
LABEL CRITIC: DESIGN DATA BEFORE MODELS

Pedro R. A. S. Bassi1,2,3, Qilong Wu1,4, Wenxuan Li1,
Sergio Decherchi2, Andrea Cavalli2,3,5, Alan Yuille1, Zongwei Zhou1,∗

1Johns Hopkins University 2Italian Institute of Technology 3University of Bologna
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ABSTRACT
As medical datasets rapidly expand, creating detailed an-

notations of different body structures becomes increasingly
expensive and time-consuming. We consider that requesting
radiologists to create detailed annotations is unnecessarily
burdensome and that pre-existing AI models can largely
automate this process. Following the spirit don’t use a
sledgehammer on a nut, we find that, rather than creating
annotations from scratch, radiologists only have to review
and edit errors if the Best-AI Labels have mistakes. To obtain
the Best-AI Labels among multiple AI Labels, we developed
an automatic tool, called Label Critic, that can assess la-
bel quality through tireless pairwise comparisons. Extensive
experiments demonstrate that, when incorporated with our
developed Image-Prompt pairs, pre-existing Large Vision-
Language Models (LVLM), trained on natural images and
texts, achieve 96.5% accuracy when choosing the best label
in a pair-wise comparison, without extra fine-tuning. By
transforming the manual annotation task (30–60 min/scan)
into an automatic comparison task (15 sec/scan), we effec-
tively reduce the manual efforts required from radiologists
by an order of magnitude. When the Best-AI Labels are
sufficiently accurate (81% depending on body structures),
they will be directly adopted as the gold-standard annotations
for the dataset, with lower-quality AI Labels automatically
discarded. Label Critic can also check the label quality of
a single AI Label with 71.8% accuracy when no alternatives
are available for comparison, prompting radiologists to re-
view and edit if the estimated quality is low (19% depending
on body structures).

1. INTRODUCTION

Publicly available abdominal CT datasets with per-voxel an-
notations have experienced rapid growth in recent years [1, 2].
In 2020, datasets like KiTS [3] and LiTS [4] offered a few
hundred annotated CT scans. By 2023, datasets such as Ab-
domenAtlas [5] and FLARE [6] expanded these scans signif-
icantly, now exceeding 10,000 annotated scans. This growth
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is enabled by AI-assisted annotation, where AI performs the
initial segmentation and radiologists review and edit errors
made by AI [7, 8]. Despite AI assistance, the current scale—
now with tens of thousands of annotations per dataset [9]—
has made manual detection and editing of label errors increas-
ingly impractical. This raises the question: Rather than hav-
ing radiologists detect and edit AI errors, can we—again—
use AI to automate these tasks and scale medical datasets?

Automatic error detection is achievable most label errors
in existing datasets because, simply put, critiquing is easier
than creating. This paper builds on two main insights. First,
most errors made by AI are easy to detect1 and do not require
the time and expertise of busy, costly radiologists. Second,
when multiple labels are available2, comparing them to iden-
tify the highest-quality label is even simpler.

We discover that general-purpose Large Vision Language
Models (LVLMs), like Llava and GPT-4V [15, 16], trained
on massive text-image datasets, can detect errors in medical
datasets and compare the label quality among multiple la-
bel options without additional fine-tuning. We present a new
LVLM-based pipeline, Label Critic, which can effectively
(1) detect a large portion (76.8%) of the obvious label errors
in existing medical datasets and (2) select the Best-AI Label
by comparing multiple AI Labels.

We show that Label Critic can generalize to over 10,000
CT scans across 89 hospitals with minimal or no training data
(≤ 10). It detects 1,441 errors in the datasets, with overall
accuracy of 96.5% in detecting label errors and identify the
Best-AI Labels in a pair-wise comparison. The success of
Label Critic is attributed to our innovative Input and Prompt
designs specialized for 3D CT scans and the integration of
prior knowledge about body structures.

1A common AI error in abdominal CT scans is mislabeling the aortic arch.
This error is obvious, as the aorta should appear curved in its top, forming an
arch (see Fig. 1). Even non-experts can easily recognize such errors due to
the aorta’s consistent size, position, and appearance across scans.

