobrik Georgiev and Pietro Liò. Neural bipartite matching. In ICML Workshop on Graph Repre-
sentation Learning and Beyond (GRL+), 2020.

Fabien Geyer and Georg Carle. Learning and Generating Distributed Routing Protocols Using
Graph-Based Deep Learning. In Big-DAMA, 2018.

Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl. Neural
Message Passing for Quantum Chemistry. In ICML, 2017.

Jim Guichard, François Le Faucheur, and Jean-Philippe Vasseur. Definitive MPLS Network Designs.
Cisco Press, 2005.

Nikola Gvozdiev, Stefano Vissicchio, Brad Karp, and Mark Handley. On low-latency-capable
topologies, and their impact on the design of intra-domain routing. In SIGCOMM, 2018.

Hamed Haddadi and Olivier Bonaventure. Recent Advances in Networking. 2013.

Aric Hagberg, Pieter Swart, and Daniel S. Chult. Exploring network structure, dynamics, and func-
tion using networkx. In SciPy, 2008.

William L. Hamilton, Zhitao Ying, and Jure Leskovec. Inductive Representation Learning on Large
Graphs. In NeurIPS, 2017.

Renaud Hartert, Stefano Vissicchio, Pierre Schaus, Olivier Bonaventure, Clarence Filsfils, Thomas
Telkamp, and Pierre Francois. A declarative and expressive approach to control forwarding paths
in carrier-grade networks. ACM SIGCOMM Computer Communication Review, 45(4):15–28,
2015.

Oliver Hope and Eiko Yoneki. GDDR: GNN-based Data-Driven Routing. In ICDCS, 2021.

C. Hopps. Analysis of an equal-cost multi-path algorithm. RFC 2992, RFC Editor, November 2000.

T. Chiang Hu. Multi-commodity network flows. Operations Research, 11(3):344–360, 1963.

J. D. Hunter. Matplotlib: A 2D graphics environment. Computing in Science & Engineering, 9(3):
90–95, 2007.

Junchen Jiang, Vyas Sekar, Ion Stoica, and Hui Zhang. Unleashing the potential of data-driven
networking. In COMSNETS, 2017.

Srikanth Kandula, Dina Katabi, Bruce Davie, and Anna Charny. Walking the tightrope: Responsive
yet stable traffic engineering. In SIGCOMM, 2005.

Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. In ICLR, 2015.

Thomas N. Kipf and Max Welling. Semi-Supervised Classification with Graph Convolutional Net-
works. In ICLR, 2017.

Simon Knight, Hung X. Nguyen, Nickolas Falkner, Rhys Bowden, and Matthew Roughan. The
Internet Topology Zoo. IEEE Journal on Selected Areas in Communications, 29(9):1765–1775,
2011.

Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated Graph Sequence Neural
Networks. In ICLR, 2017.

Wes McKinney. pandas: a foundational Python library for data analysis and statistics. Python for
High Performance and Scientific Computing, 14(9):1–9, 2011.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Ed-
ward Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An imperative style, high-performance
deep learning library. In NeurIPS, 2019.

11

Under review as a conference paper at ICLR 2024

Harald Räcke. Optimal hierarchical decompositions for congestion minimization in networks. In
STOC, 2008.

Joao Reis, Miguel Rocha, Truong Khoa Phan, David Griffin, Franck Le, and Miguel Rio. Deep
neural networks for network routing. In IJCNN, 2019.

Matthew Roughan. Simplifying the synthesis of internet traffic matrices. ACM SIGCOMM Com-
puter Communication Review, 35(5):93–96, 2005.

Krzysztof Rusek, José Suárez-Varela, Albert Mestres, Pere Barlet-Ros, and Albert Cabellos-
Aparicio. Unveiling the potential of graph neural networks for network modeling and optimization
in SDN. In SOSR, 2019.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.
The Graph Neural Network Model. IEEE Transactions on Neural Networks, 20(1):61–80, 2009.

Michael Schlichtkrull, Thomas N. Kipf, Peter Bloem, Rianne van den Berg, Ivan Titov, and Max
Welling. Modeling relational data with graph convolutional networks. In ESWC, pp. 593–607.
Springer, 2018.

Alessandro Sperduti and Antonina Starita. Supervised neural networks for the classification of
structures. IEEE Transactions on Neural Networks, 8(3):714–735, 1997.

