NetSciX2026: International School and Conference on Network Science
February 17/7-20"", 2026 - Auckland, New Zealand

Hyperbolic Embedding of Multilayer Networks

Keywords: Network geometry, hyperbolic embeddings, multilayer networks, brain networks,
graph alignment

Extended Abstract

Multilayer networks provide a powerful framework to describe systems where multiple types
of interactions coexist. Most embedding methods collapse these layers into a single represen-
tation, obscuring key structural properties. We introduce a hyperbolic embedding framework
that preserves both intra-layer structures and inter-layer dependencies, extending coalescent
embedding to the multilayer setting with a tunable coupling parameter. The method is validated
on synthetic benchmarks and brain connectivity data, where it reveals meaningful community
organization and disease-related patterns. Our work highlights the advantages of hyperbolic
geometry for comparative analysis of multilayer networks [1].

Complex systems often involve multiple types of relationships, which can be naturally de-
scribed using multilayer networks [2, 3]. For instance, social networks combine friendship,
professional, and online interactions, while brain networks are studied across different modal-
ities or temporal epochs. A major challenge is to embed these multilayer systems into low-
dimensional geometric spaces for visualization, clustering, and inference. Hyperbolic geom-
etry has been shown to capture the scale-free and hierarchical nature of single-layer networks
[4, 5], but existing embeddings largely ignore multilayer structure, leading to information loss.

We propose a method for multi-layer hyperbolic embeddings that: i) represents each layer in
the Poincaré disk while preserving intra-layer latent geometry, ii) controls inter-layer coupling
with a parameter p, iii) accommodates heterogeneous node sets and inter-layer edges, and iv)
supports comparative analysis across layers and integrated visualization.

Our approach extends the coalescent embedding framework [6] to multilayer contexts.
Nodes are first placed in the hyperboloid model and projected onto the Poincaré disk, where
radial coordinates reflect node popularity and angular coordinates capture similarity. Two key
innovations are introduced: 1) coupling parameter p: Controls the degree of similarity between
layer embeddings, from independent layouts (1 = 0) to maximally coupled ones (¢t = 1) and, 2)
joint optimization: Balances intra-layer likelihood maximization with inter-layer consistency,
enabling the method to exploit both local and global information.

Synthetic data: We tested the method on multilayer stochastic block models (SBM). Com-
pared to independent embeddings, our framework preserves community structures more ef-
fectively and achieves lower distortion between latent and reconstructed distances. Brain net-
works: We applied the method to multilayer anatomical brain networks from epileptic patients.
Each layer corresponds to a subject, with edges representing functional connectivity. Our em-
beddings consistently clustered disease-associated regions, demonstrating potential for com-
parative network neuroscience. In contrast, independent embeddings produced inconsistent
results across layers.

The results confirm that hyperbolic geometry is particularly suitable for multilayer net-
works. By preserving both intra-layer and cross-layer organization, our method enables: ii)
Comparability: layers can be analyzed individually or compared within the same geometric
framework, and iii) Generalization: beyond neuroscience, applications include social multi-
plexes, temporal interaction modeling, and multilayer infrastructures.
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To conclude, we present a multilayer hyperbolic embedding framework that extends coa-
lescent embedding and introduces tunable layer coupling. Validated on synthetic and empir-
ical data, the method preserves structural patterns and enhances interpretability. Future work
will focus on higher-dimensional hyperbolic embeddings, integration with machine learning
pipelines, and scaling to massive multilayer networks.
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Figure 1: Schematic representation of multilayer hyperbolic embedding. The connectivity
matrices of each layer are combined to form a global connectivity matrix G. The dimension
reduction algorithm is applied to G to obtain a two-dimensional representation of the dataset.
From this embedding, the angular coordinates of the nodes in each layer are extracted, and their
radii are initially normalized to one. In a final step, the radial coordinates are reassigned based
on the centrality of each node.