2The number of public AI models quickly raises [10]. Medical segmen-
tation benchmarks provide diverse datasets, where participants train different
architectures, providing a variety of labels for Label Critic to choose from.
E.g., for abdominal organ segmentation in CT, we easily find solutions to the
FLARE challenge [11, 12, 13, 14], 11 models trained on AbdomenAtlas are
already public, and more will be released after Touchstone Benchmark [9].

ar
X

iv
:2

41
1.

02
75

3v
1 

 [
cs

.C
V

] 
 5

 N
ov

 2
02

4

https://github.com/PedroRASB/Cerberus
mailto:zzhou82@jh.edu


First, we design new inputs for LVLMs. Since most
LVLMs are designed for 2D inputs, Label Critic uses 2D
frontal projections of CT scans with transparent overlays of
label projections, ensuring computational efficiency while
preserving key volumetric information (§2.2). The projec-
tions resemble antero-posterior (AP) X-rays, making them
familiar to general-purpose LVLMs.

Second, we design new prompts for LVLMs. They incor-
porate step-by-step guidance, anatomical descriptions, Dual
Confirmation, and variable examples ranging from zero-shot
to in-context learning with up to 10 label examples (§2.3).
This flexibility enables Label Critic to adapt quickly to new
hospitals and segmentation classes, requiring few or no train-
ing samples, while avoiding overfitting to specific label error
types (§2.3, §2.1). This is the first work to show LVLMs can
compare semantic segmentations, using prior knowledge to
choose the best AI model for each case and class.

Related Work. Label quality control methods identify po-
tential label errors by flagging uncertainty and inconsistency
across AI models [17, 18, 19, 20, 21], but they do not spec-
ify which label is better, leaving radiologists to review each
flagged case manually. In our dataset, this approach requires
manual review of 4,348 labels across two AI models, a time-
intensive task. Most existing QC methods are organ-specific
(e.g., cardiac or muscle imaging [22, 23]), limiting their scal-
ability to other body structures. There is no prior methods
leverage large vision-language models (LVLMs) for label
quality control. Our LVLM-based method can significantly
reduce manual workload for multi-organ segmentation3 by
comparing and selecting the best labels, discarding incorrect
ones, and flagging only the most challenging cases for further
manual review, streamlining the process efficiently.

2. METHODOLOGY

As shown in Fig. 1, Label Critic includes projecting the CT
scan and labels into 2D, calculating the Dice Similarity Co-
efficient (DSC) between labels, and prompting a LVLM to
select the most accurate label. If the DSC is below a class-
specific threshold—the dataset’s average class DSC minus
one standard deviation—comparison is skipped, saving com-
putational resources. The DSC check skips comparisons of
labels with minor differences, focusing instead on substantial
errors detectable through basic anatomical knowledge. When
alternative labels or public segmentation models are unavail-
able, Label Critic assumes a non-comparative approach: it
projects the CT with its single label and asks the LVLM to
verify its anatomical accuracy, optionally using other CTs and
labels as in-context examples.

3Spleen, gallbladder, pancreas, postcava, aorta, kidneys, spleen, and liver.

2.1. LVLM Architecture and (no) Training

Training AI for label error detection requires a dataset iden-
tifying both correct and incorrect labels, but assembling it is
challenging: small medical datasets contain few errors, and
finding errors in large AI-labeled datasets is labor-intensive–
hence the need for automatic error detection. Although syn-
thetic error generation is possible, training on either real or
synthetic errors risks shortcut learning: models concentrating
on the specific error types in the training dataset and failing to
generalize well to unseen types [24]. To address these issues
and enable broad adaptability across hospitals, we leverage
zero-shot and few-shot learning. Given the limited per-voxel
annotations in the training data of large vision-language mod-
els, robust out-of-distribution generalization is essential for
our pipeline. We experimented with several LVLMs, select-
ing Qwen2-VL [15]—a large general-purpose model with 70
billion parameters and AWQ quantization for speed—because
it can analyze multiple images per prompt, unlike alterna-
tives such as LLaVA-7B [25], LLaVA-Med [26], and M3D-
4B [27], which also yielded lower performance (see Tab. 1).
Proprietary models like GPT-4V [28] were not considered due
to high API costs for processing large volumes of images.