Éva Tardos. A strongly polynomial algorithm to solve combinatorial linear programs. Operations
Research, 34(2):250–256, 1986.

Asaf Valadarsky, Michael Schapira, Dafna Shahaf, and Aviv Tamar. Learning to route. In ACM
HotNets, 2017.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In ICLR, 2018.

Michael L. Waskom. Seaborn: statistical data visualization. Journal of Open Source Software, 6
(60):3021, 2021.

Keyulu Xu, Jingling Li, Mozhi Zhang, Simon S. Du, Ken-ichi Kawarabayashi, and Stefanie Jegelka.
What can neural networks reason about? In ICLR, 2020.

Zhiyuan Xu, Jian Tang, Jingsong Meng, Weiyi Zhang, Yanzhi Wang, Chi Harold Liu, and Dejun
Yang. Experience-driven networking: A deep reinforcement learning based approach. In IEEE
INFOCOM, 2018.

Junjie Zhang, Minghao Ye, Zehua Guo, Chen-Yu Yen, and H. Jonathan Chao. CFR-RL: Traffic
engineering with reinforcement learning in SDN. IEEE Journal on Selected Areas in Communi-
cations, 38(10):2249–2259, 2020.

A IMPLEMENTATION AND RUNTIME DETAILS

Implementation. Please consult the README.md file for instructions on how to run the provided
code. In the case of acceptance, our implementation will be made publicly available as Docker
containers together with instructions that enable reproducing (up to hardware differences) all the re-
sults reported in the paper, including tables and figures. We implement all approaches and baselines
in Python using a variety of numerical and scientific computing packages (Hunter, 2007; Hagberg
et al., 2008; McKinney, 2011; Paszke et al., 2019; Waskom, 2021). For implementations of the
graph learning methods, we make use of PyTorch Geometric (Fey & Lenssen, 2019). Due to the
relationship between the RGAT and PEW architectures, we are able to leverage the existing RGAT
implementation in this library.

Data availability. The network topology data used in this paper is part of the Repetita suite (Gay
et al., 2017) and it is publicly available at https://github.com/svissicchio/Repetita
without any licensing restrictions. We also use the synthetic traffic generator from (Gvozdiev et al.,
2018), available at https://github.com/ngvozdiev/tm-gen.

12

https://github.com/svissicchio/Repetita
https://github.com/ngvozdiev/tm-gen

Under review as a conference paper at ICLR 2024

Infrastructure and runtimes. Experiments were carried out on a cluster of 8 machines, each
equipped with 2 Intel Xeon E5-2630 v3 processors and 128GB RAM. On this infrastructure, all
the experiments reported in this paper took approximately 35 days to complete. The training and
evaluation of models were performed exclusively on CPUs.

B HYPERPARAMETER DETAILS

Table 2: Hyperparameters used.

PEW (ours) GAT MLP GraphSAGE GCN
Learning rates α {10−2, 5 ∗ 10−3, 10−3} {10−2, 5 ∗ 10−3, 10−3} {10−2, 5 ∗ 10−3, 10−3} {10−2, 5 ∗ 10−3, 10−3} {10−2, 5 ∗ 10−3, 10−3}
Demand input
representations

{raw, sum} {raw, sum} {raw, sum} {raw, sum} {raw, sum}

Dimension of
feature vector h

{4, 16} {8, 32} n/a {8, 32} {8, 32}

First hidden
layer size

n/a n/a {64, 256} sum / {64, 128} raw n/a n/a

All methods are given an equal grid search budget of 12 hyperparameter configurations consisting of
the two choices of demand input representations, three choices of learning rate α, and two choices
of model complexity as detailed in Table 2. For the MLP, subsequent hidden layers contain half
the units of the first hidden layer. For the GNN-based methods, sum pooling is used to compute
a graph-level embedding from the node-level features. Despite potential over-smoothing issues of
GNNs in graph classification (e.g., as described in (Chen et al., 2020)), for the flow routing problem,
we set the number of layers equal to the diameter so that all traffic entering the network can also
exit, including traffic between pairs of points that are the furthest away in the graph.

C ADDITIONAL RESULTS

Table 3: Properties of the topologies.

Graph N m Diam. m
N

Flows in D
Aconet 23 62 4 2.70 1587000
Agis 25 60 7 2.40 1875000
Arnes 34 92 7 2.71 3468000
Cernet 41 116 5 2.83 5043000
Cesnet201006 52 126 6 2.42 8112000
Grnet 37 84 8 2.27 4107000
Iij 37 130 5 3.51 4107000
Internode 66 154 6 2.33 13068000
Janetlense 20 68 4 3.40 1200000
Karen 25 56 7 2.24 1875000
Marnet 20 54 3 2.70 1200000
Niif 36 82 7 2.28 3888000
PionierL3 38 90 10 2.37 4332000
Sinet 74 152 7 2.05 16428000
SwitchL3 42 126 6 3.00 5292000
Ulaknet 82 164 4 2.00 20172000
Uninett2011 69 192 9 2.78 14283000

Topologies used. High-level statistics about the considered topologies are shown in Table 3.

Impact of topological characteristics on PEW relative performance. Figures 6 to 9 compare
the percentage changes in NMSE between PEW and the other learning architectures. The results are
consistent with the standalone analysis presented in the main text: namely, given the same number of
observed traffic matrices, the performance of PEW deteriorates as graph size increases, but improves
with higher levels of heterogeneity in node and link-level properties.

13

Under review as a conference paper at ICLR 2024

25 50 75

−50

0

50

S
S

P
%

ch
an

ge
G

A
T

to
P

E
W

5 10 2 3 0.0 0.1 0.0 0.1 0.2 0.02 0.04

G
A

T
b

et
te

r
P

E
W

b
et

te
r

25 50 75
number of
nodes N

−50

0

50

E
C

M
P

%
ch

an
ge

G
A

T
to

P
E

W

5 10
diameter

2 3
edge

density m
N

0.0 0.1
capacity
variance

0.0 0.1 0.2
degree

variance

0.02 0.04
weighted betweenness

variance

G
A

T
b

et
te

r
P

E
W

b
et

te
r

Aconet

Agis

Arnes

Cernet

Cesnet201006

Grnet

Iij

Internode

Janetlense

Karen

Marnet

Niif

PionierL3

Sinet

SwitchL3

Ulaknet

Uninett2011

Figure 6: Relationship between the percentage changes in NMSE from GAT to PEW and the topo-
logical characteristics of the considered graphs.

25 50 75

0

100

S
S

P
%

ch
an

ge
M

L
P

to
P

E
W

5 10 2 3 0.0 0.1 0.0 0.1 0.2 0.02 0.04

M
L

P
b

et
te

r
P

E
W

b
et

te
r

25 50 75
number of
nodes N

0

100

E
C

M
P

%
ch

an
ge

M
L

P
to

P
E

W

5 10
diameter

2 3
edge

density m
N

0.0 0.1
capacity
variance

0.0 0.1 0.2
degree

variance

0.02 0.04
weighted betweenness

variance

M
L

P
b

et
te

r
P

E
W

b
et

te
r

Aconet

Agis

Arnes

Cernet

Cesnet201006

Grnet

Iij

Internode

Janetlense

Karen

Marnet

Niif

PionierL3

Sinet

SwitchL3

Ulaknet

Uninett2011

Figure 7: Relationship between the percentage changes in NMSE from MLP to PEW and the topo-
logical characteristics of the considered graphs.

14

Under review as a conference paper at ICLR 2024

25 50 75

−50

0

S
S

P
%

ch
an

ge
G

ra
p

h
S

A
G

E
to

P
E

W

5 10 2 3 0.0 0.1 0.0 0.1 0.2 0.02 0.04

S
A

G
E

b
et

te
r

P
E

W
b

et
te

r

25 50 75
number of
nodes N

−50

0

E
C

M
P

%
ch

an
ge

G
ra

p
h

S
A

G
E

to
P

E
W

5 10
diameter

2 3
edge

density m
N

0.0 0.1
capacity
variance

0.0 0.1 0.2
degree

variance

0.02 0.04
weighted betweenness

variance

S
A

G
E

b
et

te
r

P
E

W
b

et
te

r

Aconet

Agis

Arnes

Cernet

Cesnet201006

Grnet

Iij

Internode

Janetlense

Karen

Marnet

Niif

PionierL3

Sinet

SwitchL3

Ulaknet

Uninett2011

Figure 8: Relationship between the percentage changes in NMSE from GraphSAGE to PEW and
the topological characteristics of the considered graphs.