2.2. Projections and Overlays

The usual 2D representation of CT volumes consists in their
2D slices. However, slices only show a small portion of the
scan, and multiple slices would be needed to represent an
annotation. Conversely, projections show through the entire
body, conveying the entire CT and annotation in a single im-
age. They cannot capture all possible label errors, such as
holes inside annotations. However, they are a cost-effective
solution: transformers’ computational cost increases quadrat-
ically with input length, hindering the use of many CT slices
as input. Antero-posterior projections of CT scans resemble
AP X-rays, making them familiar and interpretable to pre-
trained LVLMs. E.g., asked to describe the projections in
Fig. 1, GPT-4V says “a frontal X-ray-like projection” or “a
frontal projection of a CT scan”. Alg. 1 describes the projec-
tion procedure.

Algorithm 1 2D Projection of a 3D CT Scan
1: Threshold: Limit HU values to [−500, 1500]—a window that

makes projections more X-ray-like.
2: Project in 2D: Sum over the antero-posterior axis.
3: Normalize: Apply xi = (xi − xmin)/(xmax − xmin).
4: Resize & RGB: Resize to 512 p on the longest image side, keep-

ing aspect ratio, and replicate in 3 channels (RGB).

To project the label and overlay it over the CT projection,
we first repeat Alg. 1 steps 1 and 2 for the label. Then, we
zero the blue and green channels of the CT projection where
the label projection is not 0, creating a semi-transparent red
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Fig. 1. (a) Public CT datasets with per-voxel labels are rapidly expanding, largely due to AI-assisted labeling. However,
AI often makes obvious errors, exampled in the liver, IVC, and kidneys, highlighting the need for efficient, automated error
detection. (b) Label Critic pipeline for comparing labels. (I) Frontally project (§2.2) the CT scan and overlay it with the
projections of two candidate labels (red), y1 and y2, creating two images; (II) verify the dice score (DSC) between the 2 label
projections, skip the comparison if DSC is above a class-specific threshold—avoiding comparing overly similar labels; (III)
ask a LVLM (§2.1) to compare the labels and choose the most correct. If y1 is a dataset label we are evaluating, we consider it
wrong if the LVLM prefers y2, the output of an alternative public segmentation model. (c) 3-Step Prompt Design. Prompt 1
asks if the target organ should be in the CT, providing a skeleton projection as reference. If the LVLM says no, we select an
empty label (if available) or flag the case for review. Otherwise, Prompt 2 asks the LVLM to compare two label overlays using
class-aware prompts with anatomical guidance, optional in-context learning, and complexity based on the LVLM’s background
knowledge of each class (§2.3). Prompt 3 asks the LVLM to summarizes its previous answer. Summarization provides an easily
processable binary answer, but allows detailed justifications and step-by-step reasoning in earlier steps.

overlay that doesn’t obscure the CT. Also, we create skele-
ton projections to help the LVLM identifying missing or mis-
placed labels (see §2.3). To create them, we use a window
of [400, 2000] in Alg. 1 and enhance the projection’s con-
trast with CLAHE [30] (grid 8, clip 5) and gamma adjustment
(γ = 0.6). For M3D, we provide 3D CTs with labels overlaid
in black (lowest CT HU value), as preliminary tests showed
this color outperformed white or gray overlays, possibly due
to its more natural look inside CTs.