25 50 75

−50

0

50

S
S

P
%

ch
an

ge
G

C
N

to
P

E
W

5 10 2 3 0.0 0.1 0.0 0.1 0.2 0.02 0.04

G
C

N
b

et
te

r
P

E
W

b
et

te
r

25 50 75
number of
nodes N

−50

0

50

E
C

M
P

%
ch

an
ge

G
C

N
to

P
E

W

5 10
diameter

2 3
edge

density m
N

0.0 0.1
capacity
variance

0.0 0.1 0.2
degree

variance

0.02 0.04
weighted betweenness

variance

G
C

N
b

et
te

r
P

E
W

b
et

te
r

Aconet

Agis

Arnes

Cernet

Cesnet201006

Grnet

Iij

Internode

Janetlense

Karen

Marnet

Niif

PionierL3

Sinet

SwitchL3

Ulaknet

Uninett2011

Figure 9: Relationship between the percentage changes in NMSE from GCN to PEW and the topo-
logical characteristics of the considered graphs.

15

Under review as a conference paper at ICLR 2024

Learning curves. Representative learning curves are shown in the remainder of this Appendix.
For their generation, we report the MSE on the held-out validation set of the best-performing hy-
perparameter combination for each architecture and demand input representation. To smoothen the
curves, we apply exponential weighting with an αEW = 0.92. This value is chosen such that a suffi-
cient amount of noise is removed and the overall trends in validation losses can be observed. We also
skip the validation losses for the first 5 epochs since their values are on a significantly larger scale
and would distort the plots. As large spikes sometimes arise, validation losses are truncated to be at
most the value obtained after the first 5 epochs. An interesting trend shown by the learning curves
is that the models consistently require more epochs to reach a low validation loss in the ECMP case
compared to SSP, reflecting its increased complexity.

16

Under review as a conference paper at ICLR 2024

0 1000 2000 3000

0.01

0.02

0.03
SSP

P
E

W
(o

u
rs

)

0 1000 2000 3000
0.00

0.02

0.04

ECMP

0 500 1000 1500
0.02

0.04

0.06

0.08

G
A

T

0 500 1000 1500

0.02

0.03

0.04

0 1000 2000 3000

0.02

0.04

0.06

0.08

M
L

P

0 500 1000 1500

0.02

0.04

0 1000 2000 3000
0.00

0.02

0.04

0.06

G
ra

p
h

S
A

G
E

0 500 1000 1500 2000

0.02

0.04

0 500 1000 1500
epoch

0.02

0.04

0.06

0.08

G
C

N

0 500 1000 1500
epoch

0.02

0.04

Graph Aconet

Figure 10: Learning curves for Aconet.

17

Under review as a conference paper at ICLR 2024

0 500 1000 1500 2000

0.02

0.03

SSP

P
E

W
(o

u
rs

)

0 500 1000 1500 2000
0.015

0.020

0.025

0.030

ECMP

0 1000 2000 3000

0.02

0.04

G
A

T

0 1000 2000 3000

0.02

0.03

0 1000 2000 3000

0.010

0.015

0.020

0.025

M
L

P

0 1000 2000 3000

0.01

0.02

0.03

0 1000 2000 3000

0.015

0.020

0.025

G
ra

p
h

S
A

G
E

0 1000 2000 3000

0.02

0.03

0 1000 2000
epoch

0.01

0.02

0.03

G
C

N

0 1000 2000 3000
epoch

0.01

0.02

0.03

Graph Agis

Figure 11: Learning curves for Agis.

18

Under review as a conference paper at ICLR 2024

0 1000 2000

0.030

0.035

0.040

SSP

P
E

W
(o

u
rs

)

0 500 1000 1500 2000 2500

0.025

0.030

0.035

ECMP

0 500 1000 1500 2000 2500

0.04

0.05

0.06

G
A

T

0 1000 2000 3000

0.04

0.05

0.06

0 1000 2000 3000

0.035

0.040

0.045

M
L

P

0 1000 2000 3000

0.030

0.035

0.040

0 1000 2000 3000

0.04

0.05

0.06

G
ra

p
h

S
A

G
E

0 1000 2000 3000

0.03

0.04

0.05

0 500 1000 1500 2000 2500
epoch

0.04

0.05

0.06

G
C

N

0 1000 2000 3000
epoch

0.03

0.04

Graph Arnes

Figure 12: Learning curves for Arnes.

19

Under review as a conference paper at ICLR 2024

0 500 1000 1500

0.04

0.06
SSP

P
E

W
(o

u
rs

)

0 500 1000 1500 2000

0.02

0.04

0.06
ECMP

0 1000 2000 3000

0.04

0.06

0.08

G
A

T

0 1000 2000 3000

0.04

0.06

0.08

0 500 1000 1500

0.06

0.08

0.10

0.12

M
L

P

0 1000 2000 3000

0.050

0.055

0.060

0 1000 2000 3000

0.04

0.06

0.08

0.10

G
ra

p
h

S
A

G
E

0 500 1000 1500 2000
0.025

0.050

0.075

0.100

0 500 1000 1500
epoch

0.05

0.06

0.07

0.08

G
C

N

0 500 1000 1500
epoch

0.05

0.06

0.07

0.08

Graph Cernet

Figure 13: Learning curves for Cernet.

20

Under review as a conference paper at ICLR 2024

0 500 1000 1500 2000

0.005

0.010

0.015 SSP

P
E

W
(o

u
rs

)

0 500 1000 1500

0.0075

0.0100

0.0125

ECMP

0 500 1000 1500

0.02

0.04

G
A

T

0 500 1000 1500
0.01

0.02

0.03

0.04

0 500 1000 1500

0.015

0.020

0.025

M
L

P

0 500 1000 1500 2000 2500

0.015

0.020

0.025

0 1000 2000 3000
0.01

0.02

0.03

0.04

G
ra

p
h

S
A

G
E

0 500 1000 1500

0.015

0.020

0 500 1000 1500 2000
epoch

0.02

0.04

G
C

N

0 500 1000 1500 2000
epoch

0.01

0.02

0.03

Graph Cesnet201006

Figure 14: Learning curves for Cesnet201006.

21

Under review as a conference paper at ICLR 2024

0 500 1000 1500

0.004

0.005

0.006

0.007

SSP

P
E

W
(o

u
rs

)

0 500 1000 1500
0.001

0.002

0.003

0.004

ECMP

0 500 1000 1500

0.008

0.010

0.012

G
A

T

0 500 1000 1500 2000

0.004

0.005

0.006

0 500 1000 1500

0.008

0.010

0.012

M
L

P

0 500 1000 1500

0.004

0.005

0.006

0 1000 2000 3000

0.008

0.010

0.012

G
ra

p
h

S
A

G
E

0 1000 2000 3000
0.0025

0.0050

0.0075

0.0100

0 1000 2000 3000
epoch

0.0075

0.0100

0.0125

0.0150

G
C

N

0 1000 2000 3000
epoch

0.003

0.004

0.005

0.006

Graph Grnet

Figure 15: Learning curves for Grnet.

22

Under review as a conference paper at ICLR 2024

0 500 1000 1500 2000
0.025

0.050

0.075

0.100
SSP

P
E

W
(o

u
rs

)

0 500 1000 1500

0.02

0.04

0.06
ECMP

0 500 1000 1500 2000 2500

0.075

0.100

0.125

0.150

G
A

T

0 500 1000 1500 2000 2500

0.04

0.06

0 1000 2000 3000

0.07

0.08

0.09

0.10

M
L

P

0 1000 2000 3000
0.0

0.5

1.0

0 1000 2000 3000

0.08

0.10

G
ra

p
h

S
A

G
E

0 1000 2000 3000

0.035

0.040

0.045

0 1000 2000 3000
epoch

0.06

0.08

G
C

N

0 1000 2000 3000
epoch

0.03

0.04

0.05

Graph Iij

Figure 16: Learning curves for Iij.