2.3. Prompt! Prompt! Prompt!

Prompt design impacts accuracy (§3). In the large (N=5,195)
AtlasBench CT dataset (§3), we iteratively created a prompt,
ran Label Critic, analyzed wrong LVLM answers, and im-
proved the prompt accordingly. This process led to a stan-
dardized 3-step prompt, detailed in Fig. 1. Step 2, which
requests the LVLM to compare two labels, is class depen-
dent. Prompt complexity, strictness and number of in-context
examples (from 0-10) depends on the LVLM background
knowledge of the class: liver, spleen, kidneys and pancreas
are classes the LVLM is more familiar with, allowing more
complex and less strict prompts, with abstract shape ref-
erences (e.g., “wedge-like”) and multiple anatomical land-
marks (e.g.,“below the diaphragm”); VLMs are less familiar

to aorta and postcava, and our prompts used simple anatomi-
cal descriptions and strict guidance, focusing on linear shape,
extension, and continuity; stomach and gallbladder have less
well-defined shape, and our prompt focus on label location
and gross shape errors. For stomach we use in-context learn-
ing, providing one example of correct label.

We repeat Prompts 2 and 3 (Fig. 1), inverting the image
order in the LVLM input, and we check if its answers are con-
sistent across the repetitions. This procedure, dubbed Dual
Confirmation, reveals unreliable LVLM answers for minute
label errors or cases where both labels are wrong. Also, we
observed the LVLM itself can reject these comparisons, say-
ing both labels are bad or similar. If Dual Confirmation finds
inconsistent answers or the VLM rejects comparisons, we re-
move the case from the dataset, flagging for human review.
To detect errors without label comparison, we skip the dice
check and Dual Confirmation and modify prompt 2 to ask
the LVLM to evaluate a single label, giving it examples of
other CTs and correct/incorrect labels. We also created class-
agnostic 3-step prompts, readily applicable to new classes,
by removing class information in Prompt 2. Prompts were
summarized for Llava, Llava-med and M3D, due to smaller
context length. All prompts are available in our code.

https://github.com/PedroRASB/Cerberus


Table 1. Label Critic excels in two datasets. We report Accuracy as the proportion of labels correctly evaluated out of the
total evaluated. Each class contains an equal number of correct and incorrect labels. The LVLM used here is Qwen2-VL [29];
we also tested Llava [16], Llava-Med [26], and M3D [27], but these alternatives performed poorly, with average Accuracies of
54.1%, 50.2%, and 49.4%, respectively, for error detection on AtlasBench.

AtlasBench (error detection)

prompt in-context aorta gallbladder kidneys liver pancreas postcava spleen stomach average

class-agnostic 0-shot 51.0 (530/1040) 50.0 (59/118) 84.9 (107/126) 55.6 (10/18) 63.2 (72/114) 0.0 (0/2) 40.0 (8/20) 66.7 (8/12) 54.8 (794/1450)

class-aware
0-shot 58.7 (610/1040) 50.8 (60/118) 89.7 (113/126) 83.3 (15/18) 85.1 (97/114) 50.0 (1/2) 80.0 (16/20) 50.0 (6/12) 63.3 (918/1450)

1-shot 63.9 (665/1040) 50.8 (60/118) 83.3 (105/126) 83.3 (15/18) 76.3 (87/114) 100.0 (2/2) 70.0 (14/20) 50.0 (6/12) 65.8 (954/1450)

10-shot 72.2 (751/1040) 50.8 (60/118) 77.0 (97/126) 83.3 (15/18) 80.7 (92/114) 100.0 (2/2) 75.0 (15/20) 75.0 (9/12) 71.8 (1041/1450)

AtlasBench (label comparison)

class-agnostic 0-shot 78.7 (546/694) 68.0 (34/50) 95.7 (90/94) 100.0 (14/14) 97.1 (68/70) - (0/0) 100.0 (12/12) 100.0 (2/2) 81.8 (766/936)

class-aware 0-shot 96.5 (440/456) 74.4 (58/78) 96.4 (106/110) 100.0 (12/12) 92.2 (94/102) - (0/0) 100.0 (12/12) 66.7 (4/6) 93.6 (726/776)

JHHBench (label comparison)

class-aware 0-shot 98.4 (1234/1254) 92.9 (340/366) 85.7 (12/14) 100.0 (62/62) 100.0 (22/22) 100.0 (346/346) 100.0 (18/18) 93.8 (122/130) 97.5 (2156/2212)

3. RESULTS AND DISCUSSION

We created two datasets, AtlasBench and JHHBench, to eval-
uate Label Critic. They contain errors from real public and
private datasets, including mistakes in AI and human labels.
As a ground truth, labels in AtlasBench and JHHBench were
manually deemed correct or incorrect. Both dataset have la-
bels for eight abdominal organs3.