23

Under review as a conference paper at ICLR 2024

0 1000 2000

0.045

0.050

0.055

SSP

P
E

W
(o

u
rs

)

0 500 1000 1500 2000 2500

0.040

0.045

ECMP

0 500 1000 1500
0.04

0.06

0.08

G
A

T

0 1000 2000 3000
0.03

0.04

0.05

0 500 1000 1500

0.040

0.045

0.050

M
L

P

0 500 1000 1500

0.035

0.040

0 500 1000 1500
0.05

0.06

0.07

0.08

G
ra

p
h

S
A

G
E

0 500 1000 1500

0.04

0.05

0.06

0 500 1000 1500
epoch

0.04

0.06

0.08

G
C

N

0 500 1000 1500
epoch

0.03

0.04

0.05

0.06

Graph Internode

Figure 17: Learning curves for Internode.

24

Under review as a conference paper at ICLR 2024

0 500 1000 1500 2000

0.04

0.06

SSP

P
E

W
(o

u
rs

)

0 1000 2000 3000

0.004

0.006

0.008

ECMP

0 500 1000 1500

0.05

0.06

0.07

G
A

T

0 1000 2000 3000

0.005

0.010

0.015

0 1000 2000 3000

0.2

0.4

0.6

M
L

P

0 1000 2000

0.05

0.10

0.15

0 1000 2000 3000

0.05

0.10

G
ra

p
h

S
A

G
E

0 500 1000 1500 2000

0.005

0.010

0.015

0 500 1000 1500 2000
epoch

0.04

0.06

0.08

0.10

G
C

N

0 1000 2000 3000
epoch

0.0050

0.0075

0.0100

Graph Janetlense

Figure 18: Learning curves for Janetlense.

25

Under review as a conference paper at ICLR 2024

0 500 1000 1500 2000 2500
0.00

0.05

SSP

P
E

W
(o

u
rs

)

0 1000 2000 3000
0.000

0.025

0.050

0.075
ECMP

0 500 1000 1500

0.05

0.10

G
A

T

0 500 1000 1500 2000

0.025

0.050

0.075

0 1000 2000 3000
0.00

0.05

0.10

M
L

P

0 1000 2000 3000
0.000

0.025

0.050

0.075

0 1000 2000 3000
0.00

0.05

0.10

G
ra

p
h

S
A

G
E

0 1000 2000 3000

0.02

0.04

0.06

0 500 1000 1500 2000
epoch

0.00

0.05

0.10

G
C

N

0 500 1000 1500 2000
epoch

0.00

0.02

0.04

0.06

Graph Karen

Figure 19: Learning curves for Karen.

26

Under review as a conference paper at ICLR 2024

0 1000 2000 3000

0.02

0.03

0.04
SSP

P
E

W
(o

u
rs

)

0 1000 2000 3000
0.075

0.100

0.125

0.150
ECMP

0 1000 2000 3000

0.04

0.06

G
A

T

0 500 1000 1500 2000

0.2

0.3

0 1000 2000 3000

0.03

0.04

0.05

M
L

P

0 1000 2000 3000

0.10

0.15

0 500 1000 1500

0.05

0.10

G
ra

p
h

S
A

G
E

0 1000 2000 3000

0.10

0.15

0.20

0 1000 2000 3000
epoch

0.02

0.03

0.04

0.05

G
C

N

0 500 1000 1500 2000
epoch

0.10

0.15

0.20

Graph Marnet

Figure 20: Learning curves for Marnet.

27

Under review as a conference paper at ICLR 2024

0 500 1000 1500
0.01

0.02

0.03

SSP

P
E

W
(o

u
rs

)

0 500 1000 1500
0.010

0.015

0.020

0.025

ECMP

0 1000 2000 3000
0.02

0.03

0.04

G
A

T

0 500 1000 1500 2000
0.02

0.03

0.04

0 1000 2000 3000

0.025

0.030

0.035

M
L

P

0 500 1000 1500 2000
0.02

0.03

0.04

0 1000 2000 3000

0.02

0.03

0.04

G
ra

p
h

S
A

G
E

0 1000 2000 3000

0.02

0.04

0.06

0 500 1000 1500 2000 2500
epoch

0.020

0.025

0.030

0.035

G
C

N

0 1000 2000 3000
epoch

0.020

0.025

0.030

Graph Niif

Figure 21: Learning curves for Niif.

28

Under review as a conference paper at ICLR 2024

0 1000 2000

0.012

0.014

SSP

P
E

W
(o

u
rs

)

0 1000 2000 3000

0.009

0.010

ECMP

0 1000 2000 3000

0.0150

0.0175

0.0200

0.0225

G
A

T

0 1000 2000

0.012

0.014

0.016

0 1000 2000 3000

0.015

0.020

0.025

M
L

P

0 500 1000 1500

0.012

0.014

0.016

0 1000 2000 3000

0.0150

0.0175

0.0200

G
ra

p
h

S
A

G
E

0 500 1000 1500

0.014

0.016

0.018

0 1000 2000 3000
epoch

0.014

0.016

0.018

G
C

N

0 1000 2000 3000
epoch

0.012

0.014

Graph PionierL3

Figure 22: Learning curves for PionierL3.

29

Under review as a conference paper at ICLR 2024

0 500 1000 1500 2000

0.013

0.014

0.015

SSP

P
E

W
(o

u
rs

)

0 1000 2000 3000

0.0115

0.0120

0.0125

ECMP

0 1000 2000 3000
0.016

0.018

0.020

0.022

G
A

T

0 500 1000 1500

0.015

0.020

0.025

0 500 1000 1500

0.015

0.020

0.025

M
L

P

0 1000 2000 3000

0.010

0.015

0 500 1000 1500

0.0175

0.0200

0.0225

G
ra

p
h

S
A

G
E

0 500 1000 1500

0.014

0.016

0 500 1000 1500 2000
epoch

0.015

0.020

G
C

N

0 500 1000 1500
epoch

0.012

0.014

0.016

0.018

Graph Sinet

Figure 23: Learning curves for Sinet.

30

Under review as a conference paper at ICLR 2024

0 1000 2000

0.03

0.04

SSP

P
E

W
(o

u
rs

)

0 1000 2000 3000

0.02

0.03

ECMP

0 1000 2000 3000
0.04

0.06

0.08

G
A

T

0 500 1000 1500 2000
0.04

0.05

0.06

0.07

0 1000 2000 3000
0.04

0.05

0.06

0.07

M
L

P

0 1000 2000 3000

0.040

0.045

0.050

0 500 1000 1500 2000

0.050

0.075

0.100

0.125

G
ra

p
h

S
A

G
E

0 1000 2000 3000

0.04

0.06

0.08

0 1000 2000 3000
epoch

0.050

0.075

0.100

0.125

G
C

N

0 500 1000 1500
epoch

0.04

0.05

0.06

Graph SwitchL3

Figure 24: Learning curves for SwitchL3.

31

Under review as a conference paper at ICLR 2024

0 1000 2000
0.000

0.025

0.050

0.075

SSP

P
E

W
(o

u
rs

)

0 1000 2000
0.00

0.05

ECMP

0 1000 2000 3000

0.02

0.04

0.06

G
A

T

0 1000 2000 3000
0.00

0.02

0.04

0.06

0 1000 2000 3000
0.00

0.02

0.04

M
L

P

0 1000 2000 3000
0.00

0.02

0.04

0 1000 2000 3000

0.025

0.050

0.075

G
ra

p
h

S
A

G
E

0 1000 2000 3000

0.025

0.050

0.075

0 1000 2000 3000
epoch

0.000

0.025

0.050

0.075

G
C

N

0 1000 2000 3000
epoch

0.000

0.025

0.050

0.075

Graph Ulaknet

Figure 25: Learning curves for Ulaknet.

32

Under review as a conference paper at ICLR 2024

0 500 1000 1500

0.04

0.05

SSP

P
E

W
(o

u
rs

)

0 500 1000 1500 2000

0.03

0.04

0.05
ECMP

0 1000 2000 3000

0.06

0.08

G
A

T

0 500 1000 1500
0.05

0.10

0.15

0 1000 2000 3000

0.05

0.06

M
L

P

0 1000 2000 3000
0.05

0.06

0.07

0 1000 2000 3000

0.06

0.07

G
ra

p
h

S
A

G
E

0 500 1000 1500 2000
0.05

0.10

0.15

0 1000 2000 3000
epoch

0.06

0.07

G
C

N

0 1000 2000 3000
epoch

0.05

0.10

0.15

Graph Uninett2011

Figure 26: Learning curves for Uninett2011.

33

	Introduction
	Related work
	Methods
	Routing formalization and learning task
	Per-Edge Weights

	Evaluation protocol
	Evaluation results
	Conclusion, limitations, and future work
	Implementation and runtime details
	Hyperparameter details
	Additional results