AtlasBench: The public AbdomenAtlas dataset [8, 9], an-
notated by AI-assisted radiologists, includes 5,195 abdomi-
nal CT volumes from 88 hospitals worldwide. We used La-
bel Critic to compare an intermediate development version
of AbdomenAtlas (Beta) to the current release (1.0). Label
Critic’s DSC check (Fig. 1) selected 1,450 labels with low
DSC, finding labels that were updated from Beta to 1.0, po-
tentially due to errors. We dubbed this subset AtlasBench.
We have released it as the first public dataset specifically for
benchmarking error detection and label comparison methods.

JHHBench: JHH consists of 5,172 CT volumes from
Johns Hopkins Hospital, annotated manually by radiologists.
To construct JHHBench, we compared these with pseudo-
annotations from a public nnU-Net ResEncL trained on Ab-
domenAtlas during the Touchstone Benchmark [13]. Here,
the Label Critic’s DSC check selected 2,808 low-DSC labels.

Label critic was accurate and generalized to diverse types
of label errors. For pair-wise comparison, it correctly chose
the best label 97.5% of the time in JHHBench, and 93.5%
in AtlasBench (Tab. 1). Most labels deemed wrong represent
are AI errors, but Label Critic even uncovered 188 errors in
human-made annotations–133 aorta errors due to the aortic
arch falling out of the annotator’s region of interest, and 55
label corruption cases like missing slices. We never trained
the LVLMs in Label Critic, and its prompts were developed
in AtlasBench considering AI errors only. Thus, finding er-
rors in JHH represents strong OOD generalization.

AtlasBench results show easy adaptability to new classes,

and demonstrate label comparisons are more accurate. While
in-context learning (10-shot) improved non-comparative error
detection, it still trailed behind the accuracy of the compara-
tive Label Critic. Thus, even when only detecting errors in
a dataset, one should prefer using Label Critic to compare
the dataset’s labels to outputs from public segmentation mod-
els. Label Critic’s class-tailored prompts outperformed class-
agnostic ones, yet the latter still achieved 81.8% accuracy, un-
derscoring Label Critic’s efortless adaptability to new classes.

The best-performing model in Label Critic was Qwen2-
VL [15], a large, general-purpose model with 70 billion
parameters. It outperformed smaller models, including the
Llava-7B [25], and medical fine-tuned models like Llava-
Med [26] and M3D [27], which both only reached chance-
level accuracy (50%). Qwen2-VL’s advantages come from
its larger size and longer context length (32,768 vs. 8,000
tokens), which improve reasoning, handling instructions,
and processing larger prompts. In contrast, Llava-Med and
M3D, fine-tuned on smaller medical datasets (100K medical
volumes for M3D vs. 400M images for CLIP), struggled to
generalize to Label Critic’s out-of-distribution (OOD) tasks
[31], as label error detection and comparison are uncommon
tasks in their training data.
Conclusion. Label Critic proves to be highly effective for
detecting and comparing label errors in organ segmentation,
choosing the best label with an impressive accuracy of 97.5%
on JHHBench and 93.5% on AtlasBench. This study is the
first to show LVLMs can compare segmentation outputs and
automatically select the Best-AI label for each sample, find-
ing and discarding errors, and minimizing manual label revi-
sion. Label Critic generalized to multiple error types (both
in AI and human labels) and it allows easy adaptation to new
hospital and classes. Thus, it can help dataset creators en-
hance label quality in massive medical datasets, and model
creators improve training data before training models. In fu-
ture work, we plan to extend Label Critic to the tumor class.
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